Science.gov

Sample records for collective nuclear excitations

  1. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  2. Collective excitations of supersymmetric plasma

    SciTech Connect

    Czajka, Alina; Mrowczynski, Stanislaw

    2011-02-15

    Collective excitations of N=1 supersymmetric electromagnetic plasma are studied. Since the Keldysh-Schwinger approach is used, not only equilibrium but also nonequilibrium plasma, which is assumed to be ultrarelativistic, is under consideration. The dispersion equations of photon, photino, electron, and selectron modes are written down and the self-energies, which enter the equations, are computed in the hard loop approximation. The self-energies are discussed in the context of effective action which is also given. The photon modes and electron ones appear to be the same as in the usual ultrarelativistic plasma of electrons, positrons, and photons. The photino modes coincide with the electron ones and the selectron modes are as of a free relativistic massive particle.

  3. Theory of nuclear excitation by electron capture for heavy ions

    SciTech Connect

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-15

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems.

  4. Collective charge excitations along cell membranes

    NASA Astrophysics Data System (ADS)

    Manousakis, E.

    2005-07-01

    A significant part of the thin layers of counter-ions adjacent to the exterior and interior surfaces of a cell membrane form quasi-two-dimensional (2D) layers of mobile charge. Collective charge density oscillations, known as plasmon modes, in these 2D charged systems of counter-ions are predicted in the present paper. This is based on a calculation of the self-consistent response of this system to a fast electric field fluctuation. The possibility that the membrane channels might be using these excitations to carry out fast communication is suggested and experiments are proposed to reveal the existence of such excitations.

  5. Probing the neutron skin thickness in collective modes of excitation

    NASA Astrophysics Data System (ADS)

    Paar, N.; Horvat, A.

    2014-03-01

    Nuclear collective motion provides valuable constraint on the size of neutron-skin thickness and the properties of nuclear matter symmetry energy. By employing relativistic nuclear energy density functional (RNEDF) and covariance analysis related to χ2 fitting of the model parameters, relevant observables are identified for dipole excitations, which strongly correlate with the neutron-skin thickness (rnp), symmetry energy at saturation density (J) and slope of the symmetry energy (L). Using the RNEDF framework and experimental data on pygmy dipole strength (68Ni, 132Sn, 208Pb) and dipole polarizability (208Pb), it is shown how the values of J, and L, and rnp are constrained. The isotopic dependence of moments associated to dipole excitations in 116-136Sn shows that the low-energy dipole strength and polarizability in neutron-rich nuclei display strong sensitivity to the symmetry energy parameter J, more pronounced than in isotopes with moderate neutron-to-proton number ratios.

  6. Nuclear Excitation by Electronic Transition - NEET

    SciTech Connect

    Becker, J.A.

    2002-06-10

    Experiments seeking to demonstrate nuclear excitation induced by synchrotron radiation have been enabled by the development of intense synchrotron radiation. The phenomena has been demonstrated in {sup 197}Au, while realistic upper limits for {sup 189}Os have been established. A new experiment in {sup 189}Os is described. The experimental claim of NEET in isomeric {sup 178}Hf is not credible.

  7. Collective Excitations in Electron-Hole Bilayers

    SciTech Connect

    Kalman, G. J.; Hartmann, P.; Donko, Z.; Golden, K. I.

    2007-06-08

    We report a combined analytic and molecular dynamics analysis of the collective mode spectrum of a bipolar (electron-hole) bilayer in the strong coupling classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles. In the in-phase spectra we identify longitudinal and transverse acoustic modes wholly maintained by correlations. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed.

  8. Collective excitations and dust particles in space

    NASA Technical Reports Server (NTRS)

    Gilra, D. P.

    1972-01-01

    It is shown that observed bands at 2200 A and in the 10 micron region are most probably due to collective excitations of dust particles. The following specific conclusions are drawn: (1) the 2200 A interstellar band is very likely due to graphite particles; (2) these graphite particles should be very small, approximately spherical, and should have no coating whatsoever; (3) the identification of circumstellar and interstellar silicates from the observations in the 10 micron region does not seem to be correct; (4) very valuable information about the shape of the circumstellar and interstellar dust particles can be obtained directly from observations; and (5) narrow band polarization measurements in the spectral regions of these bands will be very helpful in determining the shape of the particles.

  9. Nuclear excitation by electronic transition of 235U

    DOE PAGESBeta

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; Casperson, R. J.; Fisher, S. E.; Holliday, K. S.; Jeffries, J. R.; Wakeling, M. A.; Wilks, S. C.

    2016-03-11

    Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.

  10. Collective excitations in soft-sphere fluids.

    PubMed

    Bryk, Taras; Gorelli, Federico; Ruocco, Giancarlo; Santoro, Mario; Scopigno, Tullio

    2014-10-01

    Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination of molecular dynamics simulations and calculations within the approach of generalized collective modes, we provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the "rigid-nonrigid" fluid separation lines.

  11. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  12. Nuclear Excitation by a Strong Short Laser Pulse

    SciTech Connect

    Weidenmueller, Hans A.

    2011-05-06

    We derive the conditions on laser energy and photon number under which a short strong laser pulse excites a collective nuclear mode. We use the Giant Dipole Resonance as a representative example, and a random-matrix description of the fine-structure states and perturbation theory as tools. We identify the relevant observable as the nuclear time-decay function. That function is the Fourier transform of the autocorrelation function of the associated scattering matrix and contains information not otherwise available. We evaluate that function in specific cases and show that it may deviate significantly from an exponential.

  13. Searching for nuclear excitation by electronic transition in U-235

    NASA Astrophysics Data System (ADS)

    Chodash, P.; Norman, E. B.; Swanberg, E.; Burke, J. T.; Casperson, R. J.; Wilks, S.

    2012-10-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. NEET can occur when a nuclear transition closely matches the energy and multipolarity of an electronic transition. U-235 has a 1/2+ isomeric state that decays to the 7/2- ground state with a transition energy of 77 eV and a half life of 26 minutes. Theory predicts that electronic transitions exist within a partially ionized uranium plasma that would allow NEET to occur. The NEET process would excite U-235 into its isomeric state and then it will subsequently decay to the ground state via internal conversion. It is currently not known if this excitation occurs in U-235 and at what rate. In order to generate the uranium plasma with the correct conditions, a high power Q-switched Nd:YAG laser will irradiate a sample of highly enriched uranium. The resulting plasma will be collected on a catcher foil and counted using a microchannel plate detector. Current progress on the experiment will be presented.

  14. Search for intrinsic collective excitations in Sm152

    NASA Astrophysics Data System (ADS)

    Kulp, W. D.; Wood, J. L.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Allmond, J. M.; Bandyopadhyay, D.; Dashdorj, D.; Choudry, S. N.; Hayes, A. B.; Hua, H.; Mynk, M. G.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Teng, R.; Yates, S. W.

    2008-06-01

    The 685 keV excitation energy of the first excited 0+ state in Sm152 makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of Sm152 are used to probe the E2 collectivity of excited 0+ states in this “soft” nucleus and the results are compared with model predictions. No candidates for two-phonon Kπ=0+quadrupole vibrational states are found. A 2+,K=2 state with strong E2 decay to the first excited Kπ=0+ band and a probable 3+ band member are established.

  15. Search for Nuclear Excitation by Electronic Transition in U-235

    NASA Astrophysics Data System (ADS)

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; Wilks, S. C.; Casperson, R. J.; Swanberg, E. L.; Wakeling, M. A.; Cordeiro, T. J.

    2013-10-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. Depleted uranium and highly enriched uranium samples were used for the experiment. Preliminary results will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was further supported by the U.S. DHS, UC Berkeley, and the NNIS Fellowship.

  16. Recent experiments in novel nuclear excitations at the BNL AGS

    SciTech Connect

    Chrien, R.E.

    1988-01-01

    Recent experimental work at the AGS dealing with unusual nuclear excitations is summarized. Three examples are given: the deexcitation of ..lambda.. hypernuclei by ..gamma.. transitions, the production of ..lambda.. hypernuclei by the (..pi../sup +/,K/sup +/) reaction, and the search for /eta/-nuclear excitations. The status of each field and the implications of the research for nuclear theory are discussed. 11 refs., 10 figs., 1 tab.

  17. Search for intrinsic collective excitations in {sup 152}Sm

    SciTech Connect

    Kulp, W. D.; Wood, J. L.; Allmond, J. M.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Hua, H.; Teng, R.; Bandyopadhyay, D.; Choudry, S. N.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Dashdorj, D.; Mynk, M. G.; Yates, S. W.

    2008-06-15

    The 685 keV excitation energy of the first excited 0{sup +} state in {sup 152}Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of {sup 152}Sm are used to probe the E2 collectivity of excited 0{sup +} states in this 'soft' nucleus and the results are compared with model predictions. No candidates for two-phonon K{sup {pi}}=0{sup +}quadrupole vibrational states are found. A 2{sup +},K=2 state with strong E2 decay to the first excited K{sup {pi}}=0{sup +} band and a probable 3{sup +} band member are established.

  18. Analysis of excitation and collection geometries for planar waveguide immunosensors

    NASA Astrophysics Data System (ADS)

    Christensen, Douglas A.; Dyer, Shellee; Fowers, David; Herron, James N.

    1993-05-01

    We demonstrate the use of a two-channel flowcell for fluorescent immunoassays. The flowcell contains a planar silica waveguide for evanescent excitation of the fluorophores, and the planar waveguide surface provides the solid support for immobilization of the antibodies. The detection system is composed of a grating spectrometer and a CCD camera for spectral characterization of the emitted signals. Two methods of sensing have been studied: a displacement-type technique and a sandwich-type assay. The sensitivity achieved for measuring concentrations of HCG by the sandwich method is sub-picomolar. Also, we have experimentally compared the signal strengths for two alternative ways of excitation and collection, and determine that waveguide excitation/side collection has some practical advantages over side excitation/waveguide collection.

  19. Collective dynamical skyrmion excitations in a magnonic crystal

    NASA Astrophysics Data System (ADS)

    Mruczkiewicz, M.; Gruszecki, P.; Zelent, M.; Krawczyk, M.

    2016-05-01

    We investigate theoretically the magnetization dynamics in a skyrmion magnonic crystal. Collective excitations are studied in a chain of touching ferromagnetic nanodots in a skyrmion magnetic configuration. The determined dispersion relation of coupled skyrmions shows a periodic dependence on the wave vector, a characteristic feature of the band structure in magnonic crystals. By spatial analysis of the magnetization amplitude in the magnonic bands we identify the excited modes as breathing and clockwise gyrotropic dynamic skyrmions. Propagating with a negative and positive group velocity, respectively, these high- and low-frequency excitations can be further explored theoretically and experimentally for fundamental properties and technological applications in spintronics and magnonics.

  20. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  1. Collective excitations on a surface of topological insulator

    PubMed Central

    2012-01-01

    We study collective excitations in a helical electron liquid on a surface of three-dimensional topological insulator. Electron in helical liquid obeys Dirac-like equation for massless particles and direction of its spin is strictly determined by its momentum. Due to this spin-momentum locking, collective excitations in the system manifest themselves as coupled charge- and spin-density waves. We develop quantum field-theoretical description of spin-plasmons in helical liquid and study their properties and internal structure. Value of spin polarization arising in the system with excited spin-plasmons is calculated. We also consider the scattering of spin-plasmons on magnetic and nonmagnetic impurities and external potentials, and show that the scattering occurs mainly into two side lobes. Analogies with Dirac electron gas in graphene are discussed. PACS: 73.20.Mf; 73.22.Lp; 75.25.Dk. PMID:22376744

  2. Excitation strengths in 109Sn: Single-neutron and collective excitations near 100Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2012-09-01

    A set of B(E2) values for the low-lying excited states in the radioactive isotope 109Sn were deduced from a Coulomb excitation experiment. The 2.87-MeV/u radioactive beam was produced at the REX-ISOLDE facility at CERN and was incident on a secondary 58Ni target. The B(E2) values were determined using the known 2+→0+ reduced transition probability in 58Ni as normalization with the semiclassical Coulomb excitation code gosia2. The transition probabilities are compared to shell-model calculations based on a realistic nucleon-nucleon interaction and the predictions of a simple core-excitation model. This measurement represents the first determination of multiple B(E2) values in a light Sn nucleus using the Coulomb excitation technique with low-energy radioactive beams. The results provide constraints for the single-neutron states relative to 100Sn and also indicate the importance of both single-neutron and collective excitations in the light Sn isotopes.

  3. Spectra from nuclear-excited plasmas

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Weaver, W. R.

    1980-01-01

    The paper discusses the spectra taken from He-3(n,p)H-3 nuclear-induced plasmas under high thermal neutron flux, lasing conditions. Also, initial spectra are presented for U-235F6 generated plasmas. From an evaluation of these spectra, important atomic and molecular processes that occur in the plasma can be inferred. The spectra presented are the first to be generated by He-3 and U-235F6 nuclear reactions under high neutron flux, lasing conditions. The U-235(n,ff)FF reaction, which liberates 165 MeV of fission-fragment kinetic energy, creates plasmas that are of great interest, since at sufficiently high densities of U-235F6 the gas becomes self-critical; thus, there is no need for an external driving reactor (source of neutrons). The spectra from mixtures of He-3 and Ar, Xe, Kr, Ne, Cl2, F2 and N2 indicate little difference between high-pressure nuclear-induced plasmas and high-pressure electrically pulsed afterglow plasmas for noble-gas systems

  4. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    PubMed Central

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  5. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGESBeta

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; et al

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  6. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    SciTech Connect

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  7. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation.

    PubMed

    Mazza, T; Karamatskou, A; Ilchen, M; Bakhtiarzadeh, S; Rafipoor, A J; O'Keeffe, P; Kelly, T J; Walsh, N; Costello, J T; Meyer, M; Santra, R

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  8. Attenuation of excitation decay rate due to collective effect.

    PubMed

    Tay, B A

    2014-08-01

    We study a series of N oscillators, each coupled to its nearest neighbors, and linearly to a phonon field through the oscillator's number operator. We show that the Hamiltonian of a pair of adjacent oscillators, or a dimer, within the series of oscillators can be transformed into a form in which they are collectively coupled to the phonon field as a composite unit. In the weak coupling and rotating-wave approximation, the system behaves effectively as the trilinear boson model in the one excitation subspace of the dimer subsystem. The reduced dynamics of the one excitation subspace of the dimer subsystem coupled weakly to a phonon bath is similar to that of a two-level system, with a metastable state against the vacuum. The decay constant of the subsystem is proportional to the dephasing rate of the individual oscillator in a phonon bath, attenuated by a factor that depends on site asymmetry, intersite coupling, and the resonance frequency between the transformed oscillator modes, or excitons. As a result of the collective effect, the excitation relaxation lifetime is prolonged over the dephasing lifetime of an individual oscillator coupled to the same bath. PMID:25215723

  9. Local excitation and collection in polymeric fluorescent microstructures

    NASA Astrophysics Data System (ADS)

    Henrique, Franciele Renata; Mendonca, Cleber Renato

    2016-04-01

    Integrated photonics has gained attention in recent years due to its wide range of applications which span from biology to optical communications. The use of polymer-based platforms for photonic devices is of great interest because organic compounds can be easily incorporated to polymers, enabling modifications to the system physical properties. The two-photon polymerization technique has emerged as an interesting tool for the production of three-dimensional polymeric microstructures. However, for their further incorporation in photonic devices it is necessary to develop methods to perform optical excitation and signal collection on such microstructures. With such purpose, we demonstrate approaches to perform local excitation and collection in polymeric microstructures doped with fluorescent dyes, employing tapered fibers. The obtained results indicate that fiber tapers are suitable to couple light in and out of fluorescent polymeric microstructures, paving the way for their incorporation in photonic devices. We also show that microstructures doped with more than one dye can be used as built-in broadband light sources to photonic circuits and their emission spectrum can be tuned by the right choice of the excitation position.

  10. Collective magneto-polariton excitation in a terahertz photonic cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Lou, Minhan; Li, Xinwei; Chabanov, Andrey; Reno, John; Pan, Wei; Watson, John; Manfra, Michael; Kono, Junichiro

    Collective excitations in solids offer new opportunities for quantum optical studies. Many-body interactions inherent to condensed matter systems can lead to novel phenomena that cannot be achieved in traditional atomic systems. Here, we report collective ultrastrong light-matter coupling in a two-dimensional electron gas in a high- Q terahertz photonic-crystal cavity in a magnetic field. We directly observed time-domain vacuum Rabi oscillations, whose frequency was found to be proportional to the square root of N (where N is the carrier density), evidence for the collective nature of ultrastrong coupling. In addition, a small but definite blue shift due to the diamagnetic term in the Hamiltonian was observed for the polariton frequencies, which is another signature of ultrastrong light-matter coupling. Furthermore, the high- Q cavity suppressed the superradiant decay of cyclotron resonance, which resulted in unprecedentedly narrow intrinsic cyclotron resonance linewidths (~5.6 GHz at 2 K). Our method is also applicable to many classes of strongly correlated systems with collective many-body excitations in the terahertz range, opening a door to the fascinating physics of terahertz many-body cavity QED.

  11. Collective Excitations in InAs Well Intersubband Transitions

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, Cun-Zheng

    2003-01-01

    Intersubband transitions in semiconductor quantum well are studied using a density matrix theory that goes beyond the Hartree-Fock approximation by including the full second order electron-electron scattering terms in the polarization equation for the first time. Even though the spectral features remain qualitatively similar to the results obtained with dephasing rate approximation, significant quantitative changes result from such a more detailed treatment of dephasing. More specifically, we show how the interplay of the two fundamental collective excitations, the Fermi-edge singularity and the intersubband plasmon, leads to significant changes in lineshape as the electron density varies.

  12. Excitation function calculations for α + 93Nb nuclear reactions

    NASA Astrophysics Data System (ADS)

    Yiǧit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  13. Collective magnetic multipole excitations in open shells: 48Ti

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zamick, L.

    1987-11-01

    The magnetic multipole even-parity transitions are calculated in 48Ti with a mind to finding interesting collective behavior and to study the effects of increasing the model space. The single-j shell signature selection rules are compared to those in the neutron-proton interacting boson model with good F spin. There are similarities but also differences. Some behavior of the single-j shell calculation survives as the model space increases, e.g., low lying collective M1 and M7 modes. Configuration mixing is, however, vital to describe the M3 and M5 modes as well as the spin flip M1 modes. The distribution of strength between lower and higher isospins is discussed. Results are compared with calculated transitions in 42Sc. It appears that allowing one-particle excitations from the single-j shell gives the pattern of the strength distribution; the further addition of two-particle excitations leads to a quenching of the strength distribution.

  14. User-friendly software for modeling collective spin wave excitations

    NASA Astrophysics Data System (ADS)

    Hahn, Steven; Peterson, Peter; Fishman, Randy; Ehlers, Georg

    There exists a great need for user-friendly, integrated software that assists in the scientific analysis of collective spin wave excitations measured with inelastic neutron scattering. SpinWaveGenie is a C + + software library that simplifies the modeling of collective spin wave excitations, allowing scientists to analyze neutron scattering data with sophisticated models fast and efficiently. Furthermore, one can calculate the four-dimensional scattering function S(Q,E) to directly compare and fit calculations to experimental measurements. Its generality has been both enhanced and verified through successful modeling of a wide array of magnetic materials. Recently, we have spent considerable effort transforming SpinWaveGenie from an early prototype to a high quality free open source software package for the scientific community. S.E.H. acknowledges support by the Laboratory's Director's fund, ORNL. Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  15. Nuclear coherences in photosynthetic reaction centers following light excitation

    SciTech Connect

    Weber, S.; Norris, J.R.; Berthold, T.; Ohmes, E.; Kothe, G.; Thurnauer, M.C.

    1997-07-01

    Transient electron paramagnetic resonance is used to study the secondary radical pair in plant photosystem I. Nuclear coherences are observed in the transverse magnetization at lower temperatures following light excitation. Comparative studies of deuterated and deuterated {sup 15}N-substituted cyanobacteria S. lividus indicate assignment of these coherences to nitrogen nuclei in the primary donor and deuterons in the secondary acceptor. The modulation amplitude of a deuteron matrix line, as a function of the microwave power, reveals a distinct resonance behavior. The maximum amplitude is obtained when the Rabi frequency equals the nuclear Zeeman frequency.

  16. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  17. Interplay of Collective Excitations in Quantum Well Intersubband Resonances

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2003-01-01

    Intersubband resonances in a semiconductor quantum well (QW) display some of the most fascinating features involving various collective excitations such as Fermi-edge singularity (FES) and intersubband plasmon (ISP). Using a density matrix approach, we treated many-body effects such as depolarization, vertex correction, and self-energy consistently for a two-subband system. We found a systematic change in resonance spectra from FES-dominated to ISP-dominated features, as QW- width or electron density is varied. Such an interplay between FES and ISP significantly changes both line shape and peak position of the absorption spectrum. In particular, we found that a cancellation of FES and ISP undresses the resonant responses and recovers the single-particle features of absorption for semiconductors with a strong nonparabolicity such as InAs, leading to a dramatic broadening of the absorption spectrum.

  18. Bulk Properties of Nuclear Matter From Excitations of Nuclei

    SciTech Connect

    Shlomo, Shalom

    2007-10-26

    We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.

  19. Instability of insulating states in optical lattices due to collective phonon excitations

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Ziegler, K.

    2015-02-01

    The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms' being localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.

  20. Negative-parity nucleon excited state in nuclear matter

    NASA Astrophysics Data System (ADS)

    Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto

    2016-10-01

    Spectral functions of the nucleon and its negative-parity excited state in nuclear matter are studied by using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the and condensates. The MEM reproduces the lowest-energy peaks of both the positive- and negative-parity nucleon states at finite density up to ρ ˜ρN (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative-parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming phenomenological mean-field-type propagators for the peak states. We find that, as the density increases, the nucleon effective mass decreases while the vector self-energy increases. The density dependence of these quantities for the negative-parity state on the other hand turns out to be relatively weak.

  1. Experimental nuclear reaction data collection EXFOR

    SciTech Connect

    Semkova, V.; Otuka, N.; Simakov, S. P.; Zerkin, V.

    2011-07-01

    The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of 14 nuclear data centres. The main activity of the NRDC Network is collection and compilation of experimental nuclear reaction cross section data and the related bibliographic information in the EXFOR and CINDA databases as well as dissemination of nuclear reaction data and associated documentation to users. The database contains information and numerical data from more than about 19000 experiments consisting of more than 140000 datasets. EXFOR is kept up to date by constantly adding newly published experimental information. Tools developed for data dissemination utilise modern database technologies with fast online capabilities over the Internet. Users are provided with sophisticated search options, a user-friendly retrieval interface for downloading data in different formats, and additional output options such as improved data plotting capabilities. The present status of the EXFOR database will be presented together with the latest development for data access and retrieval. (authors)

  2. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  3. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect

    Francy, Christopher J.

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  4. Nuclear Excitation by Electronic Transition of U-235

    NASA Astrophysics Data System (ADS)

    Chodash, Perry Adam

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, U-235, has been studied several times over the past 40 years and NEET of U-235 has never been conclusively observed. These past experiments generated conflicting results with some experiments claiming to observe NEET of U-235 and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of U-235. If NEET of U-235 were to occur, U-235m would be created. U-235m decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of U-235m and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of U-235 was not observed during this experiment, an upper limit for the NEET rate of U-235 was determined. In addition, explanations for the conflicting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of U-235, it is likely that NEET of U-235 has never been observed.

  5. Large amplitude collective nuclear motion and soliton concept

    SciTech Connect

    Kartavenko, V.G. |

    1993-12-31

    An application of a soliton theory methods to some nonlinear problems in low and intermediate energies (E {approx} 10--100MeV/nucleon) nucleus - nucleus collisions are presented. Linear and nonlinear excitations of the nuclear density are investigated in the framework of nuclear hydrodynamics. The problem of dynamical instability and clusterization phenomena in a breakup of excited nuclear systems are considered from the points of view of a soliton concept.

  6. A Microscopic Quantal Model for Nuclear Collective Rotation

    SciTech Connect

    Gulshani, P.

    2007-10-26

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored.

  7. U(6)-Phonon model of nuclear collective motion

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2015-05-01

    The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton-neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.

  8. Collectivity in the light radon nuclei measured directly via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.

    2015-06-01

    Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.

  9. Connexions for the nuclear geometrical collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  10. The nuclear surface as a collective variable

    NASA Astrophysics Data System (ADS)

    Strutinsky, V. M.; Magner, A. G.; Brack, M.

    1984-06-01

    In heavy nuclei where the thickness of the diffused edge is relatively small, a certain sharp effective surface can be defined which characterizes the shape of the nucleus, and it can be considered as a collective dynamic variable. It is shown that the problem of fluid dynamics can be simplified by reducing it to simple linearized equations for the dynamics in the nuclear interior and boundary conditions set at the effective dynamic sharp surface of the density distribution. These conditions are derived from the fluid dynamical equations. Transitional densities obtained from this simple model are compared with the numerical solution of fluid dynamical equations.

  11. Nuclear Excitation by Electronic Transition of U-235

    SciTech Connect

    Chodash, Perry Adam

    2015-07-14

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated con icting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of 235U. If NEET of 235U were to occur, 235mU would be created. 235mU decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of 235mU and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of 235U was not observed during this experiment, an upper limit for the NEET rate of 235U was determined. In addition, explanations for the con icting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of 235U, it is likely that NEET of 235U has never been observed.

  12. Collective hypersonic excitations in strongly multiple scattering colloids.

    PubMed

    Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N

    2011-04-29

    Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.

  13. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  14. Searching for U-235m produced by Nuclear Excitation by Electronic Transition

    NASA Astrophysics Data System (ADS)

    Chodash, Perry; Norman, Eric; Burke, Jason; Wilks, Scott; Casperson, Robert

    2014-09-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the intense laser pulse were varied by changing the spot size of the laser on the target. The resulting plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. First results will be presented. Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the

  15. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  16. A search for manifestation of two types of collective excitations in dynamic structure of a liquid metal: Ab initio study of collective excitations in liquid Na.

    PubMed

    Bryk, Taras; Wax, J-F

    2016-05-21

    Using a combination of ab initio molecular dynamics and several fit models for dynamic structure of liquid metals, we explore an issue of possible manifestation of non-acoustic collective excitations in longitudinal dynamics having liquid Na as a case study. A model with two damped harmonic oscillators (DHOs) in time domain is used for analysis of the density-density time correlation functions. Another similar model with two propagating contributions and three lowest exact sum rules is considered, as well as an extended hydrodynamic model known as thermo-viscoelastic one which permits two types of propagating modes outside the hydrodynamic region to be used for comparison with ab initio obtained time correlation functions and calculations of dispersions of collective excitations. Our results do not support recent suggestions that, even in simple liquid metals, non-hydrodynamics transverse excitations contribute to the longitudinal collective dynamics and can be detected as a DHO-like spectral shape at their transverse frequency. We found that the thermo-viscoelastic dynamic model permits perfect description of the density-density and current-current time correlation functions of the liquid Na in a wide range of wave numbers, which implies that the origin of the non-hydrodynamic collective excitations contributing to longitudinal dynamics can be short-wavelength heat waves. PMID:27208952

  17. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    SciTech Connect

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references.

  18. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    SciTech Connect

    Dasso, C.H.; Lenzi, S.M.; Vitturi, A.

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  19. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and β decay

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.

    2016-09-01

    The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., < I_2^π allel M(E2)allel I_1^π > matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  20. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  1. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  2. Collective Excitations of an Imbalanced Fermion Gas in a 1D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Mendoza, R.; Fortes, M.; Solís, M. A.

    2014-04-01

    The collective excitations that minimize the Helmholtz free energy of a population-imbalanced mixture of a 6Li gas loaded in a quasi one-dimensional optical lattice are obtained. These excitations reveal a rotonic branch after solving the Bethe-Salpeter equation under a generalized random phase approximation based on a single-band Hubbard Hamiltonian. The phase diagram describing stability regions of Fulde-Ferrell-Larkin-Ovchinnikov and Sarma phases is also analyzed.

  3. On the importance of collective excitations for thermal transport in graphene

    SciTech Connect

    Gill-Comeau, Maxime; Lewis, Laurent J.

    2015-05-11

    We use equilibrium molecular dynamics (MD) simulations to study heat transport in bulk single-layer graphene. Through a modal analysis of the MD trajectories employing a time-domain formulation, we find that collective excitations involving flexural acoustic (ZA) phonons, which have been neglected in the previous MD studies, actually dominate the heat flow, generating as much as 78% of the flux. These collective excitations are, however, much less significant if the atomic displacements are constrained in the lattice plane. Although relaxation is slow, we find graphene to be a regular (non-anomalous) heat conductor for sample sizes of order 40 μm and more.

