Sample records for collider physics summer

  1. Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, R.; Gustafson, R.; Paige, F.

    1982-01-01

    This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.

  2. Working Group Report: Higgs Boson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less

  3. Review of physics results from the Tevatron: Heavy flavor physics

    DOE PAGES

    Lewis, Jonathan; van Kooten, Rick

    2015-02-28

    In this study, we present a review of heavy flavor physics results from the CDF and DØ Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  4. The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)

    ScienceCinema

    Barnett, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division

    2018-01-12

    Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.

  5. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less

  6. Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahaye, J-P.; Ankenbrandt, C.; Bogacz, A.

    2013-08-01

    A staged approach towards muon based facilities for Intensity and Energy Frontier science, building upon existing and proposed facilities at Fermilab, is presented. At each stage, a facility exploring new physics also provides an R&D platform to validate the technology needed for subsequent stages. The envisioned program begins with nuSTORM, a sensitive sterile neutrino search which also provides precision neutrino cross-section measurements while developing the technology of using and cooling muons. A staged Neutrino Factory based upon Project X, sending beams towards the Sanford Underground Research Facility (SURF), which will house the LBNE detector, could follow for detailed exploration ofmore » neutrino properties at the Intensity Frontier, while also establishing the technology of using intense bunched muon beams. The complex could then evolve towards Muon Colliders, starting at 126 GeV with measurements of the Higgs resonance to sub-MeV precision, and continuing to multi-TeV colliders for the exploration of physics beyond the Standard Model at the Energy Frontier. An Appendix addresses specific questions raised by the Lepton Colliders subgroup of the CSS2013 Frontier Capabilities Study Group.« less

  7. The VEPP-2000 electron-positron collider: First experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less

  8. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty yearsmore » ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.« less

  9. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  10. Prospects for colliders and collider physics to the 1 PeV energy scale

    NASA Astrophysics Data System (ADS)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  11. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  12. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  13. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  14. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  15. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  16. 35th International Conference of High Energy Physics

    NASA Astrophysics Data System (ADS)

    The French particle physics community is particularly proud to have been selected to host the 35th ICHEP conference in 2010 in Paris. This conference is the focal point of all our field since more than fifty years and is the reference event where all important results in particle physics cosmology and astroparticles are presented and discussed. This alone suffices to make this event very important. But in 2010, a coincidence of exceptional events will make this conference even more attractive! What is then so special about ICHEP 2010 conference? It will be the first ICHEP conference where physics results obtained at the LHC will be presented! New results about the elusive Higgs boson, or signals of physics beyond the standard model might therefore be announced at this conference! Major discoveries in other domains such as gravitational waves, neutrino telescopes, neutrino oscillations, dark matter or in the flavour sector are also possible, just to name a few. In addition , 2010 will be an important date to shape up the future of our field. Several major projects will present the status of their Conceptual or Engineering Design Reports during the conference. The International Linear Collider (ILC) Global Design Effort team will present the report corresponding to the end of their Technical Design Phase 1. The Compact Linear Collider (CLIC) will also report on its Conceptual Design Report. Other major projects such as Super B factories will also be presented. These reports together with LHC physics results will form the basis for key political decisions needed to be taken in the years to come. In summary, there can be no doubt that Paris is the place to be in summer 2010 for anyone interested in High Energy Physics and we will make every effort to make your stay as interesting and enjoyable as possible.

  17. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    Battaglia, Marco

    2018-01-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  18. Physics at high energy photon photon colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanowitz, M.S.

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  19. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  20. Standard Model Background of the Cosmological Collider.

    PubMed

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-06-30

    The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.

  1. PanDA for COMPASS at JINR

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  2. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  3. Funding for LoopFest IV and RADCOR2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi

    This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.

  4. Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)

    ScienceCinema

    None

    2017-12-09

    This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. The lectures are aimed at graduate students.

  5. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  6. Physics at a 100 TeV pp Collider: Standard Model Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangano, M. L.; Zanderighi, G.; Aguilar Saavedra, J. A.

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  7. The long journey to the Higgs boson and beyond at the LHC: Emphasis on CMS

    NASA Astrophysics Data System (ADS)

    Virdee, Tejinder Singh

    2016-11-01

    Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout-Englert-Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.

  8. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, R.

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less

  9. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. Themore » system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.« less

  10. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  11. Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooijmans, G.; et al.

    We present the activities of the `New Physics' working group for the `Physics at TeV Colliders' workshop (Les Houches, France, 5--23 June, 2017). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments.

  12. The NLC technical program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, D.L.

    1998-07-01

    There are important goals in particle physics to be addressed by a TeV-scale electron-positron linear collider. Recent developments in accelerator physics and technologies aimed for the realization of such a collider are discussed in this paper.

  13. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  14. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  15. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  16. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2014-04-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  17. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  18. News | Computing

    Science.gov Websites

    Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact

  19. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  20. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  1. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  2. Exploring New Physics Beyond the Standard Model: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liantao

    This grant in 2015 to 2016 was for support in the area of theoretical High Energy Physics. The research supported focused mainly on the energy frontier, but it also has connections to both the cosmic and intensity frontiers. Lian-Tao Wang (PI) focused mainly on signal of new physics at colliders. The year 2015 - 2016, covered by this grant, has been an exciting period of digesting the influx of LHC data, understanding its meaning, and using it to refine strategies for deeper exploration. The PI proposed new methods of searching for new physics at the LHC, such as for themore » compressed stops. He also investigated in detail the signal of composite Higgs models, focusing on spin-1 composite resonances in the di-boson channel. He has also considered di-photon as a probe for such models. He has also made contributions in formulating search strategies of dark matter at the LHC, resulting in two documents with recommendations. The PI has also been active in studying the physics potential of future colliders, including Higgs factories and 100 TeV pp colliders. He has given comprehensive overview of the physics potential of the high energy proton collider, and outline its luminosity targets. He has also studied the use of lepton colliders to probe fermionic Higgs portal and bottom quark couplings to the Z boson.« less

  3. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  4. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)

    2018-05-04

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  5. WW Physics at Future e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.

  6. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE PAGES

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; ...

    2017-06-13

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  7. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  8. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  9. Linear Collider Physics Resource Book Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronan

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.« less

  10. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  11. 2009 Linear Collider Workshop of the Americas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Sally

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less

  12. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  13. Physics Accomplishments and Future Prospects of the BES Experiments at the Beijing Electron-Positron Collider

    NASA Astrophysics Data System (ADS)

    Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.

    2016-10-01

    The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.

  14. New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.

    2011-12-05

    We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).

  15. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2017-12-09

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  16. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  17. Fermilab Today

    Science.gov Websites

    Fundamental Physics in the Non-Linear Regime 3:30 p.m. Director's Coffee Break - 2nd Flr X-Over 4:00 p.m. All Week archive Fermilab Safety Tip of the Week archive Linear Collider News archive Fermilab Today Committee ECFA Study of Physics and Detectors for a Linear Collider" and GDE member, explained the

  18. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  19. Summary of the Physics Opportunities Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; McDonald, K.T.

    The Physics Opportunities Working Group was convened with the rather general mandate to explore physic opportunities that may arise as new accelerator technologies and facilities come into play. Five topics were considered during the workshop: QED at critical field strength, novel positron sources, crystal accelerators, suppression of beamstrahlung, and muon colliders. Of particular interest was the sense that a high energy muon collider might be technically feasible and certainly deserves serious study.

  20. Summary of the Physics Opportunities Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; McDonald, K.T.

    1992-12-01

    The Physics Opportunities Working Group was convened with the rather general mandate to explore physic opportunities that may arise as new accelerator technologies and facilities come into play. Five topics were considered during the workshop: QED at critical field strength, novel positron sources, crystal accelerators, suppression of beamstrahlung, and muon colliders. Of particular interest was the sense that a high energy muon collider might be technically feasible and certainly deserves serious study.

  1. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  2. Possible limits of plasma linear colliders

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  3. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  4. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE PAGES

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    2017-06-01

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  5. Physics Opportunity with an Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less

  6. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets hasmore » also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  7. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  8. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  9. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  10. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur

    2017-12-22

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  11. Overview of the CLIC detector and its physics potential

    NASA Astrophysics Data System (ADS)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  12. The XXth International Workshop High Energy Physics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.

  13. Higgs, SUSY and the standard model at /γγ colliders

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2001-10-01

    In this report, I surveyed physics potential of the γγ option of a linear e +e - collider with the following questions in mind: What new discovery can be expected at a γγ collider in addition to what will be learned at its ' parent' e +e -linear collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e - beams, we find that a γγ collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e -e - system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a γγ collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of interference with the Standard Model amplitudes. A few comments are given for SUSY particle studies at a γγ collider, where a pair of charged spinless particles is produced in the s-wave near the threshold. Squark-onium may be discovered. An e ±γ collision mode may measure the Higgs- Z-γ coupling accurately and probe flavor oscillations in the slepton sector. As a general remark, all the Standard Model background simulation tools should be prepared in the helicity amplitude level, so that simulation can be performed for an arbitrary set of Stokes parameters of the incoming photon beams.

  14. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Lian-Tao; Zhang, Hao

    2017-06-01

    The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)

  15. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  16. Moral Knowledge and Responsibilities in Evaluation Implementation: When Critical Theory and Responsive Evaluation Collide

    ERIC Educational Resources Information Center

    Freeman, Melissa; Preissle, Judith; Havick, Steven

    2010-01-01

    An external evaluation documented what occurred in an inaugural summer camp to teach high school students how to preserve religious freedom by learning about and acting on the history and current state of church-state separation and other first amendment issues. Camp designers hoped to promote religious diversity values and civic engagement in…

  17. Blazar Jet Physics in the Age of Fermi

    DTIC Science & Technology

    2010-11-23

    in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  19. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  20. A review of the Fermilab fixed-target program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameika, R.

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less

  1. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  2. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  3. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  4. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  5. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    ScienceCinema

    Glenzinski, Douglas

    2018-02-26

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  6. Heavy flavor physics at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Apollinari

    1998-11-01

    We report on the status of top and b quark physics at the Fermilab Teva-tron collider. In particular, we summarize the knowledge obtained by CDF and D 6 O on the top quark mass and production cross-section. We also present some new interesting results obtained by CDF with the discovery of the Bc meson and a first low statistic measurement of sin(2{beta}) at an hadronic col-lider.

  7. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  8. New physics at the TeV scale

    NASA Astrophysics Data System (ADS)

    Chakdar, Shreyashi

    The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study beyond standard model physics at the TeV scale with testable signals in the Colliders.

  9. Proceedings of the XXI International Workshop High Energy Physics and Quantum Field Theory (QFTHEP 2013). 23 30 June, 2013. Saint Petersburg Area, Russia

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year the Workshop is organized jointly by the SINP MSU and the SPbSU and it will take place in the holiday hotel "Baltiets" situated in a picturesque place of the Karelian Isthmus on the shore of the Gulf of Finland in the suburb of the second largest Russian city Saint Petersburg. Scientific program, the main topics to be covered are: * Higgs searches and other experimental results from the LHC and the Tevatron; impact of the Higgs-like boson observed * Physics prospects at Linear Colliders and super B-factories * Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders * Higher order corrections and resummations for collider phenomenology * Automatic calculations and Monte Carlo simulations in high energy physics * LHC/LC and astroparticle/cosmology connections * Modern nuclear physics and relativistic nucleous-nucleous collisions * Detectors for future experiments in high energy physics The Workshop will include plenary and two parallel afternoon sessions. The plenary sessions will consist of invited lectures. The afternoon sessions will include original talks. Further details are given at http://qfthep.sinp.msu.ru

  10. The Higgs Boson: Is the End in Sight?

    ERIC Educational Resources Information Center

    Lincoln, Don

    2012-01-01

    This summer, perhaps while you were lounging around the pool in the blistering heat, the blogosphere was buzzing about data taken at the Large Hadron Collider at CERN. The buzz reached a crescendo in the first week of July when both Fermilab and CERN announced the results of their searches for the Higgs boson. Hard data confronted a theory nearly…

  11. News

    NASA Astrophysics Data System (ADS)

    2001-09-01

    EPS AWARD WINNERS Award for outreach to Physics Education authors; TEACHER TRAINING Helping teachers specialize in physics; AAPT SUMMER MEETING The science of light; AAPT SUMMER MEETING Do you believe in skepticism?; E-LEARNING Massive investment in Swedish online learning; UK SCIENCE YEAR News from Science Year; 11-16 CURRICULUM Naming the energy parts; TEACHER TRAINING Electronic Discussion Group for Trainee Teachers; PUBLICATIONS Physics on Course 2002; WALES Physics in Powys; HIGHER EDUCATION HE solutions to the physics teacher shortage; SCOTLAND The 27th Scottish Stirling Meeting; NORTHERN IRELAND Belfast physics teachers' meeting; SCOTLAND Physics Summer School, Edinburgh 2001; AAPT SUMMER MEETING Physics education research: massive growth; AAPT SUMMER MEETING Just-In-Time Teaching;

  12. Top-quark pairs at high invariant mass: a model-independent discriminator of new physics at the Large Hadron Collider.

    PubMed

    Barger, Vernon; Han, Tao; Walker, Devin G E

    2008-01-25

    We study top-quark pair production to probe new physics at the CERN Large Hadron Collider. We propose reconstruction methods for tt[over] semileptonic events and use them to reconstruct the tt[over] invariant mass. The angular distribution of top quarks in their c.m. frame can determine the spin and production subprocess for each new physics resonance. Forward-backward asymmetry and CP-odd variables can be constructed to further delineate the nature of new physics. We parametrize the new resonances with a few generic parameters and show high invariant mass top pair production may provide an early indicator for new physics beyond the standard model.

  13. Oklahoma Center for High Energy Physics (OCHEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, S; Strauss, M J; Snow, J

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Largemore » Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.« less

  14. Progress Report to the U.S. Department of Energy, Grant DE-FG02-91ER40626: Neutrino Physics, Particle Theory and Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafi, Qaisar; Barr, Stephen M; Gaisser, Thomas K

    2009-07-30

    Research conducted under this grant over the past year has been driven by the impending operation of the Large Hadron Collider (LHC), and by the ongoing developments in neutrino physics and cosmology. The recent launch of the Planck satellite should have far reaching implications for cosmology in the coming years. Research topics include particle astrophysics, neutrino physics, grand unified theories, Higgs and sparticle spectroscopy, dark energy and dark matter, inflationary cosmology, and baryo/lepto-genesis. Faculty members on the grant are Stephen Barr, Thomas Gaisser, Qaisar Shafi and Todor Stanev. Ilia Gogoladze and Hasan Yuksel are the two postdoctoral scientists supported bymore » the DOE grant. There are currently several excellent students in our research program. One of them, Mansoor Rehman, has been awarded a competitive university fellowship on which he will be supported from September 1, 2009 – June 30, 2010. Another student, Joshua Wickman, has been awarded a fellowship by the Delaware Space Grant Consortium (in affiliation with NASA), and will be supported by this fellowship from September 1, 2009 – August 31, 2010. Both of these students also attended the TASI Summer School in June 2009, at which they each presented a student talk on topics in inflationary cosmology.« less

  15. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  16. Unveiling the top secrets with the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chierici, R.

    2013-12-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV.

  17. 423rd Brookhaven Lecture

    ScienceCinema

    Mei Bai

    2017-12-09

    Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."

  18. Challenges for MSSM Higgs searches at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela S.; /Fermilab; Menon, A.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising.more » On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.« less

  19. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  20. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break.

    PubMed

    Park, Kyung-Shin; Lee, Man-Gyoon

    2015-06-01

    Evidence suggests that adolescents gain more weight during the summer break than they do during the school year, and that participation in the summer school program is beneficial in maintaining their healthy lifestyle. It is known that obesity and physical fitness in adolescents can be affected by their socio-economic and psychological status, especially during a long school break. The purpose of this study was to examine the effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness in underprivileged adolescents during the summer break. Body composition and physical fitness in 138 underprivileged adolescents were measured at the beginning and end of the summer break. A survey on socio-economic and psychological status was conducted at the beginning of the summer break. Two-way repeated measures ANOVA and Tukey post hoc tests were used for data analysis. Pearson correlation analysis was performed to establish a relation between psychological outcomes and changes in body composition and physical fitness during the summer break. Significant increases in body weight (p = .003) and % body fat (p = .014) as well as a decrease in VO2max (p = .018) were found in summer school non-attendants during the summer whereas no significant changes were found in summer school attendants. Summer school non-attendants with lower psychosocial outcomes had a greater decline in physical fitness and weight gain; however, summer school attendants were not affected by psychosocial outcomes. The summer school program effectively prevented summer weight gain among underprivileged adolescents due to the structured environment, restricted food access, and scheduled time for exercise in addition to minimizing the effects of their psychosocial outcomes. Results indicated that summer school non-attendants may require comprehensive intervention for psychosocial outcomes and nutritional education to maintain body weight and physical fitness levels during the summer break.

  1. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break

    PubMed Central

    Park, Kyung-Shin; Lee, Man-Gyoon

    2015-01-01

    [Purpose] Evidence suggests that adolescents gain more weight during the summer break than they do during the school year, and that participation in the summer school program is beneficial in maintaining their healthy lifestyle. It is known that obesity and physical fitness in adolescents can be affected by their socio-economic and psychological status, especially during a long school break. The purpose of this study was to examine the effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness in underprivileged adolescents during the summer break. [Methods] Body composition and physical fitness in 138 underprivileged adolescents were measured at the beginning and end of the summer break. A survey on socio-economic and psychological status was conducted at the beginning of the summer break. Two-way repeated measures ANOVA and Tukey post hoc tests were used for data analysis. Pearson correlation analysis was performed to establish a relation between psychological outcomes and changes in body composition and physical fitness during the summer break. [Results] Significant increases in body weight (p = .003) and % body fat (p = .014) as well as a decrease in VO2max (p = .018) were found in summer school non-attendants during the summer whereas no significant changes were found in summer school attendants. Summer school non-attendants with lower psychosocial outcomes had a greater decline in physical fitness and weight gain; however, summer school attendants were not affected by psychosocial outcomes. The summer school program effectively prevented summer weight gain among underprivileged adolescents due to the structured environment, restricted food access, and scheduled time for exercise in addition to minimizing the effects of their psychosocial outcomes. [Conclusion] Results indicated that summer school non-attendants may require comprehensive intervention for psychosocial outcomes and nutritional education to maintain body weight and physical fitness levels during the summer break. PMID:26244126

  2. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    NASA Astrophysics Data System (ADS)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  3. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.« less

  4. Classification without labels: learning from mixed samples in high energy physics

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-01

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.

  5. Classification without labels: learning from mixed samples in high energy physics

    DOE PAGES

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-25

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  6. Classification without labels: learning from mixed samples in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  7. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    PubMed

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  8. [The CERN and the megascience].

    PubMed

    Aguilar Peris, José

    2006-01-01

    In this work we analyse the biggest particle accelerator in the world: the LHC (Large Hadron Collider). The ring shaped tunnel is 27 km long and it is buried over 110 meters underground, straddling the border betwen France and Switzerland at the CERN laboratory near Geneva. Its mission is to recreate the conditions that existed shortly after the Big-Bang and to look for the hypothesised Higgs particle. The LHC will accelerate protons near the speed of the light and collide them head on at an energy of to 14 TeV (1 TeV = 10(12) eV). Keeping such high energy in the proton beams requires enormous magnetic fields which are generated by superconducting electromagnets chilled to less than two degrees above absolute zero. It is expected that LHC will be inaugurated in summer 2007.

  9. Dark spectroscopy at lepton colliders

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  10. Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Greg

    In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

  11. Studies for a Dedicated B Detector at the Fermilab Collider

    NASA Astrophysics Data System (ADS)

    McBride, Patricia

    1996-06-01

    The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.

  12. Right-handed charged currents in the era of the Large Hadron Collider

    DOE PAGES

    Alioli, Simone; Cirigliano, Vincenzo; Dekens, Wouter Gerard; ...

    2017-05-16

    We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. Here, we subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments,more » that would uniquely point to right-handed charged currents.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syphers, M. J.; Chattopadhyay, S.

