Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, R.; Gustafson, R.; Paige, F.
1982-01-01
This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.
NASA Astrophysics Data System (ADS)
Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2014-08-01
A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, R.; Grenier, D.; Wollmann, D.
2014-08-15
A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less
Artist rendering of dust grains colliding at low speeds
NASA Technical Reports Server (NTRS)
2003-01-01
Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.
Improvements of the target lifetime in the RHIC polarimeter
NASA Astrophysics Data System (ADS)
Steski, D. B.; Huang, H.; Kewisch, J.; Sukhanova, L.; Zelenski, A.
2018-05-01
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is the only collider in the world to collide polarized protons. It is critical to the RHIC experimental program that the polarization of the proton beam is measured. This is accomplished with the Coulomb Nuclear Interference (CNI) polarimeter. The targets used in the RHIC CNI polarimeter are 50 nm thick, 25 mm long and <10 µm wide. As the beam intensity in RHIC has increased and the beam size has decreased, the lifetime of these targets has decreased dramatically. During the 2013 polarized proton experimental run, the targets needed to be replaced twice. This resulted in additional work and lost beam time. Before the 2015 experimental run, metal shields were installed around the ends of the targets which greatly improved the target lifetime. The results from the 2015 experimental run and plans for the 2017 experimental run will be discussed.
2003-01-22
Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.
A review of the Fermilab fixed-target program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameika, R.
1994-12-01
All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, B.; Chung, M.; Hanlet, P. M.
An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less
Freemire, B.; Chung, M.; Hanlet, P. M.; ...
2018-01-30
An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less
Laser ion source for isobaric heavy ion collider experiment.
Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M
2016-02-01
Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.
Kumar, Krishna
2017-12-09
The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.
NASA Astrophysics Data System (ADS)
Badziak, J.; Kucharik, M.; Liska, R.
2018-02-01
The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.
The first colliders: AdA, VEP-1 and Princeton-Stanford
NASA Astrophysics Data System (ADS)
Shiltsev, Vladimir
The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage, G. K. O'Neill, one of the collider pioneers, wrote in 1956 [2]: "... as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy available for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle ... " Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy ER = 2Ebeam (while a particle with the same energy Ebeam colliding with another particle of the mass m at rest produces only ER = (2Ebeamm)1/2 in the extreme relativistic case). One can also add that the colliders are "cleaner" machines with respect to the fixed-target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders...
The physics of heavy quark distributions in hadrons: Collider tests
NASA Astrophysics Data System (ADS)
Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.
2017-03-01
We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.
The physics of heavy quark distributions in hadrons: Collider tests
Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; ...
2016-12-18
Here, we present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction—the “intrinsic” quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ/Z/W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsicmore » heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high x F and novel fixed target measurements which can be tested at the LHC.« less
Fermilab Tevatron and Pbar source status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, H.
1986-08-01
The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently undermore » evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, V.
The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who had applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage G.K.O’Neill, one of the collider pioneers, wrote in 1956 [2]: “…as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy availablemore » for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle...” Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy E R = 2E beam (while a particle with the same energy E beam colliding with another particle of the mass m at rest produces only E R = (2E beam m)½ in the extreme relativistic case.) One can also add that the colliders are “cleaner” machines with respect to the fixed target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders.« less
Beam position monitoring system at CESR
NASA Astrophysics Data System (ADS)
Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.
2017-09-01
The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.
Plasma lens experiments at the Final Focus Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, B.; Chattopadhyay, S.; Chen, P.
1993-04-01
We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less
Characterization of the International Linear Collider damping ring optics
NASA Astrophysics Data System (ADS)
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Muon Accelerator Program (MAP) | Homepage
collider and neutrino factory Scientists around the world are developing the technologies necessary for a factory or a muon collider. Read more: Neutrino factory Muon collider Developing a muon source One of the developing and testing RF cavities and magnets for a muon beamline. The facility allows scientists to test
NASA Astrophysics Data System (ADS)
M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier
2012-11-01
We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, C., E-mail: colm.fallon5@mail.dcu.ie; Hayden, P.; Walsh, N.
We present the results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of both the distance and the wedge angle between them for angles ranging from 100° to 180° (laterally colliding plasmas). The key parameters studied are stagnation layer density, temperature, duration, and kinetics of atomic/ionic spatial distributions and all have been found to vary significantly with wedge angle. It is found that the density and temperature of the stagnation layer decrease with increasing wedge angle. It is also found that themore » larger the wedge angle, the tighter and more well defined the stagnation layer formed.« less
NASA Astrophysics Data System (ADS)
Seo, Byonghoon; Li, Hui; Bellan, Paul
2017-10-01
We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.
Molecular formation in the stagnation region of colliding laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.
2016-10-27
The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less
Polarized γ source based on Compton backscattering in a laser cavity
NASA Astrophysics Data System (ADS)
Yakimenko, V.; Pogorelsky, I. V.
2006-09-01
We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.
NICA project at JINR: status and prospects
NASA Astrophysics Data System (ADS)
Kekelidze, V. D.
2017-06-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.
J/{psi} Polarization from Fixed-Target to Collider Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faccioli, Pietro; Woehri, Hermine K.; Lourenco, Carlos
Magnitude and 'sign' of the measured J/{psi} polarization crucially depends on the reference frame used in the data analysis: a full understanding of the polarization phenomenon requires measurements reported in two 'orthogonal' frames, such as the Collins-Soper and helicity frames. Moreover, the azimuthal anisotropy can be, in certain frames, as significant as the polar one. The seemingly contradictory results reported by the experiments E866, HERA-B, and CDF can be consistently described assuming that the most suitable axis for the measurement is along the direction of the relative motion of the colliding partons, and that directly produced J/{psi}'s are longitudinally polarizedmore » at low momentum and transversely polarized at high momentum. We make specific predictions that can be tested on existing CDF data and by LHC measurements, which should show a full transverse polarization for direct J/{psi}'s of p{sub T}>25 GeV/c.« less
A polarized atomic-beam target for COSY-Jülich
NASA Astrophysics Data System (ADS)
Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.
1998-01-01
An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be ≳80% with a density in the interaction zone of ≳1011atoms/cm2.
COLLIDE-2: Collisions Into Dust Experiment-2
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.
2002-01-01
The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.
Analysis of colliding vehicle interactions for the passenger rail train-to-train impact test
DOT National Transportation Integrated Search
2004-04-06
A full-scale train-to-train impact test was performed in : which a cab car-led passenger train traveling at 30 mph collided : with a standing locomotive-led train. During the test, the lead : cab car overrode the cab of the standing locomotive, susta...
DOT National Transportation Integrated Search
2011-09-01
This report presents the results of a locomotive and three loaded hopper car consist traveling at 29 miles per hour colliding with a stationary consist of 35 loaded hopper cars. The details of test instrumentation, LS-DYNA finite element simulation, ...
Studies of the nucleon structure in back-to-back SIDIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakian, Harut
2016-03-01
The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less
Inclusive inelastic scattering of heavy ions and nuclear correlations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.
1990-01-01
Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.
Front End and HFOFO Snake for a Muon Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Alexahin, Y.
2015-09-01
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and amore » $$\\phi-\\delta E$$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $$\\mu^+$$ and $$\\mu^-$$ transversely and longitudinally. The status of the design is presented and variations are discussed.« less
Mercury Handling for the Target System for a Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Van B; Mcdonald, K; Kirk, H.
2012-01-01
The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less
Intense beams at the micron level for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1991-08-01
High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, N.
The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.
Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-08-01
A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.
Disambiguating seesaw models using invariant mass variables at hadron colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.
Front End for a neutrino factory or muon collider
NASA Astrophysics Data System (ADS)
Neuffer, D.; Snopok, P.; Alexahin, Y.
2017-11-01
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ 's produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a varphi -δ E rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an "HFOFO Snake" configuration that cools both μ+ and μ- transversely and longitudinally. The status of the design is presented and variations are discussed.
Vanilla technicolor at linear colliders
NASA Astrophysics Data System (ADS)
Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco
2011-08-01
We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.
NASA Astrophysics Data System (ADS)
Kishimoto, Naoki; Ohno, Koichi
Excited metastable atoms colliding with target molecules can sensitively probe outer properties of molecules by chemi-ionization (Penning ionization) from molecular orbitals in the outer region, since metastable atoms cannot penetrate into the repulsive interaction wall around the molecules. By means of two-dimensional measurements using kinetic energy analysis of electrons combined with a velocity-resolved metastable beam, one can obtain information on the anisotropic interaction between the colliding particles without any control of orientation or alignment of target molecules. We have developed a classical trajectory method to calculate the collision energy dependence of partial ionization cross-sections (CEDPICS) on the anisotropic interaction potential energy surface, which has enabled us to study stereodynamics between metastable atoms and target molecules as well as the spatial distribution of molecular orbitals and electron ejection functions which have a relation with entrance and exit channels of the reaction. Based on the individual CEDPICS, the electronic structure of molecules can also be elucidated.
Feasibility study of heavy-ion collision physics at NICA JINR
NASA Astrophysics Data System (ADS)
Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.
2017-11-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.
Front End for a neutrino factory or muon collider
Neuffer, David; Snopok, Pavel; Alexahin, Yuri
2017-11-30
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less
Disambiguating seesaw models using invariant mass variables at hadron colliders
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-19
Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less
Un-collided-flux preconditioning for the first order transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigley, M.; Koebbe, J.; Drumm, C.