  4. Coulomb and nuclear excitations of narrow resonances in 17Ne

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  5. Collective excitations of the hybrid atomic-molecular Bose-Einstein condensates

    SciTech Connect

    Gupta, Moumita; Dastidar, Krishna Rai

    2010-06-15

    We investigate the low-energy excitations of the spherically and axially trapped atomic Bose-Einstein condensate coupled to a molecular Bose gas by coherent Raman transitions. We apply the sum-rule approach of many-body response theory to derive the low-lying collective excitation frequencies of the hybrid atom-molecular system. The atomic and molecular ground-state densities obtained in Gross-Pitaevskii and modified Gross-Pitaevskii (including the higher order Lee-Huang-Yang term in interatomic interaction) approaches are used to find out the individual energy components and hence the excitation frequencies. We obtain different excitation energies for different angular momenta and study their characteristic dependence on the effective Raman detuning, the scattering length for atom-atom interaction, and the intensities of the coupling lasers. We show that the inclusion of the higher-order nonlinear interatomic interaction in modified Gross-Pitaevskii approach introduces significant corrections to the ground-state properties and the excitation frequencies both for axially and spherically trapped coupled {sup 87}Rb condensate system with the increase in the s-wave scattering length (for peak gas-parameter {>=}10{sup -3}). It has been shown that the excitation frequencies decrease with the increase in the effective Raman detuning as well as the s-wave scattering length, whereas excitation frequencies increase with the increase in the atom-molecular coupling strength. The frequencies in modified Gross-Pitaevskii approximation exhibit an upward trend after a certain value of scattering length and also largely deviate from the Gross-Pitaevskii results with the increase in s-wave scattering length. The strong dependence of excitation frequencies on the laser intensities used for Raman transitions manifests the role of atom-molecular coupling strength on the control of collective excitations. The collective excitation frequencies for the hybrid atom-molecular BEC differ

  6. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  7. Direct and secondary nuclear excitation with x-ray free-electron lasers

    SciTech Connect

    Gunst, Jonas; Wu, Yuanbin Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  8. Direct and secondary nuclear excitation with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Wu, Yuanbin; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-01

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of 93Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in 57Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  9. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  10. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  11. The dispersive behavior of collective excitations in fluids: An experimental test for the generalized collective modes theory

    SciTech Connect

    Bencivenga F.; Cunsolo A.

    2012-03-16

    The predictions of the generalized collective modes (GCM) theory on the non-hydrodynamic dispersion of collective excitations of liquids and supercritical fluids have been tested against previous inelastic x-ray scattering measurements on samples of increasing complexity. We observed a good agreement between experimental results and theoretical predictions within the hypothesis that sound propagation is adiabatic. Overall, the performed comparison provides an experimental validation of GCM predictions and shows that, even in the transition region between the hydrodynamic and the mesoscopic regimes, thermal fluctuations have a minor influence on the dispersion, whose non-hydrodynamic effects are mostly driven by viscoelastic phenomena.

  12. University of Florida nuclear pumped laser program. [excitation of laser gaseous

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1979-01-01

    The mechanism of excitation of laser gases by fast ions (triton, proton, or fission fragments) and especially any role UF6 might play in radiative deexcitation of these gases were investigated. Population densities of excited important for laser action were obtained. Nuclear pumped CW-laser systems, especially He-Ne and CO2, were studied using steady state reactors. It was demonstrated that He-Ne lases in a CW-mode with nuclear pumping at both the red and the infrared transition. The infrared transition was observed to be superradiant.

  13. Collective excitations in liquid CD4: Neutron scattering and molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Bafile, U.; Barocchi, F.; Demmel, F.; Formisano, F.; Sampoli, M.; Venturi, G.

    2005-12-01

    We have investigated the dynamic structure factor S(Q,ω) of liquid CD4 at T = 97.7 K in the wave vector range 2 <= Q/nm-1 <= 15 by means of neutron scattering and molecular-dynamics simulation, in order to study the centre-of-mass collective dynamics. The agreement between the experimental spectra and those simulated using a recent ab initio based intermolecular potential is good, particularly at low Q. Underdamped collective excitations, detected in the whole experimental Q-range, characterize the dynamics of liquid CD4 as markedly different from that of other molecular liquids. Also, the energy and damping of collective excitations in methane are shown to differ considerably, even at the lowest measured Q-values, from those of linearized hydrodynamic modes. An empirical relation, able to reconcile the different wave vector ranges of mode propagation observed in disparate liquids, is investigated.

  14. Evanescent-field excitation and collection approach for waveguide based photonic luminescent biosensors

    NASA Astrophysics Data System (ADS)

    Rigo, E.; Aparicio, F. J.; Vanacharla, M. R.; Larcheri, S.; Guider, R.; Han, B.; Pucker, G.; Pavesi, L.

    2014-03-01

    A silicon oxynitride channel waveguide based evanescent-field optical transducer is presented for lab-on-chip application. The optical biosensor detects luminescent bioanalytes infiltrated within a reactor well realized across the waveguide. As a main novelty, the sensing mechanism proposed makes use of the evanescent-field propagating in the waveguide to both excite and to collect the fluorescent signal. To understand the chip behavior, its design and collection efficiency were analyzed by finite-difference time-domain simulations in comparison with similar structures differing in the bioreactor thickness and therefore in the excitation and collection mechanisms. It is demonstrated that the best efficiency and performance are reached for the proposed dual evanescent field approach. Characterization of the optical losses and fluorescence measurements from a dye solution infiltrated in the bioreactor well validate the proposed working concept.

  15. High-frequency collective excitations in molten and glassy Te studied by inelastic neutron scattering

    SciTech Connect

    Ruiz-Martin, M. D.; Jimenez-Ruiz, M.; Bermejo, F. J.

    2006-03-01

    The spectra of collective excitations of liquid and glassy tellurium have been studied by means of inelastic neutron scattering. Here we report on the dynamics of liquid Te as measured at two different temperatures, just above melting (T{sub m}=723 K) and at {approx}1000 K as well as the glass that is studied at room temperature. Estimates for the velocity of propagating excitations for both temperatures have been obtained from the experimental data, and a contrasting behavior is found with respect to anomalies shown by the adiabatic sound velocity measured by ultrasound methods. The origin of such differences is finally discussed.

  16. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles

    NASA Astrophysics Data System (ADS)

    Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Wang, F.; Showalter, K.

    2010-06-01

    We present experimental studies of interacting excitable and oscillatory catalytic particles in well-stirred and spatially distributed systems. A number of distinct paths to synchronized oscillatory behavior are described. We present an example of a Kuramoto type transition in a well-stirred system with a collective rhythm emerging on increasing the number density of oscillatory particles. Groups of spatially distributed oscillatory particles become entrained to a common frequency by organizing centers. Quorum sensing type transitions are found in populations of globally and locally coupled excitable particles, with a sharp transition from steady state to fully synchronized behavior at a critical density or group size.

  17. Theory of macroscopic quantum tunneling with Josephson-Leggett collective excitations in multiband superconducting Josephson junctions

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Machida, Masahiko; Nori, Franco

    2014-06-01

    Collective excitations reveal fundamental properties and potential applications of superconducting states. We theoretically study macroscopic quantum tunneling (MQT) in a Josephson junction composed of multiband superconductors, focusing on a phase mode induced by interband fluctuations: the Josephson-Leggett (JL) collective excitation mode. Using the imaginary-time path-integral method, we derive a formula for the MQT escape rate for low-temperature switching events. We clarify that the JL mode has two major effects on the MQT: (i) the zero-point fluctuations enhance the escape rate, and (ii) the quantum dissipation induced by the couplings to the gauge-invariant phase difference suppresses the quantum tunneling. We show that the enhancement exceeds the suppression for a wide range of junction parameters. This enhancement originates from the single-mode interaction between the tunneling variable and the interband fluctuations.

  18. Theoretical Study of the Damping of Collective Excitations in a Bose-Einstein Condensate

    SciTech Connect

    Vincent Liu, W.

    1997-11-01

    We study the damping of low-lying collective excitations of condensates in a weakly interacting Bose gas model within the framework of an imaginary time path integral. A general expression of the damping rate has been obtained for both the very low temperature regime and the higher temperature regime. For the latter, the result is new and applicable to recent experiments. Theoretical predictions for the damping rate are compared with the experimental values. {copyright} {ital 1997} {ital The American Physical Society}

  19. Collective excitations in a superfluid of color-flavor locked quark matter

    SciTech Connect

    Fukushima, Kenji; Iida, Kei

    2005-04-01

    We investigate collective excitations coupled with baryon density in a system of massless three-flavor quarks in the collisionless regime. By using the Nambu-Jona-Lasinio (NJL) model in the mean-field approximation, we field-theoretically derive the spectra both for the normal and color-flavor locked (CFL) superfluid phases at zero temperature. In the normal phase, we obtain usual zero sound as a low-lying collective mode in the particle-hole (vector) channel. In the CFL phase, the nature of collective excitations varies in a way dependent on whether the excitation energy, {omega}, is larger or smaller than the threshold given by twice the pairing gap {delta}, at which pair excitations with nonzero total momentum become allowed to break up into two quasiparticles. For {omega}<<2{delta}, a phonon corresponding to fluctuations in the U(1) phase of {delta} appears as a sharp peak in the particle-particle ('H') channel. We reproduce the property known from low-energy effective theories that this mode propagates at a velocity of v{sub H}=1/{radical}(3) in the low momentum regime; the decay constant f{sub H} obtained in the NJL model is identical with the QCD result obtained in the mean-field approximation. We also find that, as the momentum of the phonon increases, the excitation energy goes up and asymptotically approaches {omega}=2{delta}. Above the threshold for pair excitations ({omega}>2{delta}), zero sound manifests itself in the vector channel. By locating the zero sound pole of the vector propagator in the complex energy plane, we investigate the attenuation and energy dispersion relation of zero sound. In the long wavelength limit, the phonon mode, the only low-lying excitation, has its spectral weight in the H channel alone, while the spectral function vanishes in the vector channel. This is due to nontrivial mixing between the H and vector channels in the superfluid medium. We finally extend our study to the case of nonzero temperature. We demonstrate how

  20. Generalized cranking model for collective nuclear motion

    NASA Astrophysics Data System (ADS)

    Kunz, J.; Nix, J. R.

    1984-09-01

    The Inglis cranking model is generalized to take into account effects of any velocity dependence present in the single-particle potential and the reaction of the pairing field to the collective motion. The generalized model is applied to translations, rotations and some special types of vibrations. Some of our results and our numerical calculations are obtained with a harmonic-oscillator single-particle potential. Unlike the inertia calculated with the Inglis cranking model, the inertia calculated with the generalized cranking model is independent of the effective mass and approaches the irrotational value in the limit of large pairing.

  1. Variety of c-Axis Collective Excitations in Layered Multigap Superconductors

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio

    2011-04-01

    We present a dynamical theory for the phase differences along a stacked direction of intrinsic Josephson junctions (IJJ’s) in layered multigap superconductors, motivated by the discovery of highly anisotropic iron-based superconductors with thick perovskite-type blocking layers. The dynamical equations describing ac and dc intrinsic Josephson effects peculiar to multigap IJJ’s are derived, and collective Leggett mode excitations in addition to the Josephson plasma established in single-gap IJJ’s are predicted. The dispersion relations of their collective modes are explicitly displayed, and the remarkable peculiarity of the Leggett mode is demonstrated.

  2. PHOTOEMISSION AS A PROBE OF THE COLLECTIVE EXCITATIONS IN CONDENSED MATTER SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; VALLA, T.

    2006-08-01

    New developments in instrumentation have recently allowed photoemission measurements to be performed with very high energy and momentum resolution.[1] This has allowed detailed studies of the self-energy corrections to the lifetime and mass renormalization of excitations in the vicinity of the Fermi level. These developments come at an opportune time. Indeed the discovery of high temperature superconductivity in the cuprates and related systems is presenting a range of challenges for condensed matter physics.[2] Does the mechanism of high T{sub c} superconductivity represent new physics? Do we need to go beyond Landau's concept of the Fermi liquid?[3] What, if any, is the evidence for the presence or absence of quasiparticles in the excitation spectra of these complex oxides? The energy resolution of the new instruments is comparable to or better than the energy or temperature scale of superconductivity and the energy of many collective excitations. As such, photoemission has again become recognized as an important probe of condensed matter. Studies of the high T{sub c} superconductors and related materials are aided by the observation that they are two dimensional. To understand this, we note that the photoemission process results in both an excited photoelectron and a photohole in the final state. Thus the experimentally measured photoemission peak is broadened to a width reflecting contributions from both the finite lifetime of the photohole and the momentum broadening of the outgoing photoelectron.

  3. Influence of nuclear de-excitation on observables relevant for space exploration

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie

    The composition of the space radiation environment inside spacecrafts is modified by the inter-action with shielding material, with equipment and even with the astronauts' bodies. Accurate quantitative estimates of the effects of nuclear reactions are necessary, for example, for dose estimation and prediction of single-event upset rates. To this end, it is necessary to construct predictive models for nuclear reactions, which usually consist of an intranuclear-cascade or quantum-molecular-dynamics stage, followed by a nuclear de-excitation stage. While it is generally acknowledged that it is necessary to accurately simulate the first reaction stage, transport-code users often neglect or underestimate the importance of the choice of the de-excitation code. The purpose of this work is to prove that the de-excitation model is in fact a non-negligible source of uncertainty for the prediction of several observables of crucial importance for space applications. For some particular observables, such as fragmentation cross sections, the systematic uncertainty due to the de-excitation model actually dominates the theoretical error. Our point will be illustrated by making use of calculations performed with several intranuclear-cascade/de-excitation models, such as the Li`ge Intranuclear Cascade model (INCL) and Isabel (for the cascade part) and ABLA, GEMINI++ and SMM (on the de-excitation side). We will also rely on the results of the recent IAEA intercomparison of spallation models, which can be used as informative groundwork for the evaluation of the global uncertainties involved in nucleon-nucleus reactions.

  4. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  5. Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation

    SciTech Connect

    Sedelnikova, O. V. Bulusheva, L. G.; Okotrub, A. V.; Asanov, I. P.; Yushina, I. V.

    2014-04-21

    Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.

  6. Ab initio investigation of collective charge excitations in MgB2.

    PubMed

    Ku, Wei; Pickett, W E; Scalettar, R T; Eguiluz, A G

    2002-02-01

    A sharp collective charge excitation is predicted in MgB2 at approximately 2.5 eV for q perpendicular to the boron layers, based on an all-electron analysis of the dynamical density response within time-dependent density functional theory. This novel excitation, consisting of coherent charge fluctuation between Mg and B sheets, induces an abrupt plasma edge in the experimentally observable reflectivity. The existence of this mode reflects the unique electronic structure of MgB2 that is also responsible for strong electron-phonon coupling. By contrast, the acoustic plasmon, recently suggested to explain the high T(c), is not realized when realistic transition strengths are incorporated.

  7. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    NASA Astrophysics Data System (ADS)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  8. Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2013-04-01

    intersubband single-particle as well as collective excitations], the loss functions for the IES and the Raman intensity for the ILS. We observe that it is the collective (plasmon) excitations that largely contribute to the predominant peaks in the energy-loss and the Raman spectra. The inductive reasoning is that the IES can be a potential alternative of the overused ILS for investigating collective excitations in quantum wires. We trust that this research work shall be useful to all - from novice to expert and from theorist to experimentalist - who believe in the power of traditional science.

  9. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  10. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation. PMID:27472379

  11. Excitation energy and nuclear dissipation probed with evaporation-residue cross sections

    SciTech Connect

    Ye, W.

    2011-04-15

    Using a Langevin equation coupled with a statistical decay model, we calculate the excess of evaporation-residue cross sections over its standard statistical-model value as a function of nuclear dissipation strength for {sup 200}Hg compound nuclei (CNs) under two distinct types of initial conditions for populated CNs: (i) high excitation energy but low angular momentum (produced via proton-induced spallation reactions at GeV energies and via peripheral heavy-ion collisions at relativistic energies) and (ii) high angular momentum but low excitation energy (produced through fusion mechanisms). We find that the conditions of case (ii) not only amplify the effect of dissipation on the evaporation residues, but also substantially increase the sensitivity of this excess to nuclear dissipation. These results suggest that, in experiments, to obtain accurate information of presaddle nuclear dissipation strength by measuring evaporation-residue cross sections, it is best to choose the heavy-ion-induced fusion reaction approach to yield excited compound nuclei.

  12. The proton-neutron symplectic model of nuclear collective motions

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2016-06-01

    The proton-neutron symplectic model of nuclear collective motion is presented. It is shown that it appears as a natural multi-major-shell extension of the generalized proton- neutron SU(3) scheme which includes rotations with intrinsic vortex as well as monopole, quadrupole and dipole giant resonance vibrational degrees of freedom.

  13. Group theoretic approaches to nuclear and hadronic collective motion

    SciTech Connect

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references.

  14. Collective excitations in the Ginzburg-Landau theory of the fractional quantum Hall effect

    SciTech Connect

    Lee, D. ); Zhang, S. )

    1991-03-04

    The collective excitations of the fractional-quantum-Hall liquid are studied within the Ginzburg-Landau theory. We show that (1) Gaussian fluctuations of the phase of the order parameter correspond to the cyclotron mode with an energy gap of {h bar}{omega}{sub {ital c}} at {bold q}=0 and a contribution to the static structure factor proportional to {vert bar}{bold q}{vert bar}{sup 2} as {bold q}{r arrow}0, in accordance with Kohn's theorem, and (2) vortex-antivortex fluctuations give rise to the lowest-Landau-level collective mode with an energy gap that depends only on the Coulomb energy and a static structure factor that vanishes as {vert bar}{bold q}{vert bar}{sup 4} as {bold q}{r arrow}0.

  15. Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    PubMed Central

    LaForge, A. C.; Drabbels, M.; Brauer, N. B.; Coreno, M.; Devetta, M.; Di Fraia, M.; Finetti, P.; Grazioli, C.; Katzy, R.; Lyamayev, V.; Mazza, T.; Mudrich, M.; O'Keeffe, P.; Ovcharenko, Y.; Piseri, P.; Plekan, O.; Prince, K. C.; Richter, R.; Stranges, S.; Callegari, C.; Möller, T.; Stienkemeier, F.

    2014-01-01

    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields. PMID:24406316

  16. Damping rates and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar theory

    SciTech Connect

    Wang, S.-Y.; Boyanovsky, D.; Vega, H. J. de; Lee, D.-S.; Ng, Y. J.

    2000-03-15

    We study the transport coefficients, damping rates, and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar plasma with the goal of understanding the main physical mechanisms that determine transport of chirality in scenarios of nonlocal electroweak baryogenesis. The focus is on identifying the different transport coefficients for the different branches of soft collective excitations of the fermion spectrum. These branches correspond to collective excitations with opposite ratios of chirality to helicity and different dispersion relations. By combining results from the hard thermal loop (HTL) resummation program with a novel mechanism of fermion damping through heavy scalar decay, we obtain a robust description of the different damping rates and mean free paths for the soft collective excitations to leading order in HTL and lowest order in the Yukawa coupling. The space-time evolution of wave packets of collective excitations unambiguously reveals the respective mean free paths. We find that whereas both the gauge and scalar contribution to the damping rates are different for the different branches, the difference of mean free paths for both branches is mainly determined by the decay of the heavy scalar into a hard fermion and a soft collective excitation. We argue that these mechanisms are robust and are therefore relevant for nonlocal scenarios of baryogenesis either in the standard model or extensions thereof. (c) 2000 The American Physical Society.

  17. Collective electronic excitations in a semiconductor superlattice in the Landau and Wannier-Stark ladder regime

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Makarov, S. V.; Piterimova, T. V.; Gaiduk, E. A.

    2003-05-01

    Using a mean-field approximation, we have developed a systematic treatment of collective electronic modes in a semiconductor superlattice (SL) in the presence of strong electric and magnetic fields parallel to the SL axis. The spectrum of collective modes with zero wavevector along the SL axis is shown to consist of a principle magnetoplasmon mode and an infinite set of Bernstein-like modes. For non-zero wavevector along the SL axis, in addition to the cyclotron modes, extra collective modes are found at the frequencies \\vert Nω_c± Mω_s\\vert, which we call cyclotron-Stark modes (ω_c and ω_s are respectively the cyclotron and Stark frequencies, N and M are integer numbers). The frequencies of the modes propagating in “oblique” direction with respect to the SL axis show oscillatory behavior as a function of electric field strength. All the modes considered have very weak spatial dispersion and they are not Landau damped. The specific predictions made for the dispersion relations of the collective excitations should be observable in resonant Raman scattering experiments.

  18. Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra

    NASA Astrophysics Data System (ADS)

    Saganti, Premkumar

    As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.

  19. Data-adaptive unfolding of nuclear excitation spectra: a time-series approach

    NASA Astrophysics Data System (ADS)

    Torres Vargas, G.; Fossion, R.; Velázquez, V.; López Vieyra, J. C.

    2014-03-01

    A common problem in the statistical characterization of the excitation spectrum of quantum systems is the adequate separation of global system-dependent properties from the local fluctuations that are universal. In this process, called unfolding, the functional form to describe the global behaviour is often imposed externally on the data and can introduce arbitrarities in the statistical results. In this contribution, we show that a quantum excitation spectrum can readily be interpreted as a time series, before any previous unfolding. An advantage of the time-series approach is that specialized methods such as Singular Spectrum Analysis (SSA) can be used to perform the unfolding procedure in a data-adaptive way. We will show how SSA separates the components that describe the global properties from the components that describe the local fluctuations. The partial variances, associated with the fluctuations, follow a definite power law that distinguishes between soft and rigid excitation spectra. The data-adaptive fluctuation and trend components can be used to reconstruct customary fluctuation measures without ambiguities or artifacts introduced by an arbitrary unfolding, and also define the global level density of the excitation spectrum. The method is applied to nuclear shell-model calculations for 48Ca, using a realistic force and Two-Body Random Ensemble (TBRE) interactions. We show that the statistical results are very robust against a variation in the parameters of the SSA method.

  20. Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-15

    Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.

  1. Thermal conductivity of graphene and graphite: collective excitations and mean free paths.

    PubMed

    Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo; Lazzeri, Michele; Marzari, Nicola; Mauri, Francesco

    2014-11-12

    We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fourier's law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.

  2. Collective excitations from composite orders in Kondo lattice with non-Kramers doublets

    NASA Astrophysics Data System (ADS)

    Hoshino, S.; Kuramoto, Y.

    2015-03-01

    Goldstone modes emerge associated with spontaneous breakdown of the continuous symmetry in the two-channel Kondo lattice, which describes strongly correlated f-electron systems with a non-Kramers doublet at each site. This paper derives the spectra of these collective modes by the equation of motion method together with the random phase approximation. The diagonal composite order breaks the SU(2) channel symmetry, and the symmetry-restoring collective mode couples with magnetic field. On the other hand, the off-diagonal or superconducting composite order breaks the gauge symmetry of conduction electrons, and the collective mode couples with charge excitations near the zone boundary. At half-filling of the conduction bands, the spectra of these two modes become identical by a shift of the momentum, owing to the SO(5) symmetry of the system. The velocity of each Goldstone mode involves not only the Fermi velocity of conduction electrons but amplitude of the mean field as a multiplying factor. Detection of the Goldstone mode should provide a way to identify the composite order parameter.

  3. Strong interaction between electrons and collective excitations in the multiband superconductor MgB2

    DOE PAGESBeta

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Flint, Rebecca; Bud'ko, S. L.; Canfield, P. C.; Wen, J. S.; Xu, Z. J.; Gu, Genda; Kaminski, Adam

    2015-04-08

    We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB2 does not change significantly across Tc. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above Tc and is likely a signature of the elusive Leggett mode.

  4. Experimental studies of collective excitations of a BEC in light-induced gauge fields

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Niffenegger, Robert; Blasing, David; Olson, Abraham; Chen, Yong P.

    2015-05-01

    We present our experimental studies of collective modes including spin dipole mode and scissors mode of a 87Rb Bose-Einstein condensate (BEC) in the presence of Raman light-induced gauge fields and synthetic spin-orbit coupling (SOC). By Raman dressing the mf spin states within the F =1 manifold, we engineer atoms' energy-momentum dispersion to create synthetic SOC, and spin dependent synthetic electric and magnetic fields. We have used spin dependent synthetic electric fields to make two BECs with different spins oscillate and collide in the optical trap. We have studied the effects of SOC on both the momentum damping and thermalization behaviors of the BECs when undergoing such spin dipole oscillations. We have also used spatially dependent synthetic electric fields to excite the scissors mode, which has been used as a probe for superfluidity. We have investigated the effects of the synthetic gauge fields and SOC on the measured scissors mode.

  5. Coupled spin and charge collective excitations in a spin polarized electron gas

    SciTech Connect

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-08-12

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G{sub {sigma}}{sup {+-}} (q,{omega}). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system.

  6. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    PubMed

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  7. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    PubMed

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-01

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  8. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    PubMed

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-01

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions. PMID:12689221

  9. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  10. Experimental facility for reactor experiments on study of spectral-luminescent characteristics of nuclear-excited plasma

    NASA Astrophysics Data System (ADS)

    Gordienko, Yu N.; Batyrbekov, E. G.; Skakov, M. K.; Ponkratov, Yu V.; Khasenov, M. U.; Zaurbekova, Zh A.; Barsukov, N. I.; Kulsartov, T. V.; Tulubayev, Ye Yu

    2016-09-01

    The description of experimental facility and reactor ampoule device for carrying out the experiments on study of spectral-luminescent characteristics of nuclear-excited plasma formed by products of 6Li(n,α)T nuclear reaction under conditions of neutron irradiation is given in paper.

  11. Multiple hot-carrier collection in photo-excited graphene Moiré superlattices.

    PubMed

    Wu, Sanfeng; Wang, Lei; Lai, You; Shan, Wen-Yu; Aivazian, Grant; Zhang, Xian; Taniguchi, Takashi; Watanabe, Kenji; Xiao, Di; Dean, Cory; Hone, James; Li, Zhiqiang; Xu, Xiaodong

    2016-05-01

    In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection in graphene/boron-nitride Moiré superlattice structures. A record-high zero-bias photoresponsivity of 0.3 A/W (equivalently, an external quantum efficiency exceeding 50%) is achieved using graphene's photo-Nernst effect, which demonstrates a collection of at least five carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low-energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moiré minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures. PMID:27386538

  12. Multiple hot-carrier collection in photo-excited graphene Moiré superlattices

    PubMed Central

    Wu, Sanfeng; Wang, Lei; Lai, You; Shan, Wen-Yu; Aivazian, Grant; Zhang, Xian; Taniguchi, Takashi; Watanabe, Kenji; Xiao, Di; Dean, Cory; Hone, James; Li, Zhiqiang; Xu, Xiaodong

    2016-01-01

    In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection in graphene/boron-nitride Moiré superlattice structures. A record-high zero-bias photoresponsivity of 0.3 A/W (equivalently, an external quantum efficiency exceeding 50%) is achieved using graphene’s photo-Nernst effect, which demonstrates a collection of at least five carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low-energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moiré minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures. PMID:27386538

  13. Radially symmetric excitation and collection optics for flow cytometric sorting of aspherical cells.

    PubMed

    Sharpe, J C; Schaare, P N; Künnemeyer, R

    1997-12-01

    We report on a new optical configuration for sorting flow cytometers which is optimized for the illumination and collection of light from aspherical cells. This design provides radially symmetric illumination and detection of asymmetric particles while retaining the sort capability of a jet-in-air (or cylindrical cuvette) design. A paraboloidal reflector, symmetrical about the sample stream, both focuses a laser excitation beam and collects cell scatter and fluorescence from the inspection point. The performance of the new optical configuration has been tested and compared to that of a modified commercial flow cytometer, which uses a forward-side fluorescence collection geometry. For fluorescence measurements on calibration microspheres the new system produces histograms with similar coefficients of variation to those obtained with the modified conventional cytometer. Optical artifacts apparent in measurements on flat cells, such as blood cells and mammalian sperm, using conventional optics, are eliminated by the new configuration. Analysis of chinchilla sperm yields a dual-peaked histogram population that has a coefficient of variation and X-Y split which matches that for gated (oriented) fraction of the sample as measured by the conventional system. Bovine sperm, which are larger and flatter than chinchilla sperm, also produce a single population which, when low sample-to-sheath differential pressures are used, has coefficients of variation matching those for an oriented subpopulation as measured by conventional optics. This new optical configuration presents an alternative technique for measuring aspherical cells independent of their orientation, with the potential for higher analysis rates and improved efficiency compared to other optical systems. PMID:9415419

  14. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, B.deB. |

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  15. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  16. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  17. Inelastic electron and Raman scattering from the collective excitations in quantum wires

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir

    2014-03-01

    The nanofabrication technology has taught us that an m-dimensional confining potential imposed upon an n-dimensional electron gas paves the way to a quasi-(n- m)-dimensional electron gas, with m <= n and 1 <= n , m <= 3 . This is the road to the (semiconducting) quasi- n dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG) led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. This has motivated us to employ the Bohm-Pines' full RPA to develop a systematic methodology for the inelastic electron and light scattering from the collective (plasmon) excitations in Q-1DEG [or quantum wires]. We will discuss in detail the results published in AIP Advances 3, 042103 (2013).

  18. Theoretical formalism for collective spin-wave edge excitations in arrays of dipolarly interacting magnetic nanodots

    NASA Astrophysics Data System (ADS)

    Lisenkov, Ivan; Tyberkevych, Vasyl; Nikitov, Sergey; Slavin, Andrei

    2016-06-01

    A general theory of collective spin-wave edge modes in semi-infinite and finite periodic arrays of magnetic nanodots having uniform dynamic magnetization (macrospin approximation) is developed. The theory is formulated using a formalism of multivectors of magnetization dynamics, which allows one to study edge modes in arrays having arbitrarily complex primitive cells and lattice structure. The developed formalism can describe spin-wave edge modes localized both at the physical edges of the array and at the internal "domain walls" separating the array regions existing in different static magnetization states. Using a perturbation theory, in the framework of the developed formalism, it is possible to calculate damping of the edge modes and to describe their excitation by external variable magnetic fields. The theory is illustrated on the following practically important examples: (i) calculation of the FMR absorption in a finite nanodot array having the shape of a right triangle; (ii) calculation of the spectra of nonreciprocal spin-wave edge modes, including the modes at the physical edges of an array and modes at the domain walls inside the array; and (iii) study of the influence of the domain wall modes on the FMR spectrum of an array existing in a nonideal chessboard antiferromagnetic ground state.