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less

  14. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac

    2003-08-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less

  15. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  16. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Song, Y.; Tang, J.; Li, Z.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Orestano, D.; Tortora, L.; Kuno, Y.; Ishimoto, S.; Filthaut, F.; Jokovic, D.; Maletic, D.; Savic, M.; Hansen, O. M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Dumbell, K.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Anderson, R. J.; Barclay, P.; Bayliss, V.; Boehm, J.; Bradshaw, T. W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Tucker, M.; Wilson, A.; Watson, S.; Bayes, R.; Nugent, J. C.; Soler, F. J. P.; Gamet, R.; Barber, G.; Blackmore, V. J.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Kurup, A.; Lagrange, J.-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Uchida, M. A.; Cobb, J. H.; Lau, W.; Booth, C. N.; Hodgson, P.; Langlands, J.; Overton, E.; Robinson, M.; Smith, P. J.; Wilbur, S.; Dick, A. J.; Ronald, K.; Whyte, C. G.; Young, A. R.; Boyd, S.; Franchini, P.; Greis, J. R.; Pidcott, C.; Taylor, I.; Gardener, R. B. S.; Kyberd, P.; Nebrensky, J. J.; Palmer, M.; Witte, H.; Bross, A. D.; Bowring, D.; Liu, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Freemire, B.; Hanlet, P.; Kaplan, D. M.; Mohayai, T. A.; Rajaram, D.; Snopok, P.; Suezaki, V.; Torun, Y.; Onel, Y.; Cremaldi, L. M.; Sanders, D. A.; Summers, D. J.; Hanson, G. G.; Heidt, C.; MICE Collaboration

    2017-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combined effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combinedmore » effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.« less

  18. SuperB Progress Report for Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagini, M.E.; Boni, R.; Boscolo, M.

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.« less

  19. CLIC CDR - physics and detectors: CLIC conceptual design report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, E.; Demarteau, M.; Repond, J.

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.« less

  20. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    NASA Astrophysics Data System (ADS)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  1. Energy peaks: A high energy physics outlook

    NASA Astrophysics Data System (ADS)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  2. How Data Becomes Physics: Inside the RACF

    ScienceCinema

    Ernst, Michael; Rind, Ofer; Rajagopalan, Srini; Lauret, Jerome; Pinkenburg, Chris

    2018-06-22

    The RHIC & ATLAS Computing Facility (RACF) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory sits at the center of a global computing network. It connects more than 2,500 researchers around the world with the data generated by millions of particle collisions taking place each second at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC, a DOE Office of Science User Facility for nuclear physics research), and the ATLAS experiment at the Large Hadron Collider in Europe. Watch this video to learn how the people and computing resources of the RACF serve these scientists to turn petabytes of raw data into physics discoveries.

  3. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  4. Fundamental Physics

    NASA Image and Video Library

    2003-01-22

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  5. High Energy Physics

    Science.gov Websites

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  6. Reconciling Intuitive Physics and Newtonian Mechanics for Colliding Objects

    ERIC Educational Resources Information Center

    Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L.

    2013-01-01

    People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…

  7. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  8. Phun Physics 4 Phemales: Physics Camp for High School Girls

    NASA Astrophysics Data System (ADS)

    Kwon, Chuhee; Gu, Jiyeong; Henriquez, Laura

    2014-03-01

    The department of Physics and Astronomy with the department of Science Education at California State University, Long Beach hosted summer program of ``Phun Physics 4 Phemales (PP4P)'' during summer 2012 and summer 2013 with the support from APS public outreach program. PP4P summer camp was hosted along with a two-week summer science camp, Young Scientists Camp, which has been institutionalized for the last 14 years since 1999. More than 2,500 3rd -8th grade students and 250 teachers have participated in the program. PP4P program provided the tools and support that female high school students need to pursue careers in physics and/or science, technology, engineering and math (STEM) field. This girls-only camp created connections among the girls and built confidence. In addition PP4P program introduced students to key principles in physics by a hands-on lab environment and demonstrated the real-world social impact of physics. In summer 2012, high school girls worked on physics experimental project on electronics and in summer 2013 they worked on the mechanics. I would share our experience in this program and the impact on the female high school students. This work was supported by 2012 Public Outreach and Informing the Public Grants from American Physical Society.

  9. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Stratakis, D.; Palmer, M.

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν more » $$\\bar{e}$$) and ν $$\\bar{μ}$$) (ν μ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent« less

  10. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  11. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.« less

  12. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Charles D.; Cline, David B.; Byers, N.

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less

  15. What's Next for Particle Physics?

    NASA Astrophysics Data System (ADS)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  16. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants

  17. Recalling Quark Matter '83 and the birth of RHIC

    NASA Astrophysics Data System (ADS)

    Ludlam, Thomas W.

    2016-12-01

    I provide a brief review of the Quark Matter '83 meeting at Brookhaven, in the context of the decisive U.S. science policy actions during the summer of 1983 that led up to it. At the Brookhaven meeting a large community of nuclear and high energy physicists came together for the first time to examine the parameters for the Relativistic Heavy Ion Collider, setting the stage for decades of quark matter research to follow.

  18. NICA project at JINR: status and prospects

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.

    2017-06-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.

  19. Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders

    NASA Astrophysics Data System (ADS)

    Harris, Christopher M.

    2005-02-01

    The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

  20. Physics at the SPS.

    PubMed

    Gatignon, L

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K + → π + νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  1. Physics at the SPS

    NASA Astrophysics Data System (ADS)

    Gatignon, L.

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K+ → π+νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  2. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  3. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  4. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  5. Search of strangelets and “forward” physics on the collider

    NASA Astrophysics Data System (ADS)

    Kurepin, A. B.

    2016-01-01

    A new stage of the collider experiments at the maximum energy of protons and nuclei at the LHC may lead to the discovery of new phenomena, as well as to confirm the effects previously observed only at very high energies in cosmic rays. A specific program of the experiments is so-called “forward” physics, i.e. the study of low-angle processes. Of the most interesting phenomena can be noted the detection in cosmic rays events called Centauro, which could be explained as the strangelets production. Centauro represent events with small multiplicity and with a strong suppression of electromagnetic component. Since the energy of the beams at the collider and kinematic parameters of the forward detectors CASTOR (CMS), TOTEM, LHCf and the ADA and ADC (ALICE) are close to the parameters and energies of abnormal events in cosmic rays, it is possible to reproduce and investigate in details these events in the laboratory.

  6. Les Houches ''Physics at TeV Colliders 2003'' Beyond the Standard Model Working Group: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allanach, B

    2004-03-01

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less

  7. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  8. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.

  9. Signals from flavor changing scalar currents at the future colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, D.; Reina, L.; Soni, A.

    1996-11-22

    We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.

  10. Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (V) phenomenological studies essential for comparing LHC data from Run II with theoretical predictions and projections for future measurements, and (VI) new developments in Monte Carlo event generators.

  11. ISR effects for resonant Higgs production at future lepton colliders

    DOE PAGES

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-11-04

    We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less

  12. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  13. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  14. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  15. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  16. Model-independent determination of the triple Higgs coupling at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  17. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    Thomson, Mark

    2018-04-16

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  18. Construction of the DHCAL

    NASA Astrophysics Data System (ADS)

    Francis, Kurt; CALICE Collaboration

    Particle Flow Algorithms (PFAs) have been proposed as a method of improving the jet energy resolution of future colliding beam detectors. PFAs require calorimeters with high granularity to enable three-dimensional imaging of events. The Calorimeter for the Linear Collider Collaboration (CALICE) is developing and testing prototypes of such highly segmented calorimeters. In this context, a large prototype of a Digital Hadron Calorimeter (DHCAL) was developed and constructed by a group led by Argonne National Laboratory. The DHCAL consists of 52 layers, instrumented with Resistive Plate Chambers (RPCs) and interleaved with steel absorber plates. The RPCs are read out by 1 x 1 cm2 pads with a 1-bit resolution (digital readout). The DHCAL prototype has approximately 480,000 readout channels. This talk reports on the design, construction and commissioning of the DHCAL. The DHCAL was installed at the Fermilab Test Beam Facility in fall 2010 and data was collected through the summer 2011.

  19. Positive Behavior Interventions and Support in a Physical Activity Summer Camp

    ERIC Educational Resources Information Center

    Hinton, Vanessa; Buchanan, Alice M.

    2015-01-01

    This purpose of this study was to investigate the implementation of positive behavior interventions and support (PBIS) in a summer camp. The camp provided physical activity opportunities to underserved children attending a summer program at a local, rural public school. Certified physical education teachers led activity stations. Participants in…

  20. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  1. Spin formalism and applications to new physics searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, H.E.

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less

  2. High Energy Physics

    Science.gov Websites

    Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Theory Seminar Argonne >High Energy Physics Cosmic Frontier Theory & Computing Homepage General Cosmic Frontier Theory & Computing Group led the analysis to begin mapping dark matter. There have

  3. Lepton-flavored dark matter

    DOE PAGES

    Kile, Jennifer; Kobach, Andrew; Soni, Amarjit

    2015-04-08

    In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. μ → 3e, τ → eμμ, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6σ deviation of the muon g-2 from the standard model can be explained by a new physics scale ⁺e ⁻ colliders.more » We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less

  4. Lepton-flavored dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kile, Jennifer; Kobach, Andrew; Soni, Amarjit

    In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. μ → 3e, τ → eμμ, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6σ deviation of the muon g-2 from the standard model can be explained by a new physics scale ⁺e ⁻ colliders.more » We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less

  5. Learning from Higgs physics at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Honglei; Liu, Zhen; Su, Shufang; Su, Wei

    2017-12-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos( β - α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  6. A Bridge Too Far: The Demise of the Superconducting Super Collider, 1989-1993

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2015-04-01

    In October 1993 the US Congress terminated the Superconducting Super Collider -- at over 10 billion the largest and costliest basic-science project ever attempted. It was a disastrous loss for the nation's once-dominant high-energy physics community, which has been slowly declining since then. With the 2012 discovery of the Higgs boson at CERN's Large Hadron Collider, Europe has assumed world leadership in this field. A combination of fiscal austerity, continuing SSC cost overruns, intense Congressional scrutiny, lack of major foreign contributions, waning Presidential support, and the widespread public perception of mismanagement led to the project's demise nearly five years after it had begun. Its termination occurred against the political backdrop of changing scientific needs as US science policy shifted to a post-Cold War footing during the early 1990s. And the growing cost of the SSC inevitably exerted undue pressure upon other worthy research, thus weakening its support in Congress and the broader scientific community. As underscored by the Higgs boson discovery, at a mass substantially below that of the top quark, the SSC did not need to collide protons at 40 TeV in order to attain its premier physics goal. The selection of this design energy was governed more by politics than by physics, given that Europeans could build the LHC by eventually installing superconducting magnets in the LEP tunnel under construction in the mid-1980s. In hindsight, there were good alternative projects the US high-energy physics community could have pursued that did not involve building a gargantuan, multibillion-dollar machine at a green-field site in Texas. Research supported by the National Science Foundation, Department of Energy, and the Richard Lounsbery Foundation.

  7. A large hadron electron collider at CERN

    DOE PAGES

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  8. Recent theoretical progress in top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2013-05-01

    This is a writeup of a plenary talk given at the conference HCP 2012 held November 2012 in Kyoto, Japan. This writeup reviews recent theoretical developments in the following areas of top quark physics at hadron colliders: (a) the forward-backward asymmetry anomaly at the Tevatron, (b) precision top mass determination, (c) state of the art NLO calculations and (d) progress in NNLO calculations.

  9. PHENIX for Beginners

    NASA Astrophysics Data System (ADS)

    Zajc, W. A.; Fachini, P.

    2002-10-01

    An introduction to the PHENIX detector and to the PHENIX physics program is presented. The PHENIX physics results presented here are those from the the first RHIC (Relativistic Heavy Ion Collider) run with Au+Au collisions at RADICAL:[[RADICAND:[SNN

  10. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  11. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    DOE PAGES

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; ...

    2017-06-19

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combinedmore » effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.« less

  12. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  13. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  14. Left-handed and right-handed U(1) gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; U(1) L × U(1) R . Then three right-handed neutrinos are naturally required to achieve U(1) R anomaly cancellations, while several mirror fermions are also needed to do U(1) L anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.

  15. The impact of a temporary recurrent street closure on physical activity in New York City.

    PubMed

    Wolf, Sarah A; Grimshaw, Victoria E; Sacks, Rachel; Maguire, Thomas; Matera, Catherine; Lee, Karen K

    2015-04-01

    At least 70 US cities have now introduced ciclovías-large-scale street closures to promote physical activity-joining numerous other cities worldwide that have implemented ciclovías in efforts to improve population health. We assessed the impact of Summer Streets, a New York City program in which 6.9 contiguous miles of urban streets were closed to traffic and opened for walking, cycling, and group activities, such as dancing and yoga, on population physical activity levels. Screen line counts were used to estimate attendance, and a street intercept survey was conducted to assess demographic characteristics of participants, baseline adherence to physical activity recommendations, and type and duration of physical activity at Summer Streets. In addition, a traffic study was used to determine if there were vehicular traffic delays as a result of the program. About 50,000 people participated in Summer Streets; among participating New Yorkers, bicyclists averaged 6.7 miles, runners 4.3 miles, and walkers 3.6 miles, equivalent to 72-86 min of moderate physical activity. Among New Yorkers attending Summer Streets, 24 % reported that they did not routinely engage in moderate- or vigorous-intensity physical activity. These non-routine exercisers engaged in the equivalent of 26-68 min of moderate-intensity physical activity at Summer Streets. Summer Streets served as an enticement for New Yorkers, including those who did not ordinarily meet physical activity recommendations, to engage in physical activity. There were no significant vehicular traffic delays during the program.

  16. Investigation of beam self-polarization in the future e + e - circular collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, E.

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  17. Prospects for the study of the properties of dense nuclear matter at the NICA heavy-ion complex at JINR (Dubna)

    NASA Astrophysics Data System (ADS)

    Kolesnikov, V. I.

    2017-06-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.

  18. Investigation of beam self-polarization in the future e + e - circular collider

    DOE PAGES

    Gianfelice-Wendt, E.

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  19. Investigation of beam self-polarization in the future e+e- circular collider

    NASA Astrophysics Data System (ADS)

    Gianfelice-Wendt, E.

    2016-10-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e+e- Future Circular Collider (FCC-e+e-) for Z and W W physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e+e- ring are presented.

  20. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  1. The phenomenology of maverick dark matter

    NASA Astrophysics Data System (ADS)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.

  2. Science and Technology Review June 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Pruneda, J.H.

    2000-06-01

    This issue contains the following articles: (1) ''Accelerating on the ASCI Challenge''. (2) ''New Day Daws in Supercomputing'' When the ASCI White supercomputer comes online this summer, DOE's Stockpile Stewardship Program will make another significant advanced toward helping to ensure the safety, reliability, and performance of the nation's nuclear weapons. (3) ''Uncovering the Secrets of Actinides'' Researchers are obtaining fundamental information about the actinides, a group of elements with a key role in nuclear weapons and fuels. (4) ''A Predictable Structure for Aerogels''. (5) ''Tibet--Where Continents Collide''.

  3. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  4. The HL-LHC Accelerator Physics Challenges

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Zimmermann, F.

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  5. The physics of proton antiproton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shochet, M.

    1991-12-03

    This paper contains information information on: accelerator and detector; QCD studies; studies of the electroweak force; The search for the top quark; {beta} physics at hadron colliders; and the search for exotic objects and prospects for the future.

  6. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  7. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  8. Reviews Exhibitions: Collider: Step inside the World's Greatest Experiment Equipment: Hero Steam Turbine Classroom Video: Most of Our Universe is Missing Book: Serving the Reich Book: Breakthrough to CLIL for Physics Book: The Good Research Guide Apps: Popplet Web Watch Apps

    NASA Astrophysics Data System (ADS)

    2014-03-01

    WE RECOMMEND Collider: step inside the world's greatest experiment A great exhibition at the Science Museum in London Hero Steam Turbine Superb engine model gets up to 2500 rpm Most of Our Universe is Missing BBC video explores the dark truth Serving the Reich Science and morality in Nazi Germany The Good Research Guide A non-specialist book for teachers starting out in education research WORTH A LOOK Breakthrough to CLIL for Physics A book based on a physics curriculum for non-English students WEB WATCH Electric cycles online: patterns of use APPS The virtual laboratory advances personal skills

  9. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  10. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  11. Collider Signal II:. Missing ET Signatures and Dark Matter Connection

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2010-08-01

    These lectures give an overview of aspects of missing ET signatures from new physics at the LHC, along with their important connection to dark matter physics. Mostly, I will concentrate on supersymmetric (SUSY) sources of ɆT, but will also mention Little Higgs models with T-parity (LHT) and universal extra dimensions (UED) models with KK-parity. Lecture 1 covers SUSY basics, model building and spectra computation. Lecture 2 addresses sparticle production and decay mechanisms at hadron colliders and event generation. Lecture 3 covers SUSY signatures at LHC, along with LHT and UED signatures for comparison. In Lecture 4, I address the dark matter connection, and how direct and indirect dark matter searches, along with LHC collider searches, may allow us to both discover and characterize dark matter in the next several years. Finally, the interesting scenario of Yukawa-unified SUSY is examined; this case works best if the dark matter turns out to be a mixture of axion/axino states, rather than neutralinos.

  12. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  13. New collider scheme at LBL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann.

  14. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  15. New Models and Methods for the Electroweak Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Linda

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less

  16. The Education and Outreach Project of ATLAS--A New Participant in Physics Education

    ERIC Educational Resources Information Center

    Barnett, R. Michael; Johansson, K. Erik

    2006-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world.

  17. Learning from Higgs physics at future Higgs factories

    DOE PAGES

    Gu, Jiayin; Li, Honglei; Liu, Zhen; ...

    2017-12-29

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  18. Learning from Higgs physics at future Higgs factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jiayin; Li, Honglei; Liu, Zhen

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  19. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  20. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, Robert P.

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, themore » discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.« less

  1. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  2. Model identification of new heavy Z‧ bosons at ILC with polarized beams

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.; Tsytrinov, A. V.

    2017-12-01

    Extra neutral gauge bosons, Z‧s, are predicted by many theoretical scenarios of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z‧s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z‧ exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the expected sensitivity to Z‧ parameters of fermion-pair production cross sections at the planned International Linear Collider (ILC), especially as regards the potential of distinguishing different Z‧ models once such deviations are observed. Specifically, we evaluate the discovery and identification reaches on Z‧ gauge bosons pertinent to the E 6, LR, ALR, and SSM classes of models at the ILC.

  3. Opportunities for promoting youth physical activity: an examination of youth summer camps.

    PubMed

    Hickerson, Benjamin D; Henderson, Karla A

    2014-01-01

    Youth summer camp programs have the potential to provide opportunities for physical activity, but little to no research has been conducted to determine activity levels of campers. This study aimed to examine physical activity occurring in day and resident summer camps and how activity levels differed in these camps based upon demographic characteristics. Pedometer data were collected during hours of camp operation from 150 day campers and 114 resident campers between the ages of 8 and 12 years old. Independent t tests were used to compare physical activity by sex, race, and Body Mass Index. Campers at day camps averaged 11,916 steps per camp day, while resident campers averaged 19,699 steps per camp day. Day campers averaged 1586 steps per hour over 7.5 hour days and resident campers averaged 1515 steps per hour over 13 hour days. Male sex, Caucasian race, and normal Body Mass Index were significant correlates of more physical activity. Youth summer camps demonstrate the potential to provide ample opportunities for physical activity during the summer months. Traditional demographic disparities persisted in camps, but the structure of camp programs should allow for changes to increase physical activity for all participants.

  4. Opportunities for Drell-Yan Physics at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E.; Bland, L.; Crawford, H.

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participantsmore » of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.« less

  5. Novel dark matter phenomenology at colliders

    NASA Astrophysics Data System (ADS)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  6. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  7. Searches for Physics Beyond the Standard Model and Triggering on Proton-Proton Collisions at 14 TEV LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittich, Peter

    2011-10-14

    This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We review activities with experiments using polarized protons and polarized antiprotons at Fermilab for future high-energy spin physics we describe an experimental program with polarized collider at RHIC.

  9. Two Complementary Strategies for New Physics Searches at Lepton Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooberman, Benjamin Henry

    In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in e +e - collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the Υ(3S) using data collected with the BABAR detector. This study establishesmore » the 90% confidence level upper limits BF(Υ(3S) → eτ) < 5.0 x 10 -6 and BF(Υ(3S) → μτ) < 4.1 x 10 -6 which are used to place constraints on new physics contributing to lepton-flavor violation at the TeV mass scale. An alternative strategy is to increase the collision energy above the threshold for new particles and produce them directly. I discuss research and development efforts aimed at producing a vertex tracker which achieves the physics performance required of a high energy lepton collider. A small-scale vertex tracker prototype is constructed using Silicon sensors of 50 μm thickness and tested using charged particle beams. This tracker achieves the targeted impact parameter resolution of σ LP = (5⊕10 GeV/p T) as well as a longitudinal vertex resolution of (260 ± 10) μm, which is consistent with the requirements of a TeV-scale lepton collider. This detector research and development effort must be motivated and directed by simulation studies of physics processes. Investigation of a dark matter-motivated Supersymmetry scenario is presented, in which the dark matter is composed of Supersymmetric neutralinos. In this scenario, studies of the e +e - → H 0A 0 production process allow for precise measurements of the properties of the A 0 Supersymmetric Higgs boson, which improve the achievable precision on the neutralino dark matter candidate relic density to 8%. Comparison between this quantity and the dark matter density determined from cosmological observations will further our understanding of dark matter by allowing us to determine if it is of Supersymmetric origin.« less

  10. Summer Education Program for Neurologically and Physically Handicapped Children. Summer 1975. Evaluation Report.

    ERIC Educational Resources Information Center

    Ellis, Ronald S.