2013-07-01
Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)
Effects of a Moving Distractor Object on Time-to-Contact Judgments
ERIC Educational Resources Information Center
Oberfeld, Daniel; Hecht, Heiko
2008-01-01
The effects of moving task-irrelevant objects on time-to-contact (TTC) judgments were examined in 5 experiments. Observers viewed a directly approaching target in the presence of a distractor object moving in parallel with the target. In Experiments 1 to 4, observers decided whether the target would have collided with them earlier or later than a…
Tests of Scintillator+WLS Strips for Muon System at Future Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja
2015-10-11
Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.
NASA Astrophysics Data System (ADS)
De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.
2009-05-01
Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor
NASA Astrophysics Data System (ADS)
Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.
2014-02-01
Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.
NASA Astrophysics Data System (ADS)
Geraksiev, N. S.; MPD Collaboration
2018-05-01
The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.
WEDGE ABSORBERS FOR MUON COOLING WITH A TEST BEAM AT MICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David; Acosta, J.; Summers, D.
2016-10-18
Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.
High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, Ben
2013-05-01
The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternativemore » particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.« less
Mass Transfer via Low-Velocity Rebound in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Jarmak, S. G.; Colwell, J. E.; Brisset, J.; Dove, A.; Brown, A. Q.
2017-12-01
Observations of low-velocity collisions (< 1 m/s) between μm to cm-size particles in a microgravity environment are crucial to an understanding of the surface properties of small, airless bodies as well as the processes that lead to their formation. The COLLIDE (Collisions Into Dust Experiment) and PRIME (Physics of Regolith Impacts in Microgravity Experiment) programs created impacts into simulated planetary regolith with cm-scale impactors to observe ejecta production and coefficients of restitution in microgravity. These experiments were carried out on orbit (COLLIDE, COLLIDE-2), in suborbital space (COLLIDE-3), and on parabolic airplane flights (PRIME) under vacuum. Some impacts at speeds less than 40 cm/s resulted in mass transfer from the target regolith onto the impactor. To study these mass-transfer collisions in more detail without the cost or time requirements of spaceflight or parabolic flights, we developed an experimental apparatus in a laboratory drop tower (free-fall time 0.75 s) and performed experiments at standard pressure. The impactor is suspended from a spring and remains in contact with the bed of regolith until free-fall allows the spring to retract and pull the impactor upwards. This method allowed us to simulate the rebound portion of a low-velocity collision in a laboratory microgravity environment. We achieved rebound velocities of 10 - 60 cm/s, and we observed mass transfer events with rebound speeds below 40 cm/s. The amount of mass transfer produced was more significant than a monolayer of granular material, but less than the amount observed in the COLLIDE and PRIME experiments. These mass-transfer collisions may play a role in the growth of planetesimals. We will present the results of our laboratory-based studies where we vary impact velocity and target material, and discuss implications for collisional evolution in the protoplanetary disk and planetary rings.
Testing the scalar sector of the twin Higgs model at colliders
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.
2018-03-01
We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.
Neutron dosimetry at a high-energy electron-positron collider
NASA Astrophysics Data System (ADS)
Bedogni, Roberto
Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Quick Time Movie for PIA02135 Impactor Targeting Sensor Approach This movie shows Deep Impact's impactor probe approaching comet Tempel 1. It is made up of images taken by the probe's impactor targeting sensor. The probe collided with the comet at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4).NASA Astrophysics Data System (ADS)
Nakai, Yohta; Shirai, Toshizo; Tabata, Tatsuo; Ito, Rinsuke
1989-01-01
A universal analytic formula is given for the total cross sections of single-electron capture by multiply-charged ions colliding with H, H2 or He. Values of constants in the formula have been determined by least-squares fit to experimental data collected from the literature. The formula is applicable to ions of almost all atomic species with charge q greater than 4 (for the H and H2 targets) or 5 (for the He target) in the energy region from about 1 to 107 eV amu-1. The root-mean-square deviation of the data from the formula is 29%. The formula shows that the cross sections are proportional to q1.07 at low energies and to q2.86 at high energies. Other trends of the cross sections that can be derived from the formula are also discussed.
Exploring New Physics Beyond the Standard Model: Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liantao
This grant in 2015 to 2016 was for support in the area of theoretical High Energy Physics. The research supported focused mainly on the energy frontier, but it also has connections to both the cosmic and intensity frontiers. Lian-Tao Wang (PI) focused mainly on signal of new physics at colliders. The year 2015 - 2016, covered by this grant, has been an exciting period of digesting the influx of LHC data, understanding its meaning, and using it to refine strategies for deeper exploration. The PI proposed new methods of searching for new physics at the LHC, such as for themore » compressed stops. He also investigated in detail the signal of composite Higgs models, focusing on spin-1 composite resonances in the di-boson channel. He has also considered di-photon as a probe for such models. He has also made contributions in formulating search strategies of dark matter at the LHC, resulting in two documents with recommendations. The PI has also been active in studying the physics potential of future colliders, including Higgs factories and 100 TeV pp colliders. He has given comprehensive overview of the physics potential of the high energy proton collider, and outline its luminosity targets. He has also studied the use of lepton colliders to probe fermionic Higgs portal and bottom quark couplings to the Z boson.« less
Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)
Thomson, Mark
2018-04-16
Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, J.; Mokhov, N.V.; Striganov, S.I.
2010-06-09
Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield ismore » maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.« less
Deciphering the MSSM Higgs mass at future hadron colliders
Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...
2017-06-06
Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less
Testing the scalar sector of the twin Higgs model at colliders
Chacko, Zackaria; Kilic, Can; Najjari, Saereh; ...
2018-03-22
We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less
Testing the scalar sector of the twin Higgs model at colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Kilic, Can; Najjari, Saereh
We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less
Test of Relativistic Gravity for Propulsion at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Felber, Franklin
2010-01-01
A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.
Development of semiconductor tracking: The future linear collider case
NASA Astrophysics Data System (ADS)
Savoy-Navarro, Aurore
2011-04-01
An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.
LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ABE,T.; DAWSON,S.; HEINEMEYER,S.
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less
Linear Collider Physics Resource Book for Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, Michael E
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less
NASA Astrophysics Data System (ADS)
Kolesnikov, V. I.
2017-06-01
The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1996-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
The Birth of Lepton Colliders in Italy and the United States
NASA Astrophysics Data System (ADS)
Paris, Elizabeth
2003-04-01
In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.
ERIC Educational Resources Information Center
Booker, Lucille M.
2012-01-01
Political discourse is an observable, measurable, and testable manifestation of political worldviews. However, when worldviews collide, notions of truth and of lies are put to the test. The challenge for researchers is how to establish confidence in their analysis. Despite the growing interest in deception research from a diversity of fields and…
NASA Astrophysics Data System (ADS)
Chouhan, N. S.; Singh, M. K.; Singh, V.; Pathak, R.
2013-12-01
Interactions of 84Kr36 having kinetic energy around 1 GeV per nucleon with NIKFI BR-2 nuclear emulsion detector's target reveal some of the important features of compound multiplicity. Present article shows that width of compound multiplicity distributions and value of mean compound multiplicity have linear relationship with mass number of the projectile colliding system.
NASA Astrophysics Data System (ADS)
Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2015-08-01
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.
Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator
NASA Astrophysics Data System (ADS)
Hasan, N.; Knudsen, P.; Ganni, V.
2017-12-01
The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.
Formation of Neutron-Enriched Heavy and Superheavy Nuclei in Fusion Reactions
NASA Astrophysics Data System (ADS)
Karpov, A. V.; Rachkov, V. A.; Saiko, V. V.
2018-05-01
The formation of new isotopes of heavy and superheavy elements in the fusion of neutron-enriched projectiles with actinide targets is discussed. Cross sections for the formation of evaporation residues in fusion reactions is predicted for several combinations of colliding nuclei.
Kikoła, Daniel; Echevarria, Miguel GarcÃÂa; Hadjidakis, Cynthia; ...
2017-05-17
Measurement of Single Transverse-Spin Asymmetrymore » $$A_N$$ for various quarkonia states and Drell-Yan lepton pairs can shed light on the orbital angular momentum of quarks and gluons, a fundamental ingredient of the spin puzzle of the proton. The AFTER@LHC experiment combines a unique kinematic coverage and large luminosities of the Large Hadron Collider beams to deliver precise measurements, complementary to the knowledge provided by collider experiments such as RHIC. Here, we report on sensitivity studies for $$J/\\Psi$$, $$\\Upsilon$$ and Drell-Yan $$A_N$$ done using the performance of a LHCb-like and ALICE-like detectors, combined with a polarised hydrogen and $^3$He target. Particularly, such research will provide new insights and knowledge about transverse-momentum-dependent parton distribution functions for quarks and gluons and on twist-3 collinear matrix elements in a proton and a neutron.« less
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2018-03-01
The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .
2013-01-01
experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.
Ji, Xiangdong; Yuan, Feng; Zhao, Yong
2017-05-12
Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.
Measurement techniques for low emittance tuning and beam dynamics at CESR
NASA Astrophysics Data System (ADS)
Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.
2018-03-01
After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.
New generation electron-positron factories
NASA Astrophysics Data System (ADS)
Zobov, Mikhail
2011-09-01
In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.
Testing B-violating signatures from exotic instantons in future colliders
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.
2017-09-01
We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048
Review of hydrodynamic tunneling issues in high power particle accelerators
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Piriz, A. R.