  19. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  20. New formulation of Magnetization Equation for Flowing Nuclear Spin under NMR/MRI Excitation(I)

    NASA Astrophysics Data System (ADS)

    de, Dilip; Emetere, Moses; Omotosho, Victor

    2015-03-01

    We have obtained for the first time from the Bloch NMR equations the correct dependence of the single component of magnetization, My and Mz at resonance (NMR/MRI) on relaxation times, rf B1 field (pulsed or continuous), blood(nuclear spin) flow velocity, etc. in the rotating frame of reference. The equations are applicable for both CW and pulsed NMR experiments with or without flow of spins. Our approaches can be extended easily to include gradient fields and diffusion of spins, if needed in NMR/MRI experiments. We also discuss the application of our equations to a specific case of MR excitation scheme: Free induction decay. The first time new equations of single component of MR magnetization and further equations that can be derived with the methodologies used here, can be applied towards accurate simulation of MR images/signals and extraction of parameters of clinical importance through comparison of the measured and the simulated images/signals.

  1. Nuclear Spin Orientation Dependence of Magnetoconductance: A New Method for Measuring the Spin of Charged Excitations in the QHE

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-12-01

    A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.

  2. Collective spin excitations in bicomponent magnonic crystals consisting of bilayer permalloy/Fe nanowires

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Tacchi, S.; Madami, M.; Carlotti, G.; Yang, Z.; Ding, J.; Adeyeye, A. O.; Kostylev, M.

    2016-05-01

    In the developing field of magnonics, it is very important to achieve tailoring of spin wave propagation by both a proper combination of materials with different magnetic properties and their nanostructuring on the submicrometric scale. With this in mind, we have exploited deep ultraviolet lithography, in combination with the tilted shadow deposition technique, to fabricate arrays of closely spaced bilayer nanowires (NWs), with separation d =100 nm and periodicity a =440 nm , having bottom and top layers made of permalloy and iron, respectively. The NWs have either a "rectangular" cross section (bottom and upper layers of equal width) or an "L-shaped" cross section (upper layer of half width). The frequency dispersion of collective spin wave excitations in the above bilayered NW arrays has been measured by the Brillouin light-scattering technique while sweeping the wave vector perpendicularly to the wire length over three Brillouin zones of the reciprocal space. For the rectangular NWs, the lowest-frequency fundamental mode, characterized by a quasiuniform profile of the amplitude of the dynamic magnetization across the NW width, exhibits a sizable and periodic frequency dispersion. A similar dispersive mode is also present in L-shaped NWs, but the mode amplitude is concentrated in the thin side of the NWs. The width and the center frequency of the magnonic band associated with the above fundamental modes have been analyzed, showing that both can be tuned by varying the external applied field. Moreover, for the L-shaped NWs it is shown that there is also a second dispersive mode, at higher frequency, characterized by an amplitude concentrated in the thick side of the NW. These experimental results have been quantitatively reproduced by an original numerical model that includes a two-dimensional Green's function description of the dipole field of the dynamic magnetization and interlayer exchange coupling between the layers.

  3. Kinetic energy for the nuclear Yang-Mills collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2015-10-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM, has two hidden mathematical structures, one Lie group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new unexplored feature that shares the same mathematical origin as Yang-Mills, viz., a vector bundle with a non-abelian structure group and a connection. Using the de Rham Laplacian ▵ = * d * d from differential geometry for the kinetic energy extends significantly the physical scope of the GCM model. This Laplacian contains a ``magnetic'' term due to the coupling between base manifold rotational and fiber vorticity degrees of freedom. When the connection specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator. More generally, the connection yields a moment of inertia that is intermediate between the extremes of irrotational flow and rigid body motion.

  4. Electron excitation collision strengths for positive atomic ions: a collection of theoretical data

    SciTech Connect

    Merts, A.L.; Mann, J.B.; Robb, W.D.; Magee, N.H. Jr.

    1980-03-01

    This report contains data on theoretical and experimental cross sections for electron impact excitation of positive atomic ions. It is an updated and corrected version of a preliminary manuscript which was used during an Atomic Data Workshop on Electron Excitation of Ions held at Los Alamos in November 1978. The current status of quantitative knowledge of collisional excitation collision strengths is shown for highly stripped ions where configuration mixing, relativistic and resonance effects may be important. The results show a reasonably satisfactory state for first-row isoelectronic ions and indicate that a considerable amount of work remains to be done for second-row and heavier ions.

  5. New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Tornow, Werner

    2015-10-01

    The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.

  6. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  7. Is it possible to enhance the nuclear Schiff moment by nuclear collective modes?

    SciTech Connect

    Auerbach, N. Dmitriev, V. F. Flambaum, V. V. Lisetskiy, A. Sen'kov, R. A. Zelevinsky, V. G.

    2007-09-15

    The nuclear Schiff moment is predicted to be enhanced in nuclei with static quadrupole and octupole deformation. The analogous suggestion of the enhanced contribution to the Schiff moment from the soft collective quadrupole and octupole vibrations in spherical nuclei is tested in the framework of the quasiparticle random phase approximation with separable quadrupole and octupole forces applied to the odd {sup 217-221}Ra and {sup 217-221}Rn isotopes. In this framework, we confirm the existence of the enhancement effect due to the soft modes, but only in the limit when the frequencies of quadrupole and octupole vibrations are close to zero.

  8. Onset of collectivity in 96,98Sr studied via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Clément, E.; Görgen, A.; Dijon, A.; de France, G.; Bastin, B.; Blazhev, A.; Bree, N.; Butler, P.; Delahaye, P.; Ekstrom, A.; Georgiev, G.; Hasan, N.; Iwanicki, J.; Jenkins, D.; Korten, W.; Larsen, A. C.; Ljungvall, J.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Petts, A.; Renstrom, T.; Seidlitz, M.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Warr, N.; Wrzosek-Lipska, K.; Zielińska, M.; Bauer, C.; Bruyneel, B.; Butterworth, J.; Fitzpatrick, C.; Fransen, C.; Gernhäuser, R.; Hess, H.; Lutter, R.; Marley, P.; Reiter, P.; Siebeck, B.; Vermeulen, M.; Wiens, A.; De Witte, H.

    2014-03-01

    A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  9. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    SciTech Connect

    Bryk, Taras; Ruocco, G.; Scopigno, T.

    2015-09-14

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  10. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhäuser, R.; Günther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-01

    Next-generation γ beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 1013 γ/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (˜120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a γ pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 1018 γ/s, thus introducing major challenges in view of pile-up. Novel γ optics will be applied to monochromatize the γ beam to ultimately ΔE/E˜10-6. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding γ detectors, e.g. based on advanced scintillator technology (e.g. LaBr3(Ce)) allow for measurements with count rates as high as 106-107 γ/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  11. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    SciTech Connect

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-09

    Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  12. Development of collective structures over noncollective excitations in {sup 139}Nd

    SciTech Connect

    Bhowal, S.; Gangopadhyay, G.; Petrache, C. M.; Ragnarsson, I.; Singh, A. K.; Bhattacharya, S.; Huebel, H.; Neusser-Neffgen, A.; Al-Khatib, A.; Bringel, P.; Buerger, A.; Nenoff, N.; Schoenwasser, G.; Hagemann, G. B.; Herskind, B.; Jensen, D. R.; Sletten, G.; Fallon, P.; Goergen, A.; Bednarczyk, P.

    2011-08-15

    High-spin states in {sup 139}Nd were investigated using the reaction {sup 96}Zr({sup 48}Ca,5n) at a beam energy of 195 MeV and {gamma}-ray coincidences were acquired with the Euroball spectrometer. Apart from several dipole bands at medium excitation energy, three quadrupole bands have been observed at high spin. Linking transitions connecting two of the high-spin bands to low-energy states have been observed. Calculations based on the cranked-Nilsson-Strutinsky formalism have been used to assign configurations for the high-spin quadrupole bands.

  13. A dynamic analysis of the radiation excitation from the activation of a current collecting system in space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Hastings, D. E.

    1991-01-01

    Current collecting systems moving in the ionosphere will induce electromagnetic wave radiation. The commonly used static analysis is incapable of studying the situation when such systems undergo transient processes. A dynamic analysis has been developed, and the radiation excitation processes are studied. This dynamic analysis is applied to study the temporal wave radiation from the activation of current collecting systems in space. The global scale electrodynamic interactions between a space-station-like structure and the ionospheric plasma are studied. The temporal evolution and spatial propagation of the electric wave field after the activation are described. The wave excitations by tethered systems are also studied. The dependencies of the temporal Alfven wave and lower hybrid wave radiation on the activation time and the space system structure are discussed. It is shown that the characteristics of wave radiation are determined by the matching of two sets of characteristic frequencies, and a rapid change in the current collection can give rise to substantial transient radiation interference. The limitations of the static and linear analysis are examined, and the condition under which the static assumption is valid is obtained.

  14. NUCLEAR PHYSICS Resonances-Excitation Calculation Studies Investigation of Δ(3, 3) in Ground State of 90Zr Cold Finite Heavy Nucleus at Equilibrium and Under Large Compression

    NASA Astrophysics Data System (ADS)

    Mohammed, H. E. Abu-Sei'leek

    2011-01-01

    A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.

  15. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  16. Collective phenomena in non-central nuclear collisions

    SciTech Connect

    Voloshin, Sergei A.; Poskanzer, Arthur M.; Snellings, Raimond

    2008-10-20

    Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.

  17. Finite amplitude method for discrete collective excited states and sum rules

    NASA Astrophysics Data System (ADS)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2014-09-01

    The finite amplitude method (FAM) is one of the new efficient iterative methods for solving the QRPA problem, based on the linear response theory. The original FAM equations are solved with a small imaginary width introduced to the QRPA energy, and, up to present, its direct application to discrete excitations has not been fully accomplished. To this end we proposed a new formulation of the FAM using the contour integration technique. We show that the discrete QRPA amplitudes and energies can be expressed by means of contour integration around the QRPA poles in a complex-energy plane. We then discuss the contour integral formulation for the QRPA sum rules needed to constrain modern energy density functionals.

  18. Collective excitation of Bose-Einstein condensates in the transition region between three and one dimensions

    SciTech Connect

    Kottke, M.; Schulte, T.; Hellweg, D.; Drenkelforth, S.; Ertmer, W.; Arlt, J. J.; Cacciapuoti, L.

    2005-11-15

    We measure the frequency of the low m=0 quadrupolar excitation mode of weakly interacting Bose-Einstein condensates in the transition region from the three-dimensional (3D) to the 1D mean-field regime. Various effects shifting the frequency of the mode are discussed. In particular we take the dynamic coupling of the condensate with the thermal component at finite temperature into account using a time-dependent Hartree-Fock-Bogoliubov treatment developed by Giorgini [Phys. Rev. A, 61, 063615 (2000)]. We show that the frequency rises in the transition from 3D to 1D, in good agreement with the theoretical prediction of Menotti and Stringari [Phys. Rev. A 66, 043610 (2002)].

  19. Coulomb excitation of 31Mg

    NASA Astrophysics Data System (ADS)

    Seidlitz, M.; Mücher, D.; Reiter, P.; Bildstein, V.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Davinson, T.; Van Duppen, P.; Ekström, A.; Finke, F.; Fraile, L. M.; Geibel, K.; Gernhäuser, R.; Hess, H.; Holler, A.; Huyse, M.; Ivanov, O.; Jolie, J.; Kalkühler, M.; Kotthaus, T.; Krücken, R.; Lutter, R.; Piselli, E.; Scheit, H.; Stefanescu, I.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.

    2011-06-01

    The ground state properties of 31Mg indicate a change of nuclear shape at N = 19 with a deformed Jπ = 1 /2+ intruder state as a ground state, implying that 31Mg is part of the "island of inversion". The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam. De-excitation γ-rays were detected by the MINIBALL γ-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31Mg was extended. Spin and parity assignment of the 945 keV state yielded 5 /2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that for the N = 19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

  20. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Low-Energy Collective Excitation of Bose-Einstein Condensates in an Anisotropic Magnetic Trap

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Xiao-Rui; Li, Ke; Tan, Xin-Zhou; Xiong, Hong-Wei; Lu, Bao-Long

    2009-07-01

    We experimentally investigate the collective excitation of 87Rb Bose-Einstein condensates confined in a cigar-shaped magnetic trap (QUIC trap). Using a method of magnetic perturbation, the center-of-mass oscillation of the condensate is excited, so that the radial trapping frequency of the QUIC trap can be precisely determined. A high-order excitation, characterized by a fast shape oscillation, also occurs simultaneously, with a noticeable damping in the oscillation amplitude compared with the oscillation of the center of mass. The measured oscillation frequencies, associated with these two low-energy excitation modes, agree well with theoretical predictions based on the Gross-Pitaevskii equation.

  1. Instability of collective excitations and power laws of an attractive Bose-Einstein condensate in an anharmonic trap

    NASA Astrophysics Data System (ADS)

    Debnath, P. K.; Chakrabarti, Barnali

    2010-10-01

    We study the instability of collective excitations of a three-dimensional Bose-Einstein condensate with repulsive and attractive interactions in a shallow trap designed as a quadratic plus a quartic potential. By using a correlated many-body theory, we determine the excitation modes and probe the critical behavior of collective modes, having a crucial dependence on the anharmonic parameter. We examine the power-law behavior of monopole frequency near criticality. In Gross-Pitaevskii variational treatment [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.80.1576 80, 1576 (1998)] the power-law exponent is determined as one-fourth power of (1-(A)/(Acr)), A is the number of condensate atoms and Acr is the critical number near collapse. We observe that the power-law exponent becomes (1)/(6) in our calculation for the pure harmonic trap and it becomes (1)/(7), for traps with a small anharmonic distortion. However for large anharmonicity the power law breaks down.

  2. Instability of collective excitations and power laws of an attractive Bose-Einstein condensate in an anharmonic trap

    SciTech Connect

    Debnath, P. K.; Chakrabarti, Barnali

    2010-10-15

    We study the instability of collective excitations of a three-dimensional Bose-Einstein condensate with repulsive and attractive interactions in a shallow trap designed as a quadratic plus a quartic potential. By using a correlated many-body theory, we determine the excitation modes and probe the critical behavior of collective modes, having a crucial dependence on the anharmonic parameter. We examine the power-law behavior of monopole frequency near criticality. In Gross-Pitaevskii variational treatment [Phys. Rev. Lett. 80, 1576 (1998)] the power-law exponent is determined as one-fourth power of (1-(A/A{sub cr})), A is the number of condensate atoms and A{sub cr} is the critical number near collapse. We observe that the power-law exponent becomes (1/6) in our calculation for the pure harmonic trap and it becomes (1/7), for traps with a small anharmonic distortion. However for large anharmonicity the power law breaks down.

  3. Quadrupole Collective Inertia in Nuclear Fission: Cranking Approximation

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Dobaczewski, J.; Nazarewicz, Witold

    2011-01-01

    Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in ^{256}Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.

  4. The many-nucleon theory of nuclear collective structure and its macroscopic limits: an algebraic perspective

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; McCoy, A. E.; Caprio, M. A.

    2016-03-01

    The nuclear collective models introduced by Bohr, Mottelson and Rainwater, together with the Mayer-Jensen shell model, have provided the central framework for the development of nuclear physics. This paper reviews the microscopic evolution of the collective models and their underlying foundations. In particular, it is shown that the Bohr-Mottelson models have expressions as macroscopic limits of microscopic models that have precisely defined expressions in many-nucleon quantum mechanics. Understanding collective models in this way is especially useful because it enables the analysis of nuclear properties in terms of them to be revisited and reassessed in the light of their microscopic foundations.

  5. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    SciTech Connect

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point.

  6. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  7. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  8. Peaceful Uses of Nuclear Energy: A Collection of Speeches

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1970-07-01

    It is now a quarter of a century since nuclear energy was introduced to the public. Its introduction was made in the most dramatic, but unfortunately in the most destructive way - through the use of a nuclear weapon. Since that introduction enormous strides have been made in developing the peaceful applications of this great and versatile force. Because these strides have always been overshadowed by the focusing of public attention on the military side of the atom, the public has never fully understood or appreciated the gains and status of the peaceful atom. This booklet is an attempt to correct, in some measure, this imbalance in public information and attitude. It is a compilation of remarks, and excerpts of remarks, that I [Seaborg] have made in recent years in an effort to bring to the public the story of the remarkable benefits the peaceful atom has to offer man. This is a story that grows with the development and progress of the peaceful atom. It must be told so that we can learn to use the power of nuclear energy wisely and through this use help to build a world in which the military applications of the atom will never again be a threat to mankind.

  9. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  10. Collective excitations of strongly coupled bilayer charged Bose liquids in the third-frequency-moment sum rule

    NASA Astrophysics Data System (ADS)

    Tas, Murat; Tanatar, B.

    2008-09-01

    We calculate the collective excitation modes of strongly coupled bilayer charged Bose systems. We employ the dielectric matrix formulation to study the correlation effects within the random-phase approximation (RPA), the self consistent field approximation Singwi, Tosi, Land, and Sjölander (STLS), and the quasilocalized charge approximation (QLCA), which satisfies the third-frequency-moment (⟨ω3⟩) sum rule. We find that the QLCA predicts a long-wavelength correlation-induced energy gap in the out-of-phase plasmon mode, similar to the situation in electronic bilayer systems. The energy gap and the plasmon density of states are studied as a function of interlayer separation and coupling parameter rs . The results should be helpful for experimental investigations.

  11. Collective excitability, synchronization, and array-enhanced coherence resonance in a population of lasers with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Lamperti, M.

    2016-09-01

    In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.

  12. Spin-orbit interaction driven collective electron-hole excitations in a noncentrosymmetric nodal loop Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.

    2015-09-01

    NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.

  13. Optimization of 1H spin density for dynamic nuclear polarization using photo-excited triplet electron spins.

    PubMed

    Kagawa, Akinori; Murokawa, Yu; Takeda, Kazuyuki; Kitagawa, Masahiro

    2009-03-01

    In dynamic nuclear polarization (DNP) using photo-excited triplet electron spins, known as Microwave-Induced Optical Nuclear Polarization (MIONP), the attainable (1)H polarization is determined by the ratio of the buildup rate and the spin-lattice relaxation rate, in turn depend on the (1)H spin density. It is shown that the final (1)H polarization can be enhanced by diluting the (1)H spins with partial deuteration. The DNP experiments are demonstrated in 0.05 mol% pentacene-doped p-terphenyl for various (1)H abundances. It is also shown that the (1)H spin diffusion coefficient can be determined by examining the initial buildup rate of (1)H polarization for various repetition rates of the DNP sequence.

  14. Change in the observed half-life of an excited nuclear state under conditions of a resonance environment

    SciTech Connect

    Loginov, Yu. E.

    2010-01-15

    A model description of the increase in the observed value of the half-life of isomeric nuclei {sup 119m1}Sn (E = 23.8 keV, T{sub 1/2} {approx} 18 ns) in a resonance environment created by stable nuclei of {sup 119}Sn is proposed. According to the model used, the observed effect is due to gamma radiation from isomeric nuclei {sup 119m1}Sn newly produced upon the resonance capture of gamma rays emitted in {sup 119m1}Sn decay by stable nuclei of {sup 119}Sn. On the basis of T{sub 1/2} values that were measured previously, the radiative shift of the position of an excited nuclear state (nuclear analog of the Lamb shift in an atom), {Delta}{omega}{sub 0}, was estimated at 1.5(2) x 10{sup 11} s{sup -1} for the isomer {sup 119m1}Sn.

  15. Nuclear interlevel transfer driven by collective outer shell electron oscillations

    SciTech Connect

    Rinker, G.A.; Solem, J.G.; Biedenharn, L.C.

    1986-10-20

    The general problem of dynamic electron-nucleus coupling is discussed, and the possibility of using this mechanism to initiate gamma-ray lasing. Single-particle and collective mechanisms are considered. The problems associated with accurate calculation of these processes are discussed, and some numerical results are given. Work in process in described. 10 refs., 7 figs.

  16. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.

    PubMed

    Kushwaha, Manvir S

    2011-09-28

    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices

  17. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  18. Imaging spectrophotometry of ionized gas in NGC 1068. III - Anisotropic excitation of the large-scale disk by scattering of nuclear continuum

    SciTech Connect

    Sokolowski, J.; Bland-hawthorn, J.; Cecil, G. North Carolina, University, Chapel Hill )

    1991-07-01

    Photoionization of the solar abundance diffuse ionized media (DIM) in NGC 1068 by anisotropic nuclear emission is studied. It is shown that the emission characteristics can be understood in the light of the developing picture of the galaxy in which its intrinsic type 1 Seyfert nucleus, concealed by an obscuring medium, is visible only through scattered, polarized light. The gas excitation is anisotropic, the high-excitation gas along the jet axis being photoionized by direct nuclear continuum, while the lower excitation gas away from the axis sees only indirect nuclear emission scattered into it. A model of low optical depth, near-nuclear Thomson scattering is considered in detail, and it is shown that, even with moderate dust extinction, this mechanism is sufficient to energize the DIM. 56 refs.

  19. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection.

    PubMed Central

    Burghardt, T P; Thompson, N L

    1984-01-01

    We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253

  20. Data Collection in the Arabian Peninsula for Nuclear Explosion Monitoring

    SciTech Connect

    Rodgers, A; Tkalcic, H; Al-Amri, A M S

    2003-07-11

    We report results from the second year of our project (ROA0101-35) to collect seismic event and waveform data recorded in and around the Arabian Peninsula. This effort involves several elements. We have a temporary broadband seismic station operating near the IMS primary array site (PS38) in central Saudi Arabia. We recently installed two temporary broadband stations in the United Arab Emirates (funded by NNSA NA-24 Office of Non-Proliferation & International Security). We are working with King Abdulaziz city for Science and Technology to collect and analyze data from the Saudi National Seismic Network, that consist of 37 digital three-component stations (26 broadband and 11 short-period). We are collaborating with Kuwait Institute for Scientific Research (KISR) to analyze data from their 8 station national seismic network. We participated in the Workshop on Reference Events odnear the Dead Sea Rift held in Paris, France in October 2002. In this paper we present results of these efforts including integration of the raw data into LLNL's Seismic Research Database and preliminary analysis of event locations and source parameters and inference of earth structure.

  1. Collective effective dose in Europe from X-ray and nuclear medicine procedures.

    PubMed

    Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S

    2015-07-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput.

  2. Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition

    NASA Astrophysics Data System (ADS)

    Filinov, A.

    2016-07-01

    A two-component, two-dimensional (2D) dipolar bosonic system in the bilayer geometry is considered. By performing quantum Monte Carlo simulations in a wide range of layer spacings we analyze in detail the pair correlation functions, the static response function, and the kinetic and interaction energies. By reducing the layer spacing we observe a transition from weakly to strongly bound dimer states. The transition is accompanied by the onset of short-range correlations, suppression of the superfluid response, and rotonization of the excitation spectrum. A dispersion law and a dynamic structure factor for the in-phase (symmetric) and out-of-phase (antisymmetric) collective modes during the dimerization is studied in detail with the stochastic reconstruction method and the method of moments. The antisymmetric mode spectrum is most strongly influenced by suppression of the inlayer superfluidity (specified by the superfluid fraction γs=ρs/ρ ). In a pure superfluid (normal fluid) phase, only an acoustic [optical (gapped)] mode is recovered. In a partially superfluid phase, both are present simultaneously, and the dispersion splits into two branches corresponding to a normal and a superfluid component. The spectral weight of the acoustic mode scales linearly with γs. This weight transfers to the optical branch when γs is reduced due to formation of dimer states. In summary, we demonstrate how the interlayer dimerization in dipolar bilayers can be uniquely identified by static and dynamic properties.

  3. Surface and bulk excitations in condensed matter

    SciTech Connect

    Ritchie, R.H.

    1988-01-01

    In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs.

  4. Orexin excites rat inferior vestibular nuclear neurons via co-activation of OX1 and OX 2 receptors.

    PubMed

    Yu, Lei; Zhang, Xiao-Yang; Chen, Zhang-Peng; Zhuang, Qian-Xing; Zhu, Jing-Ning; Wang, Jian-Jun

    2015-06-01

    Orexin deficiency results in cataplexy, a motor deficit characterized by sudden loss of muscle tone, strongly indicating an active role of central orexinergic system in motor control. However, effects of orexin on neurons in central motor structures are still largely unknown. Our previous studies have revealed that orexin excites neurons in the cerebellar nuclei and lateral vestibular nucleus, two important subcortical motor centers for control of muscle tone. Here, we report that both orexin-A and orexin-B depolarizes and increases the firing rate of neurons in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex and holding an important position in integration of information signals in the control of body posture. TTX does not block orexin-induced excitation on IVN neurons, suggesting a direct postsynaptic action of the neuropeptide. Furthermore, bath application of orexin induces an inward current on IVN neurons in a concentration-dependent manner. SB334867 and TCS-OX2-29, specific OX1 and OX2 receptor antagonists, blocked the excitatory effect of orexin, and [Ala(11), D-Leu(15)]-orexin B, a selective OX2 receptor agonist, mimics the orexin-induced inward current on IVN neurons. qPCR and immunofluorescence results show that both OX1 and OX2 receptor mRNAs and proteins are expressed and localized in the rat IVN. These results demonstrate that orexin excites the IVN neurons by co-activation of both OX1 and OX2 receptors, suggesting that via the direct modulation on the IVN, the central orexinergic system may actively participate in the central vestibular-mediated postural and motor control.

  5. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  6. Orbital elementary excitations as probes of entanglement and quantum phase transitions of collective spins in an entangled Bose-Einstein condensate

    SciTech Connect

    Wu Rukuan; Shi Yu

    2011-02-15

    A mixture of two species of pseudospin-(1/2) Bose gases exhibits interesting interplay between spin and orbital degrees of freedom. Expectation values of various quantities of the collective spins of the two species play crucial roles in the Gross-Pitaevskii-like equations governing the four orbital wave functions in which Bose-Einstein condensation occurs. Consequently, the elementary excitations of these orbital wave functions reflect properties of the collective spins. When the coupling between the two collective spins is isotropic, the energy gap of the gapped orbital excitation peaks. There is a quantum phase transition in the ground state of the effective Hamiltonian of the two collective spins, which have previously been found to be maximally entangled.

  7. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., 152Tb, 155Tb, 155Eu, and 156Eu) and 153Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  8. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    SciTech Connect

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilms producing as much as 12 μW/m{sup 2}.

  9. Nuclear quantum many-body dynamics. From collective vibrations to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simenel, Cédric

    2012-11-01

    A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.

  10. Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells

    PubMed Central

    Schenk, Laura K.; Bolger, Steven J.; Luginbuhl, Kelli; Gonzales, Patricia A.; Rinschen, Markus M.; Yu, Ming-Jiun; Hoffert, Jason D.; Pisitkun, Trairak

    2012-01-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5′-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct. PMID:22440904

  11. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells.

    PubMed

    Schenk, Laura K; Bolger, Steven J; Luginbuhl, Kelli; Gonzales, Patricia A; Rinschen, Markus M; Yu, Ming-Jiun; Hoffert, Jason D; Pisitkun, Trairak; Knepper, Mark A

    2012-06-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct. PMID:22440904

  12. Excitation of the molecular gas in the nuclear region of M 82

    NASA Astrophysics Data System (ADS)

    Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.

    2010-10-01

    We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.

  13. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  14. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  15. Nuclear de-excitation processes following medium energy heavy ion collisions

    SciTech Connect

    Blann, M.

    1986-09-01

    As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, ..gamma..-rays with energies in excess of 100 MeV, and ..pi../sup 0/ production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs.

  16. On the modification of nuclear chronometry methods in astrophysics and geophysics induced by excited states of alpha radioactive nuclei and gamma emission

    NASA Astrophysics Data System (ADS)

    Dolinska, M. E.; Doroshko, N. L.; Olkhovsky, V. S.

    2014-06-01

    In practically all methods of nuclear chronometry known till now, were the lifetimes of only fundamental states for decaying α-radioactive nuclei usually taken into account. But in the processes of nuclear synthesis in stars and under the influence of the constant cosmic radiation on the surfaces of planets, also the excited α-radioactive nuclei appear. Between them, there are the states with the excited α-particles inside the parent nuclei. They have much smaller lifetimes relative to the Geiger and Nutall law. And inside the large masses of stellar, terrestrial and meteoric substances, the transitions between different excited radioactive nuclei are accompanied by infinite chains of the γ-radiations with the subsequent γ-absorptions, the further γ-radiations etc. We must describe the α-decay evolution, considering such excited states and multiple γ-radiations and γ-absorptions inside stars and also under the influence of the cosmic radiation on the earth surface. We present the quantum-mechanical approach, which is based on the generalized Krylov-Fock theorem. Some simple estimations are presented. They give rise to the conclusion that the usual (non-corrected) "nuclear clocks" do not really indicate the realistic values but the upper limits of the durations of the α-decay stellar and planet processes.

  17. Role of electronic excitations and nuclear collisions for color center creation in AlxGa1-xN semiconductors

    NASA Astrophysics Data System (ADS)

    Moisy, F.; Grygiel, C.; Ribet, A.; Sall, M.; Balanzat, E.; Monnet, I.