    Evaluated was the Summer Education Program for Neurologically and Physically Handicapped Children, designed to improve the performance of 145 children (6-16 years old) in the following areas--gross motor skills, swimming, fine motor skills, socialization with nonhandicapped peers, and independent daily living skills. The program included the…

  11. Ringing in the new physics: The politics and technology of electron colliders in the United States, 1956--1972

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    The ``November Revolution'' of 1974 and the experiments that followed consolidated the place of the Standard Model in modern particle physics. Much of the evidence on which these conclusions depended was generated by a new type of tool: colliding beam storage rings, which had been considered physically unfeasible twenty years earlier. In 1956 a young experimentalist named Gerry O'Neill dedicated himself to demonstrating that such an apparatus could do useful physics. The storage ring movement encountered numerous obstacles before generating one of the standard machines for high energy research. In fact, it wasn't until 1970 that the U.S. finally broke ground on its first electron-positron collider. Drawing extensively on archival sources and supplementing them with the personal accounts of many of the individuals who took part, Ringing in the New Physics examines this instance of post-World War II techno-science and the new social, political and scientific tensions that characterize it. The motivations are twofold: first, that the chronicle of storage rings may take its place beside mathematical group theory, computer simulations, magnetic spark chambers, and the like as an important contributor to a view of matter and energy which has been the dominant model for the last twenty-five years. In addition, the account provides a case study for the integration of the personal, professional, institutional, and material worlds when examining an episode in the history or sociology of twentieth century science. The story behind the technological development of storage rings holds fascinating insights into the relationship between theory and experiment, collaboration and competition in the physics community, the way scientists obtain funding and their responsibilities to it, and the very nature of what constitutes ``successful'' science in the post- World War II era.

  12. Feasibility study of heavy-ion collision physics at NICA JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.

    2017-11-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.

  13. Master of Arts in Physics Education (MAPE) Program

    NASA Astrophysics Data System (ADS)

    Lindgren, Richard A.; Thornton, Stephen T.

    2001-11-01

    In the past 15 years, the Department of Physics at the University of Virginia in collaboration with the Curry School of Education has supported numerous summer high school physics and physical science teacher enrichment programs through the School of Continuing and Professional Studies. As a result of this accumulated experience in working with teachers, we created the Master of Arts in Physics Education (MAPE) program to address the needs of the high school physics teacher of the present and future. Through distance learning and summer study at UVa, participants earn the 30 hours needed for the Masters degree within 2 1/2 years while maintaining their current teaching position. Summer study includes the calculus based primary physics courses 631, 632, and 633 and associated laboratory courses. Summer physics course assignments and responsibilities do not terminate until late in the fall. Distance learning during the academic year is accomplished via the Internet using WebAssign, chat rooms, email, videotapes, and streamline video. Although recently approved in the spring 2000, 12 teachers have already graduated with the MAPE degree.

  14. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  15. The International Linear Collider Technical Design Report - Volume 2: Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Howard; Barklow, Tim; Fujii, Keisuke

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  16. Collider effects of unparticle interactions in multiphoton signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Frank, Mariana; Turan, Ismail

    2009-12-01

    A new model of physics, with a hidden conformal sector which manifests itself as an unparticle coupling to standard model particles effectively through higher dimensional operators, predicts strong collider signals due to unparticle self-interactions. We perform a complete analysis of the most spectacular of these signals at the hadron collider, pp(p){yields}{gamma}{gamma}{gamma}{gamma} and {gamma}{gamma}gg. These processes can go through the three-point unparticle self-interactions as well as through some s and t channel diagrams with one and/or two unparticle exchanges. We study the contributions of individual diagrams classified with respect to the number of unparticle exchanges and discuss their effect on themore » cross sections at the Tevatron and the LHC. We also restrict the Tevatron bound on the unknown coefficient of the three-point unparticle correlator. With the availability of data from the Tevatron, and the advent of the data emerging from the LHC, these interactions can provide a clear and strong indication of unparticle physics and distinguish this model from other beyond the standard model scenarios.« less

  17. nuSTORM and A Path to a Muon Collider

    DOE PAGES

    Adey, David; Bayes, Ryan; Bross, Alan; ...

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ +μ - collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30more » years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ +μ -collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  18. Compensation Techniques in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less

  19. Statistical issues in searches for new phenomena in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.

  20. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  1. The pursuit of dark matter at colliders—an overview

    NASA Astrophysics Data System (ADS)

    Penning, Björn

    2018-06-01

    Dark matter is one of the main puzzles in fundamental physics and the goal of a diverse, multi-pronged research programme. Underground and astrophysical searches look for dark matter particles in the cosmos, either by interacting directly or by searching for dark matter annihilation. Particle colliders, in contrast, might produce dark matter in the laboratory and are able to probe most basic dark-matter–matter interactions. They are sensitive to low dark matter masses, provide complementary information at higher masses and are subject to different systematic uncertainties. Collider searches are therefore an important part of an inter-disciplinary dark matter search strategy. This article highlights the experimental and phenomenological development in collider dark matter searches of recent years and their connection with the wider field.

  2. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, Sandra J.; Summers, Don; Cremaldi, Lucien

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity, 100 TeV $$p\\bar{p}$$ collider with 7$$\\times$$ the energy of the LHC but only 2$$\\times$$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. A Fermilab-like $$\\bar p$$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.« less

  3. Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.

    2017-09-01

    The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.

  4. The Coming Revolutions in Particle Physics

    ScienceCinema

    Quigg, Chris

    2017-12-09

    Wonderful opportunities await particle physics over the next decade, with new instruments and experiments poised to explore the frontiers of high energy, infinitesimal distances, and exquisite rarity. We look forward to the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. We suspect that the detection of proton decay is only a few orders of magnitude away in sensitivity. Astronomical observations should help to tell us what kinds of matter and energy make up the universe. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear electron-positron collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment.

  5. Theoretical Advanced Study Institute: 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, Thomas

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context andmore » on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.« less

  6. New Experiments with Antiprotons

    NASA Astrophysics Data System (ADS)

    Kaplan, D. M.

    2011-12-01

    Fermilab operates the world's most intense antiproton source. Recently proposed experiments can use those antiprotons either parasitically during Teva-tron Collider running or after the Tevatron Collider finishes in about 2011. For example, the annihilation of 8 GeV antiprotons might make the world's most intense source of tagged D0 mesons, and thus the best near-term opportunity to study charm mixing and search for new physics via its CP-violation signature. Other possible precision measurements include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's first measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons could yield a broad physics program at Fermilab in the post-Tevatron era.

  7. A possible layout of the Spin Physics Detector with toroid magnet.

    NASA Astrophysics Data System (ADS)

    Nagaytsev, A. P.

    2017-12-01

    The Spin Physics Detector project for carrying out experiments at the 2-nd interaction point of the NICA collider is under preparation. The design of the collider allows reaching collision energy in the c.m.s. as high as √s = 26 GeV for polarized proton-proton collisions and √s = 12 GeV for polarized deuteron-deuteron collisons with a luminosity of up to 1032 cm2 s-1 (for protons) and 1031cm2s-1 for deuterons. Such a high luminosity of polarized beams interactions opens unique possibilities to investigate a variety of polarization phenomena including those related to the nucleon spin structure. A proposal for the experimental set-up based on a toroid type magnet is presented.

  8. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1995-10-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ``The Energy Exchange and Efficiency Consideration in Klystrons``, ``Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland``, ``Field Quality Improvements in Superconducting Magnets for RHIC``, ``Hadronic B-Physics``, ``Spiking Pulses from Free Electron Lasers: Observations and Computational Models``, ``Crystalline Beams inmore » Circular Accelerators``, ``Accumulator Ring for AGS & Recent AGS Performance``, ``RHIC Project Machine Status``, and ``Gamma-Gamma Colliders.``« less

  9. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  10. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  11. CEPC-SPPC accelerator status towards CDR

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2017-12-01

    In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.

  12. Non-thermal Processes in Colliding-wind Massive Binaries: the Contribution of Simbol-X to a Multiwavelength Investigation

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.

    2009-05-01

    Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.

  13. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    NASA Astrophysics Data System (ADS)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.

  14. The State of the Summer: a Review of Child Summer Weight Gain and Efforts to Prevent It.

    PubMed

    Tanskey, Lindsay A; Goldberg, Jeanne; Chui, Kenneth; Must, Aviva; Sacheck, Jennifer

    2018-06-01

    Accumulating evidence shows that children in the USA gain weight more rapidly during the summer, when school is not in session. This narrative review spanning 2007 to 2017 summarizes efforts to characterize the problem, identify key determinants, and intervene to prevent excess summer weight gain. Summer weight gain remains a concern for elementary-age youth. Few studies have examined its determinants, but unfavorable summertime shifts in diet, physical activity, sedentary time, screen media use, and sleep have been reported. Increased structure is thought to protect against summer weight gain. Interventions to support physical activity and nutrition during the summer show promise, though large-scale impact on weight outcomes remains to be seen. Supporting health behaviors during the summer remains a priority for obesity prevention researchers, practitioners, and policymakers. Strategies to expand access to structured programs and reach beyond such programs to improve behaviors at home are of particular importance.

  15. Experimental High Energy Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohlmann, Marcus

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) formore » the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 GeV for a Z' with the same standard-model couplings as the Z boson. Our student team operated a Tier-3 cluster on the Open Science Grid (OSG) to support local CMS physics analysis and remote OSG activity. As a service to the HEP community, Hohlmann participated in the Snowmass effort over the course of 2013. Specifically, he acted as a liaison for gaseous detectors between the Instrumentation Frontier and the Energy Frontier and contributed to five papers and reports submitted to the summer study.« less

  16. Matter, Energy, Space and Time: The International Linear Collider Physics Prospects and International Aspects

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2006-04-01

    Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.

  17. Double elementary Goldstone Higgs boson production in future linear colliders

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  18. On a Possibility of the Gravitational Wave Detection at the High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Verma, Murli Manohar

    A strong follow up of a previous proposal (ICHEP, Valencia 2014) is made leading to the first experiment to observe the gravitational waves at the collision sites at the colliders such as the Large Hadron Collider at CERN. The amplitudes have been calculated with regard to the sensitivity of the detector. Compared with the standard model physics, it is shown to have a measurable impact on the particle motions and corresponds to ‘missing’ energy in form of the gravitational wave loss. This is unlike the cosmological detectors like BICEP2 etc. where the indirect B mode polarization on CMBR were masked by dust. In contrast, this experiment would be the first experiment where the energy-momentum tensor of the source can be controlled.

  19. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  20. Summer Session: A Time for Innovation

    NASA Astrophysics Data System (ADS)

    Mola, Monty

    2013-05-01

    Summer is almost here (at least for those of us who teach semesters). Many of us are taking a well-deserved break to spend time with our families, conduct research, travel, and myriad other activities. Some of us, however, will be teaching summer school. For those of us lucky enough to be teaching this summer, we have one suggestion: Be bold! Summer is the ideal time to try something new with your teaching. We have known for some time that alternative pedagogies and engaging teaching strategies can be more effective than traditional lectures as student learning environments. However, even with headlines in The Washington Post proclaiming that the lecture is dead,2 inroads of physics education research-based curricula have been slow to diffuse into the classrooms for the greater population of college physics instructors.3 Many instructors of traditional physics courses see the use of research-based instructional strategies (RBIS) as desirable but risky and time consuming.3 Assuming a traditional physics course structure, both the where and the when each component takes place can also limit the types of engaging pedagogies used.4

  1. A Summer Math and Physics Program for High School Students: Student Performance and Lessons Learned in the Second Year

    ERIC Educational Resources Information Center

    Timme, Nicholas; Baird, Michael; Bennett, Jake; Fry, Jason; Garrison, Lance; Maltese, Adam

    2013-01-01

    For the past two years, the Foundations in Physics and Mathematics (FPM) summer program has been held at Indiana University in order to fulfill two goals: provide additional physics and mathematics instruction at the high school level, and provide physics graduate students with experience and autonomy in designing curricula and teaching courses.…

  2. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGES

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  3. Beam dynamics studies at DAΦNE: from ideas to experimental results

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  4. B+ L violation at colliders and new physics

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos

    2018-04-01

    Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.

  5. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  6. Is Particle Physics Ready for the LHC

    ScienceCinema

    Lykken, Joseph

    2017-12-09

    The advent of the Large Hadron Collider in 2007 entails daunting challenges to particle physicists. The first set of challenges will arise from trying to separate new physics from old. The second set of challenges will come in trying to interpret the new discoveries. I will describe a few of the scariest examples.

  7. Searching for New Physics at SuperB - The Super Flavor Factory

    ScienceCinema

    Hiltin, David

    2018-01-05

    SuperB – a Super Flavor Factory, an electron-positron collider with a luminosity of 1036 cm-2 s-1, can conduct conduct unique sensitive searches for New Physics effects such as lepton flavor violation and new sources of CP violation in the quark and lepton sectors.

  8. Measurement of the top quark pair production cross-section in dimuon final states in proton-antiproton collisions at 1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konrath, Jens Peter

    2008-10-24

    Particle physics deals with the fundamental building blocks of matter and their interactions. The vast number of subatomic particles can be reduced to twelve fundamental fermions, which interact by the exchange of spin-1 particles as described in the Standard Model (SM) of particle physics. The SM provides the best description of the subatomic world to date, despite the fact it does not include gravitation. Following the relation Λ = h/p, where h is Planck's constant, for the examination of physics at subatomic scales with size Λ probes with high momenta p are necessary. These high energies are accessible through particlemore » colliders. Here, particles are accelerated and brought to collision at interaction points at which detectors are installed to record these particle collisions. Until the anticipated start-up of the Large Hadron Collider at CERN, the Tevatron collider at Fermilab near Chicago is the highest energy collider operating in the world, colliding protons and anti-protons at a center-of-mass energy of √s = 1.96 TeV. Its two interaction points are covered by the multi purpose particle detectors D0 and CDF. During the first data-taking period, known as Run I, the Tevatron operated at a center-of-mass energy of 1.8 TeV. This run period lasted from 1992 to 1996. During this period, the long-predicted top quark was discovered. From 1996 and 2001, the accelerator was upgraded to deliver higher instantaneous luminosities at its current center-of-mass energy. At the same time, the experiments were upgraded to take full advantage of the upgraded accelerator complex. The Tevatron is currently the only accelerator in the world with a sufficient energy to produce top quarks. Studying top quark production, decay and properties is an important part of the D0 and CDF physics programs. Because of its large mass, the top quark is a unique probe of the Standard Model, and an interesting environment to search for new physics. In this thesis, a measurement of the production cross-section of top quark pairs decaying to two muons is presented. In addition, a Monte Carlo study of the top quark spin correlation measurement was carried out. This thesis is laid out as follows: chapter two gives a short overview over the Standard Model of particle physics and the theoretical aspects of unpolarized and polarized top quark production and decay, chapter three describes the accelerator complex and the D0 experiment whose data is used in this analysis. The Reconstruction of events recorded with the D0 detector is explained in chapter four and the data and Monte Carlo samples used are presented in chapter five. Finally, the cross-section measurement is described in chapter six and the Monte Carlo study of top quark spin correlations in chapter seven.« less

  9. At-Risk Boys' Social Self-Efficacy and Physical Activity Self-Efficacy in a Summer Sports Camp

    ERIC Educational Resources Information Center

    Su, Xiaoxia; Xiang, Ping; McBride, Ron E.; Liu, Jiling; Thornton, Michael A.

    2016-01-01

    This study examined at-risk boys' social self-efficacy and physical activity self-efficacy within Bandura's self-efficacy framework. A total of 97 boys, aged between 10 and 13 years, attending a summer sports camp completed questionnaires assessing their social self-efficacy, physical activity self- efficacy, prosocial behaviors, and effort.…

  10. Characteristics of "Tween" Participants and Non-Participants in the VERB[TM] Summer Scorecard Physical Activity Promotion Program

    ERIC Educational Resources Information Center

    Nickelson, Jen; Alfonso, Moya L.; McDermott, Robert J.; Bumpus, Elizabeth C.; Bryant, Carol A.; Baldwin, Julie A.

    2011-01-01

    Creating community-based opportunities for youth to be physically active is challenging for many municipalities. A Lexington, Kentucky community coalition designed and piloted a physical activity program, "VERB[TM] summer scorecard (VSS)", leveraging the brand equity of the national VERB[TM]--It's What You Do! campaign. Key elements of…

  11. Optimization of detectors for the ILC

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; ILD Group; SID Group

    2016-04-01

    International Linear Collider (ILC) is a next-generation e+e- linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected ;green sign; of the ILC project.

  12. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema

    Thomson, Mark

    2018-05-21

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  13. Small collision systems: Theory overview on cold nuclear matter effects

    NASA Astrophysics Data System (ADS)

    Armesto, Néstor

    2018-02-01

    Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems), and nucleus-nucleus collisions (large systems), when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.

  14. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  15. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    NASA Astrophysics Data System (ADS)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  16. Reconciling intuitive physics and Newtonian mechanics for colliding objects.

    PubMed

    Sanborn, Adam N; Mansinghka, Vikash K; Griffiths, Thomas L

    2013-04-01

    People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to integrate them into a unified model that can explain human judgments across a wide range of physical reasoning tasks. We propose an alternative framework, in which people's judgments are based on optimal statistical inference over a Newtonian physical model that incorporates sensory noise and intrinsic uncertainty about the physical properties of the objects being viewed. This noisy Newton framework can be applied to a multitude of judgments, with people's answers determined by the uncertainty they have for physical variables and the constraints of Newtonian mechanics. We investigate a range of effects in mass judgments that have been taken as strong evidence for heuristic use and show that they are well explained by the interplay between Newtonian constraints and sensory uncertainty. We also consider an extended model that handles causality judgments, and obtain good quantitative agreement with human judgments across tasks that involve different judgment types with a single consistent set of parameters.

  17. The Curious Ontology of a Light Higgs Boson

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2016-03-01

    When the Superconducting Super Collider was being contemplated and designed in the mid-1980s, few high-energy physicists considered it likely that a light Higgs boson, as was eventually discovered at the Large Hadron Collider, would exist. Most theorists expected that the Higgs boson would occur at a mass near the TeV scale, and accelerator physicists designed the Super Collider accordingly. The possibility of a light Higgs boson with a mass less than 200 GeV began to be taken seriously during the 1990s, especially after the 1995 Fermilab discovery of the top quark near 175 GeV, but it was too late to influence the SSC design. With a peak collision energy of 40 TeV, this collider was guaranteed to discover the Higgs boson -- or whatever other mass-generating phenomenon might be occurring in the Standard Model -- even if it were to appear at masses or energies up to 2 TeV. As it turned out, therefore, the SSC was overdesigned for its principal physics goal. A substantially smaller Fermilab project known as the Dedicated Collider, which never made it beyond the drawing boards, could probably have allowed the 125 GeV Higgs boson to be discovered at least a decade earlier than it occurred at the LHC.

  18. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  19. Analyzing high energy physics data using database computing: Preliminary report

    NASA Technical Reports Server (NTRS)

    Baden, Andrew; Day, Chris; Grossman, Robert; Lifka, Dave; Lusk, Ewing; May, Edward; Price, Larry

    1991-01-01

    A proof of concept system is described for analyzing high energy physics (HEP) data using data base computing. The system is designed to scale up to the size required for HEP experiments at the Superconducting SuperCollider (SSC) lab. These experiments will require collecting and analyzing approximately 10 to 100 million 'events' per year during proton colliding beam collisions. Each 'event' consists of a set of vectors with a total length of approx. one megabyte. This represents an increase of approx. 2 to 3 orders of magnitude in the amount of data accumulated by present HEP experiments. The system is called the HEPDBC System (High Energy Physics Database Computing System). At present, the Mark 0 HEPDBC System is completed, and can produce analysis of HEP experimental data approx. an order of magnitude faster than current production software on data sets of approx. 1 GB. The Mark 1 HEPDBC System is currently undergoing testing and is designed to analyze data sets 10 to 100 times larger.