2018-07-01
Full impact of one Large Hadron Collider (LHC) 7 TeV proton beam on solid targets made of different materials including copper and carbon, was simulated using an energy deposition code, FLUKA and a two-dimensional hydrodynamic code, BIG2, iteratively. These studies showed that the penetration depth of the entire beam comprised of 2808 proton bunches significantly increases due to a phenomenon named hydrodynamic tunneling of the protons and the shower. For example, the static range of a single 7 TeV proton and its shower is about 1 m in solid copper, but the full LHC beam will penetrate up to about 35 m in the target, if the hydrodynamic effects were included. Due to the potential implications of this result on the machine protection considerations, it was decided to have an experimental verification of the hydrodynamic tunneling effect. For this purpose, experiments were carried out at the CERN HiRadMat (High Radiation to Materials) facility in which extended solid copper cylindrical targets were irradiated with the 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). Simulations of beam-target heating considering the same beam parameters that were used in the experiments, were also performed. These experiments not only confirmed the existence of the hydrodynamic tunneling, but the experimental measurements showed very good agreement with the experimental results as well. This provided confidence in the work on LHC related beam-matter heating simulations. Currently, a design study is being carried out by the international community (with CERN taking the leading role) for a post LHC collider named, the Future Circular Collider (FCC) which will accelerate two counter rotating proton beams up to a particle energy of 50 TeV. Simulations of the full impact of one FCC beam comprised of 10,600 proton bunches with a solid copper target have also been done. These simulations have shown that although the static range of a single 50 TeV proton and its shower in solid copper is around 1.8 m, the entire beam will penetrate up to about 350 m in the target. Feasibility studies of developing a water beam dump for the FCC have also been carried out. A review of this work and its implications on machine protection system are presented in this paper.
NASA Astrophysics Data System (ADS)
Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.
2017-08-01
The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.
NASA Astrophysics Data System (ADS)
Mao, Ying-nan
2018-04-01
We propose spontaneous C P violation in the simplest little Higgs model. In this model, the pseudoscalar field can acquire a nonzero vacuum expectation value. This leads to a mixing between the two scalars with different C P charge, which means that spontaneous C P violation occurs. It is also a connection between the composite Higgs mechanism and C P violation. Facing the experimental constraints, the model is still viable for both scenarios in which the extra scalar appears below or around the electroweak scale. We also discuss the future collider tests of C P violation in the scalar sector through measuring h2Z Z and h1h2Z' vertices (see the definitions of the particles in the text), which provide new motivations for future e+e- and p p colliders. This also shows the importance of the vector-vector-scalar- and vector-scalar-scalar-type vertices in discovering C P -violation effects in the scalar sector.
Testing sterile neutrino extensions of the Standard Model at future lepton colliders
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Fischer, Oliver
2015-05-01
Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).
Time and position resolution of the scintillator strips for a muon system at future colliders
Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja
2016-03-31
In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.
R&D status of linear collider technology at KEK
NASA Astrophysics Data System (ADS)
Urakawa, Junji
1992-02-01
This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.
Instrumentation for the study of low emittance tuning and beam dynamics at CESR
NASA Astrophysics Data System (ADS)
Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.
2017-11-01
The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode for CESR as a Test Accelerator (CesrTA) included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1-3]. In addition to instrumentation for the storage ring, which was created for CesrTA, existing instrumentation was modified to facilitate the entire range of investigations to support these studies. Procedures were developed, often requiring coordinated measurements among different instruments [4]. This paper describes the instruments utilized for the study of beam dynamics during the operation of CesrTA. The treatment of these instruments will remain fairly general in this paper as it focusses on an overview of the instruments themselves. Their interaction and inter-relationships during sequences of observations is found in a companion paper describing the associated measurement techniques. More detailed descriptions and detailed operational performance for some of the instrumentation may be found elsewhere and these will be referenced in the related sections of this paper.
End-to-end simulation of bunch merging for a muon collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Yu; Stratakis, Diktys; Hanson, Gail G.
2015-05-03
Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulationmore » of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.« less
Remote Monitoring of the Polarized Target's Control for E1039
NASA Astrophysics Data System (ADS)
Fox, David; SeaQuest Collaboration
2017-09-01
The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
Accelerator Science: Collider vs. Fixed Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.
Accelerator Science: Collider vs. Fixed Target
Lincoln, Don
2018-01-16
Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilabâs Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.
A Wedge Absorber Experiment at MICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David; Mohayai, Tanaz; Rogers, Chris
2017-05-01
Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.
Gravitational mass of relativistic matter and antimatter
Kalaydzhyan, Tigran
2015-10-13
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less
Gravitational mass of relativistic matter and antimatter
NASA Astrophysics Data System (ADS)
Kalaydzhyan, Tigran
2015-12-01
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65
Characteristics of W-26% Re Target Material(LCC-0103)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunwoo, A.
2003-10-07
The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less
High energy density physics issues related to Future Circular Collider
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2017-07-01
A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.
Staged Z-pinch for the production of high-flux neutrons and net energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman
A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less
Color-Sextet Quark Productions at Hadron Colliders
NASA Astrophysics Data System (ADS)
Tanaka, Hidekazu; Watanabe, Isamu
Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.
Train-to-train impact test : analysis of structural measurements
DOT National Transportation Integrated Search
2002-11-17
This paper describes the results of the train-to-train impact test conducted at the Transportation Technology Center in Pueblo, Colorado on January 31, 2002. In this test, a cab car-led train, initially moving at 30 mph, collided with a standing loco...
Treite, P.; Nuesslein, U.; Jia, Yi; ...
2015-07-15
The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, F.; Schmidt, R.; Wollmann, D.
2015-08-07
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existencemore » of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.« less
Gravitational waves from dark first order phase transitions and dark photons
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marcianò, Antonino
2018-01-01
Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)
Cornering pseudoscalar-mediated dark matter with the LHC and cosmology
NASA Astrophysics Data System (ADS)
Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Fuks, Benjamin; Goudelis, Andreas; Zaldivar, Bryan
2017-07-01
Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However, LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space.
Two Complementary Strategies for New Physics Searches at Lepton Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooberman, Benjamin Henry
In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in e +e - collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the Υ(3S) using data collected with the BABAR detector. This study establishesmore » the 90% confidence level upper limits BF(Υ(3S) → eτ) < 5.0 x 10 -6 and BF(Υ(3S) → μτ) < 4.1 x 10 -6 which are used to place constraints on new physics contributing to lepton-flavor violation at the TeV mass scale. An alternative strategy is to increase the collision energy above the threshold for new particles and produce them directly. I discuss research and development efforts aimed at producing a vertex tracker which achieves the physics performance required of a high energy lepton collider. A small-scale vertex tracker prototype is constructed using Silicon sensors of 50 μm thickness and tested using charged particle beams. This tracker achieves the targeted impact parameter resolution of σ LP = (5⊕10 GeV/p T) as well as a longitudinal vertex resolution of (260 ± 10) μm, which is consistent with the requirements of a TeV-scale lepton collider. This detector research and development effort must be motivated and directed by simulation studies of physics processes. Investigation of a dark matter-motivated Supersymmetry scenario is presented, in which the dark matter is composed of Supersymmetric neutralinos. In this scenario, studies of the e +e - → H 0A 0 production process allow for precise measurements of the properties of the A 0 Supersymmetric Higgs boson, which improve the achievable precision on the neutralino dark matter candidate relic density to 8%. Comparison between this quantity and the dark matter density determined from cosmological observations will further our understanding of dark matter by allowing us to determine if it is of Supersymmetric origin.« less
Development work for a superconducting linear collider
NASA Technical Reports Server (NTRS)
Matheisen, Axel
1995-01-01
For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.
Project Nuclotron-based Ion Collider fAcility at JINR
NASA Astrophysics Data System (ADS)
Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.
2017-09-01
The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.
Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyeKyoung; Castilla, Alejandro; Delayen, Jean R.
2016-05-01
The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options.more » It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.« less
CCD developments for particle colliders
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-09-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.
Accomplishments of the heavy electron particle accelerator program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Stratakis, D.; Palmer, M.
The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (more » $$\\bar{ve}$$) and $$\\bar{vμ}$$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.« less
Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Stratakis, D.; Palmer, M.
The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν more » $$\\bar{e}$$) and ν $$\\bar{μ}$$) (ν μ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent« less
Linear Collider Physics Resource Book Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronan
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.« less
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-12-01
Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.
DOT National Transportation Integrated Search
2000-03-01
On November 16, 1999, at the Transportation Technology Center in Pueblo, Colorado, a test was conducted of a single rail passenger car colliding with a fixed wall at 35 mph. The car was instrumented to measure (1) the deformations of critical structu...
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
NASA Astrophysics Data System (ADS)
Raubenheimer, T. O.
2001-10-01
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.
NASA Astrophysics Data System (ADS)
Kotchetkov, Dmitri
2017-01-01
Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.
Experiment on infrared radiation characteristic of colloid Fe/Al thermite
NASA Astrophysics Data System (ADS)
Zhen, Jian-wei; Li, Jin-ming; Guo, Meng-meng; Liu, Guo-qing; Wang, Guo-dong
2016-01-01
The Fe/Al thermite was made as bulk material. Mixed proportion with liquid energetic colloid, the Fe/Al thermite was made to be collid Fe/Al thermite combustible agent. Then, combustion test sample was got. The combustion process and the infrared radiation characteristic of colloid Fe/Al thermite was experiment by thermal infrared imager. It was showed that collid Fe/Al thermite combustible agent had better infrared radiation characteristic. It could be as based agentia of infrared decoy with the characteristic of persistent and wide spectral range.
Particle beam injection system
Jassby, Daniel L.; Kulsrud, Russell M.