    2016-07-01

    In this work, AlxGa1-xN (x = 0; 0.1; 0.3; 0.5; 0.65; 0.7; 0.8; 1) wurtzite epilayers, grown on c-plane sapphire substrates, have been irradiated with Swift Heavy Ions at GANIL facility. Modifications induced by irradiation are characterized with in-situ optical absorption spectroscopy at 15 K. Spectra of these irradiated alloys exhibit optical absorption band formation, related to new energy levels in their bandgaps, whose positions only depend on the composition of the layer. However, these absorption bands are not observed in the AlxGa1-xN with Al molar fraction less than 0.3, likely because the energy level of the corresponding defect is located above the conduction band. Moreover, using different irradiation conditions, a coupled effect between nuclear collisions and electronic excitations for these color center creation have been investigated. A synergy between these two phenomena has been shown and appears to be independent of the composition of the alloy.

  18. Collective excitations of a trapped Bose-Einstein condensate in the presence of weak disorder and a two-dimensional optical lattice

    SciTech Connect

    Hu Ying; Liang Zhaoxin; Hu Bambi

    2010-05-15

    We investigate the combined effects of weak disorder and a two-dimensional (2D) optical lattice on the collective excitations of a harmonically trapped Bose-Einstein condensate (BEC) at zero temperature. Accordingly, we generalize the hydrodynamic equations of superfluid for a weakly interacting Bose gas in a 2D optical lattice to include the effects of weak disorder. Our analytical results for the collective frequencies beyond the mean-field approximation reveal the peculiar role of disorder, interplaying with the 2D optical lattice and interatomic interaction, on elementary excitations along the 3D to 1D crossover. In particular, consequences of disorder on the phonon propagation and surface modes are analyzed in detail. The experimental scenario is also proposed.

  19. Low-energy charge-density excitations in MgB2: Striking interplay between single-particle and collective behavior for large momenta.

    PubMed

    Cai, Y Q; Chow, P C; Restrepo, O D; Takano, Y; Togano, K; Kito, H; Ishii, H; Chen, C C; Liang, K S; Chen, C T; Tsuda, S; Shin, S; Kao, C C; Ku, W; Eguiluz, A G

    2006-10-27

    A sharp feature in the charge-density excitation spectra of single-crystal MgB2, displaying a remarkable cosinelike, periodic energy dispersion with momentum transfer (q) along the c* axis, has been observed for the first time by high-resolution nonresonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-q collective mode residing in the single-particle excitation gap of the B pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2.

  20. Nuclear Collective Rotation in the SU_{3} Model. I --Semiclassical Rotation--

    NASA Astrophysics Data System (ADS)

    Kinouchi, S.; Kammuri, T.; Kishimoto, T.

    1989-01-01

    The collective rotation of a nuclear system having the quadrupole-quadrupole interaction is described by the dynamical nuclear field theory (DNFT). We use the one-body harmonic oscillator potential and restrict the discussion to the Delta N = 0 transitions. Energy eigenvalues of the resulting SU_{3} Hamiltonian are obtained by using the eigenstates of the cranked harmonic oscillator. Both the low and high spin states are studied by the perturbative DNFT, reproducing successfully the diagonalization results. In spite of the simple rotational spectrum, the nuclear shape is seriously influenced by the rotational disturbances. Similarities with our previous analyses of the pair rotation are pointed out. Especially, the SU_{3} rotation in the odd mass system decouples with the particle motion just as the pair rotation does in the single-j limit.

  1. Self-consistent collective coordinate method in nuclear rotation and wobbling motion at high spin

    SciTech Connect

    Kaneko, K. )

    1994-06-01

    We propose a method, using the self-consistent collective coordinate method based on the time-dependent Hartree-Bogoliubov theory, to describe nuclear rotation and wobbling motion in triaxially deformed nuclei beyond the random-phase approximation to higher orders. In this perturbation method, the zero modes can be eliminated by imposing constraints to determine the intrinsic frame: a spin-orientation frame or a principal axis frame. The basic equations on the collective submanifold are derived as canonical conditions and equations of collective submanifold. These equations are solved by an iterative method expanded with collective variables. In lowest order, the basic equations in both the principal-axis frame and the spin-orientation frame lead to the same result as that derived by Marshalek.

  2. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    SciTech Connect

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels.

  3. [Nationwide survey of nuclear medicine practice and estimation of collective effective dose in Japan.].

    PubMed

    Matsumoto, Masaki; Nishizawa, Kanae; Iwai, Kazuo; Akahane, Keiichi; Maruyama, Takashi

    2006-01-01

    For the estimation of collective effective dose from radiopharmaceuticals used in nuclear medicine diagnosis, a national survey was carried out in Japan. The survey contents covered radiopharmaceutical use, sex, age, activity, and so on of each patient in October 1997 and the monthly number of examinations in 1997. The annual number of diagnostic examinations using radiopharmaceuticals was 0.82 million for males and 0.74 million for females. The frequency of examination was about 3% for patients less than 17 years old and about 60% for those more than 60 years old. Effective dose was calculated on the basis of such literature as ICRP publications. The dose used most frequently was 5-6mSv per examination. The collective effective doses from diagnostic nuclear medicine examinations were estimated to be 13100 man .Sv for males and 20200 man .Sv for females. PMID:17164536

  4. Excitation-emission matrix scan analysis of raw fish oil from coastal New Jersey menhaden collected before and after Hurricane Sandy.

    PubMed

    Bentivegna, Carolyn S; DeFelice, Chelsea R; Murphy, Wyatt R

    2016-06-30

    The impact of Hurricane Sandy (October 29, 2012) on PAH exposure was investigated in adult Atlantic menhaden (Brevoortia tyrannus) collected along the NJ coast. Collections were made in August, September and/or October of 2011, 2012 and 2013. PAHs were monitored in raw fish oil using excitation-emission matrix (EEM) spectroscopy. Results showed that raw fish oils had relatively high levels of high molecular weight, PAH-like compounds (173 to 24,421ng/mL) compared to values reported for bile in other species. EEM profiles resembled that of crude oil and excluded matrix interference by some common biological molecules that also fluoresce. Concentrations and EEM profiles varied by collection; however, collection ship, month, year and fish size did not account for the data. Replicates showed that fish from the same catch had similar PAH exposure. Overall, Hurricane Sandy did not alter body burdens of PAHs in raw fish oil of menhaden.

  5. Excitation-emission matrix scan analysis of raw fish oil from coastal New Jersey menhaden collected before and after Hurricane Sandy.

    PubMed

    Bentivegna, Carolyn S; DeFelice, Chelsea R; Murphy, Wyatt R

    2016-06-30

    The impact of Hurricane Sandy (October 29, 2012) on PAH exposure was investigated in adult Atlantic menhaden (Brevoortia tyrannus) collected along the NJ coast. Collections were made in August, September and/or October of 2011, 2012 and 2013. PAHs were monitored in raw fish oil using excitation-emission matrix (EEM) spectroscopy. Results showed that raw fish oils had relatively high levels of high molecular weight, PAH-like compounds (173 to 24,421ng/mL) compared to values reported for bile in other species. EEM profiles resembled that of crude oil and excluded matrix interference by some common biological molecules that also fluoresce. Concentrations and EEM profiles varied by collection; however, collection ship, month, year and fish size did not account for the data. Replicates showed that fish from the same catch had similar PAH exposure. Overall, Hurricane Sandy did not alter body burdens of PAHs in raw fish oil of menhaden. PMID:26849916

  6. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  7. Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

    PubMed

    Pickering, Christina M; Grady, Cameron; Medvar, Barbara; Emamian, Milad; Sandoval, Pablo C; Zhao, Yue; Yang, Chin-Rang; Jung, Hyun Jun; Chou, Chung-Lin; Knepper, Mark A

    2016-02-01

    The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

  8. Coulomb excitation of a {sup 242}Am isomeric target : E2, E3 strengths, rotational alignment, and collective enhancement.

    SciTech Connect

    Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.

    2010-10-29

    A 98% pure {sup 242m}Am (K=5{sup -}, t{sub 1/2} = 141 years) isomeric target was Coulomb excited with a 170.5-MeV {sup 40}Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18 {h_bar} in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast K{sup {pi}} = 6{sup -} rotational band, and 13 in a band tentatively identified as the predicted yrast K{sup {pi}} = 5{sup +} band. The rotational bands based on the K{sup {pi}} = 5{sup -} isomer and the 6{sup -} bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The {gamma}-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete {Delta}K = 1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5{sup -} and 6{sup -} bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the I{sub K}{sup {pi}} = 6{sub 6{sup -}} state in the nominal 6{sub 5{sup -}} isomer band state is measured within the PRM as 45.6{sub -1.1}{sup +0.3}%. The E2 and M1 strengths coupling the 5{sup -} and 6{sup -} bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5{sup +} band are reproduced by an E3 strength of {approx}15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in {sup 242}Am are compared with the single-particle alignments in {sup 241}Am.

  9. Critical femtosecond relaxation dynamics of collective and single-particle excitations through the phase transitions in single crystals of η -Mo4O11

    NASA Astrophysics Data System (ADS)

    Borovšak, M.; Stojchevska, L.; Sutar, P.; Mertelj, T.; Mihailovic, D.

    2016-03-01

    We present a systematic study of the single-particle and collective excitations by femtosecond transient reflectivity measurements in single crystals η -Mo4O11 , investigating the dynamics as a function of temperature with two different pump photon energies (3.1 and 1.55 eV). A remarkable slowing down of the relaxation dynamics is observed at the first charge density wave (CDW) transition at TCDW1=105 K associated with hidden one-dimensional Fermi surface (FS) nesting. In contrast, the appearance of the second transition at TCDW2 associated with further CDW ordering is barely perceptible. The coherent response can be described well by the displacive coherent excitation model of Zeiger et al. [Phys. Rev. B 45, 768 (1992), 10.1103/PhysRevB.45.768] assuming a coupling of phonons to the photoexcited quasiparticles. The coupling of the collective modes to the electronic order parameter is found to be weak. The exponential relaxation is discussed in terms of single-particle relaxation and an overdamped collective mode.

  10. Authentication and Interpretation of Weight Data Collected from Accountability Scales at Global Nuclear Fuels

    SciTech Connect

    Fitzgerald, Peter; Laughter, Mark D; Martyn, Rose; Richardson, Dave; Rowe, Nathan C; Pickett, Chris A; Younkin, James R; Shephard, Adam M

    2010-01-01

    Accountability scale data from the Global Nuclear Fuels (GNF) fuel fabrication facility in Wilmington, NC has been collected and analyzed as a part of the Cylinder Accountability and Tracking System (CATS) field trial in 2009. The purpose of the data collection was to demonstrate an authentication method for safeguards applications, and the use of load cell data in cylinder accountability. The scale data was acquired using a commercial off-the-shelf communication server with authentication and encryption capabilities. The authenticated weight data was then analyzed to determine facility operating activities. The data allowed for the determination of the number of full and empty cylinders weighed and the respective weights along with other operational activities. Data authentication concepts, practices and methods, the details of the GNF weight data authentication implementation and scale data interpretation results will be presented.

  11. Observation of gamma-rays from fallout collected at Ibaraki, Japan, during the Fukushima nuclear accident.

    PubMed

    Saegusa, Jun; Kikuta, Yasuaki; Akino, Hitoshi

    2013-07-01

    Gamma-ray pulse height distributions were measured for a fallout sample collected at Ibaraki, Japan, during the Fukushima accident in March 2011. The fallout was collected in a pan of water and then evaporated to dryness on a stainless-steel holder. The sample was measured by a germanium detector three times over a year. In the pulse height distribution of the initial measurement, approximately 140 peaks were observed in the 50-2048 keV energy region. Most of these peaks were either total absorption peaks or sum peaks of Te, I or Cs isotopes. Unlike fallout samples at the past nuclear accidents, nuclides such as Ce and Ru were not detected whereas (110m)Ag was prominently observed. The radioactivity concentration of (137)Cs was determined to be at least 1.4×10(4) Bq m(-2), approximately 14% of which was attributed to rainout.

  12. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    PubMed

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals.

  13. Nuclear structure effects of the nuclei {sup 152,154,156}Dy at high excitation energy and large angular momentum

    SciTech Connect

    Martin, V.; Egido, J.L.

    1995-06-01

    Using the finite-temperature Hartree-Fock-Bogoliubov formalism we analyze the properties of the nuclei {sup 152,154,156}Dy at the quasicontinuum region from {ital I}=0{h_bar} to 70{h_bar} and excitation energy up to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among others. The role of shape fluctuations is studied in the frame of classical statistics and we find large effects on several observables. A very rich structure is found in terms of excitation energy and angular momentum.

  14. A Novel Saccharomyces cerevisiae FG Nucleoporin Mutant Collection for Use in Nuclear Pore Complex Functional Experiments.

    PubMed

    Adams, Rebecca L; Terry, Laura J; Wente, Susan R

    2015-11-03

    FG nucleoporins (Nups) are the class of proteins that both generate the permeability barrier and mediate selective transport through the nuclear pore complex (NPC). The FG Nup family has 11 members in Saccharomyces cerevisiae, and the study of mutants lacking different FG domains has been instrumental in testing transport models. To continue analyzing the distinct functional roles of FG Nups in vivo, additional robust genetic tools are required. Here, we describe a novel collection of S. cerevisiae mutant strains in which the FG domains of different groups of Nups are absent (Δ) in the greatest number documented to date. Using this plasmid-based ΔFG strategy, we find that a GLFG domain-only pore is sufficient for viability. The resulting extensive plasmid and strain resources are available to the scientific community for future in-depth in vivo studies of NPC transport.

  15. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes.

  16. Strong interaction between electrons and collective excitations in the multiband superconductor MgB2

    SciTech Connect

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Flint, Rebecca; Bud'ko, S. L.; Canfield, P. C.; Wen, J. S.; Xu, Z. J.; Gu, Genda; Kaminski, Adam

    2015-04-08

    We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB2 does not change significantly across Tc. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above Tc and is likely a signature of the elusive Leggett mode.

  17. Collective nature of low-lying excitations in 70,72,74Zn from lifetime measurements using the AGATA spectrometer demonstrator

    NASA Astrophysics Data System (ADS)

    Louchart, C.; Obertelli, A.; Görgen, A.; Korten, W.; Bazzacco, D.; Birkenbach, B.; Bruyneel, B.; Clément, E.; Coleman-Smith, P. J.; Corradi, L.; Curien, D.; de Angelis, G.; de France, G.; Delaroche, J.-P.; Dewald, A.; Didierjean, F.; Doncel, M.; Duchêne, G.; Eberth, J.; Erduran, M. N.; Farnea, E.; Finck, C.; Fioretto, E.; Fransen, C.; Gadea, A.; Girod, M.; Gottardo, A.; Grebosz, J.; Habermann, T.; Hackstein, M.; Huyuk, T.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Klupp, S.; Krücken, R.; Kusoglu, A.; Lenzi, S. M.; Libert, J.; Ljungvall, J.; Lunardi, S.; Maron, G.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Million, B.; Molini, P.; Möller, O.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Orlandi, R.; Pollarolo, G.; Prieto, A.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Rother, W.; Sahin, E.; Salsac, M.-D.; Scarlassara, F.; Schlarb, M.; Siem, S.; Singh, P. P.; Söderström, P.-A.; Stefanini, A. M.; Stézowski, O.; Sulignano, B.; Szilner, S.; Theisen, Ch.; Ur, C. A.; Valiente-Dobón, J. J.; Zielinska, M.

    2013-05-01

    Background: Neutron-rich nuclei with protons in the fp shell show an onset of collectivity around N=40. Spectroscopic information is required to understand the underlying mechanism and to determine the relevant terms of the nucleon-nucleon interaction that are responsible for the evolution of the shell structure in this mass region.Methods: We report on the lifetime measurement of the first 2+ and 4+ states in 70,72,74Zn and the first 6+ state in 72Zn using the recoil distance Doppler shift method. The experiment was carried out at the INFN Laboratory of Legnaro with the AGATA demonstrator, first phase of the Advanced Gamma Tracking Array of highly segmented, high-purity germanium detectors coupled to the PRISMA magnetic spectrometer. The excited states of the nuclei of interest were populated in the deep inelastic scattering of a 76Ge beam impinging on a 238U target.Results: The maximum of collectivity along the chain of Zn isotopes is observed for 72Zn at N=42. An unexpectedly long lifetime of 20-5.2+1.8 ps was measured for the 4+ state in 74Zn.Conclusions: Our results lead to small values of the B(E2;41+→21+)/B(E2;21+→01+) ratio for 72,74Zn, suggesting a significant noncollective contribution to these excitations. These experimental results are not reproduced by state-of-the-art microscopic models and call for lifetime measurements beyond the first 2+ state in heavy zinc and nickel isotopes.

  18. Live Operation Data Collection Optimization and Communication for the Domestic Nuclear Detection Office’s Rail Test Center

    SciTech Connect

    Gelston, Gariann M.

    2010-04-06

    For the Domestic Nuclear Detection Office’s Rail Test Center (i.e., DNDO’s RTC), port operation knowledge with flexible collection tools and technique are essential in both technology testing design and implementation intended for live operational settings. Increased contextual data, flexibility in procedures, and rapid availability of information are keys to addressing the challenges of optimization, validation, and analysis within live operational setting data collection. These concepts need to be integrated into technology testing designs, data collection, validation, and analysis processes. A modified data collection technique with a two phased live operation test method is proposed.

  19. Excitation functions of (nat)Zn(p,x) nuclear reactions with proton beam energy below 18 MeV.

    PubMed

    Asad, Ali H; Chan, Sun; Morandeau, Laurence; Cryer, David; Smith, Suzanne V; Price, Roger I

    2014-12-01

    We measured the excitation functions of (nat)Zn (p,x) reactions up to 17.6MeV, using the stacked-foils activation technique. High-purity natural zinc (and copper) foils were irradiated with proton beams generated by an 18MeV isochronous cyclotron. Activated foils were measured using high-purity Ge gamma spectroscopy to quantify the radionuclides (61)Cu, (66)Ga, (67)Ga, and (65)Zn produced from the reactions. Thick-target integral yields were also deduced from the measured excitation functions of the produced radioisotopes. These results were compared with the published literature and were found to be in good agreement with most reports, particularly those most recently compiled.

  20. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    PubMed Central

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick YH; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. DOI: http://dx.doi.org/10.7554/eLife.10785.001 PMID:27198189

  1. Charge-Exchange Excitation of the Isobaric Analog State and Implication for the Nuclear Symmetry Energy and Neutron Skin

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Loc, Bui Minh; Zegers, R. G. T.

    The charge-exchange (p, n) or (3He,t) reaction can be considered as elastic scattering of proton or 3He by the isovector term of the optical potential that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross section for the isobaric analog states can be a good probe of the isospin dependence of the optical potential, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. On the other hand, the same isospin- and density-dependent nucleon-nucleon interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part. As a result, the fine-tuning of the isospin dependence of the effective nucleon-nucleon interaction against the measured (p, n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. Moreover, given the neutron skin of the target related directly to the neutron-proton difference of the ground-state density, it can be well probed in the analysis of the charge-exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation.

  2. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  3. Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity 177g Lu in no-carrier-added form for metabolic radiotherapy.

    PubMed

    Manenti, Simone; Groppi, Flavia; Gandini, Andrea; Gini, Luigi; Abbas, Kamel; Holzwarth, Uwe; Simonelli, Federica; Bonardi, Mauro

    2011-01-01

    Deuteron-induced nuclear reactions for generation of no-carrier-added Lu radionuclides were investigated using the stacked-foil activation technique on natural Yb targets at energies up to E(d)=18.18 MeV. Excitation functions of the reactions (nat)Yb(d,xn)(169,170,171,172,173,174g,174m,176m,177g)Lu and (nat)Yb(d,pxn)(169,175,177)Yb have been measured, among them three ((169)Lu, (174m)Lu and (176m)Lu) are reported for the first time. The upper limit of the contamination from the long-lived metastable level (177m)Lu was evaluated too. Thick-target yields for all investigated radionuclides are calculated.

  4. Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine

    NASA Astrophysics Data System (ADS)

    Allan, Michael; Regeta, Khrystyna; Gorfinkiel, Jimena D.; Mašín, Zdeněk; Grimme, Stefan; Bannwarth, Christoph

    2016-05-01

    The article briefly reviews three subjects recently investigated in Fribourg: (i) electron collisions with surfaces of ionic liquids, (ii) two-dimensional (2D) electron energy loss spectra and (iii) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds.

  5. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  6. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  7. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  8. COMPARISON OF RESULTS FOR QUARTER 5 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN TENNESSEE

    SciTech Connect

    2013-09-23

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

  9. Spurious Excitations in Semiclassical Scattering Theory.

    ERIC Educational Resources Information Center

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  10. Interplay of collective and single-particle properties of excited states of deformable odd nuclei {sup 155}Eu and {sup 161}Tm

    SciTech Connect

    Sharipov, Sh.; Ermamatov, M. J. Bayimbetova, J. K.

    2008-02-15

    The properties of excited states of two deformable odd nuclei are investigated within the nonadiabatic model previously developed by the present authors. The results of relevant calculations are compared with available experimental data.

  11. On the optimization of operating pressure for a nuclear pumped laser excited by 3He(n, p) 3H reaction products

    NASA Astrophysics Data System (ADS)

    Çetin, Füsun

    2006-09-01

    In the nuclear pumped laser, passage of the energetic nuclear fragments through gas causes a non-uniform energy deposition. This spatial non-uniformity induces gas motion, which results in density hence, refractive index gradients. Since the refractive index gradient of the gas determines the degree of beam refraction as it propagates through the cavity, refractive index gradient adversely affects the resonator stability and beam quality. Therefore, optimal gas parameters should improve optical homogeneity in addition to output power. Refractive index gradient are here considered to be a measure of optical inhomogeneity and its variations with tube parameter are examined to ensure the necessary optical quality of the supplied gas. Spatial and temporal variations of normalized refractive index gradients in the 3He gas excited by 3He(n, p) 3H reactions are calculated by using the density field obtained from the previously reported dynamic model for energy deposition for various operating pressures and tube radii. Additionally, variation of power deposition per pulse with the operating pressure and variation of average power deposition density with tube diameter are calculated and used in determining optimal parameters, as a measure for improving the output power. The optimal operating pressure and tube size, from the point of view of power deposition and optical homogeneity, are determined for the present conditions. Calculated results are obtained for a closed 3He-filled cylindrical laser tube, with a maximum thermal neutron flux of 8 × 10 16 n/cm 2 sn, by using characteristics of the TRIGA Mark II Reactor at Istanbul Technical University (ITU).

  12. Nuclear Data for Astrophysics: Collections at NucAstroData.org

    DOE Data Explorer

    In May of 2003, Dr. Michael Smith, Physics Division, ORNL, published a paper announcing the launch of the new website NucAstroData.org and the rationale behind it. An excerpt from the abstract of that paper, found in volume 718, pages 339-346, of ScienceDirect - Nuclear Physics A, explains: "In order to address important astrophysics problems such as the origin of the chemical elements, the inner workings of our Sun, and the evolution of stars, crucial nuclear datasets are needed. Recent evaluation and dissemination efforts have produced a number of such datasets, many of which are online and readily available to the research community. Current international efforts in this field are, unfortunately, insufficient to keep pace with the latest nuclear physics measurements and model calculations. A dedicated effort is required to update and expand existing datasets. I discuss several strategies and new initiatives that would ensure a more effective utilization of nuclear data in astrophysics. These include launching a new web site, www.nucastrodata.org, to aid in locating available nuclear data sets, and an interactive online plotting program with an easy-to-use graphical user interface to over 8000 reaction rates." This website continues to be resource for the nuclear astrophysics community. NucAstroData provides both links to datasets around the world and a repository where researchers can upload their own data. Tools for generating and manipulating reaction rates, merging libraries of data, plotting data and performing other tasks are provided under the website's Infrastructure section and the menu selection for software leads to useful codes.

  13. Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    SciTech Connect

    Stöcker, Horst; Maruhn, Jouchim A.; Greiner, Walter

    1980-03-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  14. Coulomb-nuclear interference with {sup 6}Li: Isospin character of the 2{sub 1}{sup +} excitation in {sup 70,72,74}Ge

    SciTech Connect

    Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.

    2005-02-01

    Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2{sub 1}{sup +} states in {sup 70,72,74}Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident {sup 6}Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global {sup 6}Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for {sup 74}Ge: although for {sup 70,72}Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for {sup 74}Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band.

  15. Investigating nuclear shell structure in the vicinity of 78Ni: Low-lying excited states in the neutron-rich isotopes Zn,8280

    NASA Astrophysics Data System (ADS)

    Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.

    2016-02-01

    The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.

  16. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences.

  17. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack.

  18. Microscopic description of large amplitude collective motion in the nuclear astrophysics context

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Tanimura, Yusuke; Scamps, Guillaume; Simenel, Cédric

    2015-08-01

    In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional (TD-EDF) theory. This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state-of-the-art effective interactions has opened new perspectives. In the present paper, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.

  19. Nuclear model analysis of excitation functions of proton induced reactions on ⁸⁶Sr, ⁸⁸Sr and natZr: Evaluation of production routes of ⁸⁶Y.

    PubMed

    Zaneb, H; Hussain, M; Amjed, N; Qaim, S M

    2015-10-01

    The proton induced nuclear reactions on (86)Sr, (88)Sr and (nat)Zr were investigated for the production of (86)Y. The literature data were compared with the results of nuclear model calculations using the codes ALICE-IPPE, TALYS 1.6 and EMPIRE 3.2. The thick target yields of (86)Y were calculated from the recommended excitation functions. Analysis of radioyttrium impurities was also performed. A comparison of the various production routes showed that for medical applications of (86)Y, the reaction (86)Sr(p,n)(86)Y is the method of choice, which gives efficient yield with minimum impurities. PMID:26210800

  20. Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Nakashima, Kanami; Orita, Makiko; Fukuda, Naoko; Taira, Yasuyuki; Hayashida, Naomi; Matsuda, Naoki

    2015-01-01

    It is well known from the experience after the 1986 accident at the Chernobyl Nuclear Power Plant that radiocesium tends to concentrate in wild mushrooms. In this study, we collected wild mushrooms from the Kawauchi Village of Fukushima Prefecture, located within 30 km of the Fukushima Daiichi Nuclear Power Plant, and evaluated their radiocesium concentrations to estimate the risk of internal radiation exposure in local residents. We found that radioactive cesium exceeding 100 Bq/kg was detected in 125 of 154 mushrooms (81.2%). We calculated committed effective doses based on 6,278 g per year (age > 20 years, 17.2 g/day), the average intake of Japanese citizens, ranging from doses of 0.11–1.60 mSv, respectively. Although committed effective doses are limited even if residents eat contaminated foods several times, we believe that comprehensive risk-communication based on the results of the radiocesium measurements of food, water, and soil is necessary for the recovery of Fukushima after this nuclear disaster. PMID:26623189

  1. Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Nakashima, Kanami; Orita, Makiko; Fukuda, Naoko; Taira, Yasuyuki; Hayashida, Naomi; Matsuda, Naoki; Takamura, Noboru

    2015-01-01

    It is well known from the experience after the 1986 accident at the Chernobyl Nuclear Power Plant that radiocesium tends to concentrate in wild mushrooms. In this study, we collected wild mushrooms from the Kawauchi Village of Fukushima Prefecture, located within 30 km of the Fukushima Daiichi Nuclear Power Plant, and evaluated their radiocesium concentrations to estimate the risk of internal radiation exposure in local residents. We found that radioactive cesium exceeding 100 Bq/kg was detected in 125 of 154 mushrooms (81.2%). We calculated committed effective doses based on 6,278 g per year (age > 20 years, 17.2 g/day), the average intake of Japanese citizens, ranging from doses of 0.11-1.60 mSv, respectively. Although committed effective doses are limited even if residents eat contaminated foods several times, we believe that comprehensive risk-communication based on the results of the radiocesium measurements of food, water, and soil is necessary for the recovery of Fukushima after this nuclear disaster. PMID:26623189

  2. Nuclear dissipation as damping of collective motion in the time-dependent RPA and extensions of it

    SciTech Connect

    Yannouleas, C.P.

    1982-07-01

    We have formulated a nonperturbative, microscopic dissipative process in the limit of an infinite mean free path which does not require any statistical assumptions. It attributes the damping of the collective motion to real transitions from the collective state to degenerate, more complicated nucelar states. The dissipation is described through wave packets which solve an approximate Schroedinger equation within extended subspaces, larger than the original subspace of the undamped motion. When the simple RPA is used, this process associates the dissipation with the escape width for direct particle emission. When the Second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy. The classical dissipation, however, is obtained for coherent, multiphonon, initial packets which describe the damping of the mean field oscillations, and allow a theoretical connection with the Vibrating Potential Model, and thereby with models of one-body dissipation. The present model contrasts with linear response theories. Canonical coordinates for the collective degree of freedom are explicitly introduced. This allows the construction of a nonlinear frictional Hamiltonian which provides a connection with quantal friction. The dissipation process developed here is properly reversible rather than irreversible, in the sense that it is described by an approximate Schroedinger equation which honors time reversibility, rather than by a coarse grained master equation which violates it. Thus, the present theory contrasts with transport theories.

  3. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  4. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis.

    PubMed

    Raggi, Lorenzo; Bitocchi, Elena; Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  5. Abrupt changes in alpha-decay systematics as a manifestation of collective nuclear modes

    SciTech Connect

    Qi, C.; Liotta, R. J.; Wyss, R. A.; Andreyev, A. N.; Huyse, M.; Van Duppen, P.

    2010-06-15

    An abrupt change in alpha-decay systematics around the N=126 neutron shell closure is discussed. It is explained as a sudden hindrance of the clustering of the nucleons that eventually form the alpha particle. This is because the clustering induced by the pairing mode acting upon the four nucleons is inhibited if the configuration space does not allow a proper manifestation of the pairing collectivity.