  20. SLC: The End Game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Pantaleo

    The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less

  1. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  2. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  3. Accomplishments of the heavy electron particle accelerator program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Stratakis, D.; Palmer, M.

    The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (more » $$\\bar{ve}$$) and $$\\bar{vμ}$$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.« less

  4. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu

    2015-06-15

    We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation.more » Moreover, it is found that they are obviously different for the last two colliding cases.« less

  5. Influence of Session Context on Physical Activity Levels among Russian Girls during a Summer Camp

    ERIC Educational Resources Information Center

    Guagliano, Justin M.; Updyke, Natalie J.; Rodicheva, Natalia V.; Rosenkranz, Sara K.; Dzewaltowski, David A.; Schlechter, Chelsey R.; Rosenkranz, Richard R.

    2017-01-01

    Purpose: This study investigated the effect of summer camp session context on Russian girls' physical activity (PA). Method: Girls (n = 32, M[subscript age] = 10.7 years, SD = 0.6 years) from a resident summer camp taking place in the Vologda Region of Russia were exposed to 1 session context/day (i.e., free play, organized with no choice,…

  6. Too hot to move? Objectively assessed seasonal changes in Australian children's physical activity.

    PubMed

    Ridgers, Nicola D; Salmon, Jo; Timperio, Anna

    2015-06-19

    Seasonal variations may influence children's physical activity patterns. The aim of this study was to examine how children's objectively-measured physical activity differed across seasons, and whether different seasonal patterns were observed for boys and girls. Three hundred and twenty-six children aged 8-11 years from nine primary schools in Melbourne, Australia, participated in the study. Physical activity was measured every 15-s using hip-mounted GT3X+ ActiGraph accelerometers for seven consecutive days in the Winter (n = 249), Spring (n = 221), Summer (n = 174) and Autumn (n = 152) school terms. Time spent in moderate (MPA), vigorous (VPA) and moderate- to vigorous-intensity physical activity (MVPA) at each time point was derived using age-specific cut-points. Meteorological data (maximum temperature, precipitation, daylight hours) were obtained daily during each season. Longitudinal data were analysed using multilevel analyses, adjusted for age, sex, accelerometer wear time, number of valid days, and meteorological variables. Compared to Winter, children engaged in significantly less MPA (-5.0 min) and MVPA (-7.8 min) in Summer. Girls engaged in less MVPA in Spring (-18 min) and Summer (-9.2 min) and more MVPA in Autumn (9.9 min) compared to Winter. Significant changes in MPA and VPA bout frequency and duration were also observed. Significant decreases in VPA bout frequency (3.4 bouts) and duration (2.6 min) were observed for girls in Spring compared to Winter. No significant seasonal changes were observed for boys for all intensities and physical activity accumulation. Physical activity decreased in Summer compared to Winter, contrasting previous research that typically reports that children are most active in summer. Greater fluctuations were observed for girls' activity levels. In addition, girls' activity duration and bouts appeared to be more susceptible to seasonal changes compared to boys. The results suggest that strategies to promote physical activity may be needed in Australia during the hot summer months, particularly for girls.

  7. Status of the NICA project at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, Vladimir; Kovalenko, Alexandr; Lednicky, Rihard; Matveev, Viktor; Meshkov, Igor; Sorin, Alexandr; Trubnikov, Grigory

    2017-03-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is now under active realization at the Joint Institute for Nuclear Research (JINR, Dubna). The main goal of the project is a study of hot and dense strongly interacting matter in heavy-ion (up to Au) collisions at the center-of-mass energies up to 11 GeV per nucleon. Two modes of operation are foreseen, collider mode and extracted beams, with two detectors: MPD and BM@N. The both experiments are in preparation stage. An average luminosity in the collider mode is expected to be 1027 cm-2 s-1 for Au (79+). Extracted beams of various nuclei with maximum momenta of 13 GeV/c (for protons) will be available. A study of spin physics with extracted and colliding beams of polarized deuterons and protons at energies up to 27 GeV (for protons) is foreseen with the NICA facility. The proposed program allows one to search for possible signs of phase transitions and critical phenomena as well as to shed light on the problem of the nucleon spin structure.

  8. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    NASA Astrophysics Data System (ADS)

    Colecchia, Federico

    2014-03-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments.

  9. Rare b-hadron decays as probe of new physics

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gaia

    2018-05-01

    The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.

  10. Detectors for Linear Colliders: Tracking and Vertexing (2/4)

    ScienceCinema

    Battaglia, Marco

    2018-04-16

    Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

  11. High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, Ben

    2013-05-01

    The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternativemore » particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.« less

  12. Fermilab | Publications and Videos

    Science.gov Websites

    International Linear Collider Global Design Effort. Science Node The Science Node is a free online publication , viewers can catch a true behind-the-scenes look of the United States' premier particle physics laboratory

  13. Studies of QCD structure in high-energy collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadolsky, Pavel M.

    2016-06-26

    ”Studies of QCD structure in high-energy collisions” is a research project in theoretical particle physics at Southern Methodist University funded by US DOE Award DE-SC0013681. The award furnished bridge funding for one year (2015/04/15-2016/03/31) between the periods funded by Nadolsky’s DOE Early Career Research Award DE-SC0003870 (in 2010-2015) and a DOE grant DE-SC0010129 for SMU Department of Physics (starting in April 2016). The primary objective of the research is to provide theoretical predictions for Run-2 of the CERN Large Hadron Collider (LHC). The LHC physics program relies on state-of-the-art predictions in the field of quantum chromodynamics. The main effort ofmore » our group went into the global analysis of parton distribution functions (PDFs) employed by the bulk of LHC computations. Parton distributions describe internal structure of protons during ultrarelivistic collisions. A new generation of CTEQ parton distribution functions (PDFs), CT14, was released in summer 2015 and quickly adopted by the HEP community. The new CT14 parametrizations of PDFs were obtained using benchmarked NNLO calculations and latest data from LHC and Tevatron experiments. The group developed advanced methods for the PDF analysis and estimation of uncertainties in LHC predictions associated with the PDFs. We invented and refined a new ’meta-parametrization’ technique that streamlines usage of PDFs in Higgs boson production and other numerous LHC processes, by combining PDFs from various groups using multivariate stochastic sampling. In 2015, the PDF4LHC working group recommended to LHC experimental collaborations to use ’meta-parametrizations’ as a standard technique for computing PDF uncertainties. Finally, to include new QCD processes into the global fits, our group worked on several (N)NNLO calculations.« less

  14. Children's Moderate to Vigorous Physical Activity Attending Summer Day Camps.

    PubMed

    Brazendale, Keith; Beets, Michael W; Weaver, R Glenn; Chandler, Jessica L; Randel, Allison B; Turner-McGrievy, Gabrielle M; Moore, Justin B; Huberty, Jennifer L; Ward, Dianne S

    2017-07-01

    National physical activity standards call for all children to accumulate 60 minutes/day of moderate to vigorous physical activity (MVPA). The contribution of summer day camps toward meeting this benchmark is largely unknown. The purpose of this study was to provide estimates of children's MVPA during summer day camps. Children (n=1,061, 78% enrollment; mean age, 7.8 years; 46% female; 65% African American; 48% normal weight) from 20 summer day camps wore ActiGraph GT3x+ accelerometers on the wrist during camp hours for up to 4 non-consecutive days over the summer of 2015 (July). Accumulated MVPA at the 25th, 50th, and 75th percentile of the distribution was estimated using random-effects quantile regression. All models were estimated separately for boys and girls and controlled for wear time. Minutes of MVPA were dichotomized to ≥60 minutes/day of MVPA or <60 minutes/day to estimate percentage of boys and girls meeting the 60 minutes/day guideline. All data were analyzed in spring 2016. Across the 20 summer day camps, boys (n=569) and girls (n=492) accumulated a median of 96 and 82 minutes/day of MVPA, respectively. The percentage of children meeting 60 minutes/day of MVPA was 80% (range, 41%-94%) for boys and 73% (range, 30%-97%) for girls. Summer day camps are a setting where a large portion of boys and girls meet daily physical activity guidelines. Public health practitioners should focus efforts on making summer day camps accessible for children in the U.S. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Intuitive Physics of Collision Effects on Simulated Spheres Differing in Size, Velocity, and Material

    ERIC Educational Resources Information Center

    Vicovaro, Michele

    2012-01-01

    This is an intuitive physics study of collision events. In two experiments the participants were presented with a simulated 3D scene showing one sphere moving horizontally towards another stationary sphere. The moving sphere stopped just before colliding with the stationary one. Participants were asked to rate the positions which both spheres…

  16. Summer Adventure: You Can Make It Happen in Your Community.

    ERIC Educational Resources Information Center

    Butler, Bill

    Summer Adventure, a university-based, full-day, community education program for kindergartners and elementary students is described. The program offers physical and enrichment activities, an "extravaganza," and production and leadership in training activities. The physical activities include golf, swimming, volleyball, and gymnastics. Fitness…

  17. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  18. Sensational Studies in Marine Science.

    ERIC Educational Resources Information Center

    Keller, E. C., Jr.; Schroyer, Fred C.

    1981-01-01

    Presents a description of a five-week summer course in marine biology and oceanography offered to college-bound, secondary students with varied physical handicaps. Summarizes insights gained after four summer sessions related to communication problems, physical arrangements for the wheelchair-bound, and handicap-proof maps; evaluates the course's…

  19. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  20. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  1. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  2. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-02-18

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-protonmore » $(pp)$ collider. This paper describes the multi-decade R&D investment in the $$Nb_3Sn$$ superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting $$Nb_3Sn$$ wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the $$Nb_3Sn$$ technology to its limits for future $pp$ colliders.« less

  3. Pre-Town Meeting on spin physics at an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Aschenauer, Elke-Caroline; Balitsky, Ian; Bland, Leslie; Brodsky, Stanley J.; Burkardt, Matthias; Burkert, Volker; Chen, Jian-Ping; Deshpande, Abhay; Diehl, Markus; Gamberg, Leonard; Grosse Perdekamp, Matthias; Huang, Jin; Hyde, Charles; Ji, Xiangdong; Jiang, Xiaodong; Kang, Zhong-Bo; Kubarovsky, Valery; Lajoie, John; Liu, Keh-Fei; Liu, Ming; Liuti, Simonetta; Melnitchouk, Wally; Mulders, Piet; Prokudin, Alexei; Tarasov, Andrey; Qiu, Jian-Wei; Radyushkin, Anatoly; Richards, David; Sichtermann, Ernst; Stratmann, Marco; Vogelsang, Werner; Yuan, Feng

    2017-04-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center-of-mass energy √{s} ˜ 20 to ˜ 100 GeV (upgradable to ˜ 150 GeV) and a luminosity up to ˜ 10^{34} cm-2s-1, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three-dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini-review contains a short update on progress in these areas since the EIC White paper (A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)).

  4. Resonance--Continuum Interference in Light Higgs Boson Production at a Photon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; Sofianatos, Yorgos; /SLAC /Stanford U., Phys. Dept.

    2009-01-06

    We study the effect of interference between the Standard Model Higgs boson resonance and the continuum background in the process {gamma}{gamma} {yields} H {yields} b{bar b} at a photon collider. Taking into account virtual gluon exchange between the final-state quarks, we calculate the leading corrections to the height of the resonance for the case of a light (m{sub H} < 160 GeV) Higgs boson. We find that the interference is destructive and around 0.1-0.2% of the peak height, depending on the mass of the Higgs and the scattering angle. This suppression is smaller by an order of magnitude than themore » anticipated experimental accuracy at a photon collider. However, the fractional suppression can be significantly larger if the Higgs coupling to b quarks is increased by physics beyond the Standard Model.« less

  5. The Higgs portal above threshold

    DOE PAGES

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; ...

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. In this study, we systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14TeV LHC and a prospective 100TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an o ff-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy inmore » association with vector boson fusion, monojets, and top pairs. In addition, we forecast the sensitivity of searches in these channels at √s = 14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.« less

  6. Neutron dosimetry at a high-energy electron-positron collider

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  7. Study of Electron Polarization Dynamics in the JLEIC at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Morozov, Vasiliy

    The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry ofmore » the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.« less

  8. Pre-Town Meeting on spin physics at an Electron-Ion Collider

    DOE PAGES

    Aschenauer, Elke-Caroline; Balitsky, Ian; Bland, Leslie; ...

    2017-04-14

    A polarized ep/eA collider (Electron-Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center-of-mass energy √s ~ 20 to ~ 100 GeV (upgradable to ~ 150 GeV) and a luminosity up to ~10 34 cm -2s -1, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three-dimensional structure of the nucleon (sea quark andmore » gluon spatial distributions, orbital motion, polarization, and their correlations). Finally, this mini-paper contains a short update on progress in these areas since the EIC White paper (A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)).« less

  9. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE PAGES

    de Blas, J.; Ciuchini, M.; Franco, E.; ...

    2016-12-27

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  10. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Blas, J.; Ciuchini, M.; Franco, E.

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  11. Calorimetry at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Repond, José

    2007-03-01

    The physics potential of the International Linear Collider depends critically on the jet energy resolution of its detector. Detector concepts are being developed which optimize the jet energy resolution, with the aim of achieving σjet=30%/√{Ejet}. Under the assumption that Particle Flow Algorithms (PFAs), which combine tracking and calorimeter information to reconstruct the energy of hadronic jets, can provide this unprecedented jet energy resolution, calorimeters with very fine granularity are being developed. After a brief introduction outlining the principles of PFAs, the current status of various calorimeter prototype construction projects and their plans for the next few years will be reviewed.

  12. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  13. The Higgs mechanism and the origin of mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    2012-06-01

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  14. The Higgs Mechanism and the Orogin of Mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  15. BM@N and MPD experiments at NICA

    NASA Astrophysics Data System (ADS)

    Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander

    2018-02-01

    The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.

  16. Analysis and modeling of proton beam loss and emittance growth in the Relativistic Heavy Ion Collider

    DOE PAGES

    Luo, Y.; Fischer, W.; White, S.

    2016-02-04

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we will present the operational observations at the routine proton physics stores. In addition, the mechanisms for the beam loss, transverse emittance growth, and bunch lengthening are analyzed. Lastly, numerical calculations and multiparticle tracking are used to model these observations.

  17. Electron-ion collider: The next QCD frontier: Understanding the glue that binds us all

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Accardi, A.; Albacete, J. L.; Anselmino, M.

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decadesmore » and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. Furthermore, this White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.« less

  18. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report

    DOE PAGES

    Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; ...

    2016-05-01

    Here, the interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark–gluon plasma. Among them is the Chiral Magnetic Effect (CME)—the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark–gluon plasma, andmore » can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.« less

  19. Radiation protection and environmental management at the relativistic heavy ion collider.

    PubMed

    Musolino, S V; Briggs, S L; Stevens, A J

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy hadron accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon or protons at 250 GeV/c. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. Because there are only a few other high energy particle accelerators like RHIC in the world, the rules promulgated in the US Code of Federal Regulations under the Atomic Energy Act, State regulations, or international guidance documents do not cover prompt radiation from accelerators to govern directly the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance tor the design of radiation shielding. Environmental Management at RHIC is accomplished through the ISO 14001 Environmental Management System. The applicability, benefits, and implementation of ISO 14001 within the framework of a large research accelerator complex are discussed in the paper.

  20. Probing the Higgs with angular observables at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  1. Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders

    NASA Astrophysics Data System (ADS)

    Azatov, Aleksandr; Galloway, Jamison

    2013-01-01

    In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.

  2. Electron-ion collider: The next QCD frontier: Understanding the glue that binds us all

    DOE PAGES

    Accardi, A.; Albacete, J. L.; Anselmino, M.; ...

    2016-09-08

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decadesmore » and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. Furthermore, this White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.« less

  3. Very large hadron collider (VLHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less

  4. Probing the Higgs with angular observables at future e +e – colliders

    DOE PAGES

    Liu, Zhen

    2016-10-24

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  5. The case for future hadron colliders from B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  6. Configuration Manual Polarized Proton Collider at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, I.; Allgower, C.; Bai, M.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  7. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    ERIC Educational Resources Information Center

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  8. Using Data from the Large Hadron Collider in the Classroom

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy

    2017-01-01

    Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.

  9. Clash of the particle people

    NASA Astrophysics Data System (ADS)

    Hesketh, Gavin

    2017-06-01

    Particle physicist Tommaso Dorigo's book Anomaly!: Collider Physics and the Quest for New Phenomena at Fermilab takes us back to the 1990s, and covers the first 10 years of the CDF exeriment, one of two detectors on the Tevatron.

  10. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.; Herner, K.; Jayatilaka, B.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  12. First Operational Experience With a High-Energy Physics Run Control System Based on Web Technologies

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Hatton, Derek; Hwong, Yi Ling; Loizides, Constantin; Ma, Frank; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty; Yoon, Andre Sungho

    2012-08-01

    Run control systems of modern high-energy particle physics experiments have requirements similar to those of today's Internet applications. The Compact Muon Solenoid (CMS) collaboration at CERN's Large Hadron Collider (LHC) therefore decided to build the run control system for its detector based on web technologies. The system is composed of Java Web Applications distributed over a set of Apache Tomcat servlet containers that connect to a database back-end. Users interact with the system through a web browser. The present paper reports on the successful scaling of the system from a small test setup to the production data acquisition system that comprises around 10.000 applications running on a cluster of about 1600 hosts. We report on operational aspects during the first phase of operation with colliding beams including performance, stability, integration with the CMS Detector Control System and tools to guide the operator.

  13. The physics of heavy quark distributions in hadrons: Collider tests

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2017-03-01

    We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  14. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  15. The physics of heavy quark distributions in hadrons: Collider tests

    DOE PAGES

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; ...

    2016-12-18

    Here, we present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction—the “intrinsic” quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ/Z/W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsicmore » heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high x F and novel fixed target measurements which can be tested at the LHC.« less

  16. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    ScienceCinema

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2017-12-22

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  17. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  18. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact

    NASA Astrophysics Data System (ADS)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.

    2018-04-01

    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  19. Physical and social environmental characteristics of physical activity for Mexican-origin children: examining differences between school year and summer perceptions.

    PubMed

    Umstattd Meyer, M Renée; Walsh, Shana M; Sharkey, Joseph R; Morgan, Grant B; Nalty, Courtney C

    2014-09-16

    Colonias are substandard residential areas along the U.S.-Mexico border. Families of Mexican-origin living in colonias face health burdens characterized by environmental and socioeconomic hardships. Mexican Americans and low-income families, including colonias children, do not frequently participate in physical activity despite the known link to disease risk reduction. For colonias children, schools are the most commonly reported location for physical activity. School closures and extreme temperatures during summer months create a need to explore seasonal differences in environmental supports and barriers in this population. The purpose of this study was to examine the effect of seasonality on perceived environmental barriers, opportunities, and social support for physical activity among colonias children. As a secondary aim, mother-child discordance for each factor was analyzed. Promotora-researchers recruited mother-child dyads (n=101 dyads, n=202 participants) from colonias in Hidalgo County, Texas. Mothers and children were separately administered surveys at two time points to capture perceived barriers, opportunities, and social support for physical activity (school-year: February-May; summertime: July-August). Summative scores for each outcome were calculated and three multilevel longitudinal models for continuous outcomes were examined; children were nested within households. Mother-child discordance was measured using Cohen's Kappa statistic. Physical activity barriers and environmental opportunities (household and neighborhood) increased from school-year to summer by 1.16 and 2.83 points respectively (p≤0.01), after adjusting for covariates. Significant predictors of increased barriers included household income of >$900/month and having more household members. Children of mothers with significant others who were employed part-time or full-time saw significant decreases in barriers. Mother-child agreement of barriers, environmental opportunities, and social support across seasons was slight to fair (range: median κ=0.047 to κ=0.262). These results suggest a complex relationship between dimensions of economic hardship (employment status, household income, etc…) and perceived opportunities and barriers of children's physical activity engagement during the school-year and summer. In this study, both barriers and opportunities increased from school-year to summer, further demonstrating that interactions among these characteristics need to be better understood and addressed when considering physical activity initiatives for colonias and other Mexican-American children, specifically during summer when school-based physical activity resources are unavailable.

  20. High Luminosity 100 TeV Proton-Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, S. J.; Acosta, J. G.; Cremaldi, L. M.

    2016-10-01

    The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. Amore » $$10^{34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a $$p\\bar{p}$$ the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 $$\\pm$$ 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.« less

  1. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  2. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    DOE PAGES

    Buchmueller, Oliver; Citron, M.; Ellis, J.; ...