1977-01-01
This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.
Primakoff Prize Talk: The Search for Dark Sectors
NASA Astrophysics Data System (ADS)
Essig, Rouven
2015-04-01
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly interesting possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. Examples of dark sector particles include dark photons, axions, axion-like particles, and dark matter. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. This talk summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. Particular emphasis will be given to the search for dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model hypercharge, with masses in the MeV-to-GeV range. Experimental searches include low-energy e+e- colliders, new and old high-intensity fixed-target experiments, and high-energy colliders. The talk will highlight the APEX and HPS experiments at Jefferson Lab, which are pioneering, low-cost experiments to search for dark photons in fixed target electroproduction. Over the next few years, they have the potential for a transformative discovery.
A train-to-train impact test of crash energy management passenger rail equipment
DOT National Transportation Integrated Search
2006-12-04
This paper gives an overview of the in-line full-scale impact tests conducted by the Federal : Railroad Administration and discusses a strategy for preventing override between colliding : equipment. Override of the impacting equipment during a passen...
Impact of 7-TeV/c large hadron collider proton beam on a copper target
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I. V.; Piriz, A. R.; Temporal, M.; Hoffmann, D. H. H.; Fortov, V. E.
2005-04-01
The large hadron collider (LHC) will allow for collision between two 7TeV/c proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B 214, 211 (2004)].
New Models and Methods for the Electroweak Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Linda
2017-09-26
This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less
Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars
NASA Astrophysics Data System (ADS)
Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.
Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system
NASA Technical Reports Server (NTRS)
Stanford, S. A.; Balcells, Marc
1991-01-01
Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.
DOT National Transportation Integrated Search
2011-09-01
This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...
Improving ATLAS grid site reliability with functional tests using HammerCloud
NASA Astrophysics Data System (ADS)
Elmsheuser, Johannes; Legger, Federica; Medrano Llamas, Ramon; Sciacca, Gianfranco; van der Ster, Dan
2012-12-01
With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short lightweight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site performances. Sites that fail or are unable to run the tests are automatically excluded from the PanDA brokerage system, therefore avoiding user or production jobs to be sent to problematic sites.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.
2012-05-01
The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440 GeV while it has the same bunch structure as the LHC beam, except that it has only up to 288 bunches. Beam focal spot sizes of σ=0.1, 0.2, and 0.5 mm have been considered. The phenomenon of significant hydrodynamic tunneling due to the hydrodynamic effects is also expected for the experiments.
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, Tor O
2001-10-02
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtlandt L Bohn et al.
2001-06-26
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, C.; Michelotti, L.; Ostiguy, J.-F.
2001-07-17
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Exotic Signals of Vectorlike Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrescu, Bogdan A.; Yu, Felix
2016-12-06
Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, includingmore » $$t\\bar t + 4\\tau$$, $$t\\bar b\
NASA Astrophysics Data System (ADS)
Palmer, R. B.; Gallardo, J. C.
INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION
NASA Astrophysics Data System (ADS)
Karamış, M. B.
2018-01-01
In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeyratne, S; Ahmed, S; Barber, D
2012-08-01
Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less
Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment
NASA Astrophysics Data System (ADS)
Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.
2017-09-01
The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.
High-yield positron systems for linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.
1989-04-01
Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less
Vanegas, Fernando; Gonzalez, Felipe
2016-01-01
Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios. PMID:27171096
Vanegas, Fernando; Gonzalez, Felipe
2016-05-10
Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.
Magnetic field advection in two interpenetrating plasma streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D. D.; Kugland, N. L.; Levy, M. C.
2013-03-15
Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coilsmore » or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.« less
Prospects for colliders and collider physics to the 1 PeV energy scale
NASA Astrophysics Data System (ADS)
King, Bruce J.
2000-08-01
A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.
Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.
2002-11-01
Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.
Thermal dark matter through the Dirac neutrino portal
NASA Astrophysics Data System (ADS)
Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es
2018-04-01
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.
Crabbing System for an Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Castilla, Alejandro
As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.
Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.
2014-10-01
Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.
Studies on the synthesis of isotopes of superheavy element Lv (Z = 116)
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Safoora, V.
2017-11-01
The probable projectile-target combinations for the synthesis of superheavy nucleus 296Lv found in the cold valley of 296Lv have been identified by studying the interaction barrier of the colliding nuclei, probability of compound nucleus formation, P_{CN}, and survival probability W_{sur}. At energies near and above the Coulomb barrier, the capture, fusion and evaporation residue (ER) cross sections for the probable combinations for the hot and cold fusion reactions are systematically investigated. By considering intensities of the projectile beams, availabilities of the targets and half lives of the colliding nuclei, the combination 48Ca+248Cm is found to be the most probable projectile-target pair for the synthesis of 296Lv. The calculated maximum value of 2n, 3n, 4n and 5n channel cross section for the reaction 48Ca+248Cm are 0.599 pb, 5.957 pb, 4.805 pb, and 0.065 pb, respectively. Moreover, the production cross sections for the synthesis of isotopes 291-295,298Lv using 48Ca projectile on 243-247,250Cm targets are calculated. Among these reactions, the reactions 48Ca+247Cm → 295Lv and 48Ca+250Cm → 298Lv have maximum production cross section in 3n (10.697 pb) and 4n (12.006 pb) channel, respectively. Our studies on the SHE Lv using the combinations 48Ca+245Cm → 293Lv and 48Ca+248Cm → 296Lv are compared with available experimental data and with other theoretical studies. Our studies are in agreement with experimental data and we hope that these studies will be a guide for the future experiments to synthesize the isotopes of Lv.
Effect of visuospatial neglect on spatial navigation and heading after stroke.
Aravind, Gayatri; Lamontagne, Anouk
2017-06-09
Visuospatial neglect (VSN) impairs the control of locomotor heading in post-stroke individuals, which may affect their ability to safely avoid moving objects while walking. We aimed to compare VSN+ and VSN- stroke individuals in terms of changes in heading and head orientation in space while avoiding obstacles approaching from different directions and reorienting toward the final target. Stroke participants with VSN (VSN+) and without VSN (VSN-) walked in a virtual environment avoiding obstacles that approached contralesionally, head-on or ipsilesionally. Measures of obstacle avoidance (onset-of-heading change, maximum mediolateral deviation) and target alignment (heading and head-rotation errors with respect to target) were compared across groups and obstacle directions. In total, 26 participants with right-hemisphere stroke participated (13 VSN+ and 13 VSN-; 24 males; mean age 60.3 years, range 48 to 72 years). A larger proportion of VSN+ (75%) than VSN- (38%) participants collided with contralesional and head-on obstacles. For VSN- participants, deviating to the same side as the obstacle was a safe strategy to avoid diagonal obstacles and deviating to the opposite-side led to occasional collisions. VSN+ participants deviated ipsilesionally, displaying same-side and opposite-side strategies for ipsilesional and contralesional obstacles, respectively. Overall, VSN+ participants showed greater distances at onset-of-heading change, smaller maximum mediolateral deviation and larger errors in target alignment as compared with VSN- participants. The ipsilesional bias arising from VSN influences the modulation of heading in response to obstacles and, along with the adoption of the "riskier" strategies, contribute to the higher number colliders and poor goal-directed walking abilities in stroke survivors with VSN. Future research should focus on developing assessment and training tools for complex locomotor tasks such as obstacle avoidance in this population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hydrodynamic Modeling of the Deep Impact Mission into Comet Tempel 1
NASA Astrophysics Data System (ADS)
Sorli, Kya; Remington, Tané; Bruck Syal, Megan
2018-01-01
Kinetic impact is one of the primary strategies to deflect hazardous objects off of an Earth-impacting trajectory. The only test of a small-body impact is the 2005 Deep Impact mission into comet Tempel 1, where a 366-kg mass impactor collided at ~10 km/s into the comet, liberating an enormous amount of vapor and ejecta. Code comparisons with observations of the event represent an important source of new information about the initial conditions of small bodies and an extraordinary opportunity to test our simulation capabilities on a rare, full-scale experiment. Using the Adaptive Smoothed Particle Hydrodynamics (ASPH) code, Spheral, we explore how variations in target material properties such as strength, composition, porosity, and layering affect impact results, in order to best match the observed crater size and ejecta evolution. Benchmarking against this unique small-body experiment provides an enhanced understanding of our ability to simulate asteroid or comet response to future deflection missions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-739336-DRAFT.
Collider Interplay for Supersymmetry, Higgs and Dark Matter
Buchmueller, Oliver; Citron, M.; Ellis, J.; ...
2015-10-01
Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less
Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Previtali, Valentina; Valishev, Alexander
Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less
Hadron collider tests of neutrino mass-generating mechanisms
NASA Astrophysics Data System (ADS)
Ruiz, Richard Efrain
The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.
A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel
The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-raymore » spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.« less
Applications of High Intensity Proton Accelerators
NASA Astrophysics Data System (ADS)
Raja, Rajendran; Mishra, Shekhar
2010-06-01
Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.
Next Linear Collider Home Page
Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, R.D.
1994-01-01
As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less
NASA Astrophysics Data System (ADS)
Chala, Mikael; Gröber, Ramona; Spannowsky, Michael
2018-03-01
Many composite Higgs models predict the existence of vector-like quarks with masses outside the reach of the LHC, e.g. m Q ≳ 2 TeV, in particular if these models contain a dark matter candidate. In such models the mass of the new resonances is bounded from above to satisfy the constraint from the observed relic density. We therefore develop new strategies to search for vector-like quarks at a future 100 TeV collider and evaluate what masses and interactions can be probed. We find that masses as large as ˜ 6.4 (˜9) TeV can be tested if the fermionic resonances decay into Standard Model (dark matter) particles. We also discuss the complementarity of dark matter searches, showing that most of the parameter space can be closed. On balance, this study motivates further the consideration of a higher-energy hadron collider for a next generation of facilities.
Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments
NASA Astrophysics Data System (ADS)
Duan, Guang Hua; Wang, Wenyu; Wu, Lei; Yang, Jin Min; Zhao, Jun
2018-03-01
Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar H plays the role of the Standard Model (SM) Higgs boson while the other scalar h can be rather light so that the DM can annihilate through the h resonance or into a pair of h to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully tested by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e- → hA at an electron-positron collider (Higgs factory).
The Next Linear Collider Program-News
The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
Energy Recovery Linacs (ERL) are important for a variety of applications, from high-power Free-Electron Lasers (FEL) to polarized-electron polarized-proton colliders. The ERL current is arguably the most important characteristic of ERLs for such applications. With that in mind, the Collider-Accelerator Department at Brookhaven National Laboratory embarked on the development of a 300 mA ERL to serve as an R and D test-bed for high-current ERL technologies. These include high-current, extremely well damped superconducting accelerating cavities, high-current superconducting laser-photocathode electron guns and high quantum-efficiency photocathodes. In this presentation I will cover these ERL related developments.
Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihara, T.
A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.
Heavy neutrino mixing and single production at linear collider
NASA Astrophysics Data System (ADS)
Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.
1997-02-01
We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.
Radiative return capabilities of a high-energy, high-luminosity e + e - collider
Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...
2015-08-14
An electron-positron collider operating at a center-of-mass energy E CM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at E CM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e +e - colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavymore » flavor spectroscopy are given.« less
Tauzin, Tibor; Csík, Andor; Lovas, Kata; Gergely, György; Topál, József
2017-02-01
Both human infants and nonhuman primates can recognize unfamiliar entities as instrumental agents ascribing to them goals and efficiency of goal-pursuit. This competence relies on movement cues indicating distal sensitivity to the environment and choice of efficient goal-approach. Although dogs' evolved sensitivity to social cues allow them to recognize humans as communicative agents, it remains unclear whether they have also evolved a basic concept of instrumental agency. We used a preferential object-choice procedure to test whether adult pet dogs and human toddlers can identify unfamiliar entities as agents based on different types of movement cues that specify different levels of agency. In the navigational agency condition, dogs preferentially chose an object that modified its pathway to avoid collision with obstacles over another object showing no evidence of distal sensitivity (regularly bumping into obstacles). However, in the goal-efficiency condition where neither object collided with obstacles as it navigated toward a distal target, but only 1 of them exhibited efficient goal-approach as well, toddlers, but not dogs, showed a preference toward the efficient goal-directed agent. These findings indicate that dogs possess a limited concept of environmentally sensitive navigational agency that they attribute to self-propelled entities capable of modifying their movement to avoid colliding with obstacles. Toddlers, in contrast, demonstrated clear sensitivity to cues of efficient variability of goal-approach as the basis for differentiating, attributing, and showing preference for goal-directed instrumental agency. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC
Ferracin, P.; G. Ambrosio; Anerella, M.; ...
2015-12-18
The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less
Optical observation of metal jet generated by high speed inclined collision
NASA Astrophysics Data System (ADS)
Mori, A.; Tanaka, S.; Hokamoto, K.
2017-02-01
Explosive welding, one of the high energy rate material processing, is known the technique to weld strongly for the dissimilar metal combinations. When a metal is collided to the other metal at high velocity with a certain angle, good welding is achieved in this technique. Important parameters of the explosive welding method are the collision velocity and the collision angle. And it is necessary to know these parameters to obtain the explosively welded materials of several metals combinations. However, the optical observation for the collision of metal plate accelerated by the explosive is difficult because of the obstruction by the spreading of detonation gas. In the present work a single-stage powder gun and high speed video camera were used to observe the inclined collision of metals at the high velocity. Projectile consisted by a metal disc and sabot was accelerated by the deflagration of a gunpowder and was collided to another metal disc set with a certain angle. Metal jet was generated at the collision point when the projectile was collided to the target disc in the range of suitable conditions. By using this observation system, a series of the flow from the high speed collision to the generation of metal jet could be taken photographs clearly. This investigation shows the experimental results of the similar and dissimilar metal collision, with comparing the visualization of a metal jet simulated numerically.
NASA Astrophysics Data System (ADS)
Irles, A.
2018-02-01
High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.
NASA Astrophysics Data System (ADS)
Francis, Kurt; CALICE Collaboration
Particle Flow Algorithms (PFAs) have been proposed as a method of improving the jet energy resolution of future colliding beam detectors. PFAs require calorimeters with high granularity to enable three-dimensional imaging of events. The Calorimeter for the Linear Collider Collaboration (CALICE) is developing and testing prototypes of such highly segmented calorimeters. In this context, a large prototype of a Digital Hadron Calorimeter (DHCAL) was developed and constructed by a group led by Argonne National Laboratory. The DHCAL consists of 52 layers, instrumented with Resistive Plate Chambers (RPCs) and interleaved with steel absorber plates. The RPCs are read out by 1 x 1 cm2 pads with a 1-bit resolution (digital readout). The DHCAL prototype has approximately 480,000 readout channels. This talk reports on the design, construction and commissioning of the DHCAL. The DHCAL was installed at the Fermilab Test Beam Facility in fall 2010 and data was collected through the summer 2011.
Testing the electroweak phase transition in scalar extension models at lepton colliders
NASA Astrophysics Data System (ADS)
Cao, Qing-Hong; Huang, Fa-Peng; Xie, Ke-Pan; Zhang, Xinmin
2018-01-01
We study the electroweak phase transition in three scalar extension models beyond the Standard Model. Assuming new scalars are decoupled at some heavy scale, we use the covariant derivative expansion method to derive all of the dimension-6 effective operators, whose coefficients are highly correlated in a specific model. We provide bounds to the complete set of dimension-6 operators by including the electroweak precision test and recent Higgs measurements. We find that the parameter space of strong first-order phase transitions (induced by the | H{| }6 operator) can be probed extensively in Zh production at future electron-positron colliders. QHC and KPX are supported in part by the National Science Foundation of China(11175069, 11275009, 11422545), XZ and FPH are supported by the NSFC (11121092, 11033005, 11375202) and also by the CAS Pilot-B program. FPH is also supported by the China Postdoctoral Science Foundation (2016M590133, 2017T100108)
Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Nickel, Matthew; Rose, Steven; Fries, Rainer
2017-09-01
Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
Suicide and murder-suicide involving automobiles.
Pridmore, Saxby; Varbanov, Svetlin; Sale, Ian
2017-02-01
We aim to explore the phenomenon of suicide by driving one vehicle into another, and draw attention to the cost to occupants of targeted vehicles. We examined academic literature, court and newspaper reports, and online sources. Driver suicide may be achieved by colliding with a fixed object or another vehicle. When a second vehicle is targeted, the occupants of that vehicle experience property loss, and potentially physical and psychiatric injury, or death. Driver suicides are associated with death of another person, in 11.3% of cases. Some suicidal individuals are able to act with great consideration for the consequences of their actions. Every effort must be made to help suicidal people with mental disorders or other predicaments. There is a need for public discussion of suicide by targeting an oncoming vehicle. It is less likely that suicide drivers who target other vehicles are unable to choose and more likely they have not considered the consequences of their actions.
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.
2011-10-01
We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC
The VEPP-2000 electron-positron collider: First experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.
2011-08-15
In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less
Crabbing system for an electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castilla, Alejandro
2017-05-01
As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.« less
NASA Astrophysics Data System (ADS)
Chakdar, Shreyashi
The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study beyond standard model physics at the TeV scale with testable signals in the Colliders.
When Jovian Light and Dark Collide
2017-04-06
This image, taken by the JunoCam imager on NASA's Juno spacecraft, highlights a feature on Jupiter where multiple atmospheric conditions appear to collide. This publicly selected target is called "STB Spectre." The ghostly bluish streak across the right half of the image is a long-lived storm, one of the few structures perceptible in these whitened latitudes where the south temperate belt of Jupiter would normally be. The egg-shaped spot on the lower left is where incoming small dark spots make a hairpin turn. The image was taken on March 27, 2017, at 2:06 a.m. PDT (5:06 a.m. EDT), as the Juno spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was 7,900 miles (12,700 kilometers) from the planet. The image was processed by Roman Tkachenko, and the description is from John Rogers, the citizen scientist who identified the point of interest. https://photojournal.jpl.nasa.gov/catalog/PIA21388
LHC searches for dark sector showers
NASA Astrophysics Data System (ADS)
Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong; Mishra-Sharma, Siddharth
2017-11-01
This paper proposes a new search program for dark sector parton showers at the Large Hadron Collider (LHC). These signatures arise in theories characterized by strong dynamics in a hidden sector, such as Hidden Valley models. A dark parton shower can be composed of both invisible dark matter particles as well as dark sector states that decay to Standard Model particles via a portal. The focus here is on the specific case of `semi-visible jets,' jet-like collider objects where the visible states in the shower are Standard Model hadrons. We present a Simplified Model-like parametrization for the LHC observables and propose targeted search strategies for regions of parameter space that are not covered by existing analyses. Following the `mono- X' literature, the portal is modeled using either an effective field theoretic contact operator approach or with one of two ultraviolet completions; sensitivity projections are provided for all three cases. We additionally highlight that the LHC has a unique advantage over direct detection experiments in the search for this class of dark matter theories.