  6. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Clément, E.; Görgen, A.; Dijon, A.; de France, G.; Bastin, B.; Blazhev, A.; Bree, N.; Butler, P.; Delahaye, P.; Ekstrom, A.; Georgiev, G.; Hasan, N.; Iwanicki, J.; Jenkins, D.; Korten, W.; Larsen, A. C.; Ljungvall, J.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Petts, A.; Renstrom, T.; Seidlitz, M.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Warr, N.; Wrzosek-Lipska, K.; Zielińska, M.; Bauer, C.; Bruyneel, B.; Butterworth, J.; Fitzpatrick, C.; Fransen, C.; Gernhäuser, R.; Hess, H.; Lutter, R.; Marley, P.; Reiter, P.; Siebeck, B.; Vermeulen, M.; Wiens, A.; De Witte, H.

    2013-12-01

    A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  7. Storage and retrieval of collective excitations on a long-lived spin transition in a rare-earth ion-doped crystal.

    PubMed

    Goldschmidt, E A; Beavan, S E; Polyakov, S V; Migdall, A L; Sellars, M J

    2013-04-22

    Robust, long-lived optical quantum memories are important components of many quantum information and communication protocols. We demonstrate coherent generation, storage, and retrieval of excitations on a long-lived spin transition via spontaneous Raman scattering in a rare-earth ion-doped crystal. We further study the time dynamics of the optical correlations in this system. This is the first demonstration of its kind in a solid and an enabling step toward realizing a solid-state quantum repeater.

  8. Probing Nuclear Structure by Cold Emission Processes

    SciTech Connect

    Delion, D. S.

    2008-01-24

    Cold emission processes (one and two-proton emission, alpha-decay, heavy cluster emission and cold binary or ternary fission) are presently among important tools to investigate the structure of rare nuclei far from the stability line. We analyze the coupling between collective excitations of the emitted fragments and the relative motion, in terms of the coupled channels technique. It turns out that partial decay widths to excited states of emitted fragments are very sensitive to the nuclear structure details.

  9. Nuclear-Pumped Lasers. [efficient conversion of energy liberated in nuclear reactions to coherent radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.

  10. Comparison of Results for Quarter 1 Surface Water Split Samples Collected at the Nuclear Fuel Services Site, Erwin, Tennessee

    SciTech Connect

    David A. King, CHP, PMP

    2012-10-10

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background

  11. Data collection, validation, and description for the Oak Ridge nuclear facilities mortality study

    SciTech Connect

    Watkins, J.P.; Reagan, J.L.; Cragle, D.L.; West, C.M.; Tankersley, W.G.; Frome, E.L.; Crawford-Brown, D.J.

    1995-06-01

    To investigate the long-term health effects of protracted occupational exposure to low levels of ionizing radiation, a mortality study was initiated by pooling data for 118,588 workers hired between 1943 and 1982, at three Department of Energy (DOE) facilities in Oak Ridge, Tennessee, with follow-up through 1984. Topics for this discussion will include issues involving the collection and validation of data for individuals in the study cohort, and characteristics of their demographic and radiation exposure data. Since the data were compiled between the late 1960s and the present under the direction of several principal investigators, it was essential to verify data precision and to understand how exposure data were generated prior to beginning any analysis. A stratified random sample of workers in the cohort was chosen for verification of their computerized data as it appeared in the database. Original source documents were reviewed to verify demographic data, as well as internal and external radiation exposure data. Extensive effort was expended to document the personal radiation monitoring policies and types of dosimeters used at each facility over the 42 years included in the study. Characteristics of internal and external exposure data by facility and year were examined by graphical methods with the intent of combining these monitoring data over time and across facilities.

  12. Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Tazoe, Hirofumi; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Akata, Naofumi; Kakiuchi, Hideki; Omori, Yasutaka; Ishikawa, Tetsuo; Sahoo, Sarata K.; Kovács, Tibor; Yamada, Masatoshi; Nakata, Akifumi; Yoshida, Mitsuaki; Yoshino, Hironori; Mariya, Yasushi; Kashiwakura, Ikuo

    2013-01-01

    Radionuclide concentrations in environmental samples such as surface soils, plants and water were evaluated by high purity germanium detector measurements. The contribution rate of short half-life radionuclides such as 132I to the exposure dose to residents was discussed from the measured values. The highest values of the 131I/137Cs activity ratio ranged from 49 to 70 in the environmental samples collected at Iwaki City which is located to the south of the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City. PMID:23887080

  13. Some Aspects of the Phenomenological and Microscopic Theory of Nuclear Collective Motion

    NASA Astrophysics Data System (ADS)

    Bonatsos, Dennis

    In the present work a description of low lying collective states in nuclei is attempted from both the phenomenological and the microscopic point of view. First, the Variable Moment of Inertia model has been generalized so as to be applicable to transitional and vibrational nuclei. Two three-parameter models, the Variable Anharmonic Vibrator Model and the Generalized VMI model have been introduced and applied to all known ground state bands of medium and heavy even nuclei away from closed shells. Except for strongly deformed nuclei, these models substantially improve the agreement with the data. Backbending in even nuclei is fitted next, by mixing a ground state, (beta) or (gamma) band described by the VMI formula with a superband characterized by a constant moment of inertia and applying either the standard band coupling formalism or the constant interband interaction formalism. The predictive power of the model is emphasized. Subsequently, a new approximate method for carrying out the boson mapping in the seniority scheme is described, in which the boson expansion of the pair and multipole operators are determined by satisfying the commutation relations for the associated Lie algebra. The method is illustrated for the single-j shell model algebra SO(2(2j + 1). The calculation is successively carried out to lowest and to next-higher order, the latter exhibiting the necessity of including g-bosons in the calculation in order to reach algebraic consistency. Finally, a special closed set of communication relations satisfied by the fermion pair and multipole operators for a major shell in LST coupling is found. The cases of the neutron (proton) p, s-d, p-f, s-d-g, and p-f-h shells are studied in detail. An exact Dyson mapping is constructed, which is subsequently hermitized. Through the use of the experimentally plausible pseudo-SU(3) symmetry the method is useful in investigating the theoretical foundation of the Interacting Boson Model in the SU(3) limit. The method

  14. Diffractive excitation of 14. 6-, 60-, and 200-GeV/nucleon sup 16 O and 14. 6-GeV/nucleon sup 28 Si nuclei in nuclear emulsion

    SciTech Connect

    Bahk, S.Y.; Chang, S.D.; Cheon, B.G.; Cho, J.H.; Jang, H.I.; Hahn, C.H.; Hara, T.; Lim, G.Y.; Kang, J.S.; Kim, C.O.; Kim, J.Y.; Kim, K.Y.; Kim, S.N.; Kim, T.I.; Kim, T.Y.; Koo, D.G.; Lee, S.B.; Lim, I.T.; Moon, K.H.; Nam, S.W.; Pac, M.Y.; Park, I.G.; Park, J.N.; Ryu, J.Y.; Shin, T.S.; Sim, K.S.; Song, J.S.; Woo, J.K.; Yokoyama, C.; Yoon, C.S. Department of Physics, Chonnam National University, Kwangju 500-757, Korea Department of Physics, Gunsan National University, Gunsan 573-360, Korea Gyeongsang National University, Jinju 660-300, Korea Department of Physics, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657, Japan College of Liberal Arts, Kobe University, Tsurukabuto, Nada-ku, Kobe 657, Japan Department of Physics, Korea University, Seoul 136-701, Korea Department of Physics, Korea National University of Education, Cheongju 363-890, Korea Department of Physics and Astronomy, Lousiana State University, B

    1991-03-01

    An angular method of identifying diffractive excitation (DE) events for interactions of a hadron beam in nuclear emulsion is applied to identifying DE events in interactions of heavy ions beams. The apparent'' mean free paths (MFP) of DE processes for {sup 16}O ({sup 28}Si) beams are 1.00{plus minus}0.12, 2.4{sub {minus}0.7}{sup +1.6}, and 2.2{plus minus}0.4 (1.5{plus minus}0.2) m, respectively, at 200, 60, and 14.6 GeV/nucleon, which corresponds to 20--10% of the MFP for total inelastic interactions. Distinctive features of diffractively excited nuclei are discussed.

  15. Heavy-ion fission probability calculations at high excitation energy

    SciTech Connect

    D'Arrigo, A.; Giardina, G.; Taccone, A. Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, Messina Istituto di Tecniche Spettroscopiche del Consiglio Nazionale delle Ricerche, Messina )

    1991-12-01

    In the framework of the statistical theory of nuclear reactions we calculated the fission probability {ital P}{sub {ital f}} of the {sup 153}Tb, {sup 158}Er, {sup 159}Dy, {sup 175}Hf, {sup 179}Ta, {sup 186}Os, and {sup 188}Os nuclei with a mass number {ital A}=150--200 produced by heavy-ion reactions. Starting from the spectra of the single-particle levels as determined by Nix and Moeller, and utilizing a formalism we developed, we determined the excitation energy dependence of the effective level density parameters for the fission and the neutron emission channels. The agreement between the fission probability calculations and the experimental data was reached when a nonadiabatic estimate of the collective effects was used to calculate the nuclear level density. In the fission process at high excitation energies induced by ions heavier than the {alpha} particle, an energy dependence of the effective fission barrier has to be used.

  16. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  17. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  18. Gordon Conference on Nuclear Research

    SciTech Connect

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei.

  19. Excitation of the 4d shell in Sb, Te, and BaF2 with inelastic electron scattering: Collective or single particle?

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Schnatterly, S. E.

    1982-06-01

    Simple models suggest that the momentum-transfer (q) dependence of inelastic electron scattering is sensitive to the difference between collective and single-particle behavior in atomic dynamics. We measured the energy centroid of the 4d continuum peak for 0

  20. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  1. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior. PMID:949223

  2. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  3. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  4. Anomalous tunneling of collective excitations and effects of superflow in the polar phase of a spin-1 spinor Bose-Einstein condensate

    SciTech Connect

    Watabe, Shohei; Ohashi, Yoji; Kato, Yusuke

    2011-07-15

    We investigate tunneling properties of collective modes in the polar phase of a spin-1 spinor Bose-Einstein condensate (BEC). This spinor BEC state has two kinds of gapless modes (i.e., Bogoliubov and spin-wave). Within the framework of mean-field theory at T=0, we show that these Goldstone modes exhibit perfect transmission in the low-energy limit. Their anomalous tunneling behavior still holds in the presence of superflow, except in the critical current state. In the critical current state, while the tunneling of Bogoliubov mode is accompanied by finite reflection, the spin wave still exhibits perfect transmission, unless the strengths of spin-dependent and spin-independent interactions take the same value. We discuss the relation between perfect transmission of a spin wave and underlying superfluidity through a comparison of wave functions of the spin wave and the condensate.

  5. Discovering work excitement among navy nurses.

    PubMed

    Savage, S; Simms, L M; Williams, R A; Erbin-Roesemann, M

    1993-01-01

    An interest in what makes work exciting among Navy Nurse Corps officers led to the use of Simms' work excitement data collection protocol in Navy Medical Centers. Significant levels of work excitement were found among Navy nurses when compared to civilian nurses in non-military settings. Overall, results indicated that Navy nurses are excited about the variety, the leadership/management experiences, and the opportunities for teaching and learning--elements that are the very essence of Navy nursing practice. PMID:8345880

  6. Anomalons, honey, and glue in nuclear collisions

    SciTech Connect

    Gyulassy, M.

    1982-12-01

    In these lectures, selected topics in nuclear collisions in the energy range 10/sup -1/ to 10/sup 3/ GeV per nucleon are discussed. The evidence for anomalous projectile fragments with short mean free paths is presented. Theoretical speculations on novel topological nuclear excitation and on quark-nuclear complexes in connection with anomalons are discussed. Recent tests for pion field instabilities are presented. Then evidence for collective nuclear flow phenomena are reviewed. Global event analysis and cascade simulations are presented. We address the question of whether nuclear flow is like viscous honey. Finally, the criteria for the production of a quark-gluon plasma are discussed. Nuclear stopping power and longitudinal growth at high energies are considered. Results from cosmic ray data show that nuclear collision at TeV per nucleon energies are likely to product a plasma.

  7. E2 excitation strength in {sup 55}Ni: Coupling of the {sup 56}Ni 2{sub 1}{sup +} collective core vibration to the f{sub 7/2} odd neutron hole

    SciTech Connect

    Yurkewicz, K.L.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.-C.; Glasmacher, T.; Olliver, H.; Terry, J.R.; Bazin, D.; Gade, A.; Mueller, W.F.; Honma, M.; Mizusaki, T.; Otsuka, T.; Riley, L.A.

    2004-12-01

    The collectivity of the odd-mass nucleus {sup 55}Ni was explored via intermediate-energy Coulomb excitation using a powerful combination of particle and {gamma}-ray spectroscopy. A {gamma}-ray at 2879(18) keV was observed and is interpreted to deexcite a member of the core-coupled quintuplet 2{sub 1}{sup +}({sup 56}Ni)x{nu}f{sub 7/2}{sup -1} at the same energy. By similarity with the mirror nucleus {sup 55}Co, transition probabilities were calculated assuming J{sup {pi}}=9/2{sup -} and J{sup {pi}}=11/2{sup -} for this state. Both assumptions lead to a transition strength higher than predicted by a large-scale shell-model calculation using the GXPF1 effective interaction and exceed the value predicted within a simple weak-coupling approach.

  8. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either

  9. Determinants and mapping of collective perceptions of technological risk: the case of the second nuclear power plant in Taiwan.

    PubMed

    Hung, Hung-Chih; Wang, Tzu-Wen

    2011-04-01

    Nuclear power is a highly controversial and salient example of environmental risk. The siting or operating of a nuclear power plant often faces widespread public opposition. Although studies of public perceptions of nuclear power date back to 1970s, little research attempts to explain the spatial heterogeneity of risk attitude toward nuclear power among individuals or communities. This article intends to improve the knowledge about the major factors contributing to nuclear power plant risk perceptions by mapping the geographical patterns of local risk perception and examining the determinants in forming the nature and distribution of the perceived risk among potentially affected population. The analysis was conducted by a case study of the Second Nuclear Power Plant (SNPP) in Taiwan by using a novel methodology that incorporates a comprehensive risk perception (CRP) model into an ethnographic approach called risk perception mapping (RPM). First, we examined the determinants of local nuclear power risk perceptions through the CRP model and multivariate regression analysis. Second, the results were integrated with the RPM approach to map and explain the spatial pattern of risk perceptions. The findings demonstrate that the respondents regard the nuclear power plant as an extremely high-risk facility, causing them to oppose the SNPP and reject the compensation payment to accept its continuing operation. Results also indicate that perceptions of nuclear power risk were mainly influenced by social trust, psychological and socioeconomic attributes, proximity, and the perceived effects of the SNPP on the quality of everyday life.

  10. Evolution of collective structures in the heavy transitional nuclei above the N = 82 closed shell

    NASA Astrophysics Data System (ADS)

    Joss, D. T.

    2016-09-01

    The emergence of collectivity in atomic nuclei is a fundamental paradigm in nuclear structure physics. Considerable progress has been made towards the identification of excited states in heavy neutrondeficient nuclei above the N = 82 closed shell. This paper summarises recent progress in the spectroscopic study of the Ta, W and Re nuclides with N ˜ 90 obtained from recoil and recoil-decay tagging experiments. The nuclei near N = 90 occupy γ-soft transitional region where the nuclear shape is particularly sensitive to the interplay between collective excitations and the underlying single-particle structure. The consequences of these interactions for low and high-spin states are discussed.

  11. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  12. Spin Transport by Collective Spin Excitations

    NASA Astrophysics Data System (ADS)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  13. Collective excitations of spherical semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-10-01

    In this article, we study the dispersion properties of bulk and surface electrostatic oscillations of a spherical quantum electron-hole semiconductor plasma as a simple model of a semiconductor nanoparticle. We derive general dispersion relation for both bulk and surface modes, using quantum hydrodynamic theory (including the electrons and holes quantum recoil effects, quantum statistical pressures of the plasma species, as well as exchange and correlation effects) in conjunction with Poisson’s equation and appropriate boundary conditions. We show that for the arbitrary value of angular quantum number {\\ell }≥slant 1 there are only two surface plasmon modes, but two infinite series of bulk modes for {\\ell }≥slant 0 that owe their existence to the curvature of the interface. We use the typical values of GaAs semiconductor to compute the bulk and surface mode frequencies for different value of {\\ell }.

  14. Collective excitations of massive flavor branes

    NASA Astrophysics Data System (ADS)

    Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.

    2016-08-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2 + 1)-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.

  15. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  16. α versus non-α cluster decays of the excited compound nucleus *124Ce using various formulations of the nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2015-06-01

    The earlier study of *124Ce formed in the 32S+92Mo reaction at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki et al. for the nuclear proximity potential in the dynamical cluster-decay model (DCM), is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach under the frozen density approximation. The Skyrme forces used are the old SII, SIII, SIV, SKa, SkM, and SLy4 and new GSkI and KDE0(v1), given for both normal and isospin-rich nuclei. It is found that the α -nucleus structure, over the non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with the new decay region of heavy mass fragments (HMFs) and the near-symmetric and symmetric fission fragments which, on adding the complementary heavy fragments, corresponds to (A /2 )±12 mass region of the fusion-fission (ff) process, are predicted by considering cross sections of orders observed in the experiment under study. For the predicted (total) fusion cross section, the survival probability Psurv of the compound nucleus (CN) against fission is shown to be very small because of the very large predicted ff component. On the other hand, the CN formation probability PCN is found to be nearly equal to 1, and hence the decay under study is a pure CN decay for all the nuclear potentials considered, since the estimated noncompound nucleus (nCN) content is almost negligible. We have also applied the extended-Wong model of Gupta and collaborators, and find that the ℓmax values and total fusion cross sections are of the same order as for the DCM. Thus, the extended-Wong model, which describes only the total fusion cross section in terms of the barrier characteristics of the entrance channel nuclei, could be useful for initial experimental studies to be fully treated using the DCM

  17. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  18. The spin chemistry and magnetic resonance of H2@C60. From the Pauli principle to trapping a long lived nuclear excited spin state inside a buckyball.

    PubMed

    Turro, Nicholas J; Chen, Judy Y-C; Sartori, Elena; Ruzzi, Marco; Marti, Angel; Lawler, Ronald; Jockusch, Steffen; López-Gejo, Juan; Komatsu, Koichi; Murata, Yasujiro

    2010-02-16

    One of the early triumphs of quantum mechanics was Heisenberg's prediction, based on the Pauli principle and wave function symmetry arguments, that the simplest molecule, H(2), should exist as two distinct species-allotropes of elemental hydrogen. One allotrope, termed para-H(2) (pH(2)), was predicted to be a lower energy species that could be visualized as rotating like a sphere and possessing antiparallel ( upward arrow downward arrow) nuclear spins; the other allotrope, termed ortho-H(2) (oH(2)), was predicted to be a higher energy state that could be visualized as rotating like a cartwheel and possessing parallel ( upward arrow upward arrow) nuclear spins. This remarkable prediction was confirmed by the early 1930s, and pH(2) and oH(2) were not only separated and characterized but were also found to be stable almost indefinitely in the absence of paramagnetic "spin catalysts", such as molecular oxygen, or traces of paramagnetic impurities, such as metal ions. The two allotropes of elemental hydrogen, pH(2) and oH(2), may be quantitatively incarcerated in C(60) to form endofullerene guest@host complexes, symbolized as pH(2)@C(60) and oH(2)@C(60), respectively. How does the subtle difference in nuclear spin manifest itself when hydrogen allotropes are incarcerated in a buckyball? Can the incarcerated "guests" communicate with the outside world and vice versa? Can a paramagnetic spin catalyst in the outside world cause the interconversion of the allotropes and thereby effect a chemical transformation inside a buckyball? How close are the measurable properties of H(2)@C(60) to those computed for the "quantum particle in a spherical box"? Are there any potential practical applications of this fascinating marriage of the simplest molecule, H(2), with one of the most beautiful of all molecules, C(60)? How can one address such questions theoretically and experimentally? A goal of our studies is to produce an understanding of how the H(2) guest molecules incarcerated in

  19. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  20. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  1. Autoresonant excitation of antiproton plasmas.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Carpenter, P T; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hurt, J L; Hydomako, R; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2011-01-14

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  2. Autoresonant Excitation of Antiproton Plasmas

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Madsen, N.; Werf, D. P. van der; Carpenter, P. T.; Hurt, J. L.; Robicheaux, F.; Cesar, C. L.

    2011-01-14

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  3. Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Spectroscopy

    SciTech Connect

    Dr. Norbert Pietralla

    2006-03-29

    The research project ''Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability'' with sponsor ID ''DE-FG02-04ER41334'' started late-summer 2004 and aims at the investigation of highly excited low-spin states of selected key-nuclei in the vicinity of the particle separation threshold by means of high-resolution gamma-ray spectroscopy in electromagnetic excitation reactions. This work addresses nuclear structures with excitation energies close to the binding energy or highly excited off-yrast states in accordance with the NSAC milestones. In 2005 the program was extended towards additional use of virtual photons and theoretical description of the low-lying collective excitations in the well deformed nuclei.

  4. Nuclear choices

    SciTech Connect

    Wolfson, R.

    1991-01-01

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

  5. Face it: collecting mental health and disaster related data using Facebook vs. personal interview: the case of the 2011 Fukushima nuclear disaster.

    PubMed

    Ben-Ezra, Menachem; Palgi, Yuval; Aviel, Or; Dubiner, Yonit; Evelyn Baruch; Soffer, Yechiel; Shrira, Amit

    2013-06-30

    Collecting mental health data during disaster is a difficult task. The aim of this study was to compare reported sensitive information regarding the disaster and general questions on physical or psychological functioning between social network (Facebook) interview and face-to-face interview after the 2011 Fukushima nuclear disaster. Data were collected from a battery of self-reported questionnaires. The questionnaires were administered to 133 face-to-face participants and to 40 Facebook interviewees, during March-April 2011. The face-to-face interview group showed a significantly higher level of posttraumatic stress disorder (PTSD) symptoms and elevated risk for clinical level of PTSD and reported more worries about another disaster, lower life satisfaction, less perceived social support and lower self-rated health than the Facebook group. Our data may suggest that the reliability of internet surveys is jeopardized during extreme conditions such as large-scale disasters as it tends to underestimate the reactions to such events. This indicates the discrepancy from data collected in situ to data collected using social networks. The implications of these results are discussed.

  6. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients.

    PubMed

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao

    2016-06-01

    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P < 0.05) when cells subjected to serum starvation, contact inhibition, and 3 mM sodium butyrate (NaBu) treatment when compared with cycling cells. However, 3 mM NaBu treatment caused alterations in cell morphology and increase in dead cells. Thus, interspecies nuclear transfer was carried out using fibroblast cells subjected to contact inhibition for 72 h, serum starvation for 48 h, and cells treated with 1.0 mM NaBu for 48 h. The fusion rates, the proportion of fused couplets that cleaved to two-cell and developed to blastocyst, were highest in all three species when the donor cells were treated with 1.0 mM NaBu for 48 h. But, the blastocyst percentage of interspecies nuclear embryos (5-6%) was significantly lower when compared with rabbit-rabbit nuclear transfer embryos (22.9%). In conclusion, fibroblast cells of leopard, lion, and tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm. PMID:27071624

  7. Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules

    SciTech Connect

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E.; Tretiak, Sergei

    2011-01-10

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully’s fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA{sub g} state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.

  8. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2011-05-12

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature. PMID:21218841

  9. Dipole excitations in 96Ru

    NASA Astrophysics Data System (ADS)

    Linnemann, A.; Fransen, C.; Gorska, M.; Jolie, J.; Kneissl, U.; Knoch, P.; Mücher, D.; Pitz, H. H.; Scheck, M.; Scholl, C.; Brentano, P. Von

    2005-12-01

    Candidates for the two-phonon quadrupole-octupole 1- state and the two-phonon mixed-symmetry 1+ms state have been identified in the N=52 isotope 96Ru using the nuclear resonance fluorescence technique at the bremsstrahlung facility of the Stuttgart Dynamitron accelerator. Detailed information on energies, spins, branching ratios, and transition strengths of four new dipole excitations in 96Ru have been obtained. The observed dipole excitations are nearly at the same energies as in 94Mo, and the transition probabilities are comparable to those for the decay of the (2+1⊗3-1)1- and the (2+1⊗2+ms)1+ms states in 94Mo.

  10. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  11. Competition between fusion and quasifission in a heavy fusing system: Diffusion of nuclear shapes through a dynamical collective potential energy landscape

    SciTech Connect

    Diaz-Torres, Alexis

    2006-12-15

    A theory of the competition between fusion and quasifission in a heavy fusing system is proposed, which is based on a master equation and the two-center shell model. Fusion and quasifission arise from a diffusion process in an ensemble of nuclear shapes, each of which evolves toward the thermal equilibrium. The fusing system moves on a dynamical (time-dependent) collective potential energy surface that is initially diabatic and gradually becomes adiabatic. Calculations for several reactions leading to {sup 256}No are performed within a simplified two-dimensional model. Among other important conclusions, the results indicate that (i) the diabatic effects play a very important role in the onset of fusion hindrance for heavy systems and (ii) very asymmetric reactions induced by closed-shell nuclei seem to be the best suited to synthesize the heaviest compound nuclei.

  12. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  13. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  14. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  15. Collective and non-collective structures in nuclei of mass region A ≈ 125

    SciTech Connect

    Singh, A. K.; Collaboration: INGA Collaboration; Gammasphere Collaboration

    2014-08-14

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kind of excitation mechanism, where 8-12 particles above the {sup 114}Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.

  16. The presence of nuclear families in prehistoric collective burials revisited: the bronze age burial of Montanissell Cave (Spain) in the light of aDNA.

    PubMed

    Simón, Marc; Jordana, Xavier; Armentano, Nuria; Santos, Cristina; Díaz, Nancy; Solórzano, Eduvigis; López, Joan B; González-Ruiz, Mercedes; Malgosa, Assumpció

    2011-11-01

    Ancient populations have commonly been thought to have lived in small groups where extreme endogamy was the norm. To contribute to this debate, a genetic analysis has been carried out on a collective burial with eight primary inhumations from Montanissell Cave in the Catalan pre-Pyrenees. Radiocarbon dating clearly placed the burial in the Bronze Age, around 3200 BP. The composition of the group-two adults (one male, one female), one young woman, and five children from both sexes-seemed to represent the structure of a typical nuclear family. The genetic evidence proves this assumption to be wrong. In fact, at least five out of the eight mitochondrial haplotypes were different, denying the possibility of a common maternal ancestor for all of them. Nevertheless, 50% of the inhumations shared haplogroup J, so the possibility of a maternal relationship cannot be ruled out. Actually, combining different analyses performed using ancient and living populations, the probability of having four related J individuals in Montanissell Cave would range from 0.9884 to 0.9999. Owing to the particularities of this singular collective burial (small number of bodies placed altogether in a hidden cave, the evidence of non-simultaneous interments, close dating and unusual grave goods), we suggest that it might represent a small group with a patrilocal mating system.

  17. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.

    PubMed

    Myouga, Fumiyoshi; Akiyama, Kenji; Tomonaga, Yumi; Kato, Aya; Sato, Yuka; Kobayashi, Megumi; Nagata, Noriko; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-02-01

    The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.

  18. Role of nuclear factor of activated T-cells 5 in regulating hypertonic-mediated secretin receptor expression in kidney collecting duct cells.

    PubMed

    Chua, Oscar W H; Wong, Kenneth K L; Ko, Ben C; Chung, Sookja K; Chow, Billy K C; Lee, Leo T O

    2016-07-01

    A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments.

  19. Theoretical Assessment of 178m2Hf De-Excitation

    SciTech Connect

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  20. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  1. Microscopic analysis of order parameters in nuclear quantum phase transitions

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.

    2009-12-15

    Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.

  2. 78 FR 79500 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  3. 77 FR 49834 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  4. 78 FR 67203 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  5. 78 FR 66078 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  6. 77 FR 70192 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  7. 77 FR 69661 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  8. 76 FR 72982 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  9. 78 FR 66076 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  10. 76 FR 39132 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  11. 78 FR 70353 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  12. 76 FR 63667 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  13. 78 FR 15054 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  14. 78 FR 34134 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  15. 77 FR 20437 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) invites public comment about our intention to request the...

  16. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-06-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident.

  17. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station

    PubMed Central

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-01-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident. PMID:27334847

  18. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station.

    PubMed

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-01-01

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident. PMID:27334847

  19. Concentrations of Radiocesium in Local Foods Collected in Kawauchi Village after the Accident at the Fukushima Dai-ichi Nuclear Power Station.

    PubMed

    Orita, Makiko; Nakashima, Kanami; Hayashida, Naomi; Endo, Yuuko; Yamashita, Shunichi; Takamura, Noboru

    2016-06-23

    We evaluated the current concentrations of radiocesium in local foods collected in Kawauchi Village, which is located less than 30 km from Fukushima Daiichi Nuclear Power Station, to minimize public anxiety regarding internal radiation exposure through the consumption of locally produced foods after the 2011 Fukushima accident. The number of samples exceeding the regulatory radiocesium limit (100 Bq/kg for general foods) was five out of 4,080 vegetables (0.1%), 652 of 1,986 (32.8%) among edible wild plants and fungi, and eight of 647 (1.2%) in fruits. Our study confirmed that the internal radiation doses of ingesting these foods are acceptably low compared to the public dose limit, ranging from 24.4 to 42.7 μSv for males and from 21.7 to 43.4 μSv for females, although the potential for radiation exposure still exists. Long-term comprehensive follow-up should take place to clarify trends in radiocesium concentrations in local foods and the committed effective doses found in Fukushima-area residents. By constructing a system that allows residents to access information on radiocesium concentration in foods, a risk communication model between specialists and residents could be developed in the recovery phase after the Fukushima accident.