    2015-10-01

    Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less

  3. A New Simulation Framework for the Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Arrington, John

    2017-09-01

    Last year, a collaboration between Physics Division and High-Energy Physics at Argonne was formed to enable significantly broader contributions to the development of the Electron-Ion Collider. This includes efforts in accelerator R&D, theory, simulations, and detector R&D. I will give a brief overview of the status of these efforts, with emphasis on the aspects aimed at enabling the community to more easily become involved in evaluation of physics, detectors, and details of spectrometer designs. We have put together a new, easy-to-use simulation framework using flexible software tools. The goal is to enable detailed simulations to evaluate detector performance and compare detector designs. In addition, a common framework capable of providing detailed simulations of different spectrometer designs will allow for fully consistent evaluations of the physics reach of different spectrometer designs or detector systems for a variety of physics channels. In addition, new theory efforts will provide self-consistent models of GPDs (including QCD evolution) and TMDs in nucleons and light nuclei, as well as providing more detailed physics input for the evaluation of some new observables. This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  4. Viewpoint: the End of the World at the Large Hadron Collider?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E.; /SLAC

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by themore » LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.« less

  5. Detection of gravitational waves: a hundred year journey

    NASA Astrophysics Data System (ADS)

    Mavalvala, Nergis

    2016-05-01

    In February 2016, scientists announced the first ever detection of gravitational waves from colliding black holes, launching a new era of gravitational wave astronomy and unprecedented tests of Einstein's theory of general relativity. I will describe the science and technology, and also the human story, behind the long quest that led to this discovery. Bio: Nergis Mavalvala is Professor of Physics at the Massachusetts Institute of Technology (MIT). Her research links the world of quantum mechanics, usually apparent only at the atomic scale, with gravitational waves, arising from some of the most powerful, yet elusive, forces in the cosmos. In 2016, she was part of the team that announced the first detection of gravitational waves from colliding black holes. She received a B.A. from Wellesley College in 1990 and a Ph.D. from MIT in 1997. She was a postdoctoral fellow and research scientist at the California Institute of Technology between 1997 and 2002. Since 2002, she has been on the Physics faculty at MIT, and was named a MacArthur Fellow in 2010. She is a Fellow of the American Physical Society and the Optical Society of America.

  6. Camp NERF: methods of a theory-based nutrition education recreation and fitness program aimed at preventing unhealthy weight gain in underserved elementary children during summer months.

    PubMed

    Hopkins, Laura C; Fristad, Mary; Goodway, Jacqueline D; Eneli, Ihuoma; Holloman, Chris; Kennel, Julie A; Melnyk, Bernadette; Gunther, Carolyn

    2016-10-26

    The number of obese children in the US remains high, which is problematic due to the mental, physical, and academic effects of obesity on child health. Data indicate that school-age children, particularly underserved children, experience unhealthy gains in BMI at a rate nearly twice as fast during the summer months. Few efforts have been directed at implementing evidence-based programming to prevent excess weight gain during the summer recess. Camp NERF is an 8-week, multi-component (nutrition, physical activity, and mental health), theory-based program for underserved school-age children in grades Kindergarten - 5th coupled with the USDA Summer Food Service Program. Twelve eligible elementary school sites will be randomized to one of the three programming groups: 1) Active Control (non-nutrition, physical activity, or mental health); 2) Standard Care (nutrition and physical activity); or 3) Enhanced Care (nutrition, physical activity, and mental health) programming. Anthropometric, behavioral, and psychosocial data will be collected from child-caregiver dyads pre- and post-intervention. Site-specific characteristics and process evaluation measures will also be collected. This is the first, evidence-based intervention to address the issue of weight gain during the summer months among underserved, school-aged children. Results from this study will provide researchers, practitioners, and public health professionals with insight on evidence-based programming to aid in childhood obesity prevention during this particular window of risk. NCT02908230/09-19-2016.

  7. Effects of a Competency-Based Professional Development Training on Children's Physical Activity and Staff Physical Activity Promotion in Summer Day Camps

    ERIC Educational Resources Information Center

    Weaver, R. Glenn; Beets, Michael W.; Turner-McGrievy, Gabrielle; Webster, Collin A.; Moore, Justin

    2014-01-01

    The YMCA of the USA serves more than nine million youth in its summer day camping programs nationwide. In spring 2011, the YMCA of Columbia, SC, with support from the University of South Carolina, adopted a competency-based staff-level training approach in an attempt to align staff behaviors with the YMCA of the USA new physical activity standards…

  8. International Linear Collider Technical Design Report (Volumes 1 through 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  9. News Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

    NASA Astrophysics Data System (ADS)

    2013-09-01

    Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

  10. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  11. Properties of the Top Quark

    DOE PAGES

    Déliot, Frédéric; Hadley, Nicholas; Parke, Stephen; ...

    2014-10-19

    We report that the top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed here in this article.

  12. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  13. News

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Meeting: Brecon hosts 'alternative-style' Education Group Conference Meeting: Schools' Physics Group meeting delivers valuable teaching update Saturn Mission: PPARC’s Saturn school resource goes online Funding: Grant scheme supports Einstein Year activities Meeting: Liverpool Teachers’ Conference revives enthusiasm for physics Loan Scheme: Moon samples loaned to schools Awards: Schoolnet rewards good use of ICT in learning Funding: PPARC provides cash for science projects Workshop: Experts in physics education research share knowledge at international event Bulgaria: Transit of Venus comes to town Conference: CERN weekend provides lessons in particle physics Summer School: Teachers receive the summer-school treatment

  14. The Big Bang and the Search for a Theory of Everything

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2010-01-01

    How did the universe begin? Is the gravitational physics that governs the shape and evolution of the cosmos connected in a fundamental way to the sub-atomic physics of particle colliders? Light from the Big Bang still permeates the universe and carries within it faint clues to the physics at the start of space and time. I will describe how current and planned measurements of the cosmic microwave background will observe the Big Bang to provide new insight into a "Theory of Everything" uniting the physics of the very large with the physics of the very small.

  15. VERB [TM] Summer Scorecard: Increasing Tween Girls' Vigorous Physical Activity

    ERIC Educational Resources Information Center

    Alfonso, Moya L.; Thompson, Zachary; McDermott, Robert J.; Colquitt, Gavin; Jones, Jeffery A.; Bryant, Carol A.; Courtney, Anita H.; Davis, Jenna L.; Zhu, Yiliang

    2013-01-01

    Objective: We assessed changes in the frequency of self-reported physical activity (PA) among tween girls exposed and not exposed to the VERB [TM] Summer Scorecard (VSS) intervention in Lexington, Kentucky, during 2004, 2006, and 2007. Methods: Girls who reported 0-1 day per week of PA were classi?ed as having "little or no" PA. Girls…

  16. A Report on the Science Summer Camp for the Gifted 9th Grade Students.

    ERIC Educational Resources Information Center

    Kyeonggi Province Board of Education, Suweon (Republic of Korea).

    A summer science camp was held in Korea for 30 ninth grade students gifted in science. Students were divided into three groups (physics, chemistry, and biology) for activities which included problem solving, brainstorming, and experimental work. The experiments of the physics group addressed the use of solar energy, the chemistry group focused on…

  17. Hadron collider searches for diboson resonances

    NASA Astrophysics Data System (ADS)

    Dorigo, Tommaso

    2018-05-01

    This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.

  18. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  19. Water transfer and loss in hit-and-run collisions

    NASA Astrophysics Data System (ADS)

    Burger, C.; Maindl, T. I.; Schäfer, C.

    2017-09-01

    This work focuses on transfer and loss of volatiles, like water, in hit-and-run collisions, where especially the smaller one of the colliding pair is often stripped of considerable amounts of its initial volatile content, but still survives the encounter more or less intact. We find water losses up to 75 percent in a single collision, depending on various parameters, especially velocity, impact angle and mass ratio, but also on the total colliding mass. The physical state, especially vaporization of volatiles, is found to be particularly important in collisions of approximately Mars-sized bodies, with high impact energies, but still potentially easy volatile escape.

  20. SNOWMASS (DPF Community Summer Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronin-Hennessy, et al, Daniel

    2013-08-06

    The 2013 Community Summer Study, known as Snowmass," brought together nearly 700 physicists to identify the critical research directions for the United States particle physics program. Commissioned by the American Physical Society, this meeting was the culmination of intense work over the past year by more than 1000 physicists that defined the most important questions for this field and identified the most promising opportunities to address them. This Snowmass study report is a key resource for setting priorities in particle physics.

  1. Physics with CMS and Electronic Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohlf, James W.

    2016-08-01

    The current funding is for continued work on the Compact Muon Solenoid (CMS) at the CERN Large Hadron Collider (LHC) as part of the Energy Frontier experimental program. The current budget year covers the first year of physics running at 13 TeV (Run 2). During this period we have concentrated on commisioning of the μTCA electronics, a new standard for distribution of CMS trigger and timing control signals and high bandwidth data aquistiion as well as participating in Run 2 physics.

  2. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  3. CDF-II and B physics

    NASA Astrophysics Data System (ADS)

    Lockyer, Nigel S.

    1998-02-01

    This paper reports on the CDF-II B physics goals and new detector systems presently being built for Run-II of the Tevatron collider in the year 2000. The B physics goals are focused towards observing and studying CP violation and B s flavor oscillations. Estimates of expected performance are reported. The new detector systems described are: the 5-layer 3-D silicon vertex detector, the intermedia silicon tracking layers, the central tracking drift chamber, muon system upgrades, and a proposed time-of-flight system.

  4. 9th International Workshop on the CKM Unitarity Triangle

    NASA Astrophysics Data System (ADS)

    The CKM series is a well-established international meeting in the field of quark-flavour physics that brings both experimenters and theorists on a common platform. On the experimental front, we bridge borders between neutron, kaon, charm and beauty hadron, and top quark physics. The theory program tries to cover a wide range of approaches. We shall discuss how this marriage can indirectly probe physics beyond the standard model, taking into account the interplay with high-pT collider searches.

  5. 410th Brookhaven Lecture

    ScienceCinema

    Peter Steinberg

    2017-12-09

    In a lecture titled "Hotter, Denser, Faster, Smaller...and Nearly Perfect: What's the Matter at RHIC?", Steinberg discusses the basic physics of the quark-gluon plasma and BNL's Relativistic Heavy Ion Collider, with a focus on several intriguing results from RHIC's recently ended PHOBOS experiment.

  6. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  7. XIII Modave Summer School in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The Modave Summer School on Mathematical Physics is a yearly summer school in topics of theoretical physics. Various topics ranging from quantum gravity and cosmology to theoretical particle physics and string theory. The school takes place in Modave, a charming village in the Belgian Ardennes close to Huy. Modave School is organised by PhD students for PhD students, and this makes it rather unique. The courses are taught by Post-Docs or late PhD students, and they are all made of pedagogical, basic blackboard lectures about recent topics in theoretical physics. Participants and lecturers eat and sleep in the same place where the lectures are given. The absence of senior members, and the fact of spending day and night together in an isolated, peaceful place contribute to creating an informal atmosphere and facilitating interactions. Lectures of the thirteenth edition are centered around the following subjects: bulk reconstruction in AdS/CFT, twistor theory, AdS_2/CFT_1 and SYK, geometry and topology, and asymptotic charges.

  8. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but theymore » will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP* in the time between the Dark Matter and Neutrino workshops (June 29 – July 3) covering the subjects of dark matter, dark energy, neutrino physics, gravitational waves, collider physics and many others. PPC brought about 90 national and international participants. Started at Texas A&M University in 2007, PPC travelled to many places which include Geneva (Switzerland), Turin (Italy), Seoul (South Korea) and Leon (Mexico) over last few years. The objectives of CETUP*2015 and PPC2015 were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments.« less

  9. Promoting physical activity among youth through community-based prevention marketing.

    PubMed

    Bryant, Carol A; Courtney, Anita H; McDermott, Robert J; Alfonso, Moya L; Baldwin, Julie A; Nickelson, Jen; McCormack Brown, Kelli R; Debate, Rita D; Phillips, Leah M; Thompson, Zachary; Zhu, Yiliang

    2010-05-01

    Community-based prevention marketing (CBPM) is a program planning framework that blends community-organizing principles with a social marketing mind-set to design, implement, and evaluate public health interventions. A community coalition used CBPM to create a physical activity promotion program for tweens (youth 9-13 years of age) called VERB Summer Scorecard. Based on the national VERB media campaign, the program offered opportunities for tweens to try new types of physical activity during the summer months. The VERB Summer Scorecard was implemented and monitored between 2004 and 2007 using the 9-step CBPM framework. Program performance was assessed through in-depth interviews and a school-based survey of youth. The CBPM process and principles used by school and community personnel to promote physical activity among tweens are presented. Observed declines may become less steep if school officials adopt a marketing mind-set to encourage youth physical activity: deemphasizing health benefits but promoting activity as something fun that fosters spending time with friends while trying and mastering new skills. Community-based programs can augment and provide continuity to school-based prevention programs to increase physical activity among tweens.

  10. Flavorful leptoquarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  11. Upper bound on the center-of-mass energy of the collisional Penrose process

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-08-01

    Following the interesting work of Bañados, Silk, and West (2009) [6], it is repeatedly stated in the physics literature that the center-of-mass energy, Ec.m, of two colliding particles in a maximally rotating black-hole spacetime can grow unboundedly. For this extreme scenario to happen, the particles have to collide at the black-hole horizon. In this paper we show that Thorne's famous hoop conjecture precludes this extreme scenario from occurring in realistic black-hole spacetimes. In particular, it is shown that a new (and larger) horizon is formed before the infalling particles reach the horizon of the original black hole. As a consequence, the center-of-mass energy of the collisional Penrose process is bounded from above by the simple scaling relation Ec.mmax / 2 μ ∝(M / μ) 1 / 4, where M and μ are respectively the mass of the central black hole and the proper mass of the colliding particles.

  12. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  13. An Analysis of the Appropriateness and Utilization of TOUS with Special Reference to High-Ability Students Studying Physics

    ERIC Educational Resources Information Center

    Durkee, Phillip

    1974-01-01

    Reported is a study having several major purposes. Among these were (1) to investigate the change in "understanding the nature of science" as shown by high school students studying physics-astronomy at a summer science institute and (2) to compare the level of understanding possessed by the summer science group with normative secondary…

  14. Report on the 2006 AAPT Apparatus Competition

    ERIC Educational Resources Information Center

    Flarend, Richard

    2007-01-01

    Each year at the AAPT summer meeting there is an apparatus competition in which members of the physics community can share ideas for new or improved apparatus to aid in the teaching of physics. The 2006 competition at the summer meeting in Syracuse, NY, was the largest competition in quite a while and continued an upward trend in the number of…

  15. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  16. JetWeb: A WWW interface and database for Monte Carlo tuning and validation

    NASA Astrophysics Data System (ADS)

    Butterworth, J. M.; Butterworth, S.

    2003-06-01

    A World Wide Web interface to a Monte Carlo tuning facility is described. The aim of the package is to allow rapid and reproducible comparisons to be made between detailed measurements at high-energy physics colliders and general physics simulation packages. The package includes a relational database, a Java servlet query and display facility, and clean interfaces to simulation packages and their parameters.

  17. Introducing the LHC in the classroom: an overview of education resources available

    NASA Astrophysics Data System (ADS)

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-05-01

    In the context of the recent re-start of CERN’s Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and linking principal components of the LHC to topics in physics curricula.

  18. The CMS High-Level Trigger and Trigger Menus

    NASA Astrophysics Data System (ADS)

    Avetisyan, Aram

    2008-04-01

    The CMS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The online event selection for the CMS experiment is carried out in two distinct stages. At Level-1 the trigger electronics reduces the 40 MHz collision rate to provide up to 100 kHz of interesting events, based on objects found using its calorimeter and muon subsystems. The High Level Trigger (HLT) that runs in the Filter Farm of the CMS experiment is a set of sophisticated software tools that run in a real-time environment to make a further selection and archive few hundred Hz of interesting events. The coherent tuning of the HLT algorithms to accommodate multiple physics channels is a key issue for CMS, one that literally defines the reach of the experiment's physics program. In this presentation we will discuss the strategies and trigger configuration developed for startup physics program of the CMS experiment, up to a luminosity of 10^31 s-1cm-2. Emphasis will be given to the full trigger menus, including physics and calibration triggers.

  19. The Physics of Quidditch Summer Camp: An Interdisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department has developed an innovative summer camp program that takes an interdisciplinary approach to engaging and teaching physics. The Physics of Quidditch Camp uniquely sits at the intersection of physics, sports, and literature, utilizing the real-life sport of quidditch adapted from the Harry Potter novels to stimulate critical thinking about real laws of physics and leaps of imagination, while actively engaging students in learning the sport and discussing the literature. Throughout the camp, middle school participants become immersed in fun physics experiments and exciting physical activities, which aim to build and enhance skills in problem-solving, analytical thinking, and teamwork. This camp has pioneered new ways of teaching physics to pre-college students, successfully engaged middle school students in learning physics, and grown a large demand for such activities.

  20. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  1. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  2. Design study for a staged Very Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter J. Limon et al.

    Advancing accelerator designs and technology to achieve the highest energies has enabled remarkable discoveries in particle physics. This report presents the results of a design study for a new collider at Fermilab that will create exceptional opportunities for particle physics--a two-stage very large hadron collider. In its first stage, the machine provides a facility for energy-frontier particle physics research, at an affordable cost and on a reasonable time scale. In a second-stage upgrade in the same tunnel, the VLHC offers the possibility of reaching 100 times the collision energy of the Tevatron. The existing Fermilab accelerator complex serves as themore » injector, and the collision halls are on the Fermilab site. The Stage-1 VLHC reaches a collision energy of 40 TeV and a luminosity comparable to that of the LHC, using robust superferric magnets of elegant simplicity housed in a large-circumference tunnel. The Stage-2 VLHC, constructed after the scientific potential of the first stage has been fully realized, reaches a collision energy of at least 175 TeV with the installation of high-field magnets in the same tunnel. It makes optimal use of the infrastructure developed for the Stage-1 machine, using the Stage-1 accelerator itself as the injector. The goals of this study, commissioned by the Fermilab Director in November 2000, are: to create reasonable designs for the Stage-1 and Stage-2 VLHC in the same tunnel; to discover the technical challenges and potential impediments to building such a facility at Fermilab; to determine the approximate costs of the major elements of the Stage-1 VLHC; and to identify areas requiring significant R and D to establish the basis for the design.« less

  3. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  4. Modelling the colliding-wind spectra of the WC8d+O8-9IV binary CV Ser (WR 113)

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Moffat, A. F. J.; St-Louis, N.

    2018-03-01

    Striking profile variations of the C III λ5696 emission line are visible amongst the high signal-to-noise ratio, moderate resolution spectra of the 29.7 d WC8d+O8-9IV binary CV Ser (WR 113) presented here. Using a significantly revised code, we have modelled these variations assuming the emission originates from the undisturbed WR star wind and a colliding wind shock region that partially wraps around the O star. Changes to the modelling code are chiefly in the form of additional parameters, intended to refine the modelling and facilitate comparison with recent predictions arising from theoretical and hydrodynamical work. This modelling provides measurements of crucial parameters such as the orbital inclination (63.5° ± 2.5°) and thus, together with the RV orbits, the stellar masses (11.7 ± 0.9 M⊙ for the WR star and 33.3 ± 2.0 M⊙ for the O star). We find good agreement with expectations based on theoretical studies and hydrodynamical modelling of colliding wind systems. Moreover, it raises the exciting prospect of providing a reliable method to learn more about WR stellar masses and winds, and for studying the physics of colliding winds in massive stars.

  5. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  6. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE PAGES

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip; ...

    2018-03-29

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  7. Book Your Summer Vacation

    ERIC Educational Resources Information Center

    Texley, Juliana

    2012-01-01

    Summer's the time for teachers to travel, not only physically from the confines of the classroom to exotic places, but vicariously, through the magic of books. Summer adventures help teachers expand their experience and enrich their store of context so that they can offer their students more when school resumes in the fall. That's why each year…

  8. Methods for Probing New Physics at High Energies

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.

    This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and Octavian Micu in Romania on the detectability of quantum black holes in extensive air showers. The next was with Luis Anchordoqui, Haim Goldberg, Thomas Paul, Luiz da Silva, Brian Vlcek, and Tom Weiler on placing limits on Weinberg's Higgs portal, originally written to explain anomalous Neff values, from direct detection and collider experiments which was published in Physical Review D. The final was completed at Fermilab with Stephen Parke and Hisakazu Minakata on a perturbative description of neutrino oscillations in matter which was published in the Journal of High Energy Physics, and the code behind this paper is publicly available.