Large Hadron Collider at CERN: Beams generating high-energy-density matter.
Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-04-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has suggested an additional very important application of the LHC, namely, studies of HED states in matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David; Snopok, Pavel; Alexahin, Yuri
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less
Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ rays
NASA Astrophysics Data System (ADS)
Blackburn, T. G.; Marklund, M.
2018-05-01
Electron–positron pairs are produced through the Breit–Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit–Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today’s high-intensity laser facilities.
First observation of RDEC for gas (N2) targets with F9+
NASA Astrophysics Data System (ADS)
Kumara, P. N. S.; La Mantia, D. S.; Simon, A.; Kayani, A.; Tanis, J. A.
2017-10-01
Radiative double electron capture (RDEC) is a fundamental atomic process predicted to occur in ion-atom collisions. Several attempts were made to show experimental evidence for RDEC after it was introduced theoretically in 1987. The first successful measurements were done for O8+ ions colliding with a thin carbon foil in 2010, followed by measurements for F9+ projectiles incident on carbon. The works reported here are the first observations giving preliminary results for RDEC in collisions of F9+ projectiles with gas (N2) targets. X-rays were observed in the region of interest and an estimation of RDEC cross section was calculated. These cross sections are compared with recent theoretical calculations.
Dynamics of collision of a vortex ring and a planar surface
NASA Astrophysics Data System (ADS)
McErlean, Michael; Krane, Michael; Fontaine, Arnold
2009-11-01
The dynamics of the impact between a vortex ring and a planar surface orientated perpendicular to the direction of travel are presented. High Reynolds number vortex rings are injected into a quiescent tank of water using a piston-cylinder generator before colliding with a target at a long distance. Both the pressure at the stagnation point on the surface and the force imparted to the target by the ring impact are measured directly. The changes in both are related to the ring motion and deformation captured by high speed digital video, and DPIV measurements. These relations are used to develop a scaling law relation between impact force and vortex ring circulation, speed, and size.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
nuSTORM and A Path to a Muon Collider
Adey, David; Bayes, Ryan; Bross, Alan; ...
2015-05-20
Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ +μ - collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30more » years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ +μ -collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less
Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
J, Selvaganapathy; Das, Prasanta Kumar; Konar, Partha
2016-06-01
We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section to first order in the noncommutative parameter Θμ ν . Although this idea has been evolving for a long time, only a limited amount of phenomenological analysis has been completed, and this was mostly in the context of the linear collider. An outstanding feature from this nonminimal noncommutative standard model not only modifies the couplings over the SM production channel but also allows additional nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings. We explore the noncommutative scale ΛNC≥0.4 TeV , considering different machine energy ranging from 7 to 13 TeV.
Aberration compensation in a Skew parametric-resonance ionization cooling channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, Amy V.; Derbenev, Yaroslav S.; Morozov, Vasiliy
Skew Parametric-resonance Ionization Cooling (Skew PIC) represents a novel method for focusing of highly divergent particle beams, as in the final 6D cooling stage of a high-luminosity muon collider. In the muon collider concept, the resultant equilibrium transverse emittances from cooling with Skew PIC are an order of magnitude smaller than in conventional ionization cooling. The concept makes use of coupling of the transverse dynamic behavior, and the linear dynamics are well-behaved with good agreement between analytic solutions and simulation results. Compared to the uncoupled system, coupling of the transverse dynamic behavior purports to reduce the number of multipoles requiredmore » for aberration compensation while also avoiding unwanted resonances. Aberration compensation is more complicated in the coupled case, especially in the high-luminosity muon collider application where equilibrium angular spreads in the cooling channel are on the order of 200 mrad. We present recent progress on aberration compensation for control of highly divergent muon beams in the coupled correlated optics channel, and a simple cooling model to test the transverse acceptance of the channel.« less
Modulators for the S-band test linac at DESY
NASA Astrophysics Data System (ADS)
Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.
1995-07-01
The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.
Crab cavities: Past, present, and future of a challenging device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
2015-05-03
In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less
Working Group Report: Higgs Boson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Sally; Gritsan, Andrei; Logan, Heather
2013-10-30
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less
Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders
NASA Astrophysics Data System (ADS)
Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan
2018-02-01
We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
NASA Astrophysics Data System (ADS)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
The Next Linear Collider Program
text only International Study Group (ISG) Meetings NLC Home Page NLC Technical SLAC Eleventh Linear Collider International Study Group at KEK, December 16 - 19, 2003 Tenth (X) Linear Collider International Study Group at SLAC, June, 2003 Nineth Linear Collider ,International Study Group at KEK, December 10-13
ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagler, L
2008-07-17
A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less
Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter
2015-02-01
We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.
Capture, acceleration and bunching rf systems for the MEIC booster and storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei
2015-09-01
The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less
A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aicheler, M; Burrows, P.; Draper, M.
This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less
Physics and Analysis at a Hadron Collider - An Introduction (1/3)
None
2018-05-11
This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.
The future of the Large Hadron Collider and CERN.
Heuer, Rolf-Dieter
2012-02-28
This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.
Gatignon, L
2018-05-01
The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K + → π + νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Gatignon, L.
2018-05-01
The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K+ → π+νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.
Leading twist nuclear shadowing phenomena in hard processes with nuclei
L. Franfurt; Guzey, V.; Strikman, M.
2012-01-08
We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less
NASA Astrophysics Data System (ADS)
Baumann, C.; Pukhov, A.
2016-12-01
The behavior of a thin plasma target irradiated by two counterpropagating laser pulses of ultrahigh intensity is studied in the framework of one- and two-dimensional particle-in-cell simulations. It is found that above an intensity threshold, radiative trapping can focus electrons in the peaks of the electromagnetic field. At even higher intensities, the trapping effect cannot be maintained according to the increasing influence of electron-positron pair production on the laser-plasma dynamics.
{sigma}({chi}{sub c1})/{sigma}({chi}{sub c2}) ratio in the k{sub t}-factorization approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranov, S. P.
2011-02-01
We address the puzzle of {sigma}({chi}{sub c1})/{sigma}({chi}{sub c2}) ratio at the collider and fixed-target experiments. We consider several factors that can affect the predicted ratio of the production rates. In particular, we discuss the effect of {chi}{sub cJ} polarization, the effect of including next-to-leading order contributions, and the effect of probably different {chi}{sub c1} and {chi}{sub c2} wave functions.
2017-05-22
previous studies from proton on proton colli- sions and deuteron on gold nucleus collisions, as well as with model calculations, may provide deeper insight...designed to achieve target energies. Machines are also designed for different collision systems, such as Cu+Cu or Au+Au. This is one way to study ...charge states of delta baryons are minus one , zero, plus one , and plus two. For this project, we are studying the plus two charge state, commonly referred
Solid-on-solid contact in a sphere-wall collision in a viscous fluid
NASA Astrophysics Data System (ADS)
Birwa, Sumit Kumar; Rajalakshmi, G.; Govindarajan, Rama; Menon, Narayanan
2018-04-01
We study experimentally the collision between a sphere falling through a viscous fluid and a solid plate below. It is known that there is a well-defined threshold Stokes number above which the sphere rebounds from such a collision. Our experiment tests for direct contact between the colliding bodies and, contrary to prior theoretical predictions, shows that solid-on-solid contact occurs even for Stokes numbers just above the threshold for rebounding. The dissipation is fluid dominated, though details of the contact mechanics depend on the surface and bulk properties of the solids. Our experiments and a model calculation indicate that mechanical contact between the two colliding objects is generic and will occur for any realistic surface roughness.
Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.
Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G
2005-12-31
We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.
Optimizing integrated luminosity of future hadron colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank
2015-10-01
The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).
Accelerator physics and technology challenges of very high energy hadron colliders
NASA Astrophysics Data System (ADS)
Shiltsev, Vladimir D.
2015-08-01
High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.
Accelerator physics and technology challenges of very high energy hadron colliders
Shiltsev, Vladimir D.
2015-08-20
High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.
Skyshine from the SSC (superconducting super collider) interaction regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cossairt, J.D.
1987-04-01
This report calculates the neutron fluence from collisions at the superconducting super collider. The motivation for these calculations is shielding considerations in the collision halls of the collider. (JDH)
Femto-second synchronisation with a waveguide interferometer
NASA Astrophysics Data System (ADS)
Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.
2018-03-01
CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.
Mixing Metaphors in the Cerebral Hemispheres: What Happens When Careers Collide?
Chettih, Selmaan; Durgin, Frank H.; Grodner, Daniel J.
2014-01-01
Are processes of figurative comparison and figurative categorization different? An experiment combining alternative-sense and matched-sense metaphor priming with a divided visual field assessment technique sought to isolate processes of comparison and categorization in the two cerebral hemispheres. For target metaphors presented in the RVF/LH, only matched-sense primes were facilitative. Literal primes and alternative-sense primes had no effect on comprehension time compared to the unprimed baseline. The effects of matched-sense primes were additive with the rated conventionality of the targets. For target metaphors presented to the LVF/RH, matched-sense primes were again additively facilitative. However, alternative-sense primes, though facilitative overall, seemed to eliminate the pre-existing advantages of conventional target metaphor senses in the LVF/RH in favor of metaphoric senses similar to those of the primes. These findings are consistent with tightly controlled categorical coding in the LH and coarse, and flexible, context dependent coding in the RH. PMID:22103787
Towards future circular colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Zimmermann, Frank
2016-09-01
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.