  20. Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations

    SciTech Connect

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-06-01

    A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  1. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  2. The effect of harvesting technique on efficiency of oocyte collection and different maturation media on the nuclear maturation of oocytes in camels (Camelus dromedarius).

    PubMed

    Nowshari, Manzoor A

    2005-06-01

    The purpose of this investigation was to develop an efficient method for harvesting oocytes from dromedary camel ovaries and to examine the effect of different maturation media on their subsequent maturation in vitro. Oocytes were collected by aspirating the follicular contents using a needle attached to a syringe (Method I, n=163 ovaries) or to a constant aspirating pressure, applied by a vacuum pump (Method II, n=117 ovaries). Individual follicles were excised from ovaries and follicles were punctured with two needles (Method III, n=117). Oocytes were matured in vitro for 40-42 h. At the end of maturation period, oocytes were denuded of cumulus cells and the proportion of oocytes in metaphase-II (MII) stage was determined. In the second experiment, oocytes collected by the dissection method were matured in Tissue Culture Medium199 (TCM), CR1 or modified Connaught Medical Research Laboratories medium-1066 (CMRL) and their nuclear maturation was evaluated after 40-42 h. The recovery rate of oocytes was higher (P<0.01) with Method III compared with Method I or II (94, 31 and 33%, respectively). A higher proportions of oocytes collected with Method I or II were either completely or partially denuded compared with Method III (31, 14% versus 1%). The proportions of viable oocytes (78, 60 and 70%, respectively) and those showing metaphase II was not different (39, 50 and 46%, respectively, P>0.05) among the three treatment groups. Oocyte maturation rate was higher (P<0.05) when TCM was used compared with CMRL or CR1 medium. There was, however, no difference in the maturation rate for oocytes cultured in CMRL or CR1 medium. It may be concluded that a higher proportion of cumulus enclosed oocytes may be recovered by follicle dissection method compared to aspiration using syringe or pump. The higher recovery rate with a comparable proportion of viable and matured oocytes resulted in the overall increase in the number of matured (MII) oocytes/ovary with follicle dissection

  3. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  4. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  5. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  6. 16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER AT REAR; UNUSED WATER-DRIVEN EXCITER IN FOREGROUND. VIEW TO SOUTH-SOUTHWEST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  7. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  8. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  9. Exotic nuclear matter

    NASA Astrophysics Data System (ADS)

    Lenske, H.; Dhar, M.; Tsoneva, N.; Wilhelm, J.

    2016-01-01

    Recent developments of nuclear structure theory for exotic nuclei are addressed. The inclusion of hyperons and nucleon resonances is discussed. Nuclear multipole response functions, hyperon interactions in infinite matter and in neutron stars and theoretical aspects of excitations of nucleon resonances in nuclei are discussed.

  10. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  11. Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi

    2014-04-01

    Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found.

  12. Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident.

    PubMed

    Kuroda, Katsushi; Kagawa, Akira; Tonosaki, Mario

    2013-08-01

    Radiocesium ((134)Cs and (137)Cs) distribution in tree stems of Japanese cedar (aged 40-56 y), red pine (42 y), and oak (42 y) grown in Fukushima Prefecture were investigated approximately half a year after the Fukushima Dai-ichi nuclear accident. Japanese cedar, red pine, and oak were selected from five sites, one site, and one site, respectively. Three trees at each site were felled, and bark, sapwood (the outer layer of wood in the stem), and heartwood (the inner layer of wood in the stem) separately collected to study radiocesium concentrations measured by gamma-ray spectrometry. The radiocesium deposition densities at the five sites were within the range of 16-1020 kBq m(-2). The radiocesium was distributed in bark, sapwood, and heartwood in three tree species, indicating that very rapid translocation of radiocesium into the wood. The concentration of radiocesium in oak (deciduous angiosperm) bark was higher than that in the bark of Japanese cedar and red pine (evergreen gymnosperms). Both sapwood and heartwood contained radiocesium, and the values were much lower than that in the bark samples. The results suggest that radiocesium contamination half a year after the accident was mainly attributable to the direct radioactive deposition. The radiocesium concentrations in the Japanese cedar samples taken from five sites rose with the density of radiocesium accumulation on the ground surface. To predict the future dynamics of radiocesium in tree stems, the present results taken half a year after the accident are important, and continuous study of radiocesium in tree stems is necessary.

  13. Emerging properties of nuclear RNP biogenesis and export.

    PubMed

    Oeffinger, Marlene; Montpetit, Ben

    2015-06-01

    RNA biology has recently seen an explosion of data due to advances in RNA sequencing, proteomic, and RNA imaging technologies. In this review, we highlight progress that has been made using these approaches in the area of nuclear RNP biogenesis and export. Excitingly, the ability to collect quantitative data at the 'omics' scale combined with measurements of transcription, decay, and transport kinetics is providing the information needed to address RNP biogenesis at a systems level. We believe this to be a necessary and critical next step that will lead to a better understanding of how RNP quality, diversity, and fate emerge from a defined set of nuclear RNP assembly and maturation steps.

  14. Supersolitons: Solitonic Excitations in Atomic Soliton Chains

    SciTech Connect

    Novoa, David; Michinel, Humberto; Perez-Garcia, Victor M.

    2008-10-03

    We show that, by tuning interactions in nonintegrable vector nonlinear Schroedinger equations modeling Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic particlelike collisions between solitons. This would allow one to construct a Newton's cradle with solitons and supersolitons: localized collective excitations in solitary-wave chains.

  15. Hexadecapolar excitation in sup 100 Ru

    SciTech Connect

    Sirota, S.; Duarte, J.L.M.; Horodynski-Matsushigue, L.B.; Borello-Lewin, T. )

    1989-09-01

    Attention is drawn to the strong collective {ital L}=4 direct excitation of the state at 2.367 MeV in {sup 100}Ru by inelastic scattering of 16 MeV protons characterized by a deformation parameter {beta}{sub 4}=0.10, one of the highest reported for any region of the mass table.

  16. Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation.

    PubMed

    Gieseking, Rebecca L; Ratner, Mark A; Schatz, George C

    2016-07-01

    Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to the transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. These results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically.

  17. The photodissociation and reaction dynamics of vibrationally excited molecules. Technical progress report, 1993--1994

    SciTech Connect

    Not Available

    1994-04-01

    Combined vibrational overtone excitation and laser induced fluorescence detection was used to study dissociation dynamics of hydroxylamine (NH{sub 2}OH), laser induced grating experiments on water were analyzed, discovering the important role that electrostriction and thermal relaxation play, and a new apparatus for preparing vibrationally excited molecules with simulated Raman excitation was completed and the first measurements made. Role of vibrational excitation in photodissociation dynamics was studied using a vibrational state preparation technique, such as vibrational overtone excitation or stimulated Raman excitation, to create molecules with particular nuclear motions and then excite that molecule to a dissociative electronic state. Because the vibrational excitation alters the dissociation dynamics in the excited state, both by providing access to different portions of the excited state surface and by altering the motion of the system on the surface, it is usually refered to as vibrationally mediated photodissociation.

  18. Modified non-Euclidean transformation on the SO(2N+2) U(N+1) Grassmannian and SO(2N + 1) random phase approximation for unified description of Bose and Fermi type collective excitations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Seiya; da Providência, João

    2016-02-01

    In a slight different way from the previous one, we propose a modified non-Euclidean transformation on the SO(2N+2) U(N+1) Grassmannian which gives the projected SO(2N+1) Tamm-Dancoff equation. We derive a classical time-dependent (TD) SO(2N + 1) Lagrangian which, through the Euler-Lagrange equation of motion for SO(2N+2) U(N+1) coset variables, brings another form of the previous extended-TD Hartree-Bogoliubov (HB) equation. The SO(2N + 1) random phase approximation (RPA) is derived using Dyson representation for paired and unpaired operators. In the SO(2N) HB case, one boson and two boson excited states are realized. We, however, stress non-existence of a higher RPA vacuum. An integrable system is given by a geometrical concept of zero-curvature, i.e. integrability condition of connection on the corresponding Lie group. From the group theoretical viewpoint, we show the existence of a symplectic two-form ω.

  19. Particle-hole states in nuclear matter

    SciTech Connect

    Matyas, C.A.

    1985-01-01

    This work deals with the collective excitations in nuclear matter, from the point of view of the TDA approximation. Our calculations involved the construction of a Hamiltonian, expressed as a matrix in the space of particle-hole excitations with a given momentum transfer. We used in this Hamiltonian an average single nucleon potential, and (in some cases) an effective interaction obtained for the potential HEA in the relativistic Brueckner-Hartree Fock theory. The eigenvectors of the TDA-Hamiltonian were used to compute the strength of the collective response of nuclear matter to external probes. Our results, succinctly described in the last section, are summarized in a set of figures at the end of this monograph. The specific form of the TDA equations that we used, and the procedure to calculate the degree of collectivity of the solutions, is studied in detail in the fifth chapter. A derivation of the TDA equations, and a discussion of the solutions for a separable potential, is given in the fourth chapter. The structure of a non-relativistic potential for a system of two nucleons is examined in the third chapter, in several representations. On the other hand, the particle-hole states relevant to our discussions on the TDA equations are introduced in the first two chapters.

  20. Excitation Methods for Bridge Structures

    SciTech Connect

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  1. Laser Excited Fluorescence For Forensic Diagnostics

    NASA Astrophysics Data System (ADS)

    McKinney, Robert E.

    1986-07-01

    The application of laser excited fluorescence to the detection and identification of latent fingerprints was first accomplished ten years ago. The development of the technology has progressed rapidly with the introduction of commercial equipment by several manufacturers. Systems based on Argon-ion, Copper-vapor, and frequency-doubled Nd:YAG lasers are compared. The theoretical basis of detection by fluorescence is discussed along with the more useful techniques of dye staining. Other applications of the laser excited fluorescence in forensic investigation include gunshot residue analysis, serology, collection of trace evidence, and document examination.

  2. Coulomb excitation of Ga73

    NASA Astrophysics Data System (ADS)

    Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkäll, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kröll, Th.; Krücken, R.; Köster, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; van de Walle, J.; van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.

    2010-12-01

    The B(E2;Ii→If) values for transitions in 3171Ga40 and 3173Ga42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga71,73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted γ rays were detected by the MINIBALL γ-detector array, and B(E2;Ii→If) values were obtained from the yields normalized to the known strength of the 2+→0+ transition in the Sn120 target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity toward lower excitation energy when adding neutrons beyond N=40. This supports conclusions from previous studies of the gallium isotopes, which indicated a structural change in this isotopic chain between N=40 and 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-,3/2- doublet near the ground state in 3173Ga42 differing by at most 0.8 keV in energy.

  3. Decoherence at constant excitation

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Sadurní, E.; Seligman, T. H.

    2012-02-01

    We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.

  4. Excited states in hydrocarbons

    SciTech Connect

    Lipsky, S.

    1987-01-01

    In this brief review we first summarize some pertinent features of the photophysical properties of excited states of hydrocarbons and the mechanisms by which they transfer energy to solutes and then review their yields and their behavior under fast-electron irradiation conditions. 33 refs.

  5. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  6. Nuclear spectroscopy above isomers in {sub 67}{sup 148}Ho{sub 81} and {sub 67}{sup 149}Ho{sub 82} nuclei: Search for core-excited states in {sup 149}Ho

    SciTech Connect

    Kownacki, J.; Napiorkowski, P. J.; Zielinska, M.; Kordyasz, A.; Srebrny, J.; Droste, Ch.; Morek, T.; Grodner, E.; Ruchowska, E.; Korman, A.; Czarnacki, W.; Kisielinski, M.; Kowalczyk, M.; Wrzosek-Lipska, K.; Hadynska-KlePk, K.; Mierzejewski, J.; Lieder, R. M.; Perkowski, J.; Andrzejewski, J.; Krol, A.

    2010-04-15

    The excited states of {sup 148}Ho and {sup 149}Ho isotopes are studied using gamma-ray and electron spectroscopy in off-beam and in-beam modes following {sup 112,114}Sn({sup 40}Ar,xnyp) reactions. Experiments include measurements of single gamma-rays and conversion electron spectra as well as gamma-gamma, electron-gamma, gamma-t, and gamma-gamma-t coincidences with the use of the OSIRIS-II 12-HPGe array and conversion electron spectrometer. Based on the present results, the level schemes of {sup 148}Ho and {sup 149}Ho are revised and significantly extended, up to about 4 and 5 MeV of excitation energy, respectively. Spin and parity of 5{sup -} are assigned to the 9.59-s isomer in {sup 148}Ho based on conversion electron results. Previously unobserved gamma rays feeding the 10{sup +} isomer in {sup 148}Ho and the 27/2{sup -} isomer in {sup 149}Ho nuclei are proposed. Shell-model calculations are performed. Possible core-excited states in {sup 149}Ho are discussed.

  7. 10 CFR 54.9 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 54.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.9 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection...

  8. 10 CFR 54.9 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 54.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.9 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection...

  9. 10 CFR 54.9 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 54.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.9 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection...

  10. 10 CFR 54.9 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 54.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.9 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection...

  11. 10 CFR 54.9 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 54.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.9 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection...

  12. Nanoscale control of phonon excitations in graphene

    PubMed Central

    Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo

    2015-01-01

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454

  13. Description of the US Geological Survey`s water level monitoring program at the Hallam Nuclear Facility, September 1993--February 1994; Description of the collection of continuous water-level data; Description of the collection of monthly water-level data

    SciTech Connect

    1994-03-15

    The US Department of Energy and the US Department of the Interior agreed to monitor water-level data in 16 observation wells located at Hallam Facility, Hallam, Nebraska. The data collection period began in September 1993 and continued through August 1994. This report contains the interim summary representing six months of data collection. Specific sections include the following: description of the US Geological Survey`s monitoring program at the Hallam Nuclear Facility (Sept. 1993 to Feb. 1994); description of the collection of continuous water-level data; description of the collection of monthly water-level data; table of observation well number, latitude, longitude, and depth; table of monthly ground-water levels data; table of recorder wells, rainfall, and barometric pressure unit values; and table of recorder well, rainfall, and barometric daily values; hydrographs of selected wells.

  14. Experimental data confronts nuclear structure

    SciTech Connect

    Garrett, J.D.

    1988-01-01

    The physical content of experimental data for a variety of excitation energies and angular momenta is summarized. The specific nuclear structure questions which these data address are considered. The specific regions discussed are: low-spin data near the particle separation thresholds; low-spin data at intermediate excitation energies; high-spin, near-yrast data and high-spin data at larger excitation energies. 63 refs., 14 figs., 1 tab.

  15. Combining dehydration, construct optimization and improved data collection to solve the crystal structure of a CRM1-RanGTP-SPN1-Nup214 quaternary nuclear export complex.

    PubMed

    Monecke, Thomas; Dickmanns, Achim; Weiss, Manfred S; Port, Sarah A; Kehlenbach, Ralph H; Ficner, Ralf

    2015-12-01

    High conformational flexibility is an intrinsic and indispensable property of nuclear transport receptors, which makes crystallization and structure determination of macromolecular complexes containing exportins or importins particularly challenging. Here, the crystallization and structure determination of a quaternary nuclear export complex consisting of the exportin CRM1, the small GTPase Ran in its GTP-bound form, the export cargo SPN1 and an FG repeat-containing fragment of the nuclear pore complex component nucleoporin Nup214 fused to maltose-binding protein is reported. Optimization of constructs, seeding and the development of a sophisticated protocol including successive PEG-mediated crystal dehydration as well as additional post-mounting steps were essential to obtain well diffracting crystals.

  16. NUCLEAR DATABASES FOR REACTOR APPLICATIONS.

    SciTech Connect

    PRITYCHENKO, B.; ARCILLA, R.; BURROWS, T.; HERMAN, M.W.; MUGHABGHAB, S.; OBLOZINSKY, P.; ROCHMAN, D.; SONZOGNI, A.A.; TULI, J.; WINCHELL, D.F.

    2006-06-05

    The National Nuclear Data Center (NNDC): An overview of nuclear databases, related products, nuclear data Web services and publications. The NNDC collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. The NNDC maintains and contributes to the nuclear reaction (ENDF, CSISRS) and nuclear structure databases along with several others databases (CapGam, MIRD, IRDF-2002) and provides coordination for the Cross Section Evaluation Working Group (CSEWG) and the US Nuclear Data Program (USNDP). The Center produces several publications and codes such as Atlas of Neutron Resonances, Nuclear Wallet Cards booklets and develops codes, such as nuclear reaction model code Empire.

  17. Some light-ion excitation-function measurements on titanium, yttrium, and europium, and associated results

    SciTech Connect

    West, H.I. Jr.; Lanier, R.G.; Mustafa, M.G.; Nuckolls, R.M.; Nagle, R.J.; O`Brien, H.; Frehaut, J.; Adam, A.; Philis, C.

    1993-11-01

    This report discusses: Fabrication of Plastic-Matrix-Encapsulated Accelerator Targets and Their Use in Measuring Nuclear Excitation Functions; Correcting Excitation Function Data in the Low Energy Region for Finite Thickness of the Target Foils, Including Effects of Straggling; Excitation Functions for the Nuclear Reactions on Titanium Leading to the Production {sup 48}V, {sup 44}Sc and {sup 47}Sc by Proton, Deuteron and Triton Irradiations at 0--35 MeV; Some Excitation Functions of Proton and Deuteron Induced Reactions on {sup 89}Y; Measurements of the Excitation Functions of the Isobaric Chain {sup 87}Y, {sup 87}Y{sup m}, {sup 87}Y{sup g} and {sup 87}Sr{sup m}; Levels in {sup 87}Y Observed in the Decay of {sup 87}Zr; and Nuclear Reaction Excitation Functions from the Irradiation of {sup 151,153}Eu with Protons And deuterons up to 35 MeV.

  18. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  19. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  20. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  1. Introduction to nuclear physics.

    PubMed

    Patton, J A

    1998-01-01

    Photons for counting or imaging applications in nuclear medicine result from several processes. Gamma rays are produced from excited state transitions after beta decay and electron capture. Annihilation photons result from positron decay. The de-excitation of the atom after electron capture results in the production of characteristic x rays or Auger electrons. Metastable state transitions result in gamma ray emission or internal conversion electrons. All radiopharmaceuticals used in diagnostic nuclear medicine applications are tagged with radionuclides that emit photons as a result of one of these processes.

  2. Electron-driven excitations and dissociation of molecules

    SciTech Connect

    Miller, Greg; Orel, Ann E.

    2015-02-13

    This program studied how energy is interchanged in electron and photon collisions with molecules leading to ex-citation and dissociation. Modern ab initio techniques, both for the photoionization and electron scattering, and the subsequent nuclear dynamics studies, are used to accurately treat these problems. This work addresses vibrational ex-citation and dissociative attachment following electron impact, and the dynamics following inner shell photoionzation. These problems are ones for which a full multi-dimensional treatment of the nuclear dynamics is essential and where non-adiabatic effects are expected to be important.

  3. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  4. Effect of {sigma}-{omega}-{gamma} mixing on the dimesonic function in nuclear matter

    SciTech Connect

    Liu, L.; Zhou, Q.; Lai, T.

    1995-05-01

    The {sigma}-{omega} mixing in nuclear matter is extended to include the electromagnetic interaction between protons by mixing the photon propagator with the {sigma},{omega} propagators. The total dimesonic function, including the electromagnetic interaction is derived and its real and imaginary parts as well as the dispersion relation are calculated numerically. We find that the electromagnetic interaction has a very large effect on the real part of the dimesonic function for low momentum transfer and zero energy (or zero frequency). The imaginary part of the dimesonic function shows a resonant behavior as a function of energy for fixed momentum, where the point of the negative minimum is verified to correspond to the point in the acoustic sound spectra of the collective excitation. The dispersion relation at normal nuclear matter density indicates the existence of a completely damped acoustic sound collective excitation.

  5. 78 FR 73211 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... title of the information collection: NRC Nuclear Education Grantee Survey. 2. Current OMB approval... use of automated collection techniques or other forms of information technology? The public may... COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY:...

  6. Students Excited by Stellar Discovery

    NASA Astrophysics Data System (ADS)

    2011-02-01

    follow-up observations, and Thompson joined online. "Observing with the students is very exciting. It gives the students a chance to learn about radio telescopes and pulsar observing in a very hands-on way, and it is extra fun when we find a pulsar," said Rosen. Snider, on the other hand, said, "I got very, very nervous. I expected when I went there that I would just be watching other people do things, and then I actually go to sit down at the controls. I definitely didn't want to mess something up." Everything went well, and the observations confirmed that the students had found an exotic pulsar. "I learned more in the two hours in the control room than I would have in school the whole day," Mabry said. Pulsars are spinning neutron stars that sling lighthouse beams of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its normal life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name neutron star. One tablespoon of material from a pulsar would weigh 10 million tons -- as much as a supertanker. The object that the students discovered is in a special class of pulsar that spins very fast - in this case, about 30 times per second, comparable to the speed of a kitchen blender. "The big question we need to answer first is whether this is a young pulsar or a recycled pulsar," said Maura McLaughlin, an astronomer at WVU. "A pulsar spinning that fast is very interesting as it could be newly born or it could be a very old, recycled pulsar." A recycled pulsar is one that was once in a binary system. Material from the companion star is deposited onto the pulsar, causing it to speed up, or be recycled. Mystery remains, however, about whether this pulsar has ever had a companion star. If it did, "it may be that this pulsar had a massive

  7. 77 FR 44291 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... asked to report: Nuclear power reactor licensees, non-power reactors, and materials applicants and... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY:...

  8. 77 FR 54617 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... licenses or license renewals to operate the controls at a nuclear reactor facility. This information is... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY:...

  9. 76 FR 52698 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear... internal or external administration of the byproduct material or the radiation there from to human...

  10. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation.

    PubMed

    Talbot, Neil C; Powell, Anne M; Camp, Mary; Ealy, Alan D

    2007-02-01

    Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.

  11. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  12. Search for Gluonic Excitations

    SciTech Connect

    Paul Eugenio

    2007-10-01

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  13. Search for Gluonic Excitations

    SciTech Connect

    Eugenio, Paul

    2007-10-26

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  14. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA.

    PubMed

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A

    2013-01-01

    The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.

  15. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  16. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  17. 4. pi. data of relativistic nuclear collisions. [Plastic ball

    SciTech Connect

    Gutbrod, H.H.; Gustafsson, H.A.; Kolb, B.

    1983-05-01

    During the past two years, complete events of relativistic nuclear collisions are being studied with the Plastic Ball, the first electronic nonmagnetic particle-identifying 4..pi.. spectrometer. It is well suited to handle the large multiplicities in these reactions and allows collection of data at a rate sufficient to make further software selections to look at rare events. The analysis of the data follows various lines covering topics like thermalization, stopping or transparency, cluster-production mechanism (--can it tell entropy), search for collective flow through various global analyzing methods that allow determination of the scattering plane, projectile fragmentation (--is there a bounce-off), pion distribution, two-particle correlations: Hanbury-Brown Twiss, and excited nuclear states (--nucleosynthesis at the freezeout point or from chemical equilibrium). We will cover in this contribution only two subjects: stopping and thermalization and cluster production.

  18. An Artificial Ising System with Phononic Excitations

    NASA Astrophysics Data System (ADS)

    Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul

    Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.

  19. Dipole excitations in the vibrational nucleus 112Cd

    NASA Astrophysics Data System (ADS)

    Lehmann, H.; Nord, A.; de Almeida Pinto, A. E.; Beck, O.; Besserer, J.; von Brentano, P.; Drissi, S.; Eckert, T.; Herzberg, R.-D.; Jäger, D.; Jolie, J.; Kneissl, U.; Margraf, J.; Maser, H.; Pietralla, N.; Pitz, H. H.

    1999-08-01

    The strength distribution of low-lying dipole excitations in the medium-weight vibrational nucleus 112Cd was investigated by means of nuclear resonance fluorescence experiments (NRF) performed at the bremsstrahlung beam of the Stuttgart Dynamitron accelerator (end-point energy 4.1 MeV). Detailed information on excitation energies, spins, decay widths, and transition probabilities of about 20 new spin-1 states in 112Cd has been obtained. In comparison with comprehensive spectroscopic information available for 112Cd conclusions on the parities of the lowest states can be made. A strongly excited Jπ=1- state is interpreted as the 1- member of the quadrupole-octupole coupled quintuplet. The observed transition intensities are described in the framework of the interacting boson model and compared with those obtained from recent nuclear resonance fluorescence experiments on the neighboring Cd isotopes 113,114Cd.

  20. Elementary spin excitations in ultrathin itinerant magnets

    NASA Astrophysics Data System (ADS)

    Zakeri, Khalil

    2014-12-01

    in complex low-dimensional ferromagnetic oxide nanostructures is discussed. The influence of the relativistic spin-orbit coupling on high-energy magnons is addressed. It is shown how the spin-orbit coupling breaks the energy degeneracy of the magnons excited in an ultrathin ferromagnet, and how it influences their lifetime, amplitude, group and phase velocity. A potential application of these new effects in modern spintronics is outlined. It is illustrated how one can take advantage of collective nature of magnons and use these quasi-particles for probing the magnetic exchange interaction at buried interfaces.

  1. Plasmon excitations in two-dimensional atomic cluster systems

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Qin; Yu, Ya-Bin; Xue, Hong-Jie; Wang, Ya-Xin; Chen, Jie

    2016-09-01

    Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon eigen-equations and the energy-absorption spectrum formula are presented. The calculated results show that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge distribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation with a certain polarization direction should be excited by the field in this direction, the dipole mode of plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-shifted with increasing size of the systems.

  2. Possible excited deformed rotational bands in {sup 82}Ge

    SciTech Connect

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Brewer, N. T.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.

    2011-08-15

    Excited states of neutron-rich nucleus {sup 82}Ge were studied from the spontaneous fission of {sup 252}Cf. Eleven new transitions and seven new levels in {sup 82}Ge were identified by using X(Dy)-{gamma}-{gamma} and {gamma}-{gamma}-{gamma} triple coincidences. Possible excited deformed rotational bands are observed, for the first time, in this nuclear region. Coexistence of the spherical ground and deformed excited shapes is proposed in {sup 82}Ge. These deformed rotational bands can be formed by two-particle, two-hole excitations with the 0{sup +} pairing energy states of the {nu}9/2[404]{sup -2} x 1/2[431]{sup 2} configuration across the N=50 closed shell.

  3. Excited quasiparticles and entropy in 161,162Dy

    NASA Astrophysics Data System (ADS)

    Razavi, R.; Mohassel, A. Rashed; Mohammadi, S.

    2015-11-01

    In this paper, the nuclear level densities of 161,162Dy is studied by the use of a microscopic theory which includes nuclear pairing interaction. It is based on the modified harmonic oscillator model according to the Nilsson potential. The entropy of even-odd and even-even nuclei as a function of nuclear temperature is obtained. The entropy excess of 161Dy is compared with that of 162Dy. It is concluded that the difference is related to the entropy carried by the neutron hole coupled to the even-even core. The numbers of excited quasiparticles are calculated. Good agreement was observed between calculated results and the experimental data.

  4. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  5. Neural Excitability and Singular Bifurcations.

    PubMed

    De Maesschalck, Peter; Wechselberger, Martin

    2015-12-01

    We discuss the notion of excitability in 2D slow/fast neural models from a geometric singular perturbation theory point of view. We focus on the inherent singular nature of slow/fast neural models and define excitability via singular bifurcations. In particular, we show that type I excitability is associated with a novel singular Bogdanov-Takens/SNIC bifurcation while type II excitability is associated with a singular Andronov-Hopf bifurcation. In both cases, canards play an important role in the understanding of the unfolding of these singular bifurcation structures. We also explain the transition between the two excitability types and highlight all bifurcations involved, thus providing a complete analysis of excitability based on geometric singular perturbation theory.

  6. Excitation of collective modes in a quantum flute

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Manolescu, Andrei; Molodoveanu, Valeriu; Gudmundsson, Vidar

    2012-06-01

    We use a generalized master equation (GME) formalism to describe the nonequilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials that simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire, whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example, a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum “flute” device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model.

  7. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  8. Collective lipid bilayer dynamics excited by surface acoustic waves.

    PubMed

    Reusch, T; Schülein, F J R; Nicolas, J D; Osterhoff, M; Beerlink, A; Krenner, H J; Müller, M; Wixforth, A; Salditt, T

    2014-09-12

    We use standing surface acoustic waves to induce coherent phonons in model lipid multilayers deposited on a piezoelectric surface. Probing the structure by phase-controlled stroboscopic x-ray pulses we find that the internal lipid bilayer electron density profile oscillates in response to the externally driven motion of the lipid film. The structural response to the well-controlled motion is a strong indication that bilayer structure and membrane fluctuations are intrinsically coupled, even though these structural changes are averaged out in equilibrium and time integrating measurements. Here the effects are revealed by a timing scheme with temporal resolution on the picosecond scale in combination with the sub-nm spatial resolution, enabled by high brilliance synchrotron x-ray reflectivity.

  9. Collective excitations of a spherically confined Yukawa plasma

    SciTech Connect

    Kaehlert, H.; Bonitz, M.