  9. Final Report of DOE Grant No. DE-FG02-04ER41306

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera

    2013-12-10

    Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less

  10. Research in Theoretical High-Energy Physics at Southern Methodist University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olness, Fredrick; Nadolsky, Pavel

    2016-08-05

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  11. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  12. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  13. Mesure de la section efficace de production de paires de quarks top dans le canal μ + jets + τ + b-jet(s) + Energie transverse manquante auprès de l'expérience DØ du Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, Jerome

    2011-09-09

    The purpose of high energy physics is to improve our knowledge about the fundamental structure of matter, in particular about particles that constitute the world. One of these is the top quark, that was discovered in 1995 by the CDF and D0 collaborations at the Tevatron protons-antiprotons collider. One of the primary aim of the Tevatron has been then the fine study of the top quark properties, in particular the top-antitop production cross section. Different analysis have been performed in the leptons (μ,e,τ) + jets, dileptons, and all hadronic channels to determine accurately the values of these parameters, and thusmore » to test the validity of the Standard Model. The main goal of this thesis is to verify one of the theoretical predictions of the Standard Model of particle physics, the top-antitop production cross section, at the Tevatron collider.« less

  14. The Beginning of the Physics of Leptons

    NASA Astrophysics Data System (ADS)

    Ting, Samuel C. C.

    Over the last 30 years the study of lepton pairs from both hadron and electron accelerators and colliders has led to the discovery of J, ϒ, Z and W particles. The study of acoplanar eμ pairs + missing energy has led to the discovery of the heavy lepton, now called τ lepton. Indeed, the study of lepton pairs with and without missing energy has become the main method in high energy colliders for searching new particles. This paper presents some of the important contributions made by Antonino Zichichi over a 10 year period at CERN and Frascati in opening this new field of physics. This includes the development of instrumentation to distinguish leptons from hadrons, the first experiment on lepton pair production from hadron machines, the precision tests of electrodynamics at very small distances, the production of hadrons from e+e- collisions and most importantly his invention of a new method e+e- → eμ + missing momenta, experimentally proving that, thanks to his new electron and muon detection technology, these signals have very little background.

  15. First a tragedy, then farce

    NASA Astrophysics Data System (ADS)

    Foster, Brian

    2008-09-01

    It is impossible to think about the problems in the UK over the last 10 months arising from the £80m shortfall in the budget of the Science and Technology Facilities Council (STFC) without recalling Marx's famous aphorism: "History repeats itself, first as tragedy, then as farce." Certainly the repetition of a funding crisis in UK particle physics and astronomy is hardly unexpected; they seem to occur every decade or so with unwelcome regularity. The consequent loss of morale, jobs and opportunities in the UK for the brightest young people to pursue their dreams in what is widely acknowledged to be world-class science is a tragedy. What perhaps marks the uniqueness of the funding crisis this time round is the level of farce. The sums that did not add up; the consultations without interlocutors; and the truculent and damaging statements about withdrawal from the Gemini telescopes based in Hawaii and Chile, and the International Linear Collider (ILC) - the next big particle-physics project after the Large Hadron Collider (LHC) at CERN.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman A.; /SLAC

    Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less

  17. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 9)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  18. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 5)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  19. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 6)

    ScienceCinema

    None

    2018-06-28

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  20. HST at CERN an Amazing Adventure

    NASA Astrophysics Data System (ADS)

    Restivo, Evelyn

    2009-04-01

    The High School Teacher Program (HST) at the European Organization for Nuclear Research, CERN, in Geneva, Switzerland was initiated in 1998 by a group of scientists, as a multicultural international program designed to introduce high school physics teachers to high-energy physics. The goal of the program is to provide experiences and materials that will help teachers lead their students to a better understanding of the physical world. Interacting with physics teachers from around the world leads to new approaches for dealing with educational issues that all teachers encounter. The program includes a variety of tours, a series of lectures and classroom activities about the physics expected from the Large Hadron Collider.

  1. Physical Activity in the Heat: Important Considerations to Keep Your Students Safe

    ERIC Educational Resources Information Center

    Roetert, E. Paul; Richardson, Cheryl L.; Bergeron, Michael F.

    2012-01-01

    Although July and August tend to be the warmest months of the year, the months leading up to summer as well as the months just following summer can also be quite warm or even very hot. In this article, the authors share some important information to help prepare physical educators for overseeing activities in the heat and, just as importantly, to…

  2. Mechanism of vacuum breakdown in radio-frequency accelerating structures

    NASA Astrophysics Data System (ADS)

    Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.

    2018-06-01

    It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.

  3. Interaction region design driven by energy deposition

    NASA Astrophysics Data System (ADS)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  4. Testing B-violating signatures from exotic instantons in future colliders

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.

    2017-09-01

    We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048

  5. The use of minimal spanning trees in particle physics

    DOE PAGES

    Rainbolt, J. Lovelace; Schmitt, M.

    2017-02-14

    Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.

  6. The use of minimal spanning trees in particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainbolt, J. Lovelace; Schmitt, M.

    Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.

  7. Mixed Signals: The Impact of International Administration on Kosovo’s Independence

    DTIC Science & Technology

    2010-12-01

    therapist , mother confessor, and ever-suffering editor: thank you for your amazing support and understanding. You are my hero, and you inspire me...University Press, 1998), xxix. 9 the physical realm: the tectonic plates of race, religion, language, and culture also collide in the Balkans...battle in 1389.66 By adopting these crowd symbols, the Serbs retained their spiritual link to Kosovo despite having departed the province physically

  8. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  9. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer. This work is based on observations carried out under project numbers S14AW and S16AU with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  10. Romping through Summer in a Wheelchair.

    ERIC Educational Resources Information Center

    Nolan, Karen

    1981-01-01

    Children with physical handicaps can participate in many of the same summer camp activities as non-disabled persons. Described are the programs at Camp Merry Heart, operated by New Jersey's Easter Seal Society. (WB)

  11. Extinction of the Dinosuars: Scientific Theory

    NASA Technical Reports Server (NTRS)

    Moreno, M. A.

    1993-01-01

    Professor Luis Alvarez, a doctor in physics, of the University of California, Berkeley, proposed in 1980 the theory that an asteroid of 10 kilometers in diameter traveling at more than 100,000 kilometers per hour collided with the earth 65 million years ago causing the extenction of the dinosaurs.

  12. --No Title--

    Science.gov Websites

    time. It is usually measured in radians per second. Anisotropy- Physical property values that vary when negative charge. When an antimatter particle collides with its normal-matter counterpart, both particles neutrons. Big Bang- The violent cosmic explosion of an incredibly small amount of matter at high

  13. Performance of the PHOBOS silicon sensors

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-02-01

    The PHOBOS detector is designed to study the physics of Au+Au collisions at the Relativistic Heavy Ion Collider. The detector is almost entirely made of silicon pad detectors and was fully operational during the first year of operation. The detector is described, and key performance characteristics are summarized.

  14. Crabbing System for an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Castilla, Alejandro

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.

  15. A 2006 SPS Summer Intern’s Experiences, Reflections, and Future Ambitions

    NASA Astrophysics Data System (ADS)

    Deml, Ann

    2006-12-01

    As a SPS Summer Intern from the University of Wisconsin-River Falls, I spent nine weeks in the Washington, D.C. area working with the American Physical Society. My work dealt primarily with the development of a ComPADRE outreach website, Physics To Go, which offers the public opportunities to engage in informal physics learning. Specific tasks that I performed included locating content to feature on the homepage, obtaining photographer permissions, and cataloging quality websites into the digital library. At the conclusion of the summer, I accepted an offer to continue working on Physics To Go and have further contributed to its expansion. Participating in this internship has influenced my life in several respects, and as a result, I will be enrolling in a graduate program this coming year. Additionally, I am making plans to participate in a National Student Exchange program and am considering a career with a greater emphasis on research. The internship has served as an invaluable and irreplaceable experience.

  16. Invention and History of the Bubble Chamber (LBNL Summer Lecture Series)

    ScienceCinema

    Glaser, Don [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-12

    Summer Lecture Series 2006: Don Glaser won the 1960 Nobel Prize for Physics for his 1952 invention of the bubble chamber at Berkeley Lab, a type of particle detector that became the mainstay of high-energy physics research throughout the 1960s and 1970s. He discusses how, inspired by bubbles in a glass of beer, he invented the bubble chamber and detected cosmic-ray muons.

  17. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  18. SPS Internship: Working With Physics To Go

    NASA Astrophysics Data System (ADS)

    Hancock, Logan

    2008-10-01

    The Physics To Go website (www.physicstogo.com) is one of many collections of ComPADRE, an online library of electronic resources devoted to physics and astronomy education, funded by the National Science Foundation. Physics To Go, produced by the American Physical Society (APS), is a collection focused on informal physics learning, targeted towards self-motivated learners and the general public. My contributions to the site this summer consisted of obtaining useful materials to add to the collection and working to update the homepage's ``mini-magazine'' every two weeks. I was selected for this position at APS by the Society of Physics Students (SPS) summer internship program, hosted by the American Institute of Physics (AIP) in College Park, MD. This internship is presented to a number of physics undergraduates each year and offers opportunities in research and science policy/outreach positions at SPS, APS, AAPT, NASA, and NIST.

  19. Tanned or burned: the role of fire in shaping physical seed dormancy.

    PubMed

    Moreira, Bruno; Pausas, Juli G

    2012-01-01

    Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100 °C, 120 °C or 150 °C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31 °C, 4 hours at 43 °C, 3 hours at 33 °C and 14 hours at 18 °C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits.

  20. Tanned or Burned: The Role of Fire in Shaping Physical Seed Dormancy

    PubMed Central

    Moreira, Bruno; Pausas, Juli G.

    2012-01-01

    Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits. PMID:23227267

  1. Production Cross-Section Estimates for Strongly-Interacting Electroweak-Symmetry Breaking Sector Resonances at Particle Colliders

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.

    2015-12-01

    We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e-e+ (or potentially a μ-μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)

  2. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  3. Elevation Measurement Profile of Mars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The elevation measurements were collected by the Mars Orbiter Laser Altimeter (MOLA) aboard Global Surveyor during the spring and summer of 1998, as the spacecraft orbited Mars in an interim elliptical orbit. MOLA sends laser pulses toward the planet and measures the precise amount of time before the reflected signals are received back at the instrument. From this data, scientists can infer surface and cloud heights.

    During its mapping of the north polar cap, the MOLA instrument also made the first direct measurement of cloud heights on the red planet. Reflections from the atmosphere were obtained at altitudes from just above the surface to more than nine miles (approximately 15 kilometers) on about 80 percent of the laser profiles. Most clouds were observed at high latitudes, at the boundary of the ice cap and surrounding terrain.

    Clouds observed over the polar cap are likely composed of carbon dioxide that condenses out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamic structure probably caused by winds interacting with surface topography, much as occurs on Earth when winds collide with mountains to produce turbulence.

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  4. The early universe as a probe of new physics

    NASA Astrophysics Data System (ADS)

    Bird, Christopher Shane

    The Standard Model of Particle Physics has been verified to unprecedented precision in the last few decades. However there are still phenomena in nature which cannot be explained, and as such new theories will be required. Since terrestrial experiments are limited in both the energy and precision that can be probed, new methods are required to search for signs of physics beyond the Standard Model. In this dissertation, I demonstrate how these theories can be probed by searching for remnants of their effects in the early Universe. In particular I focus on three possible extensions of the Standard Model: the addition of massive neutral particles as dark matter, the addition of charged massive particles, and the existence of higher dimensions. For each new model, I review the existing experimental bounds and the potential for discovering new physics in the next generation of experiments. For dark matter, I introduce six simple models which I have developed, and which involve a minimum amount of new physics, as well as reviewing one existing model of dark matter. For each model I calculate the latest constraints from astrophysics experiments, nuclear recoil experiments, and collider experiments. I also provide motivations for studying sub-GeV mass dark matter, and propose the possibility of searching for light WIMPs in the decay of B-mesons and other heavy particles. For charged massive relics, I introduce and review the recently proposed model of catalyzed Big Bang nucleosynthesis. In particular I review the production of 6Li by this mechanism, and calculate the abundance of 7Li after destruction of 7Be by charged relics. The result is that for certain natural relics CBBN is capable of removing tensions between the predicted and observed 6Li and 7Li abundances which are present in the standard model of BBN. For extra dimensions, I review the constraints on the ADD model from both astrophysics and collider experiments. I then calculate the constraints on this model from Big Bang nucleosynthesis in the early Universe. I also calculate the bounds on this model from Kaluza-Klein gravitons trapped in the galaxy which decay to electron-positron pairs, using the measured 511 keV gamma-ray flux. For each example of new physics, I find that remnants of the early Universe provide constraints on the models which are complementary to the existing constraints from colliders and other terrestrial experiments.

  5. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

  6. Rotorcraft Airloads Measurements - Extraordinary Costs, Extraordinary Benefits

    DTIC Science & Technology

    2014-08-01

    obtained in the 1980s by the PETRA collider in a high-energy physics lab near Hamburg, Germany. The project, called JADE, was an international...and R. M. Martin . 1990. Aerodynamic and Acoustic Test of a United Technologies Scale Model Rotor at DNW. Amer. Hel. Soc. 46th Annual Forum, Wash

  7. When Worlds Collide: An Augmented Reality Check

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    The technology is simple: Mobile technologies such as handheld computers and global positioning systems work in sync to create an alternate, hybrid world that mixes virtual characters with the actual physical environment. The result is a digital simulation that offers powerful game-playing opportunities and allows students to become more engaged…

  8. U.S. Involvement in the LHC

    DOE PAGES

    Green, Dan

    2016-12-14

    The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.

  9. Active Summers Matter: Evaluation of a Community-Based Summertime Program Targeting Obesogenic Behaviors of Low-Income, Ethnic Minority Girls

    ERIC Educational Resources Information Center

    Bohnert, Amy M.; Ward, Amanda K.; Burdette, Kimberly A.; Silton, Rebecca L.; Dugas, Lara R.

    2014-01-01

    Low-income minority females are disproportionately affected by obesity. The relevance of summer months to weight gain is often overlooked. Some evidence suggests that summer programming, such as day camps, may offer increased opportunities for structured physical activities resulting in less weight gain. This study examined the effectiveness of…

  10. A multisite evaluation of summer camps for children with cancer and their siblings.

    PubMed

    Wu, Yelena P; McPhail, Jessica; Mooney, Ryan; Martiniuk, Alexandra; Amylon, Michael D

    2016-01-01

    Summer camps for pediatric cancer patients and their families are ubiquitous. However, there is relatively little research, particularly studies including more than one camp, documenting outcomes associated with children's participation in summer camp. The current cross-sectional study used a standardized measure to examine the role of demographic, illness, and camp factors in predicting children's oncology camp-related outcomes. In total, 2,114 children at 19 camps participated. Campers were asked to complete the pediatric camp outcome measure, which assesses camp-specific self-esteem, emotional, physical, and social functioning. Campers reported high levels of emotional, physical, social, and self-esteem functioning. There were differences in functioning based on demographic and illness characteristics, including gender, whether campers/siblings were on or off active cancer treatment, age, and number of prior years attending camp. Results indicated that summer camps can be beneficial for pediatric oncology patients and their siblings, regardless of demographic factors (e.g., gender, treatment status) and camp factors (e.g., whether camp sessions included patients only, siblings only, or both). Future work could advance the oncology summer camp literature by examining other outcomes linked to summer camp attendance, using longitudinal designs, and including comparison groups.

  11. Environmental and social-motivational contextual factors related to youth physical activity: systematic observations of summer day camps.

    PubMed

    Zarrett, Nicole; Sorensen, Carl; Skiles, Brittany

    2013-05-20

    Youth risk of obesity is high during the summer months. Summer day camps can be ideal settings for preventing obesity through reducing youth summer sedentary behaviors. However, with limited research on camp settings, the mechanisms by which these programs promote children's physical activity (PA) remains largely unknown. The current study was designed to take a first step in addressing this gap in research through systematic observations of 4 summer day camps. Systematic observations of 4 summer day camps was conducted using the System for Observing Play and Leisure Activity in Youth (SOPLAY) and a social-motivational climate supplemental observation tool founded on Self-Determination Theory and previous research developed by the authors. Teams of two coders observed daily activities for four days across two-week periods at each camp. On 15 minute intervals throughout each day, camps were assessed on level of youth PA (e.g., sedentary, moderate, vigorous), five physical features (e.g., equipment), eight staff interactions (e.g., encourage PA), and six social climate components (e.g., inclusive game). Across the sample, highly engaging games [F(1,329) = 17.68, p < .001], positive peer interactions [F(1,329) = 8.43, p < .01], and bullying [F(1,329) = 9.39, p < .01] were significantly related to higher PA participation rates, and clarity of rules [F(1,329) = 11.12, p < .001] was related to fewer youth participating in PA. Separate analyses for males and females indicated some sex differences with highly engaging games [F(1,329) = 23.10, p < .001] and bullying [F(1,329) = 10.00, p < .01] related to males' but not females' PA, and positive peer interactions related to only females' PA [F(1,329) = 9.58, p < .01]. Small, yet significant physical-environmental effects of temperature [F(1,328) = 1.54, p < .05] and equipment [F(1,328) = 4.34, p = .05] for girls also suggests that activities offered indoors (which was most common during high temperatures), and provision of equipment may also be important considerations for promoting girls' PA. Staff behaviors were minimally predictive of youth PA. This is the first study to conduct systematic observations of the physical and social resources of summer day camps and contributes to our understanding of the strengths and needs of camps to effectively promote PA in both boys and girls during the summer months when risks for obesity are high.

  12. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  13. Physical Activity Levels and Well-Being in Older Adults.

    PubMed

    Bae, Wonyul; Ik Suh, Young; Ryu, Jungsu; Heo, Jinmoo

    2017-04-01

    The objective of this study was to identify the interconnectedness of different intensity levels of physical activity and psychological (life satisfaction and positive affect) and physical (physical health) well-being. Participants were from the National Study of Midlife in the United States with assessments in 2004 and aged 25 to 74 living in the United States were included in the analyses. We conducted bivariate correlations to examine significant relationships among the study variables. In addition, after multicollinearity among the independent variable was checked, a series of hierarchical regression analyses with physical health, positive affect, and life satisfaction as criterion variables were conducted. The results showed that light physical activities were positively associated with physical health and life satisfaction in summer, whereas light physical activities and all dependent variables were positively correlated in winter. Furthermore, engaging in moderate physical activities was positively related only with physical health. Meanwhile, vigorous physical activities were not associated with life satisfaction, physical health, and positive affect in summer and winter.

  14. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  15. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  16. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  18. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  19. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  20. Assessment of the benefits of a summer undergraduate research program for physics and chemistry majors

    NASA Astrophysics Data System (ADS)

    Hughes, Chris; MacDonald, Gina

    2006-11-01

    Presently at James Madison University, there are slightly more than 100 physics majors and 150 chemistry majors. Each summer, a significant fraction of these students participate in either the chemistry or interdisciplinary materials science Research Experiences for Undergraduates (REU) program on campus. This provides a large pool of students from which to draw data comparing the influence of undergraduate research on both classroom performance and attitudes toward science as a profession. By analyzing the grade point averages of chemistry and physics majors, we have shown slightly larger increases from spring semester to fall semester for students who participated in the REU than those who did not. We have also measured changes in attitudes using surveys of the students both at the beginning and at the end of the summer experience. An analysis of these surveys will be presented.