Higgs, SUSY and the standard model at /γγ colliders
NASA Astrophysics Data System (ADS)
Hagiwara, Kaoru
2001-10-01
In this report, I surveyed physics potential of the γγ option of a linear e +e - collider with the following questions in mind: What new discovery can be expected at a γγ collider in addition to what will be learned at its ' parent' e +e -linear collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e - beams, we find that a γγ collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e -e - system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a γγ collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of interference with the Standard Model amplitudes. A few comments are given for SUSY particle studies at a γγ collider, where a pair of charged spinless particles is produced in the s-wave near the threshold. Squark-onium may be discovered. An e ±γ collision mode may measure the Higgs- Z-γ coupling accurately and probe flavor oscillations in the slepton sector. As a general remark, all the Standard Model background simulation tools should be prepared in the helicity amplitude level, so that simulation can be performed for an arbitrary set of Stokes parameters of the incoming photon beams.
The Next Linear Collider Program
The Next Linear Collider at SLAC Navbar NLC Playpen Warning: This page is provided as a place for Comments & Suggestions | Desktop Trouble Call | Linear Collider Group at FNAL || This page was updated
NASA Astrophysics Data System (ADS)
LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.
2008-08-01
The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
NASA Astrophysics Data System (ADS)
Gunion, John F.; Han, Tao; Ohnemus, James
1995-08-01
The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants
Standard Model Background of the Cosmological Collider.
Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi
2017-06-30
The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.
Numerical calculation of ion polarization in the NICA collider
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2016-02-01
The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.
Searches for the Standard Model Higgs boson at the Tevatron collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Wade C.; Junk, Thomas R.
During Run II of the Tevatron collider, which took place from 2001 until 2011, the CDF and D0 detectors each collected approximately 10 fb -1 of collision data at a center-of-mass energy of . This dataset allowed for tests for the presence of the SM Higgs boson in the mass range 90-200 GeV in the production modes gg → H, W/ZH, vector-boson fusion, and H, with H decay modes H → , H → W +W -, H → τ +τ -, H → γγ, and H → ZZ. This chapter summarizes the search methods and the results of themore » Higgs boson search at the Tevatron. The increased sophistication of the analysis techniques as the collider run progressed is discussed, covering the strategies used over time to improve the sensitivity and breadth of the analyses. Using the full Tevatron data sample for both experiments, the combined Higgs search in all channels observes an excess consistent with the predicted SM Higgs boson signal with mass of 125 GeV, with a significance of 3.0 standard deviations above the background prediction.« less
Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, J.F.
1991-01-01
This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less
The CERN Large Hadron Collider as a tool to study high-energy density matter.
Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E
2005-04-08
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de
Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario heremore » and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.« less
Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas
NASA Astrophysics Data System (ADS)
Wu, Yuanbin; Pálffy, Adriana
2017-03-01
Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
NASA Astrophysics Data System (ADS)
Sharov, Vasily
2017-03-01
The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Commissioning and initial experience with the ALICE on-line
NASA Astrophysics Data System (ADS)
Altini, V.; Anticic, T.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vande Vyvre, P.; von Haller, B.; ALICE Collaboration
2010-04-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the "battle field". It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liu-Jin
2005-09-01
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations.more » The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liujin
2006-03-20
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. Themore » cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Rotorcraft Airloads Measurements - Extraordinary Costs, Extraordinary Benefits
2014-08-01
obtained in the 1980s by the PETRA collider in a high-energy physics lab near Hamburg, Germany. The project, called JADE, was an international...and R. M. Martin . 1990. Aerodynamic and Acoustic Test of a United Technologies Scale Model Rotor at DNW. Amer. Hel. Soc. 46th Annual Forum, Wash
Muon Accelerator Program (MAP) | Neutrino Factory | Research Goals
; Committees Research Goals Research & Development Design & Simulation Technology Development Systems Demonstrations Activities MASS Muon Cooling MuCool Test Area MICE Experiment MERIT Muon Collider Research Goals Why Muons at the Energy Frontier? How does it work? Graphics Animation Neutrino Factory Research Goals
Learning with the ATLAS Experiment at CERN
ERIC Educational Resources Information Center
Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.
2012-01-01
With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…
Impact of detector simulation in particle physics collider experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvira, V. Daniel
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
Impact of detector simulation in particle physics collider experiments
Elvira, V. Daniel
2017-06-01
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
Physics with e{sup +}e{sup -} Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Timothy L
2003-05-05
We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less
Impact of detector simulation in particle physics collider experiments
NASA Astrophysics Data System (ADS)
Daniel Elvira, V.
2017-06-01
Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.
Beam dynamics studies at DAΦNE: from ideas to experimental results
NASA Astrophysics Data System (ADS)
Zobov, M.; DAΦNE Team
2017-12-01
DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.
PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders
NASA Astrophysics Data System (ADS)
Ballestrero, Alessandro; Belhouari, Aissa; Bevilacqua, Giuseppe; Kashkan, Vladimir; Maina, Ezio
2009-03-01
PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at O(αEM6) and O(αEM4αS2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, tt¯ and three boson production. Program summaryProgram title:PHANTOM (V. 1.0) Catalogue identifier: AECE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 175 787 No. of bytes in distributed program, including test data, etc.: 965 898 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any with a UNIX, LINUX compatible Fortran compiler Operating system: UNIX, LINUX RAM: 500 MB Classification: 11.1 External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for ee ILC collider). Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed. Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders. It computes all amplitudes at O(αEM6) and O(αEM4αs2) including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. Restrictions: All Feynman diagrams are computed al LO. Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used. Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events. References:A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.
Physics at high energy photon photon colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanowitz, M.S.
I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.
Dark matter with flavor symmetry and its collider signature
Ma, Ernest; Natale, Alexander
2014-11-20
The notion that dark matter and standard-model matter are connected through flavor implies a generic collider signature of the type . We discuss the theoretical basis of this proposal and its verifiability at the Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Hester, Tim; Maglich, Bogdan; Calsec Collaboration
2015-03-01
Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).
International Workshop on Linear Colliders 2010
Lebrun, Ph.
2018-06-20
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.
Luminosity Limitations of Linear Colliders Based on Plasma Acceleration
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2016-01-01
Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.
International Workshop on Linear Colliders 2010
Yamada, Sakue
2018-05-24
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN
Funding for LoopFest IV and RADCOR2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bern, Zvi
This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.
Newton’s cradle in billiards and croquet
NASA Astrophysics Data System (ADS)
Cross, Rod
2016-11-01
When an object collides head-on and in line with two balls in contact, the outcome is not generally easy to predict. We consider three simple examples. One is Newton’s cradle with only three balls. Another is a billiard cue colliding with the two balls. The third is a croquet shot where a mallet collides with the two balls. The outcome in each case is different since it depends on the mass of the colliding object.
WW Physics at Future e{sup +}e{sup -} Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Timothy L
Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.
Summary of dipole field angle measurements on 50mm-aperture SSC Collider Dipole Magnet Protoypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, J.; DiMarco, J.; Kuzminski, J.
At several stages in the production of the SSC collider dipole magnets and their final installation the magnetic field angle needs to be known. A simple device using a permanent magnet which aligns itself with the magnetic field had been developed at FNAL to survey the direction of the magnetic dipole field with respect to the vertical (as determined by gravity) along the magnet axis. The determination of the dipole field angle was part of the field quality characterization of a series of thirteen full-length 50mm-aperture SSC Collider Dipole Magnet Prototypes which were built for R&D purposes at FNAL. Measurementsmore » with the first developed FAP system were performed on a regular basis through several stages of the magnet production process with the intention of fabrication quality control. Part of these included measurements performed before and after cryogenic testing: these data are summarized here. The performance of a second system with an improved probe and data acquisition system was tested on part of the DCA series as well. This paper includes a presentation of time stability, noise and angular resolution data of this second probe. Another alternative instrument to determine the dipole field angle is the ``mole`` rotating coil system developed at BNL used mainly to measure the multipole components of the magnetic field. In the case of magnet DCA320, a comparison is made between the field angle as determined by the mole and those determined by both of the FAPS.« less
Considerations on Energy Frontier Colliders after LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-11-15
Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakian, Harut
Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, T.; et al.
This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Dark Matter "Collider" from Inelastic Boosted Dark Matter.
Kim, Doojin; Park, Jong-Chul; Shin, Seodong
2017-10-20
We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.
Will there be energy frontier colliders after LHC?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-09-15
High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less
Status of the Future Circular Collider Study
NASA Astrophysics Data System (ADS)
Benedikt, Michael
2016-03-01
Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.
Status and commissioning of the CMS experiment
NASA Astrophysics Data System (ADS)
Wulz, C.-E.
2008-05-01
The construction status of the CMS experiment at the Large Hadron Collider and strategies for commissioning the subdetectors, the magnet, the trigger and the data acquisition are described. The first operations of CMS as a unified system, using either cosmic rays or test data, and the planned activities until the startup of the LHC are presented.