    2011-05-15

    The complete spectrum of eigenmodes of a spherically confined Yukawa plasma is presented, based on first-principle molecular dynamics simulations. These results are compared with a recent fluid theory for the multipole modes of this system [H. Kaehlert and M. Bonitz, Phys. Rev. E 82, 036407 (2010)] and with the exact N-particle eigenmodes in the crystalline phase. Simulations confirm the existence of high-order modes found in cold fluid theory. We investigate the influence of screening, coupling, and friction on the mode spectra in detail. Good agreement between theory and simulation is found for weak to moderate screening and low-order modes. In addition, a number of new modes are observed which are missing in the fluid theory. The relations between the breathing mode in the fluid theory, simulation, and the crystal eigenmode are investigated in further detail.

  10. Experimental Overview of the Excited Baryon Program

    NASA Astrophysics Data System (ADS)

    Crede, Volker

    2011-05-01

    High-energy electrons and photons are a remarkably clean probe of hadronic matter, essentially providing a microscope for examining atomic nuclei and the strong nuclear force. For more than a decade, laboratories worldwide have accumulated data for such investigations, resulting in a number of surprising discoveries and contributing to our understanding of the nucleon, its underlying quark structure, and the dynamics of the strong interaction. One notable discovery has been the unexpected Q2 variation of the ratio of the proton elastic form-factors GEp/GMp, which suggests an important contribution from quark orbital angular momentum to the spin of the nucleon. Moreover, the spectrum of excited hadrons can serve as an excellent probe of Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Since nucleons are complex systems of confined quarks, they exhibit the characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within QCD. The current effort at facilities worldwide studying the systematics of hadron spectra is to utilize highly-polarized frozen-spin (butanol) and deuterium targets in combination with polarized photon beams. These are important steps toward complete experiments that allow us to unambiguously determine the scattering amplitude in the underlying reactions and to identify resonance contributions.

  11. Challenges in nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.

    2016-08-01

    The goal of nuclear structure theory is to build a comprehensive microscopic framework in which properties of nuclei and extended nuclear matter, and nuclear reactions and decays can all be consistently described. Due to novel theoretical concepts, breakthroughs in the experimentation with rare isotopes, increased exchange of ideas across different research areas, and the progress in computer technologies and numerical algorithms, nuclear theorists have been quite successful in solving various bits and pieces of the nuclear many-body puzzle and the prospects are exciting. This article contains a brief, personal perspective on the status of the field.

  12. Pattern Formation in Excitable Media

    NASA Astrophysics Data System (ADS)

    Reynolds, William Nash

    1992-01-01

    The phenomenon of excitability is observed in a wide variety of physical and biological systems. In this work, spatially extended excitable systems are examined from several different perspectives. First, a pedagogical introduction is used to motivate the derivation of the dynamics of one dimensional excitable pulses. In the second part, coupled map techniques for numerical simulation of excitable media and other interfacial systems are described. Examples are given for both excitable media and crystal growth. The third chapter addresses the phenomenon of spiral formation in excitable media. Exact rotating solutions are found for a class of models of excitable media. The solutions consist of two regions: an outer region, consisting of the spiral proper, which exhibits a singularity at its tip, and the core region, obtained by rescaling space in the vicinity of the tip. The tip singularity is resolved in the core region, leading to a consistent solution in all of space. The stability of both the spiral and the core is investigated, with the result that the spiral is found to be stable, and the core unstable. Finally, the stability of excitable waves of the chemical cAMP traveling over aggregating colonies of the slime mold Dictyostelium discoideum is examined by coupling the excitable dynamics of the cAMP signalling system to a simple model of chemotaxis, with result that cellular motion is found to destabilize the waves, causing the initially uniform field of cells to break up into streams.

  13. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  14. p-p minimum-bias dijets and nonjet quadrupole in relation to conjectured collectivity (flows) in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2016-07-01

    Recent observations of ridge-like structure in p-p and p-A angular correlations at the RHIC and LHC have been interpreted to imply collective motion in smaller collision systems. It is argued that if correlation structures accepted as manifestations of flow in A-A collisions appear in smaller systems collectivity (flow) must extend to the smaller systems. But the argument could be reversed to conclude that such structures appearing in A-A collisions may not imply hydrodynamic flow. I present spectrum, correlation and fluctuation data from RHIC p-p and Au-Au collisions and p-p, p-Pb and Pb-Pb results from the LHC described accurately by a two-component (soft+dijet) model of hadron production. I also present evidence for a significant p-p nonjet (NJ) quadrupole (v2) component with nch systematics directly related to A-A NJ quadrupole systematics. The combination suggests that soft, dijet and NJ quadrupole com- ponents are distinct phenomena in all cases, inconsistent with hadron production from a common bulk medium exhibiting collective motion (flow).

  15. Atomic electron excitation probabilities during orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Briand, J. P.; Chevallier, P.; Chetioui, A.; Tavernier, M.

    1979-01-01

    Approximate probabilities of electron excitation (shakeup/shakeoff) from various atomic states during nuclear ns electron capture have been calculated in the sudden approximation, using Hartree-Fock wave functions. Total excitation probabilities are much lower than during inner-shell ionization by photons or electrons, and ns states are more likely to be excited than np states. This latter result is borne out by K-alpha X-ray satellite spectra.

  16. Diversity improves performance in excitable networks

    PubMed Central

    Copelli, Mauro; Roberts, James A.

    2016-01-01

    As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities. PMID:27168961

  17. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  18. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan.

    PubMed

    Ueda, Shinji; Kakiuchi, Hideki; Hasegawa, Hidenao; Kawamura, Hidehisa; Hisamatsu, Shun'ichi

    2015-11-01

    The spent nuclear fuel reprocessing plant in Rokkasho, Japan, has been undergoing final testing since March 2006. During April 2006-October 2008, that spent fuel was cut and chemically processed, the plant discharged (129)I into the atmosphere and coastal waters. To study (129)I behaviour in brackish Lake Obuchi, which is adjacent to the plant, (129)I concentrations in aquatic biota were measured by accelerator mass spectrometry. Owing to (129)I discharge from the plant, the (129)I concentration in the biota started to rise from the background concentration in 2006 and was high during 2007-08. The (129)I concentration has been rapidly decreasing after the fuel cutting and chemically processing were finished. The (129)I concentration factors in the biota were higher than those reported by IAEA for marine organisms and similar to those reported for freshwater biota. The estimated annual committed effective dose due to ingestion of foods with the maximum (129)I concentration in the biota samples was 2.8 nSv y(-1). PMID:25935011

  19. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  20. Trends In Collectivity Approaching N = 28

    SciTech Connect

    Campbell, C.M.; Bowen, M.D.; Brown, B.A.; Cook, J.M.; Dinca, D.-C.; Glasmacher, T.; Olliver, H.; Starosta, K.; Terry, J.R.; Aoi, N.; Sakurai, H.; Bazin, D.; Gade, A.; Mueller, W.F.; Yoneda, K.; Kan'no, S.; Motobayashi, T.; Takeuchi, S.

    2005-04-05

    To address the question of collectivity in neutron-rich nuclei near N=28, an inverse kinematics inelastic proton scattering experiment has been performed. Confirmation of excited states in 36,38Si has been made. The path from excitation cross-section to deformation parameter is outlined.

  1. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  2. Exotic States of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef

    2008-02-01

    pt. A. Theory of nuclear matter EOS and symmetry energy. Constraining the nuclear equation of state from astrophysics and heavy ion reactions / C. Fuchs. In-medium hadronic interactions and the nuclear equation of state / F. Sammarruca. EOS and single-particle properties of isospin-asymmetric nuclear matter within the Brueckner theory / W. Zuo, U. Lombardo & H.-J. Schulze. Thermodynamics of correlated nuclear matter / A. Polls ... [et al.]. The validity of the LOCV formalism and neutron star properties / H. R. Moshfegh ... [et al.]. Ferromagnetic instabilities of neutron matter: microscopic versus phenomenological approaches / I. Vidaã. Sigma meson and nuclear matter saturation / A. B. Santra & U. Lombardo. Ramifications of the nuclear symmetry energy for neutron stars, nuclei and heavy-ion collisions / A. W. Steiner, B.-A. Li & M. Prakash. The symmetry energy in nuclei and nuclear matter / A. E. L. Dieperink. Probing the symmetry energy at supra-saturation densities / M. Di Toro et al. Investigation of low-density symmetry energy via nucleon and fragment observables / H. H. Wolter et al. Instability against cluster formation in nuclear and compact-star matter / C. Ducoin ... [et al.]. Microscopic optical potentials of nucleon-nucleus and nucleus-nucleus scattering / Z.-Y. Ma, J. Rong & Y.-Q. Ma -- pt. B. The neutron star crust: structure, formation and dynamics. Neutron star crust beyond the Wigner-Seitz approximation / N. Chamel. The inner crust of a neutron star within the Wigner-Seitz method with pairing: from drip point to the bottom / E. E. Saperstein, M. Baldo & S. V. Tolokonnikov. Nuclear superfluidity and thermal properties of neutron stars / N. Sandulescu. Collective excitations: from exotic nuclei to the crust of neutron stars / E. Khan, M. Grasso & J. Margueron. Monte Carlo simulation of the nuclear medium: fermi gases, nuclei and the role of Pauli potentials / M. A. Pérez-García. Low-density instabilities in relativistic hadronic models / C. Provid

  3. Conjunction of γ-rigid and γ-stable collective motions in the critical point of the phase transition from spherical to deformed nuclear shapes

    NASA Astrophysics Data System (ADS)

    Budaca, R.; Budaca, A. I.

    2015-08-01

    Based on the competition between γ-stable and γ-rigid collective motions mediated by a rigidity parameter, a two-parameter exactly separable version of the Bohr Hamiltonian is proposed. The γ-stable part of the Hamiltonian is restricted to stiff oscillations around the γ value of the rigid motion. The separated potential for β and γ shape variables is chosen such that in the lower limit of this parameter, the model recovers exactly the ES-X(5) model, while in the upper limit it tends to the prolate γ-rigid solution X(3). The combined effect of the rigidity and stiffness parameters on the energy spectrum and wave function is duly investigated. Numerical results are given for few nuclei showing such ambiguous behaviour.

  4. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  5. Biocompound detection through fluorescence excitation-emission matrix analysis

    NASA Astrophysics Data System (ADS)

    Twede, David R.; Sanders, Lee C.; Wagner, Michael L.

    2004-01-01

    The excitation-emission matrix (EEM) is the luminescence spectral emission intensity of fluorescent compounds as a function of the excitation wavelength. EEMs offer the promise of an additional degree of information for enhanced compound detection and identification. Veridian has collected pure-component EEMs of amino acids (Trp, Phe, Tyr), Bacillus globigii (bg), Bacillus thuringiensis (bt,), and selected backgrounds. Also collected were EEMs of mixtures of amino acids and of bg in solution with a few backgrounds. The EEMs of pure components and mixtures were analyzed for phenomenology and for potential methods of unmixing and identifying the constituents of EEMs having mixed components of a similar nature.

  6. Biocompound detection through fluorescence excitation-emission matrix analysis

    NASA Astrophysics Data System (ADS)

    Twede, David R.; Sanders, Lee C.; Wagner, Michael L.

    2003-12-01

    The excitation-emission matrix (EEM) is the luminescence spectral emission intensity of fluorescent compounds as a function of the excitation wavelength. EEMs offer the promise of an additional degree of information for enhanced compound detection and identification. Veridian has collected pure-component EEMs of amino acids (Trp, Phe, Tyr), Bacillus globigii (bg), Bacillus thuringiensis (bt,), and selected backgrounds. Also collected were EEMs of mixtures of amino acids and of bg in solution with a few backgrounds. The EEMs of pure components and mixtures were analyzed for phenomenology and for potential methods of unmixing and identifying the constituents of EEMs having mixed components of a similar nature.

  7. Temperatures, barriers, and level densities of highly excited nuclei with A ~ 160

    NASA Astrophysics Data System (ADS)

    Nebbia, G.; Hagel, K.; Fabris, D.; Majka, Z.; Natowitz, J. B.; Schmitt, R. P.; Sterling, B.; Mouchaty, G.; Berkowitz, G.; Strozewski, K.; Viesti, G.; Gonthier, P. L.; Wilkins, B.; Namboodiri, M. N.; Ho, H.

    1986-08-01

    From coincidence measurements between heavy residues, light particles, and γ-rays, the excitation excitation energy dependence of the temperatures, barriers, and nuclear level density parameters for nuclei with A ~ 160 has been determined. The temperature increases with excitation energy in the range of 100 to 400 MeV consistently with a nuclear level density parameter a increasing from essentially a=A/8 to a=A/13. The emission barrier is lower than predicted by either spin dependent or temperature dependent theoretical calculations. Present address: Ober St. Leonhard-Strasse 8, D-7770 Überlingen, Fed. Rep. Germany.

  8. Seismic Excitation of the Polar Motion

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  9. Low-energy collective modes of deformed superfluid nuclei within the finite-amplitude method

    NASA Astrophysics Data System (ADS)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold

    2013-06-01

    Background: The major challenge for nuclear theory is to describe and predict global properties and collective modes of atomic nuclei. Of particular interest is the response of the nucleus to a time-dependent external field that impacts the low-energy multipole and β-decay strength, as well as individual nuclear excitations.Purpose: We propose a method to compute low-lying collective modes in deformed nuclei within the finite-amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). By using the analytic property of the response function, we find the QRPA amplitudes by computing the residua of the FAM amplitudes by means of a contour integration around the QRPA poles in a complex frequency plane.Methods: We use superfluid nuclear density functional theory with Skyrme energy density functionals, the FAM-QRPA approach, and the conventional matrix formulation of the QRPA.Results: We demonstrate that the complex-energy FAM-QRPA method reproduces low-lying collective states obtained within the conventional matrix formulation of the QRPA theory. Illustrative calculations are performed for the isoscalar monopole strength in deformed 24Mg and for low-lying K=0 quadrupole vibrational modes of deformed Yb and Er isotopes.Conclusions: The proposed FAM-QRPA approach, in addition to providing a quick estimate of various strength functions, allows one to efficiently calculate the individual QRPA amplitudes of the low-lying collective modes in spherical and deformed nuclei throughout the entire nuclear landscape, in particular shape-vibrational and pairing-vibrational modes and β-decay rates. It can also be employed in microscopic approaches to large-amplitude nuclear collective motion based on the adiabatic self-consistent collective coordinate method.

  10. Correlation between excitation index and Eddington ratio in radio galaxies

    NASA Astrophysics Data System (ADS)

    Hu, Jing-Fu; Cao, Xin-Wu; Chen, Liang; You, Bei

    2016-09-01

    We use a sample of 111 radio galaxies with redshift z < 0.3 to investigate their nuclear properties. The black hole masses of the sources in this sample are estimated with the velocity dispersion/luminosity of the galaxies, or the width of the broad-lines. We find that the excitation index, the relative intensity of low and high excitation lines, is correlated with the Eddington ratio for this sample. The size of the narrow-line region (NLR) was found to vary with ionizing luminosity as RNLR ∝ Lion0.25 (Liu et al. 2013). Using this empirical relation, we find that the correlation between the excitation index and the Eddington ratio can be reproduced by photoionization models. We adopt two sets of spectral energy distributions (SEDs), with or without a big blue bump in ultraviolet as the ionizing continuum, and infer that the modeled correlation between the excitation index and the Eddington ratio is insensitive to the applied SED. This means that the difference between high excitation galaxies and low excitation galaxies is not caused by the different accretion modes in these sources. Instead, it may be caused by the size of the NLR.

  11. Coulomb excitation of 107In

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Heyde, K.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2013-01-01

    The radioactive isotope 107In was studied using sub-barrier Coulomb excitation at the REX-ISOLDE facility at CERN. Two γ rays were observed during the experiment, corresponding to the low-lying 11/2+ and 3/2- states. The reduced transition probability of the 11/2+ state was determined with the semiclassical Coulomb excitation code gosia2. The result is discussed in comparison to large-scale shell-model calculations, previous unified-model calculations, and earlier Coulomb excitation measurements in the odd-mass In isotopes.

  12. Collection Development.

    ERIC Educational Resources Information Center

    School Libraries in Canada, 2002

    2002-01-01

    Includes 21 articles that discuss collection development in Canadian school libraries. Topics include digital collections in school library media centers; print and electronic library resources; library collections; collaborative projects; print-disabled students; informing administrators of the importance of collection development; censorship;…

  13. Nuclear hyperpolarization in solids and the prospects for nuclear spintronics.

    PubMed

    Reimer, Jeffrey A

    2010-01-01

    Nuclear hyperpolarization can be achieved in a number of ways. This article focuses on the use of coupling of nuclei to (nearly) pure quantum states, with particular emphasis on those states obtained by optical excitation in bulk semiconductors. I seek an answer to this question: "What is to prevent the design and analysis of nuclear spintronics devices that use the extremely long-lived hyperpolarized nuclear spin states, and their weak couplings to each other, to affect computation, memory, or informational technology schemes?" The answer, I argue, is in part because there remains a lack of fundamental understanding of how to generate and control nuclear polarization with schemes other than with rf coils.

  14. Towards exciting a Rydberg gas in optical lattices.

    NASA Astrophysics Data System (ADS)

    Manjappa, Manukumara; Han, Jingshan; Guo, Ruixiang; Vogt, Thibault; Li, Wenhui; Quantum Matter Group Team

    2013-05-01

    Rydberg atoms are highly excited atoms with principal quantum number n >10. They have exaggerated properties such as large dipole moment and high polarizability. Large dipole-dipole interactions between Rydberg atoms, which lead to Rydberg blockade and giant non linearity, provide unique opportunities for studying quantum many-body physics. Rydberg excitation of ground state quantum gas in optical lattices has already shown the formation of spatially organized structures and Rydberg dressed systems are promising for entering the strongly correlated regime. Our current project is to study the collective excitation to Rydberg states from a quantum gas of ground state atoms in an optical lattice. In this poster we present the latest development in building up the experimental apparatus and our plans on spectroscopic measurements and spatially imaging of Rydberg excitations. Centre for Quantum Technologies, National University of Singapore.

  15. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  16. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  17. Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL

    NASA Astrophysics Data System (ADS)

    Kröll, Th.

    2014-03-01

    In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following "safe" Coulomb excitation. Recent results concerning the investigation of nuclear shapes are presented and discussed.

  18. New Scalings in Nuclear Fragmentation

    SciTech Connect

    Bonnet, E.; Bougault, R.; Galichet, E.; Gagnon-Moisan, F.; Guinet, D.; Lautesse, P.; Marini, P.; Parlog, M.

    2010-10-01

    Fragment partitions of fragmenting hot nuclei produced in central and semiperipheral collisions have been compared in the excitation energy region 4-10 MeV per nucleon where radial collective expansion takes place. It is shown that, for a given total excitation energy per nucleon, the amount of radial collective energy fixes the mean fragment multiplicity. It is also shown that, at a given total excitation energy per nucleon, the different properties of fragment partitions are completely determined by the reduced fragment multiplicity (i.e., normalized to the source size). Freeze-out volumes seem to play a role in the scalings observed.

  19. Resonance Radiation and Excited Atoms

    NASA Astrophysics Data System (ADS)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  20. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.

  1. Collisional excitation of interstellar formaldehyde

    NASA Technical Reports Server (NTRS)

    Green, S.; Garrison, B. J.; Lester, W. A., Jr.; Miller, W. H.

    1978-01-01

    Previous calculations for rates of excitation of ortho-H2CO by collisions with He have been extended to higher rotational levels and kinetic temperatures to 80 K. Rates for para-H2CO have also been computed. Pressure-broadening widths for several spectral lines have been obtained from these calculations and are found to agree with recent data within the experimental uncertainty of 10%. Excitation of formaldehyde by collisions with H2 molecules is also discussed.

  2. Excitations of strange bottom baryons

    NASA Astrophysics Data System (ADS)

    Woloshyn, R. M.

    2016-09-01

    The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.

  3. Exciting Polaritons with Quantum Light.

    PubMed

    López Carreño, J C; Sánchez Muñoz, C; Sanvitto, D; del Valle, E; Laussy, F P

    2015-11-01

    We discuss the excitation of polaritons-strongly coupled states of light and matter-by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce "Mollow spectroscopy"-a theoretical concept for a spectroscopic technique that consists of scanning the output of resonance fluorescence onto an optical target-from which weak nonlinearities can be read with high precision even in strongly dissipative environments. PMID:26588401

  4. Chemical composition of high-excitation planetaries.

    PubMed

    Aller, L H; Czyzak, S J

    1981-09-01

    Nebular spectral line intensities measured mostly in the optical region, but also in the IR and satellite UV (where possible), are used to derive plasma diagnostics and ionic concentrations n (X(i))/n(H(+)). Then, we use theoretical nebular models to represent as closely as possible certain excitation-sensitive line ratios of HeII/HeI, [OIII]/[OII], and [NeIII]/[NeV]. Also, we try to reproduce the line intensities themselves. These models are used as devices to allow for unobserved ionization stages. Although He, C, and N show significant variations among different nebulae, heavier elements such as O, and probably Ne, S, Cl, and Ar are more nearly constant, suggesting that progenitor stars underwent nuclear transformations in their interiors that affected C and N but not heavier elements. PMID:16593076

  5. Electron-excited molecule interactions

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  6. Redox Control of Cardiac Excitability

    PubMed Central

    Aggarwal, Nitin T.

    2013-01-01

    Abstract Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation. Antioxid. Redox Signal. 18, 432–468. PMID:22897788

  7. Study on nuclear structures of Te isotopes beyond N = 82 shell closure

    NASA Astrophysics Data System (ADS)

    Lee, Pilsoo; Lee, Chun Sik; Moon, Chang-Bum; Eurica Ribf-87 Collaboration Collaboration

    2016-03-01

    Tellurium which has two valence protons above the Z = 50 proton shell closure is well known for collective behavior in low-lying states. Therefore, Te isotopes are known to be a good test ground for studying nuclear collective modes but also the effect of neutron-proton interaction on the shell evolution with variation of neutron numbers owing to the valence protons above Z = 50 . For this reason Te isotopes always attract our attention, however, most available spectroscopic nuclear data of Te isotopes remains below N = 82 , and experimental data is severely limited above N = 82 . Meanwhile, recent study of 138Te by means of β- γ spectroscopy with fission fragments of 238U has provided us with new clues on excited states in 138Te, and the new experimental result has proposed new excited states that were unexpected in the previous theoretical studies. This study aims at understanding structural evolution in Te isotopes above N = 82 with respect to below N = 82 including the new data set available today. In this presentation we discuss the nuclear structures and effective interactions in Te isotopes above N = 82 based on the nuclear shell model and interacting boson approximations.

  8. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  9. Evaporation residue excitation function measurements in 50Ti- and 54Cr-induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Mayorov, D. A.; Werke, T. A.; Alfonso, M. C.; Tereshatov, E. E.; Bennett, M. E.; Frey, M. M.; Folden, C. M.

    2015-11-01

    Cross sections for the production of shell-stabilized evaporation residues in the 50Ti+Gd160 , 159Tb, 162Dy , and 54Cr+Dy162 reactions are reported. The compound nucleus excitation energy range considered principally covers the 4 n evaporation channel with segments of the 3 n and 5 n channels also measured. The resultant production cross sections are for nuclides with Z =86 -90 . From an analysis based on a statistical model, it is concluded that a larger fission probability than that predicted by the Bohr-Wheeler transition-state theory is needed to describe the data. This outcome is attributed to the influence of collective nuclear excitations. Subsequently, the expected stability enhancement against fission due to the influence of the magic N =126 shell is not evident. The x n excitation functions measured in previous experiments in the reactions 48Ca+Gd154 , 159Tb,Dy162 , and 165Ho are combined with the present data for Z >20 projectiles to illustrate systematic behavior of measured cross sections as a function of the difference in fission barrier and neutron separation energy.

  10. Low-energy Coulomb excitation of radioactive ^70Se

    NASA Astrophysics Data System (ADS)

    Hurst, Aaron

    2007-10-01

    An isobarically pure beam of ^70Se ions was post accelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording de-excitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the 2^+1 state in ^70Se is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for this state, using an earlier published lifetime measurement, reopening the question over whether there are deformed oblate shapes close to the ground state in the neutron-deficient selenium isotopes.

  11. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  12. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  13. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGESBeta

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  14. 76 FR 32379 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear..., ``Data Report on Spouse.'' 2. Current OMB approval number: OMB 3150-0026. 3. How often the collection...

  15. Studying Phase Transitions in Nuclear Collisions

    SciTech Connect

    Mishustin, I.N.

    2000-12-31

    Three main topics are discussed concerning the theoretical description and observable signatures of possible phase transitions in nuclear collisions. The first one is related to the multifragmentation of equilibrated sources and its connection to a liquid-gas phase transition in finite systems. The second one deals with the Coulomb excitation of ultrarelativistic heavy ions resulting in their deep disintegration. The third topic is devoted to the description of a first-order phase transition in rapidly expanding matter. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions.

  16. Physics of Ultra-Peripheral Nuclear Collisions

    SciTech Connect

    Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

    2005-02-02

    Moving highly-charged ions carry strong electromagnetic fields which act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as ultra-peripheral collisions (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a {gamma}p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the {rho}{sup 0}, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of ''new physics''.

  17. Aspects of data on the breakup of highly excited nuclei

    SciTech Connect

    Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.; Ritter, H.G.; Stelzer, H.; Weik, F.; Kaufman, S.B.; Steinberg, E.P.; Wilkins, B.D.

    1983-05-01

    There is an awakening of theoretical interest in the mechanisms by which nuclear fragments (4 less than or equal to A less than or equal to 150) are produced in violent collisions of heavy ions. With this in mind we review some aspects of the available experimental data and point out some challenging features against which to test the models. The concept of evaporation is tremendously powerful when applied to pieces of nuclei of low excitation (1 or 2 MeV/u). Current interest focuses on higher excitations, at the point where the binding energy of the system vanishes. This is the transition from liquid nuclei to a gas of nucleons, and it may be that the critical phenomena that certainly exist in infinite nuclear matter will be manifest in finite nuclei under these conditions.

  18. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th

    NASA Astrophysics Data System (ADS)

    Seiferle, Benedict; von der Wense, Lars; Laatiaoui, Mustapha; Thirolf, Peter G.

    2016-03-01

    With an expected energy of 7.6(5) eV, 229Th possesses the lowest excited nuclear state in the landscape of all presently known nuclei. The energy corresponds to a wavelength of about 160 nm and would conceptually allow for an optical laser excitation of a nuclear transition. We report on a VUV optical detection system that was designed for the direct detection of the isomeric ground-state transition of 229Th. 229(m)Th ions originating from a 233U α-recoil source are collected on a micro electrode that is placed in the focus of an annular parabolic mirror. The latter is used to parallelize the UV fluorescence that may emerge from the isomeric ground-state transition of 229Th. The parallelized light is then focused by a second annular parabolic mirror onto a CsI-coated position-sensitive MCP detector behind the mirror exit. To achieve a high signal-to-background ratio, a small spot size on the MCP detector needs to be achieved. Besides extensive ray-tracing simulations of the optical setup, we present a procedure for its alignment, as well as test measurements using a D2 lamp, where a focal-spot size of ≈100 μm has been achieved. Assuming a purely photonic decay, a signal-to-background ratio of ≈7000:1 could be achieved.

  19. Nuclear pairing within a configuration-space Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Lingle, Mark; Volya, Alexander

    2015-06-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.

  20. Raman signal enhancement by multiple beam excitation and its application for the detection of chemicals

    SciTech Connect

    Gupta, Sakshi; Ahmad, Azeem; Mehta, Dalip S.; Gambhir, Vijayeta; Reddy, Martha N.

    2015-08-31

    In a typical Raman based sensor, a single laser beam is used for exciting the sample and the backscattered or forward scattered light is collected using collection optics and is analyzed by a spectrometer. We have investigated that by means of exciting the sample with multiple beams, i.e., by dividing the same input power of the single beam into two or three or more beams and exciting the sample from different angles, the Raman signal enhances significantly. Due to the presence of multiple beams passing through the same volume of the sample, an interference pattern is formed and the volume of interaction of excitation beams with the sample increases. By means of this geometry, the enhancement in the Raman signal is observed and it was found that the signal strength increases linearly with the increase in number of excitation beams. Experimental results of this scheme for excitation of the samples are reported for explosive detection at a standoff distance.

  1. Collecting apparatus

    DOEpatents

    Duncan, Charles P.

    1983-01-01

    An improved collecting apparatus for small aquatic or airborne organisms such as plankton, larval fish, insects, etc. The improvement constitutes an apertured removal container within which is retained a collecting bag, and which is secured at the apex of a conical collecting net. Such collectors are towed behind a vessel or vehicle with the open end of the conical net facing forward for trapping the aquatic or airborne organisms within the collecting bag, while allowing the water or air to pass through the apertures in the container. The container is readily removable from the collecting net whereby the collecting bag can be quickly removed and replaced for further sample collection. The collecting bag is provided with means for preventing the bag from being pulled into the container by the water or air flowing therethrough.

  2. Nuclear Physics Review

    SciTech Connect

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  3. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect

    PRITYCHENKO, B.

    2006-06-05

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  4. High-energy excited states in 98Cd

    NASA Astrophysics Data System (ADS)

    Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.

    2010-01-01

    In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.