  1. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less

  2. FOREWORD: Corfu Summer Institute on Elementary Particle Physics (CORFU2005)

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Konstantinos; Antoniadis, Ignatios; Fanourakis, George; Kehagias, Alexandros; Savoy-Navarro, Aurore; Wess, Julius; Zoupanos, George

    2006-12-01

    These are the Proceedings of the Corfu Summer Institute on Elementary Particle Physics (CORFU2005) (http://corfu2005.physics.uoi.gr), which took place in Corfu, Greece from 4 - 26 September 2005. The Corfu Summer Institute has a very long, interesting and successful history, some elements of which can be found in http://www.corfu-summer-institute.gr. In short, the Corfu Meeting started as a Summer School on Elementary Particle Physics (EPP) mostly for Greek graduate students in 1982 and has developed into a leading international Summer Institute in the field of EPP, both experimental and theoretical, providing in addition a very rich outreach programme to teachers and school students. The CORFU2005 Summer Institute on EPP, although based on the general format that has been developed and established in the Corfu Meetings during previous years, is characterized by the fact that it was a full realization of a new idea, which started experimentally in the previous two Corfu Meetings. The successful new ingredient was that three European Marie Curie Research Training Networks decided to hold their Workshops in Corfu during September 2005 and they managed to coordinate the educational part of their meetings to a huge Summer School called `The 8th Hellenic School on Elementary Particle Physics' (4 - 11 September). The European Networks which joined forces to materialize this project and the corresponding dates of their own Workshops are:

  3. The Third Generation as a Probe for New Physics: Experimental and Technological Approach (4 - 11 September)
  4. The Quest for Unification Theory Confronts Experiment (11 - 18 September)
  5. Constituents Fundamental Forces and Symmetries of the Universe (20 - 26 September)
  6. To these Workshops has been added a Satellite one called `Noncommutative Geometry in Field and String Theory', and some extra speakers have been invited to complement the full programme of CORFU2005, some of whom have integrated into the Workshop's programme. The result was indeed very successful! An impressive aspect is that the CORFU2005 had the most massive participation so far attracting around 350 scientists. Among them around 200 young scientists (100 graduate students and 100 post doctoral scientists) and around 150 senior scientists. Therefore, among others, CORFU2005 hosted one of the largest Summer Schools in our field. Internationally leading scientists have been gathered in the CORFU2005 in the various Workshops and the School and have created a stimulating scientific atmosphere for themselves and for the young scientists. The contributions of all speakers can be found in http://corfu2005.physics.uoi.gr. Most of them have contributed to the present proceedings, while the contributions of the last week can be found in Fortsch. Phys. 54, Issue 5 - 6 (May 2006). In parallel to the main scientific programme a very interesting, rich and successful outreach programme was held in collaboration with the local Department of the Greek Physical Society and the Laboratory of Physical Science in Corfu (EKFE). The success of the CORFU2005 was the best advertisement concerning the long standing efforts to establish the `European Institute of Science and their Applications', which eventually was founded last spring in Corfu. The new Institute hopes to be the permanent extension of the Corfu Summer Institutes on EPP and has an additional aim to upgrade them in the sense that the attracted first class scientists would produce locally a significant research output. We would like to thank everybody very much who contributed to the success of CORFU2005. We would like specifically to thank all speakers and organizers, the conference secretary and the school officer (please consult http://corfu2005.physics.uoi.gr) and the group of graduate students who helped in various ways and contributed in a very significant manner in the success of CORFU2005. In addition we would like to thank our sponsors, whose contribution made possible the CORFU2005:
  7. European Research Training Network: The Third Generation as a Probe for New Physics: Experimental and Technological Approach; The Quest for Unification Theory Confronts Experiment; Constituents Fundamental Forces and Symmetries of the Universe
  8. Greek Ministry of Education
  9. Municipality of Corfu and the Municipal Development Enterprise (ANEDK)
  10. Latsis Institution
  11. National Technical University and Ionian University
  12. CERN
  13. DESY
  14. Max--Planck--Institute for Physics, Munich
  15. Sommerfeld Center for Theoretical Physics
  16. National Center of Scientific Research ``Demokritos'' and the Greek Atomic Energy Commission
  17. Olympic Airlines
  18. The Companies: Educational Tetras, Infoware, Kleos, Terra Kerkyra
  19. The telecommunication companies OTE and FORTHNET
  20. Konstantinos Anagnostopoulos, Ignatios Antoniadis, George Fanourakis, Alexandros Kehagias, Aurore Savoy-Navarro, Julius Wess and George Zoupanos Editors

  21. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  22. The International Linear Collider Technical Design Report - Volume 4: Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnke, Ties

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  23. Precision searches in dijets at the HL-LHC and HE-LHC

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Childers, J. T.; Proudfoot, J.; Wang, R.; Frizzell, D.

    2018-05-01

    This paper explores the physics reach of the High-Luminosity Large Hadron Collider (HL-LHC) for searches of new particles decaying to two jets. We discuss inclusive searches in dijets and b-jets, as well as searches in semi-inclusive events by requiring an additional lepton that increases sensitivity to different aspects of the underlying processes. We discuss the expected exclusion limits for generic models predicting new massive particles that result in resonant structures in the dijet mass. Prospects of the Higher-Energy LHC (HE-LHC) collider are also discussed. The study is based on the Pythia8 Monte Carlo generator using representative event statistics for the HL-LHC and HE-LHC running conditions. The event samples were created using supercomputers at NERSC.

  24. Small air showers and collider physics

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Gawin, J.; Grochalska, B.

    1985-01-01

    At energies lower than 2.5 X 10 to the 5 GeV (in Lab. system), more accurate information on nucleon-nucleon collision (p-p collider and on primary composition now exist. The behavior of those both basic elements in cosmic ray phenomenology from ISR energy suggests some tendencies for reasonable extrapolation in the next decade 2.0x10 to the 5 to 2.0x10 to the 6 GeV. Small showers in altitude, recorded in the decade 2 X 10 to the 4 to 2 X 10 to the 5 GeV offers a good tool to testify the validity of all the Monte-Carlo simulation analysis and appreciate how nucleon-air collision are different from nucleon-nucleon collisions.

  25. Top++: A program for the calculation of the top-pair cross-section at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Mitov, Alexander

    2014-11-01

    We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user.

  26. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  27. Neutrino mass with large S U (2 )L multiplet fields

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose an extension of the standard model introducing large S U (2 )L multiplet fields which are quartet and septet scalars and quintet Majorana fermions. These multiplets can induce the neutrino masses via interactions with the S U (2 ) doublet leptons. We then find the neutrino masses are suppressed by a small vacuum expectation value of the quartet/septet and an inverse of the quintet fermion mass, relaxing the Yukawa hierarchies among the standard model fermions. We also discuss collider physics at the Large Hadron Collider, considering the production of charged particles in these multiplets, and due to the effects of violating the custodial symmetry, some specific signatures can be found. Then, we discuss the detectability of these signals.

  28. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  29. Comparison of Summer and Winter Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility Reykjavik Study.

    PubMed

    Arnardottir, Nanna Yr; Oskarsdottir, Nina Dora; Brychta, Robert J; Koster, Annemarie; van Domelen, Dane R; Caserotti, Paolo; Eiriksdottir, Gudny; Sverrisdottir, Johanna E; Johannsson, Erlingur; Launer, Lenore J; Gudnason, Vilmundur; Harris, Tamara B; Chen, Kong Y; Sveinsson, Thorarinn

    2017-10-21

    In Iceland, there is a large variation in daylight between summer and winter. The aim of the study was to identify how this large variation influences physical activity (PA) and sedentary behavior (SB). Free living PA was measured by a waist-worn accelerometer for one week during waking hours in 138 community-dwelling older adults (61.1% women, 80.3 ± 4.9 years) during summer and winter months. In general, SB occupied about 75% of the registered wear-time and was highly correlated with age (β = 0.36). Although the differences were small, more time was spent during the summer in all PA categories, except for the moderate-to-vigorous PA (MVPA), and SB was reduced. More lifestyle PA (LSPA) was accumulated in ≥5-min bouts during summer than winter, especially among highly active participants. This information could be important for policy makers and health professionals working with older adults. Accounting for seasonal difference is necessary in analyzing SB and PA data.

  30. 75 FR 14565 - NIST Summer Institute for Middle School Science Teachers; Availability of Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...), including, but not limited to, earth science, physical science, chemistry, physics, and/or biology. This... science, physical science, chemistry, physics and/or biology. NIST will award funding that will support... instruction in general science fields including earth science, physical science, chemistry, physics, and/or...

  31. Top Quark and Higgs Boson Physics at LHC-ATLAS

    NASA Astrophysics Data System (ADS)

    Tomoto, M.

    2013-03-01

    One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.

  32. Review of Recent BABAR Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lista, L.

    2004-12-02

    We present a review of recent results from BaBar experiment. BaBar detector has collected about 256 millions of B{bar B} events at PEP-II, the asymmetric e{sup +}e{sup -} collider located at SLAC running at the {Upsilon}(4S) resonance. We have studied CP violation in B mesons, observing the first evidence of direct CP violation in B meson decays and measured CP asymmetries relevant for the determination of the angles of the CKM Unitarity Triangle. BaBar physics program covers many other topics, including measurements of CKM matrix elements, charm physics, and search for new physics processes.

  33. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  34. Large-x connections of nuclear and high-energy physics

    DOE PAGES

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  35. Probing New Physics with Jets at the LHC

    ScienceCinema

    Harris, Robert

    2017-12-09

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  36. My Summer with Science Policy

    NASA Astrophysics Data System (ADS)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  37. Report on the American Association of Medical Physics Undergraduate Fellowship Programs

    PubMed Central

    Avery, Stephen; Gueye, Paul; Sandison, George A.

    2013-01-01

    The American Association of Physicists in Medicine (AAPM) sponsors two summer undergraduate research programs to attract top performing undergraduate students into graduate studies in medical physics: the Summer Undergraduate Fellowship Program (SUFP) and the Minority Undergraduate Summer Experience (MUSE). Undergraduate research experience (URE) is an effective tool to encourage students to pursue graduate degrees. The SUFP and MUSE are the only medical physics URE programs. From 2001 to 2012, 148 fellowships have been awarded and a total of $608,000 has been dispersed to fellows. This paper reports on the history, participation, and status of the programs. A review of surveys of past fellows is presented. Overall, the fellows and mentors are very satisfied with the program. The efficacy of the programs is assessed by four metrics: entry into a medical physics graduate program, board certification, publications, and AAPM involvement. Sixty‐five percent of past fellow respondents decided to pursue a graduate degree in medical physics as a result of their participation in the program. Seventy percent of respondents are currently involved in some educational or professional aspect of medical physics. Suggestions for future enhancements to better track and maintain contact with past fellows, expand funding sources, and potentially combine the programs are presented. PACS number: 01.10.Hx PMID:23318397

  38. Implications of the 750 GeV γγ Resonance as a Case Study for the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.

    If the γγ resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program - precision measurements of themore » Higgs boson, the top quark, and 4-fermion interactions - will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in γγ and e +e - collisions to directly produce and study the 750 GeV particle from these unique initial states.« less

  1. Measurement techniques for low emittance tuning and beam dynamics at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  2. Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.

  3. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  4. List of Posters

    NASA Astrophysics Data System (ADS)

    List of Posters: Dark matter annihilation in the Galactic galo, by Dokuchaev Vyacheslav, et al. NEMO developments towards km3 telescope in the Mediterranean Sea. The NEMO project. Neutrino Mediterranean Observatory By Antonio Capone, NEMO Collaboration. Alignment as a result from QCD jet production or new still unknown physics at LHC? By Alexander Snigirev. Small-scale fluctuations of extensive air showers: systematics in energy and muon density estimation By Grigory Rubtsov. SHINIE: Simulation of High-Energy Neutrino Interacting with the Earth By Lin Guey-Lin, et al.. Thermodynamics of rotating solutions in n+1 dimensional Einstein - Maxwell -dilation gravity By Ahmad Sheykhi, et al.. Supernova neutrino physics with future large Cherenkov detectors By Daniele Montanino. Crossing of the Cosmological Constant Barrier in the string Inspired Dark Energy Model By S. Yu. Vernov. Calculations of radio signals produced by ultra-high and extremely high energy neutrino induced cascades in Antarctic ice By D. Besson, et al.. Inflation, Cosmic Acceleration and string Gravity By Ischwaree Neupane. Neutrino Physics: Charm and J/Psi production in the atmosphere By Liudmila Volkova. Three generation flavor transitions and decays of supernova relic neutrinos By Daniele Montanino. Lattice calculations & computational quantum field theory: Sonification of Quark and Baryon Spectra By Markum Harald, et al.. Generalized Kramers-Wannier Duality for spin systems with non-commutative symmetry By V. M. Buchstaber, et al.. Heavy ion collisions & quark matter: Nuclear matter jets and multifragmentation By Danut Argintaru, et al.. QCD hard interactions: The qT-spectrum of the Higgs and Slepton-pairs at the LHC By Guiseppe Bozzi. QCD soft interactions: Nonperturbative effects in Single-Spin Asymmetries: Instantons and TMD-parton distributions By Igor Cherednikov, et al.. Gluon dominance model and high multiplicity By Elena Kokoulina. Resonances in eta pi- pi- pi+ system By Dmitry Ryabchikov. Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX: Physics Analysis Design and Application on the GRID By Martin Erdmann, et al.. D0 and the (SAM) GRID: An ongoing success story DO Collaboration. R & D for future accelerators, detectors & new facilities: High Level Trigger Selection in the CMS experiment By Monica Vazquez Acosta. R&D for a Helical Undulator Based Positron Source for the International Linear Collider By Phil Allport. Muon Detection, Reconstruction and Identification in CMS By Ivan Belotelov. Acoustic Measurements for EeV Neutrino Detection at the South Pole By Sebastian Böser. The PSI source of ultracold neutrons (UCN) By Manfred Daum. The LHCb Pixel Hybrid Photon Detectors (Characterization of Nybrig Photon Detectors for the LHCb experiment) By Neville Harnew, et al.. Semi-Insulating GaN-radiation hard semiconductor for ionizing radiation detectors By Juozas Vaitkus. Monitored Drift Tube end-cap spectrometer for the ATLAS detector By Dmitri Kotchetkov. Development of Focusing Aerogel RICH By Sergey Kononov, et al.. Electromagnetic Calibration of the Hadronic Tile Calorimeter Modules of the ATLAS detector at the LHC By Iouri Koultchitski. A Study of Proximity focusing RICH with Multiple Refractive Index Aerogel Radiator By Peter Krizan. The Heavy Flavor Tracker (HFT) for STAR By Vasil Kuspil. ATLAS Liquid Argon Calorimeter ATLAS Collaboration: Field Emission in HEP Colliders Initiated by a Relativistic Positively Charged Bunch of Particles By Boris Levchenko. MICE: the international Muon Ionization Cooling Experiment By Kenneth Long. In situ calibration of the CMS electromagnetic calorimeter By Augustino Lorenzo. The Transition Radiation Tracker for the ATLAS experiment at the LHC By Victor Maleev. Resonance depolarization and Compton-Backscattering technique for beam energy measurement of VEPP-4M collider By Ivan Nikolaev, et al.. CCD - based Pixel Detectors by LCFI By Andrei Nomerotski. The SiD Detector Concept for the International Linear Collider By Dmitry Onoprienko. CMS Hadron Calorimetry, Calibration, and Jets/Missing Transverse Energy Measurements By Sergey Petrushanko. The CMS Silicon Tracker By Oliver Pooth. Drift Chamber for CMD-3 detector By Alexandr Popov, et al.. Vacuum Phototriods for the CMS ECAL Endcap crystal calorimeter By Vladimir Postoev. CMS Silicon Tracker: Track Reconstruction and Alignment By Frank-Peter Schilling. eRHIC - A precision electron-proton/ion collider facility at Brookhaven National Laboratory By Bernd Surrow. Development of tracking detectors with industrially produced GEM foils By Bernd Surrow, et al.. A Linear Collider Facility with High Intensity e+e- beams (A high intensity e+e- Linear Collider Facility at low energy) By Andre Schoening. Construction of the BESIII detector for tau-charm physics By Yifang Wang. The HERMES Recoil Detector By Sergey Yashchenko. Simulation of MICE in G4 MICE MICE Experiment: The new DO Layer O silicon detector The DO trigger upgrade for RUNIIb The Do Collaboration. Operational experiences with the silicon detector at CDF By Jeannine Wagner. Mathematical aspects of QFT & string theory: Electron in superstrong Coulomb field By D. Gitman. Stability of a non-commutative Jackiw-Teitelboim gravity By Fresneda Rodrigo, et al.. 4d gravity localized on thick branes: the complete mass spectrum By Alfredo Herrera-Aguilar. On Emergence of Quantum Mechanics By L. V. Prokhorov.

  5. International Physics Summer Camp for High School Students

    NASA Astrophysics Data System (ADS)

    Pope, Damian T.; Korsunsky, B.

    2006-12-01

    Each year for the past three years, Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada, has staged an annual physics summer camp for high school students worldwide. Known as the International Summer School for Young Physicists (ISSYP), it attracts students from all corners of the globe and this year had attendees from 15 countries and 5 continents. The camp is aimed at motivated students around the age of 16 and is a two-week immersion into the exciting world of cutting-edge physics today. It covers topics such as dark matter, superstring theory and quantum computers, and exposes attendees to some of the very latest research results. It includes lectures, tutorials, laboratory visits and small-group projects and, in addition to teaching new material, strives to give students a deeper appreciation of the true nature of science. Throughout, attendees have a great deal of interaction with the institute's scientists. This presentation will give an overview of the camp including the material taught within it, its impact on students and the goals of the program. More information about the camp can be found at: http://www.youngphysicists.ca

  6. Weak gravity conjecture as a razor criterium for exotic D-brane instantons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-01-01

    We discuss implications of weak gravity conjecture (WGC) for exotic D-brane instantons. In particular, WGC leads to indirect stringent bounds on non-perturbative superpotentials generated by exotic instantons with many implications for phenomenology: R-parity violating processes, neutrino mass, μ-problem, neutron-antineutron transitions and collider physics.

  7. When Physical and Digital Worlds Collide: A Tool for Early Childhood Learners

    ERIC Educational Resources Information Center

    Parton, Becky Sue; Hancock, Robert

    2008-01-01

    Very young children learn by exploring their surroundings, mostly by playing, during which they construct mental representations of the world. In fact, prior to Piaget's formal operational stage, children need concrete, hands-on experiences rather than abstract concepts to support more natural learning, developing, and thinking. In terms of…

  8. Can We Tell Students where the Higgs Boson Lies?

    ERIC Educational Resources Information Center

    Chu, Z. Kwang-Hua

    2010-01-01

    We pedagogically introduce the search for the Higgs boson and the measurement of its properties which will be one of the primary goals of the Large Hadron Collider. Our presentation will be useful to the relevant graduate and senior undergraduate students studying physics, as well as researchers in this field. (Contains 1 figure.)

  9. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.; Dinkel, J.; Ducar, R.

    1987-03-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for the accelration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented.

  10. Top-philic Z ' forces at the LHC

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Low, Ian; Zhang, Yue

    2018-03-01

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z ' at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z ' and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z ' at the LHC and examine carefully the treatment of ananomalous Z ' current in the low-energy effective theory. Recipes for properly computing the production rate in the Z ' + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z ' to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

  11. Gluons and the quark sea at high energies: distributions, polarization, tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, D.; Venugopalan, R.; Diehl, M.

    2011-09-30

    This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure ofmore » the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.« less

  12. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less

  13. First observation of associated production of J/psi meson and W boson

    NASA Astrophysics Data System (ADS)

    Melachrinos, Constantinos

    Particle physics concerns the understanding of the fundamental building blocks of nature, the production of particles and their interactions. The experimental study of high energy collisions allows us to probe the theoretical predictions pertaining to particles. The Large Hadron Collider was built on the outskirts of Geneva, to accelerate and collide protons at the highest energies ever, and allow for the study of the products of these collisions. The ATLAS detector is designed to detect the particles resulting from the proton-proton collisions and collect the data for further study. The discovery of the J/psi meson in 1974 paved the way for the presence of three families of quarks in the Standard Model of Particle Physics. The production mechanism of J/psi at the LHC is not well understood, and several models have been proposed to explain it, such as the Color Singlet and Color Octet models. The associated production of J/psi meson with a W boson offers an additional insight on the production of J/psi. In this thesis, we report the first observation of the W +/- + J/psi production using 4.5 fb -1 of ATLAS data from proton-proton collisions at center of mass energy of 7 TeV at the Large Hadron Collider. In addition, we measure the cross-section ratio of the W+/- + J/psi production to the inclusive W production. The results are dominated by statistical uncertainties and suggest that a combination of the different models for J/psi production is needed to explain J/psi production.