  5. Investigation of excited 0+ states populated in the 162 Er (p,t) reaction

    NASA Astrophysics Data System (ADS)

    Burbadge, C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M.; Dunlop, R.; Garrett, P. E.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; Maclean, A.; Radich, A.; Rand, E.; Svensson, C. E.; Ball, G. C.; Triambak, S.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2015-10-01

    A continuing challenge in nuclear structure physics is the determination of the nature of low-lying excited 0+ states. Various approaches have been implemented to interpret the occurence of these states, such as vibrational excitations in β and γ phonons or pairing excitations. One of the difficulties, however, in resolving the nature of these states is that there is a paucity of data; even the first excited state, 02+,is not always known. Direct two-neutron transfer reactions are a useful tool for locating and investigating the nature of excited 0+ states in well-deformed nuclei. Using the Q3D spectrograph at the Maier-Leibnitz Laboratory, the N = 92 nucleus 160Er was studied via (p , t) reactions with a highly-enriched 162Er target. Strong population of the 02+state was observed with large cross sections greater than any other excited 0+ state. Preliminary results will be presented.

  6. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    PubMed Central

    Rettig, L.; Cortés, R.; Chu, J.-H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z.-X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.

    2016-01-01

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order. PMID:26804717

  7. Nuclear inertia from the time dependent pairing equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-10-01

    In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.

  8. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  9. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  10. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary...

  11. Higgs mode excitation in superconductors by intense terahertz pulse

    NASA Astrophysics Data System (ADS)

    Matsunaga, Ryusuke; Shimano, Ryo

    2016-05-01

    Recent development of intense terahertz (THz) pulse generation technique has offered novel opportunities to reveal ultrafast phenomena in a variety of materials on tabletop experiments and provided a new pathway toward ultrafast control of quantum phases. Here we present our recent study of nonequilibrium dynamics in metallic superconductors NbN excited by intense THz pulse. Since the superconducting gap energy is located in the THz frequency range, the intense THz pulse excitation makes it possible to instantaneously excite high-density quasiparticles at the gap edge without injecting excess energies. It has also become possible to coherently drive the superconducting ground state without exciting incoherent quasiparticles by tuning the pump frequency below the gap energy. The ultrafast dynamics of the order parameter induced by such an intense low energy excitation is directly probed, and the nature of a collective excitation, namely the Higgs amplitude mode, is revealed. Efficient THz higher-harmonic generation from a superconductor is discovered, manifesting the nonlinear coupling between the THz wave and the Higgs mode. We also report the experimental results in a multi-gap superconductor MgB2.

  12. Safety culture in the nuclear versus non-nuclear organization

    SciTech Connect

    Haber, S.B.; Shurberg, D.A.

    1996-10-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period.

  13. Indirect excitation of ultrafast demagnetization

    PubMed Central

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions. PMID:26733106

  14. Indirect excitation of ultrafast demagnetization.

    PubMed

    Vodungbo, Boris; Tudu, Bharati; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H; Granitzka, Patrick W; Jaouen, Nicolas; Dakovski, Georgi L; Moeller, Stefan; Minitti, Michael P; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions. PMID:26733106

  15. Indirect excitation of ultrafast demagnetization

    DOE PAGESBeta

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; et al

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset andmore » at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.« less

  16. Recurrent Excitation in Neocortical Circuits

    NASA Astrophysics Data System (ADS)

    Douglas, Rodney J.; Koch, Christof; Mahowald, Misha; Martin, Kevan A. C.; Suarez, Humbert H.

    1995-08-01

    The majority of synapses in the mammalian cortex originate from cortical neurons. Indeed, the largest input to cortical cells comes from neighboring excitatory cells. However, most models of cortical development and processing do not reflect the anatomy and physiology of feedback excitation and are restricted to serial feedforward excitation. This report describes how populations of neurons in cat visual cortex can use excitatory feedback, characterized as an effective "network conductance," to amplify their feedforward input signals and demonstrates how neuronal discharge can be kept proportional to stimulus strength despite strong, recurrent connections that threaten to cause runaway excitation. These principles are incorporated into models of cortical direction and orientation selectivity that emphasize the basic design principles of cortical architectures.

  17. Excitation optimization for damage detection

    SciTech Connect

    Bement, Matthew T; Bewley, Thomas R

    2009-01-01

    A technique is developed to answer the important question: 'Given limited system response measurements and ever-present physical limits on the level of excitation, what excitation should be provided to a system to make damage most detectable?' Specifically, a method is presented for optimizing excitations that maximize the sensitivity of output measurements to perturbations in damage-related parameters estimated with an extended Kalman filter. This optimization is carried out in a computationally efficient manner using adjoint-based optimization and causes the innovations term in the extended Kalman filter to be larger in the presence of estimation errors, which leads to a better estimate of the damage-related parameters in question. The technique is demonstrated numerically on a nonlinear 2 DOF system, where a significant improvement in the damage-related parameter estimation is observed.

  18. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  19. Collection Mapping and Collection Development.

    ERIC Educational Resources Information Center

    Murray, William; And Others

    1985-01-01

    Describes the use of collection mapping to assess media collections of Aurora, Colorado, Public Schools. Case studies of elementary, middle, and high school media centers describe materials selection and weeding and identify philosophies that library collections should support school curriculum, and teacher-library media specialist cooperation in…

  20. Calculation of molecular excitation rates

    NASA Astrophysics Data System (ADS)

    Flynn, George

    1993-01-01

    State-to-state collisional excitation rates for interstellar molecules observed by radio astronomers continue to be required to interpret observed line intensities in terms of local temperatures and densities. A problem of particular interest is collisional excitation of water which is important for modeling the observed interstellar masers. In earlier work supported by a different NASA Grant, excitation of water in collisions with He atoms was studied; after many years of successively more refined calculations that problem now seems to be well understood, and discrepancies with earlier experimental data for related (pressure broadening) phenomena are believed to reflect experimental errors. Because of interstellar abundances, excitation by H2, the dominant interstellar species, is much more important than excitation by He, although it has been argued that rates for excitation by these are similar. Under the current grant theoretical study of this problem has begun which is greatly complicated by the additional degrees of freedom which must be included both in determining the interaction potential and also in the molecular scattering calculation. We have now computed the interaction forces for nearly a thousand molecular geometries and are close to having an acceptable global fit to these points which is necessary for the molecular dynamics calculations. Also, extensive modifications have been made to the molecular scattering code, MOLSCAT. These included coding the rotational basis sets and coupling matrix elements required for collisions of an asymmetric top with a linear rotor. A new method for numerical solution of the coupled equations has been incorporated. Because of the long-ranged nature of the water-hydrogen interaction it is necessary to integrate the equations to rather large intermolecular separations, and the integration methods previously available in MOLSCAT are not ideal for such cases. However, the method used by Alexander in his HIBRIDON code is

  1. Magnetically induced pulser laser excitation

    SciTech Connect

    Taylor, R.S.; Leopold, K.E.

    1985-02-15

    A novel excitation scheme has been developed for excimer discharge lasers. The technique uses pulse transformer technology to induce a fast, high voltage pulse directly onto a ground potential laser electrode resulting in the breakdown of the laser gas mix. Saturation of the pulse transformer core inductance then permits efficient energy transfer from the main energy storage circuit into the discharge. When this excitation technique was used in a XeCl laser an output energy density of 2.5 J/l and an overall electrical to optical efficiency of 2% were obtained. The technique appears promising for the development of high energy, high average power excimer lasers.

  2. Directional excitation without breaking reciprocity

    NASA Astrophysics Data System (ADS)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  3. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 110.10-1), except that those for mobile offshore drilling units must meet... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must...

  4. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference; see 46 CFR 110.10-1), except that those for mobile offshore drilling units must meet... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must...

  5. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference; see 46 CFR 110.10-1), except that those for mobile offshore drilling units must meet... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must...

  6. Nuclear weapon detection categorization analysis

    SciTech Connect

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  7. Decoherence in nuclear collisions: Towards a new understanding of near Coulomb barrier nuclear reactions

    SciTech Connect

    Evers, M.; Dasgupta, M.; Hinde, D. J.

    2010-04-26

    To understand the underlying physical processes that might lead to loss of quantum coherence, high precision quasi-elastic excitation functions at sub-barrier energies were measured. Results show transfer events to high excitation energies, which may be impossible to model in a coherent picture. This points to the need to explicitly include quantum decoherence in nuclear reaction models and ultimately to a new understanding of near Coulomb barrier nuclear reactions.

  8. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  9. Coulomb excitation of neutron-rich Cd isotopes

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Thürauf, M.; Kröll, Th.; Krücken, R.; Behrens, T.; Bildstein, V.; Blazhev, A.; Bönig, S.; Butler, P. A.; Cederkäll, J.; Davinson, T.; Delahaye, P.; Diriken, J.; Ekström, A.; Finke, F.; Fraile, L. M.; Franchoo, S.; Fransen, Ch.; Georgiev, G.; Gernhäuser, R.; Habs, D.; Hess, H.; Hurst, A. M.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kent, P.; Kester, O.; Köster, U.; Lutter, R.; Mahgoub, M.; Martin, D.; Mayet, P.; Maierbeck, P.; Morgan, T.; Niedermeier, O.; Pantea, M.; Reiter, P.; Rodríguez, T. R.; Rolke, Th.; Scheit, H.; Scherillo, A.; Schwalm, D.; Seidlitz, M.; Sieber, T.; Simpson, G. S.; Stefanescu, I.; Thiel, S.; Thirolf, P. G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Weinzierl, W.; Weisshaar, D.; Wenander, F.; Wiens, A.; Winkler, S.

    2014-01-01

    The isotopes Cd122,124,126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B (E2;0g .s.+→21+) and limits for the quadrupole moments of the first 2+ excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z =50 and N =82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.

  10. Spatial Patterns in Rydberg Excitations from Logarithmic Pair Interactions.

    PubMed

    Lechner, Wolfgang; Zoller, Peter

    2015-09-18

    The collective excitations in ensembles of dissipative, laser driven ultracold atoms exhibit crystal-like patterns, a many-body effect of the Rydberg blockade mechanism. These crystalline structures are revealed in an experiment from a postselection of configurations with fixed numbers of excitations. Here, we show that these subensembles can be well represented by ensembles of effective particles that interact via logarithmic pair potentials. This allows one to study the emergent patterns with a small number of effective particles to determine the phases of Rydberg crystals and to systematically study contributions from N-body terms. PMID:26430998

  11. Search for excited and exotic muons at CDF

    SciTech Connect

    Gerberich, Heather; Hays, Christopher; Kotwal, Ashutosh; /Duke U.

    2006-05-01

    The authors present a search for the production of excited or exotic muons ({mu}*) via the reaction {bar p} + p {yields} {mu}* + {mu} {yields} {mu}{gamma}+{mu} using 371 pb{sup -1} of data collected with the Run II CDF detector. In this signature-based search, we look for a resonance in the {mu}{gamma} mass spectrum. The data are compared to standard model and detector background expectations, and with predictions of excited muon production. We use these comparisons to set limits on the {mu}* mass and compositeness scale {Lambda} in contact interaction and gauge-mediated models.

  12. Population inversion mechanisms producing nuclear lasing in He-3-Ar, Xe, Kr, Cl, and UF6

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Wilson, J. W.

    1979-01-01

    The paper examines the lasing excitation mechanisms of present nuclear lasers, with a view to developing more efficient, higher power nuclear lasers. Particular attention is given to volumetric nuclear discharges pumped by either the He-3(n, p)H-3 reaction or the U-235F6(n, ff)FF reaction. Insight gained from these laser systems will make it possible to determine the major excitation mechanisms and then to look for new gaseous laser systems where these excitation mechanisms dominate.

  13. Study of M1 and E1 excitations by high-resolution proton inelastic scattering measurement at forward angles

    SciTech Connect

    Tamii, A.; Adachi, T.; Hatanaka, K.; Hashimoto, H.; Kaneda, T.; Matsubara, H.; Okamura, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, Y.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Sasamoto, Y.; Neumann-Cosel, P. von

    2007-06-13

    Experimental technique for measuring proton inelastic scattering with high-resolution at 295 MeV and at forward angles including zero degrees is described. The method is useful for extracting spin part of the M1 strength via nuclear excitation as well as E1 strength via Coulomb excitation. An excitation energy resolution of 20 keV, good scattering angle resolution, and low background condition have been achieved. The experimental technique was applied for several sd and pf shell nuclei.

  14. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  15. Elementary Excitations in Quantum Liquids.

    ERIC Educational Resources Information Center

    Pines, David

    1981-01-01

    Discusses elementary excitations and their role in condensed matter physics, focusing on quantum plasma, helium liquids, and superconductors. Considers research primarily conducted in the 1950s and concludes with a brief survey of some closely related further developments. (Author/JN)

  16. Communicating the Excitement of Science

    ScienceCinema

    Michael Turner

    2016-07-12

    In this talk (which will include some exciting science) I will discuss some lessons I have learned about communicating science to scientists (in my own field and others), students, the public, the press, and policy makers in giving 500+ colloquia and seminars, 300+ public lectures and many informal presentations (including cocktail parties).

  17. Collisional excitation of interstellar water

    NASA Technical Reports Server (NTRS)

    Palma, Amedeo; Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1988-01-01

    Rates for rotational excitation of water molecules in collisions with He atoms have been obtained from a new, accurate theoretical interaction potential. Rates among the lowest 40 ortho levels are given for kinetic temperatures to 1400 K and among the lowest 29 para levels for kinetic temperatures to 800 K.

  18. Launch Excitement with Water Rockets

    ERIC Educational Resources Information Center

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  19. Pseudorandom selective excitation in NMR

    NASA Astrophysics Data System (ADS)

    Walls, Jamie D.; Coomes, Alexandra

    2011-09-01

    In this work, average Hamiltonian theory is used to study selective excitation under a series of small flip-angle θ-pulses θ ≪ {π}/{3} applied either periodically [corresponding to the DANTE pulse sequence] or aperiodically to a spin-1/2 system. First, an average Hamiltonian description of the DANTE pulse sequence is developed that is valid for frequencies either at or very far from integer multiples of {1}/{τ}, where τ is the interpulse delay. For aperiodic excitation, a single resonance, νsel, can be selectively excited if the θ-pulse phases are modulated in concert with the interpulse delays. The conditions where average Hamiltonian theory can be accurately applied to describe the dynamics under aperiodic selective pulses, which are referred to as pseudorandom-DANTE or p-DANTE sequences, are similar to those found for the DANTE sequence. Signal averaging over different p-DANTE sequences improves the apparent selectivity at νsel by reducing the excitations at other frequencies. Experimental demonstrations of p-DANTE sequences and comparisons with the theory are presented.

  20. Communicating the Excitement of Science

    SciTech Connect

    Michael Turner

    2009-06-05

    In this talk (which will include some exciting science) I will discuss some lessons I have learned about communicating science to scientists (in my own field and others), students, the public, the press, and policy makers in giving 500+ colloquia and seminars, 300+ public lectures and many informal presentations (including cocktail parties).

  1. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  2. 76 FR 71991 - Agency Information Collection Activities: Proposed Collection; Comment Request, Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... emergency plans. To implement Executive Order 12657, FEMA worked with the Nuclear Regulatory Commission (NRC... SECURITY Federal Emergency Management Agency Agency Information Collection Activities: Proposed Collection; Comment Request, Federal Assistance for Offsite Radiological Emergency Planning AGENCY: Federal...

  3. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  4. Collective Enumeration

    ERIC Educational Resources Information Center

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2013-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a…

  5. Jay's Collectibles

    ERIC Educational Resources Information Center

    Cappel, James J.; Gillman, Jason R., Jr.

    2011-01-01

    There is growing interest in collectibles of many types, as indicated by the popularity of television programs such as the History Channel's "Pawn Stars" and "American Pickers" and the Public Broadcasting Service's "Antiques Road Show." The availability of online auction sites such as eBay has enabled many people to collect items of interest as a…

  6. Atlas of Nuclear Isomers

    SciTech Connect

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  7. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  8. Band excitation Kelvin probe force microscopy utilizing photothermal excitation

    SciTech Connect

    Collins, Liam E-mail: liq1@ORNL.gov; Rodriguez, Brian J.; Jesse, Stephen; Balke, Nina; Kalinin, Sergei; Li, Qian E-mail: liq1@ORNL.gov

    2015-03-09

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standard ambient KPFM approach, amplitude modulated KPFM. Finally, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.

  9. Culture collections.

    PubMed

    Smith, David

    2012-01-01

    Culture collections no matter their size, form, or institutional objectives play a role in underpinning microbiology, supplying the resources for study, innovation, and discovery. Their basic roles include providing a mechanism for ex situ conservation of organisms; they are repositories for strains subject to publication, taking in safe, confidential, and patent deposits from researchers. They supply strains for use; therefore, the microorganisms provided must be authentic and preserved well, and any associated information must be valid and sufficient to facilitate the confirmation of their identity and to facilitate their use. The organisms must be collected in compliance with international conventions, international and national legislation and distributed to users indicating clearly the terms and conditions under which they are received and can be used. Collections are harmonizing approaches and characterizing strains to meet user needs. No one single collection can carry out this task alone, and therefore, it is important that output and strategy are coordinated to ensure culture collections deliver the basic resources and services microbiological innovation requires. This chapter describes the types of collection and how they can implement quality management systems and operate to deliver their basic functions. The links to information sources given not only provide support for the practitioners within collections but also provide guidance to users on accessing the huge resource available and how they can help ensure microbiology has the resources and a solid platform for future development.

  10. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  11. Superdeformed nuclei: Shells-vs-liquid drop, pairing-vs-thermal excitations, triaxial-vs-octupole shapes, super-superdeformation

    SciTech Connect

    Dudek, J.

    1987-01-01

    Mechanisms influencing the behavior of superdeformed nuclei are studied using several well established nuclear structure techniques. In particular: pairing, thermal excitation, shell and liquid-drop mechanisms are considered. The effects of quadrupole and hexadecapole (both axial and non-axial), and octupole deformation degrees of freedom are studied. Most of the results are illustrated using the case of /sup 152/Dy nucleus in which a superdeformed band extending up to I approx. 60 h-bar has been found in experiment. Some comparisons between /sup 152/Dy and the nuclei in the neighborhood are given. Calculations show that pairing ''de-aligns'' typically 6 to 8 units of angular momentum, as compared to the corresponding rigid rotation. This takes place for spins extending up to the highest limit, and thus diminishes the effective moments of inertia. Predicted octupole shape susceptibility is extremely large, significantly stronger than the susceptibilities known in the ground-states of many Actinide nuclei. Consequences of this result for the near-constancy of the dynamical moments of inertia are pointed out. Nuclear level densities calculated in function of spin, excitation energy and deformation explain the ''unusual'' side feeding pattern of the /sup 152/Dy superdeformed states. Predictions of super-superdeformed nuclear states (axis ratio varying between 2:1 and 3:1 or more) are given and exemplified for Erbium nuclei. Finally, the problem of superdeformation stability and the influence of increased collective inertia on a barrier penetration are examined. An analytical expression for the effective inertia parameter is obtained and its derivation outlined. 35 refs., 9 figs.

  12. Nuclear Photonics for the 21st Century

    SciTech Connect

    Barty, Christopher P.J.

    2015-03-10

    Lasers and laser-based sources are now routinely used to control and manipulate nuclear processes, e.g. fusion, fission and resonant nuclear excitation. Two such “nuclear photonics” activities with the potential for profound societal impact will be reviewed in this presentation: the pursuit of laser-driven inertial confinement fusion at the National Ignition Facility and the development of laser-based, mono-energetic gamma-rays for isotope-specific detection, assay and imaging of materials.

  13. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  14. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  15. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  16. Micrometeorite Collecting

    ERIC Educational Resources Information Center

    Toubes, Joe; Hoff, Darrel

    1974-01-01

    Describes how to collect micrometeorites and suggests a number of related activities such as determining the number of meteors entering the atmosphere and determining the composition of the micrometeorites. (BR)

  17. Complex-energy approach to sum rules within nuclear density functional theory

    SciTech Connect

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

  18. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGESBeta

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  19. An improved RF circuit for Overhauser magnetometer excitation

    NASA Astrophysics Data System (ADS)

    Zheng, Di; Zhang, Shuang; Guo, Xin; Fu, Haoyang

    2015-08-01

    Overhauser magnetometer is a high-precision device for magnetostatic field measurement, which can be used in a wide variety of purposes: UXO detection, pipeline mapping and other engineering and environmental applications. Traditional proton magnetometer adopts DC polarization, suffering from low polarization efficiency, high power consumption and low signal noise ratio (SNR). Compared with the traditional proton magnetometer, nitroxide free radicals are used for dynamic nuclear polarization (DNP) to enhance nuclear magnetic resonance (NMR). RF excitation is very important for electron resonance in nitrogen oxygen free radical solution, and it is primarily significant for the obtention of high SNR signal and high sensitive field observation. Therefore, RF excitation source plays a crucial role in the development of Overhauser magnetometer. In this paper, an improved design of a RF circuit is discussed. The new RF excitation circuit consists of two parts: Quartz crystal oscillator circuit and RF power amplifier circuit. Simulation and optimization designs for power amplifier circuit based on software ADS are presented. Finally we achieve a continuous and stable sine wave of 60MHz with 1-2.5 W output power, and the second harmonic suppression is close to -20dBc. The improved RF circuit has many merits such as small size, low-power consumption and high efficiency, and it can be applied to Overhauser magnetometer to obtain high sensitive field observation.

  20. Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Tim; Tsuchimochi, Takashi; Chen, Po-Ta; Top, Laken; Van Voorhis, Troy

    2013-04-01

    Restricted open-shell Kohn-Sham (ROKS) theory provides a powerful computational tool for calculating singlet excited state energies and dynamics. However, the possibility of multiple solutions to the ROKS equations — with the associated difficulty of automatically selecting the physically meaningful solution — limits its usefulness for intensive applications such as long-time Born-Oppenheimer molecular dynamics. We present an implementation of ROKS for excited states which prescribes the physically correct solution from an overlap criterion and guarantees that this solution is stationary, allowing for straightforward evaluation of nuclear gradients. The method is used to benchmark ROKS for vertical excitation energies of small and large organic dyes and for the calculation of Stokes shifts. With common density functional approximations, ROKS vertical excitation energies, and Stokes shifts show similar accuracy to those from time-dependent density functional theory and Δ-self-consistent-field approaches. Advantages of the ROKS approach for excited state structure and molecular dynamics are discussed.

  1. 77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... information collection: NRC's Policy Statement Cooperation with States at Commercial Nuclear Power Plants and... inspections for the NRC. 4. Who is required or asked to report: Nuclear Power Plant Licensees, Materials...,000. 7. Abstract: States are involved and interested in monitoring the safety status of nuclear...

  2. Excitation energies from ensemble DFT

    NASA Astrophysics Data System (ADS)

    Borgoo, Alex; Teale, Andy M.; Helgaker, Trygve

    2015-12-01

    We study the evaluation of the Gross-Oliveira-Kohn expression for excitation energies E1-E0=ɛ1-ɛ0+∂E/xc,w[ρ] ∂w | ρ =ρ0. This expression gives the difference between an excitation energy E1 - E0 and the corresponding Kohn-Sham orbital energy difference ɛ1 - ɛ0 as a partial derivative of the exchange-correlation energy of an ensemble of states Exc,w[ρ]. Through Lieb maximisation, on input full-CI density functions, the exchange-correlation energy is evaluated accurately and the partial derivative is evaluated numerically using finite difference. The equality is studied numerically for different geometries of the H2 molecule and different ensemble weights. We explore the adiabatic connection for the ensemble exchange-correlation energy. The latter may prove useful when modelling the unknown weight dependence of the exchange-correlation energy.

  3. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  4. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  5. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  6. Localised excitation of a single photon source by a nanowaveguide

    NASA Astrophysics Data System (ADS)

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; de Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10-4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  7. 10 CFR 52.11 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 52.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS General Provisions § 52.11 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection requirements contained in this...

  8. 10 CFR 52.11 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 52.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS General Provisions § 52.11 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection requirements contained in this...

  9. 10 CFR 52.11 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 52.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS General Provisions § 52.11 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection requirements contained in this...

  10. 10 CFR 52.11 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 52.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS General Provisions § 52.11 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection requirements contained in this...

  11. 10 CFR 52.11 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 52.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS General Provisions § 52.11 Information collection requirements: OMB approval. (a) The Nuclear Regulatory Commission has submitted the information collection requirements contained in this...

  12. Collisional excitation of interstellar cyclopropenylidene

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1987-01-01

    Theoretical rotational excitation rates were computed for C3H2 in collisions with He atoms at temperatures from 30 to 120 K. The intermolecular forces were obtained from accurate self-consistent field and perturbation theory calculations, and collision dynamics were treated within the infinite-order sudden approximation. The accuracy of the latter was examined by comparing with the more exact coupled states approximation.

  13. Excitation rates of heavy quarks

    NASA Astrophysics Data System (ADS)

    Canal, C. A.; Santangelo, E. M.; Ducati, M. B.

    1985-06-01

    We obtain the production rates for c, b, and t quarks in deep-inelastic neutrino- (antineutrino-) nucleon interactions, in the standard six-quark model with left-handed couplings. The results are obtained with the most recent mixing parameters and we include a comparison between quark parametrizations. The excitations are calculated separately for each flavor, allowing the understanding of the role of threshold effects when considered through different rescaling variables.

  14. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  15. Local Optical Excitations in Metals

    NASA Astrophysics Data System (ADS)

    Gibbs, Laurence Kay Doon

    Core spectra of p('6) (--->) p('5)s excitations of rare gas, halogen, and alkali impurities located on the surface and in the bulk of host alkali and Mg metals are presented. The data were obtained by means of differential reflectance spectroscopy in the energy range 5-20 eV using synchrotron radiation. In striking contrast to the absorption profiles of the pure alkalis, linear redshifted profiles are observed at dilution for rare gas adsorbates on alkali surfaces, for Cs adsorbed on Mg, and for Cs dispersed in bulk Na as an alloy. When Cs is dispersed in bulk K the sharp edge characteristic of the pure alkalis is observed. The spectra of Cs and Rb adsorbates on alkali surfaces mirror these same trends, but retain a distinct atomic character. A central result of the present research is that the linear profile may be associated with strong coupling of the excitation to the conduction electrons. A criterion for strong coupling is given which depends on the degree to which the excited impurity level mixes with the host conduction band. There is not at present any theory which can explain these observations. Spectra of halogen adsorbates on alkali and Mg surfaces are also presented; it is found that the ground configuration of isolated halogen atoms on these surfaces is ionic. All the impurity-metal complexes are studied at high concentration when impurity-impurity interactions are important.

  16. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  17. Synaptic Control of Motoneuronal Excitability

    PubMed Central

    Rekling, Jens C.; Funk, Gregory D.; Bayliss, Douglas A.; Dong, Xiao-Wei; Feldman, Jack L.

    2016-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. PMID:10747207

  18. Convective Excitation of Internal Waves

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton; Vasil, Geoffrey; Quataert, Eliot; Brown, Benjamin; Oishi, Jeffrey

    2015-11-01

    We will present a joint experimental & computational study of internal wave generation by convection. First we describe an experiment using the peculiar property of water that its density maximum is at 4° C . A tank of water cooled from below and heated from above develops a cold, convective layer near 4° C at the bottom of the tank, adjacent to a hot stably stratified layer at the top of the tank. We simulate this setup in 2D using the open-source Dedalus code (dedalus-project.org). Our simulations show that waves are excited from within the convection zone, opposed to at the interface between the convective and stably stratified regions. Finally, we will present 3D simulations of internal wave excitation by convection in a fully compressible atmosphere with multiple density scaleheights. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number. The simulated waves are then compared to analytic predictions of the bulk excitation model.

  19. Self-excited multifractal dynamics

    NASA Astrophysics Data System (ADS)

    Filimonov, V.; Sornette, D.

    2011-05-01

    We introduce the self-excited multifractal (SEMF) model, defined such that the amplitudes of the increments of the process are expressed as exponentials of a long memory of past increments. The principal novel feature of the model lies in the self-excitation mechanism combined with exponential nonlinearity, i.e. the explicit dependence of future values of the process on past ones. The self-excitation captures the microscopic origin of the emergent endogenous self-organization properties, such as the energy cascade in turbulent flows, the triggering of aftershocks by previous earthquakes and the "reflexive" interactions of financial markets. The SEMF process has all the standard stylized facts found in financial time series, which are robust to the specification of the parameters and the shape of the memory kernel: multifractality, heavy tails of the distribution of increments with intermediate asymptotics, zero correlation of the signed increments and long-range correlation of the squared increments, the asymmetry (called "leverage" effect) of the correlation between increments and absolute value of the increments and statistical asymmetry under time reversal.

  20. A Novel Single-Excitation Capacitive Angular Position Sensor Design

    PubMed Central

    Hou, Bo; Zhou, Bin; Song, Mingliang; Lin, Zhihui; Zhang, Rong

    2016-01-01

    This paper presents a high-precision capacitive angular position sensor (CAPS). The CAPS is designed to be excited by a single voltage to eliminate the matching errors of multi-excitations, and it is mainly composed of excitation electrodes, coupling electrodes, petal-form sensitive electrodes and a set of collection electrodes. A sinusoidal voltage is applied on the excitation electrodes, then the voltage couples to the coupling electrodes and sensitive electrodes without contact. The sensitive electrodes together with the set of collection electrodes encode the angular position to amplitude-modulated signals, and in order to increase the scale factor, the sensitive electrodes are patterned in the shape of petal-form sinusoidal circles. By utilizing a resolver demodulation method, the amplitude-modulated signals are digitally decoded to get the angular position. A prototype of the CAPS is fabricated and tested. The measurement results show that the accuracy of the sensor is 0.0036°, the resolution is 0.0009° and the nonlinearity over the full range is 0.008° (after compensation), indicating that the CAPS has great potential to be applied in high-precision applications with a low cost. PMID:27483278