  14. PREFACE: Hot Quarks 2014: Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    2015-05-01

    The 6th edition of the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2014) was held in Las Negras, Spain from 21-28 September 2014. Following the traditions of the conference, this meeting gathered more than 70 participants in the first years of their scientific careers. The present issue contains the proceedings of this workshop. As in the past, the Hot Quarks workshop offered a unique atmosphere for a lively discussion and interpretation of the current measurements from high energy nuclear collisions. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Recent theoretical developments were also extensively discussed as well as the perspectives for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt and the Electron-Ion Collider at Brookhaven. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met. We wish to thank the sponsors of the Hot Quarks 2014 Conference, who supported the authors of this volume: Brookhaven National Laboratory (USA), CPAN (Spain), Czech Science Foundation (GACR) under grant 13-20841S (Czech Republic), European Laboratory for Particle Physics CERN (Switzerland), European Research Council under grant 259612 (EU), ExtreMe Matter Institute EMMI (Germany), Helmholtz Association and GSI under grant VH-NG-822, Helmholtz International Center for FAIR (Germany), National Science Foundation under grant No.1359622 (USA), Nuclear Physics Institute ASCR (Czech Republic), Patronato de la Alhambra y Generalife (Spain) and the Universidad de Granada (Spain). Javier López Albacete, Universidad de Granada (Spain) Jana Bielcikova, Nuclear Physics Inst. and Academy of Sciences (Czech Republic) Rainer J. Fries, Texas A&M University (USA) Raphaël Granier de Cassagnac, CNRS-IN2P3 and École polytechnique (France) Boris Hippolyte, CNRS-IN2P3 and Université de Strasbourg (France) Jiangyong Jia, Stony Brook University and Brookhaven National Laboratory (USA) André Mischke, Utrecht University and Nikhef Amsterdam (The Netherlands) Ágnes Mócsy, Pratt Institute and Brookhaven National Laboratory (USA) Hannah Petersen, Goethe University, FIAS and GSI (Germany) Lijuan Ruan, Brookhaven National Laboratory (USA) Sevil Salur, Rutgers University, (USA)

  15. United States Air Force Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 4A, Wright Laboratory

    DTIC Science & Technology

    1994-11-01

    Erdman Solar to Thermal Energy Physics and Astronomy University of Iowa, Iowa City, IA PL/RK 6 A Detailed Investigation of Low-and High-Power Arcjet...Properties of Dr. Mary Potasek Strained Layer Sem Applied Physics Columbia University, New York, NY WL/ML 27 Development of Control Design Methodologies...concrete is also presented. Finally, the model is extended to include penetration into multiple layers of different target materials. Comparisons are

  16. Crabbing system for an electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilla, Alejandro

    2017-05-01

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.« less

  17. IN MEMORIUM: Second International Workshop & Summer School on Plasma Physics 2006

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Zdravko Neichev, a PhD student at University of Sofia and a member of the Local Organising Committee of the International Workshop and Summer School on Plasma Physics, died September 22, 2006 at the age of 27 in a tragic car accident. He was close to finishing his PhD thesis working thoroughly in the field of Plasma Physics. Being also an excellent programmer he produced a number of perfect programs for numerical modelling of the coaxial discharge properties. He was a smart, friendly person, always ready to help. His colleagues and friends will never forget his radiant smile. Zdravko Neichev

  18. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme

    PubMed Central

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila EA; Bond, Simon J; Forman, Julia R; Hoole, Andrew CF; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael PD; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon YK; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael PF; Parker, Michael A

    2017-01-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose. PMID:29177202

  19. Searching for Physics Beyond the Standard Model and Beyond

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammad

    The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.

  20. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary 'VoxTox' research programme.

    PubMed

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila Ea; Bond, Simon J; Forman, Julia R; Hoole, Andrew Cf; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael Pd; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon Yk; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael Pf; Parker, Michael A

    2017-06-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.

  1. Factorization of standard model cross sections at ultrahigh energy

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Li, Hsiang-nan

    2018-03-01

    The factorization theorem for organizing multiple electroweak boson emissions at future colliders with energy far above the electroweak scale is formulated. Taking the inclusive muon-pair production in electron-positron collisions as an example, we argue that the summation over isospins is demanded for constructing the universal distributions of leptons and gauge bosons in an electron. These parton distributions are shown to have the same infrared structure in the phases of broken and unbroken electroweak symmetry, an observation consistent with the Goldstone equivalence theorem. The electroweak factorization of processes involving protons is sketched, with an emphasis on the subtlety of the scalar distributions. This formalism, in which electroweak shower effects are handled from the viewpoint of factorization theorem for the first time, is an adequate framework for collider physics at ultra high energy.

  2. ISR corrections to associated HZ production at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Greco, Mario; Montagna, Guido; Nicrosini, Oreste; Piccinini, Fulvio; Volpi, Gabriele

    2018-02-01

    We evaluate the QED corrections due to initial state radiation (ISR) to associated Higgs boson production in electron-positron (e+e-) annihilation at typical energies of interest for the measurement of the Higgs properties at future e+e- colliders, such as CEPC and FCC-ee. We apply the QED Structure Function approach to the four-fermion production process e+e- →μ+μ- b b bar , including both signal and background contributions. We emphasize the relevance of the ISR corrections particularly near threshold and show that finite third order collinear contributions are mandatory to meet the expected experimental accuracy. We analyze in turn the rôle played by a full four-fermion calculation and beam energy spread in precision calculations for Higgs physics at future e+e- colliders.

  3. The Inverse Bagging Algorithm: Anomaly Detection by Inverse Bootstrap Aggregating

    NASA Astrophysics Data System (ADS)

    Vischia, Pietro; Dorigo, Tommaso

    2017-03-01

    For data sets populated by a very well modeled process and by another process of unknown probability density function (PDF), a desired feature when manipulating the fraction of the unknown process (either for enhancing it or suppressing it) consists in avoiding to modify the kinematic distributions of the well modeled one. A bootstrap technique is used to identify sub-samples rich in the well modeled process, and classify each event according to the frequency of it being part of such sub-samples. Comparisons with general MVA algorithms will be shown, as well as a study of the asymptotic properties of the method, making use of a public domain data set that models a typical search for new physics as performed at hadronic colliders such as the Large Hadron Collider (LHC).

  4. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    NASA Astrophysics Data System (ADS)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  5. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  6. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  7. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  8. Search for single vectorlike quarks in pp ̄ collisions at √s=1.96  TeV.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Ćwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-02-25

    We present a search for hypothetical vectorlike quarks in pp ̅ collisions at √s=1.96  TeV. The data were collected by the D0 detector at the Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4  fb(-1). We select events with a final state composed of a W or Z boson and a jet consistent with a heavy object decay. We observe no significant excess in comparison to the background prediction and set limits on production cross sections for vectorlike quarks decaying to W+jet and Z+jet. These are the most stringent limits to date for electroweak single vectorlike quark production at hadron colliders. © 2011 American Physical Society

  9. PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders

    NASA Astrophysics Data System (ADS)

    Ballestrero, Alessandro; Belhouari, Aissa; Bevilacqua, Giuseppe; Kashkan, Vladimir; Maina, Ezio

    2009-03-01

    PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at O(αEM6) and O(αEM4αS2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, tt¯ and three boson production. Program summaryProgram title:PHANTOM (V. 1.0) Catalogue identifier: AECE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 175 787 No. of bytes in distributed program, including test data, etc.: 965 898 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any with a UNIX, LINUX compatible Fortran compiler Operating system: UNIX, LINUX RAM: 500 MB Classification: 11.1 External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for ee ILC collider). Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed. Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders. It computes all amplitudes at O(αEM6) and O(αEM4αs2) including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. Restrictions: All Feynman diagrams are computed al LO. Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used. Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events. References:A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.

  10. Increasing physical activity in children 8 to 12 years old: experiences with VERB Summer Scorecard.

    PubMed

    McDermott, Robert J; Davis, Jenna L; Bryant, Carol A; Courtney, Anita H; Alfonso, Moya L

    2010-08-01

    Interventions which facilitate physical activity of youth are vital for promoting community health and reducing obesity. This study assessed the results of a community-driven program, VERB Summer Scorecard, as knowledge of exposure to and awareness of community-based interventions for physical activity among youth could inform design and implementation of such interventions. A total of 2,215 youth ages 8 to 12 years responded to a survey about physical activity. Ordinal logistic regression suggested that youth who participated in this program were 1.73 times (95% CI = 1.41, 2.11) more likely to report high physical activity than nonparticipating youth 9 mo. after the intervention's first full-scale application. The program appeared to appeal more to girls than boys. Such results are encouraging for use in communities.

  11. Design of beam optics for the future circular collider e + e - collider rings

    DOE PAGES

    Oide, Katsunobu; Aiba, M.; Aumon, S.; ...

    2016-11-21

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less

  12. Design of beam optics for the future circular collider e + e - collider rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oide, Katsunobu; Aiba, M.; Aumon, S.

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less

  13. Design of beam optics for the future circular collider e+e- collider rings

    NASA Astrophysics Data System (ADS)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study.

  14. Introducing the LHC in the Classroom: An Overview of Education Resources Available

    ERIC Educational Resources Information Center

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-01-01

    In the context of the recent re-start of CERN's Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and…

  15. Exploring the Standard Model of Particles

    ERIC Educational Resources Information Center

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  16. The Proton Spin, Semi-Inclusive processes, and measurements at a future Electron Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhay, Deshpande

    2018-01-12

    We discuss spin physics, Guido’s contribution to it, and what we still have to learn. We set out in particular a programme for incorporating constraints from semi-inclusive data into global fits of polarized PDFs, and discuss the need for the EIC to increase the precision and kinematic coverage of current measurements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, G.

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.

  18. HYPATIA--An Online Tool for ATLAS Event Visualization

    ERIC Educational Resources Information Center

    Kourkoumelis, C.; Vourakis, S.

    2014-01-01

    This paper describes an interactive tool for analysis of data from the ATLAS experiment taking place at the world's highest energy particle collider at CERN. The tool, called HYPATIA/applet, enables students of various levels to become acquainted with particle physics and look for discoveries in a similar way to that of real research.

  19. Effect of a 12-Week Summer Break on School Day Physical Activity and Health-Related Fitness in Low-Income Children from CSPAP Schools

    PubMed Central

    2017-01-01

    Background. The purpose of this study was to examine the effect of a 12-week summer break on school day physical activity and health-related fitness (HRF) in children from schools receiving a Comprehensive School Physical Activity Program (CSPAP). Methods. Participants were school-aged children (N = 1,232; 624 girls and 608 boys; mean age = 9.5 ± 1.8 years) recruited from three low-income schools receiving a CSPAP. Physical activity and HRF levels were collected during the end of spring semester 2015 and again during the beginning of fall semester 2015. Physical activity was assessed using the Yamax DigiWalker CW600 pedometer. HRF measures consisted of body mass index (BMI) and the Progressive Aerobic Cardiovascular Endurance Run (PACER). Results. Results from a doubly MANCOVA analysis indicated that pedometer step counts decreased from 4,929 steps in the spring to 4,445 steps in the fall (mean difference = 484 steps; P < 0.001; Cohen's d = 0.30) and PACER laps decreased from 31.2 laps in the spring to 25.8 laps in the fall (mean difference = 5.4 laps; P < 0.001; Cohen's d = 0.33). Conclusions. Children from schools receiving a CSPAP intervention had lower levels of school day physical activity and cardiorespiratory endurance following a 12-week summer break. PMID:28377791

  20. Effect of a 12-Week Summer Break on School Day Physical Activity and Health-Related Fitness in Low-Income Children from CSPAP Schools.

    PubMed

    Fu, You; Brusseau, Timothy A; Hannon, James C; Burns, Ryan D

    2017-01-01

    Background . The purpose of this study was to examine the effect of a 12-week summer break on school day physical activity and health-related fitness (HRF) in children from schools receiving a Comprehensive School Physical Activity Program (CSPAP). Methods . Participants were school-aged children ( N = 1,232; 624 girls and 608 boys; mean age = 9.5 ± 1.8 years) recruited from three low-income schools receiving a CSPAP. Physical activity and HRF levels were collected during the end of spring semester 2015 and again during the beginning of fall semester 2015. Physical activity was assessed using the Yamax DigiWalker CW600 pedometer. HRF measures consisted of body mass index (BMI) and the Progressive Aerobic Cardiovascular Endurance Run (PACER). Results . Results from a doubly MANCOVA analysis indicated that pedometer step counts decreased from 4,929 steps in the spring to 4,445 steps in the fall (mean difference = 484 steps; P < 0.001; Cohen's d = 0.30) and PACER laps decreased from 31.2 laps in the spring to 25.8 laps in the fall (mean difference = 5.4 laps; P < 0.001; Cohen's d = 0.33). Conclusions . Children from schools receiving a CSPAP intervention had lower levels of school day physical activity and cardiorespiratory endurance following a 12-week summer break.

  1. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  2. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnke, Ties; Brau, James E.; Foster, Brian

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  3. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  4. TMDs and GPDs at a future Electron-Ion Collider

    DOE PAGES

    Ent, Rolf

    2016-06-21

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  5. Betsy Byars'"The Summer of the Swans."

    ERIC Educational Resources Information Center

    Scales, Pat

    1996-01-01

    Summarizes the plot of "The Summer of the Swans," the 1971 Newbery Medal winner; provides discussion questions; outlines activities in drama, art, and language arts; and provides an annotated bibliography of picture books, fiction, and nonfiction dealing with physical, mental, and emotional disabilities. Includes an interview with Betsy…

  6. Current challenges in fundamental physics

    NASA Astrophysics Data System (ADS)

    Egana Ugrinovic, Daniel

    The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.

  7. Funding bombshell hits UK physics

    NASA Astrophysics Data System (ADS)

    Banks, Michael; Durrani, Matin

    2008-01-01

    Physicists and astronomers in the UK are coming to terms with a massive funding crisis that engulfed one of the country's main funding agencies last month. As a result of an £80m black hole in the budget of the Science and Technology Facilities Council (STFC), it has decided to stop funding research into the International Linear Collider (ILC), withdraw from the Gemini telescopes in Hawaii and Chile, and cease all support for high-energy gamma-ray astronomy and ground-based solar-terrestrial physics. Research grants in particle physics and astronomy could also be cut by up to 25%, which may lead to job losses at university departments.

  8. Understanding differences between summer vs. school obesogenic behaviors of children: the structured days hypothesis.

    PubMed

    Brazendale, Keith; Beets, Michael W; Weaver, R Glenn; Pate, Russell R; Turner-McGrievy, Gabrielle M; Kaczynski, Andrew T; Chandler, Jessica L; Bohnert, Amy; von Hippel, Paul T

    2017-07-26

    Although the scientific community has acknowledged modest improvements can be made to weight status and obesogenic behaviors (i.e., physical activity, sedentary/screen time, diet, and sleep) during the school year, studies suggests improvements are erased as elementary-age children are released to summer vacation. Emerging evidence shows children return to school after summer vacation displaying accelerated weight gain compared to the weight gained occurring during the school year. Understanding how summer days differ from when children are in school is, therefore, essential. There is limited evidence on the etiology of accelerated weight gain during summer, with few studies comparing obesogenic behaviors on the same children during school and summer. For many children, summer days may be analogous to weekend days throughout the school year. Weekend days are often limited in consistent and formal structure, and thus differ from school days where segmented, pre-planned, restrictive, and compulsory components exist that shape obesogenic behaviors. The authors hypothesize that obesogenic behaviors are beneficially regulated when children are exposed to a structured day (i.e., school weekday) compared to what commonly occurs during summer. This is referred to as the 'Structured Days Hypothesis' (SDH). To illustrate how the SDH operates, this study examines empirical data that compares weekend day (less-structured) versus weekday (structured) obesogenic behaviors in U.S. elementary school-aged children. From 190 studies, 155 (~80%) demonstrate elementary-aged children's obesogenic behaviors are more unfavorable during weekend days compared to weekdays. In light of the SDH, consistent evidence demonstrates the structured environment of weekdays may help to protect children by regulating obesogenic behaviors, most likely through compulsory physical activity opportunities, restricting caloric intake, reducing screen time occasions, and regulating sleep schedules. Summer is emerging as the critical period where childhood obesity prevention efforts need to be focused. The SDH can help researchers understand the drivers of obesogenic behaviors during summer and lead to innovative intervention development.

  9. Summer Interns

    Science.gov Websites

    opportunity to work on projects that support particle physics experiments in areas such as engineering , applied physics and computing. In addition, Fermilab offers opportunities for environmental studies physics research or ecology. Students and teachers are selected for their outstanding scholarship and

  10. A Summer Health Program for African-American High School Students in Baltimore, Maryland: Community Partnership for Integrative Health.

    PubMed

    Pierce, Beverly; Bowden, Brandin; McCullagh, Molly; Diehl, Alica; Chissell, Zachary; Rodriguez, Rebecca; Berman, Brian M; D Adamo, Christopher R

    Physical inactivity, poor nutrition, and chronic stress threaten the health of African-American youth in urban environments. Conditions often worsen in summer with diminished access to healthy foods and safe venues for physical activity. A public-private partnership was formed to develop and evaluate an integrative health intervention entitled "Mission Thrive Summer" (MTS). The MTS setting was an urban farm and adjacent school in a low-income community in Baltimore, Maryland. The intervention included farming, nutrition education, cooking, physical activity, yoga, mindfulness, and employment. Mixed-methods outcomes evaluation was conducted. Quantitative measures included accelerometry and self-reported health behaviors, using the Child and Adolescent Mindfulness Measure, Perceived Stress Scale, Physical Activity Questionnaire for Adolescents (PAQA), CDC Youth Risk Behavior Survey, and Block Kids Food Screener (BKFS). Outcomes were compared pre- and post-intervention using paired t-tests. Qualitative evaluation was based on participant and parent interviews. In total, 36 African-American 9th- and 10th-grade students joined MTS (17 in 2013, 26 in 2014, and 7 participating both years). In total, 88% of participants completed MTS. Accelerometry revealed that participants took 7158 steps and burned 544 calories per day during MTS. Participants experienced statistically significant improvements in self-reported physical activity (PAQA) and dietary habits (BKFS). Surveys did not detect changes in stress or mindfulness (P > .05). Qualitative data demonstrated new knowledge and skills, increased self-efficacy, health behavior change, and program enjoyment. MTS was feasible among African-American high school students in Baltimore. Mixed-methods outcomes evaluation provided preliminary evidence of health behavior change during the summer and at follow-up. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in QCD involves several subtle issues not encountered in the case of pp¯(pp) → tt¯h. Recently, two different calculational schemes have been applied to the calculation of higher-order QCD corrections to bb¯h production. Here we compare these two seemingly different schemes and show that they produce compatible results for the total and differential cross sections in the cases of Higgs production with zero tagged b jets and one tagged b jet.

  12. Decreases in Maximal Oxygen Uptake Among Army Reserve Officers’ Training Corps Cadets Following Three Months Without Mandatory Physical Training

    PubMed Central

    LIGUORI, GARY; KREBSBACH, KASSIE; SCHUNA, JOHN

    2012-01-01

    During the academic year, Army ROTC cadets are required to participate in mandatory physical training; however, during summer months training is not required. The purpose of this study was to determine if there is a change in cadet VO2max after the summer when training is not mandatory. Participants completed a graded exercise treadmill test to determine their VO2max in late spring of 2010 and again in early fall of 2010. Results indicated that over a three-month break from mandatory physical training, a significant decrease in VO2max was seen for both genders in ROTC cadets. PMID:27182392

  13. Collider Aspects of Flavour Physics at High Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Aguilar-Saavedra, J.A.; Allanach, B.C.

    2008-03-07

    This chapter of the report of the 'Flavour in the era of LHC' workshop discusses flavor related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavor aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.

  14. Higgs Particle: The Origin of Mass

    NASA Astrophysics Data System (ADS)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  15. CDF Top Physics

    DOE R&D Accomplishments Database

    Tartarelli, G. F.; CDF Collaboration

    1996-05-01

    The authors present the latest results about top physics obtained by the CDF experiment at the Fermilab Tevatron collider. The data sample used for these analysis (about 110 pb{sup{minus}1}) represents almost the entire statistics collected by CDF during four years (1992--95) of data taking. This large data size has allowed detailed studies of top production and decay properties. The results discussed here include the determination of the top quark mass, the measurement of the production cross section, the study of the kinematics of the top events and a look at top decays.

  16. Physics Meets Biology (LBNL Summer Lecture Series)

    ScienceCinema

    Chu, Steven

    2018-05-09

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biology's natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  17. Title I, Part B, Institutionalized Facilities Program, Summer 1982. Annual Evaluation Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.

    This 1982 summer Title I, Part B, Institutionalized Facilities Program provided supplementary career instruction to 188 students residing in facilities for neglected and delinquent children and youth. This report briefly describes the program, providing information on methodology, physical setting, equipment, and supplies; population and class…

  18. Consequences of Recent Southern Hemisphere Winter Variability on Polar Mesospheric Clouds

    DTIC Science & Technology

    2011-01-01

    summer latitudes. Recent observations of a link between the QBO and inter-hemispheric coupling (Espy et al., 2011) are also consistent with these...The role of the QBO in the inter-hemispheric coupling of summer mesospheric tempera- tures. Atmospheric Chemistry and Physics. 11, 495–502. Fiedler, J

  19. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2014-12-01

    This last summer we held the 4th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. On average we have accepted ~10 students per year to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving 20 min presentations on their research projects to the research group. Over the past four years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

  20. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2015-12-01

    This last summer we held the 5th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

Top