Rich phenomenology encountered when two jets collide in microgravity
NASA Astrophysics Data System (ADS)
Suñol, Francesc; Gonzalez-Cinca, Ricard
The collision between two impinging liquid jets has been experimentally studied in the low gravity environment provided by the ZARM drop tower. The effects of impact angle and liquid flow rate on the collision between like-doublet jets have been considered. Tests were carried out with distilled water injected through nozzles with an internal diameter of 0.7 mm into a test cell. Impact angle varied between 10(°) and 180(°) (frontal collision), while the liquid flow rate ranged between 20 ml/min and 80 ml/min for each nozzle. Such a large parameter range allowed us to observe different phenomena resulting from the jets collision: oscillating droplets attached to the nozzles, a non-uniform spatial distribution of bouncing droplets, coalescing droplets generating a single central droplet, coalescing jets, bouncing jets, liquid chains and liquid sheets. A map of the different patterns observed has been obtained. We present results on the structure of the jets after collision, the breakup length and the size of the generated droplet. The resulting structure of impinging jets highly depends on the Reynolds and Weber numbers, and the proper alignment of the colliding jets.
NASA Astrophysics Data System (ADS)
He, X.
In the proposed Electron-Ion Collider (EIC) experiments, particle identification (PID) of the final state hadrons in the semi-inclusive deep inelastic scattering allows the measurement of flavor-dependent gluon and quark distributions inside nucleons and nuclei. The EIC PID consortium (eRD14 Collaboration) has been formed for identifying and developing PID detectors using Ring Imaging Cherenkov (RICH) techniques for the EIC experiments. A modular Ring Imaging Cherenkov (mRICH) detector has been designed for particle identification in the momentum coverage from 3 GeV/c to 10 GeV/c. The mRICH detector consists of an aerogel radiator block, a Fresnel lens, a mirror-wall and a photosensor plane. The first prototype of this detector was successfully tested at Fermi National Accelerator Laboratory in April 2016 for verifying the detector working principles. This talk will highlight the mRICH beam test results and their comparison with GEANT4-based detector simulations. An implementation of the mRICH detector concept in the Forward Angle sPHENIX spectrometer at BNL will also be mentioned in this talk.
Colliding impulsive gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.; Halil, M.
1977-11-28
We formulate the problem of colliding plane gravitational waves with two polarizations as the harmonic mappings of Riemannian manifolds and construct an exact solution of the vacuum Einstein field equations describing the interaction of colliding impulsive gravitational waves which in the limit of collinear polarization reduces to the solution of Khan and Penrose.
Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.
2006-02-10
It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
Future hadron colliders: From physics perspectives to technology R&D
NASA Astrophysics Data System (ADS)
Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter
2014-11-01
High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.
Intrusion Prevention and Detection in Grid Computing - The ALICE Case
NASA Astrophysics Data System (ADS)
Gomez, Andres; Lara, Camilo; Kebschull, Udo
2015-12-01
Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meurice, Yannick L; Reno, Mary Hall
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less
Kile, Jennifer; Kobach, Andrew; Soni, Amarjit
2015-04-08
In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. μ → 3e, τ → eμμ, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6σ deviation of the muon g-2 from the standard model can be explained by a new physics scale ⁺e ⁻ colliders.more » We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kile, Jennifer; Kobach, Andrew; Soni, Amarjit
In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. μ → 3e, τ → eμμ, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6σ deviation of the muon g-2 from the standard model can be explained by a new physics scale ⁺e ⁻ colliders.more » We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less
CCD-based vertex detector for ILC
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-12-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.
The LHC magnet system and its status of development
NASA Technical Reports Server (NTRS)
Bona, Maurizio; Perin, Romeo; Vlogaert, Jos
1995-01-01
CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.
Lepton Flavor Violation Induced by a Neutral Scalar at Future Lepton Colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao
2018-06-01
Many new physics scenarios beyond standard model often necessitate the existence of a (light) neutral scalar H , which might couple to the charged leptons in a flavor violating way, while evading all existing constraints. We show that such scalars could be effectively produced at future lepton colliders, either on shell or off shell depending on their mass, and induce lepton flavor violating (LFV) signals, i.e., e+e-→ℓα±
Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA
NASA Astrophysics Data System (ADS)
Becker Tjus, J.
2014-05-01
Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.
Higgsino dark matter or not: Role of disappearing track searches at the LHC and future colliders
NASA Astrophysics Data System (ADS)
Fukuda, Hajime; Nagata, Natsumi; Otono, Hidetoshi; Shirai, Satoshi
2018-06-01
Higgsino in supersymmetric standard models is known to be a promising candidate for dark matter in the Universe. Its phenomenological property is strongly affected by the gaugino fraction in the Higgsino-like state. If this is sizable, in other words, if gaugino masses are less than O (10) TeV, we may probe the Higgsino dark matter in future non-accelerator experiments such as dark matter direct searches and measurements of electric dipole moments. On the other hand, if gauginos are much heavier, then it is hard to search for Higgsino in these experiments. In this case, due to a lack of gaugino components, the mass difference between the neutral and charged Higgsinos is uniquely determined by electroweak interactions to be around 350 MeV, which makes the heavier charged state rather long-lived, with a decay length of about 1 cm. In this letter, we argue that a charged particle with a flight length of O (1) cm can be probed in disappearing-track searches if we require only two hits in the pixel detector. Even in this case, we can reduce background events with the help of the displaced-vertex reconstruction technique. We study the prospects of this search strategy at the LHC and future colliders for the Higgsino dark matter scenario. It is found that an almost pure Higgsino is indeed within the reach of the future 33 TeV collider experiments. We then discuss that the interplay among collider and non-accelerator experiments plays a crucial role in testing the Higgsino dark matter scenarios. Our strategy for disappearing-track searches can also enlarge the discovery potential of pure wino dark matter as well as other electroweak-charged dark matter candidates.
Testing helicity-dependent γγ → γγ scattering in the region of MeV
NASA Astrophysics Data System (ADS)
Homma, K.; Matsuura, K.; Nakajima, K.
2016-01-01
Light-by-light scatterings contain rich information on photon coupling to virtual and real particle states. In the context of quantum electrodynamics (QED), photons can couple to a virtual e^+e^- pair. Photons may also couple to known resonance states in the context of quantum chromodyanmics and electroweak dynamics in higher energy domains and possibly couple to unknown resonance states beyond the standard model. The perturbative QED calculations manifestly predict a maximized cross section at the MeV scale; however, no example of exact real-photon-real-photon scattering has yet been observed. Hence, we propose direct measurement with the maximized cross section at the center-of-mass system energy of 1-2 MeV to establish a firm footing at the MeV scale. Given current state of the art high power lasers, helicity-dependent elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting γ -rays generated by the inverse nonlinear Compton process with electrons delivered from laser-plasma accelerators (LPA) are properly designed. We show that such verification is feasible in a table-top scale collider, which may be an unprecedented breakthrough in particle accelerators for basic physics research in contrast to energy frontier colliders.
Tracking colliding cells in vivo microscopy.
Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C
2011-08-01
Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.
Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders
NASA Astrophysics Data System (ADS)
Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot
2017-09-01
Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.
Light higgsino dark matter from non-thermal cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar
We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less
Light higgsino dark matter from non-thermal cosmology
Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar; ...
2016-11-01
We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less
Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders
NASA Astrophysics Data System (ADS)
Azatov, Aleksandr; Galloway, Jamison
2013-01-01
In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdú-Andrés, S.; et al.
Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less
Welding consumable selection for cryogenic (4{degrees}K) application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, S.F.; Siewert, T.A.
1994-12-31
Brookhaven National Laboratory (BNL) has begun construction of a large (3.8 kilometer circumference) heavy ion collider for the Department of Energy. The collider uses superconducting magnets, operating at 4{degrees}K in supercritical helium, which meets the definition of a pressure vessel. The ASME Boiler & Pressure Vessel Code grants an exemption from impact testing to certain metals, but only for operating temperatures down to 20{degrees}K. Research and the latest change to ASTM Standard E23 have invalidated Charpy testing at 4{degrees}K, thus compliance with the Code is not possible. This effort was undertaken to identify the weld process and weld material necessarymore » to comply with the intent of the Code (impact test) requirements, that is, to design a weld joint that will assure adequate fracture toughness. We will report the results of this development and testing, and conclude that nitrogen and maganese enhanced 385L provides a superior weld metal for 4{degrees}K cryogenic applications without the exaggerated purity concerns normally associated with superaustenitic weld materials. This development has been so successful that BNL has procured 15,000 pounds of this material for magnet production. Oxygen content, manifested as inclusion density, has the single most significant effect upon fracture toughness and impact strength. Finally, we report that GMAW is a viable welding process, using off-the-shelf equipment, for 4{degrees}K cryogenic applications.« less
The effect of kinematic parameters on inelastic scattering of glyoxal.
Duca, Mariana D
2004-10-08
The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.
2017-02-15
The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less
Possible limits of plasma linear colliders
NASA Astrophysics Data System (ADS)
Zimmermann, F.
2017-07-01
Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.
Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders
NASA Astrophysics Data System (ADS)
Lebrun, Philippe; Tavian, Laurent
Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.
3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.
2012-04-30
The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less
NASA Astrophysics Data System (ADS)
Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.
2013-06-01
The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.
NASA Astrophysics Data System (ADS)
Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.
2014-10-01
Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.
NASA Astrophysics Data System (ADS)
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2017-12-01
Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.
Muon collider interaction region design
Alexahin, Y. I.; Gianfelice-Wendt, E.; Kashikhin, V. V.; ...
2011-06-02
Design of a muon collider interaction region (IR) presents a number of challenges arising from low β* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can too provide an average luminosity of 10 34 cm -2s -1 with an adequate protection of magnet and detector components.
Compensatable muon collider calorimeter with manageable backgrounds
Raja, Rajendran
2015-02-17
A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.
LCFIPlus: A framework for jet analysis in linear collider studies
NASA Astrophysics Data System (ADS)
Suehara, Taikan; Tanabe, Tomohiko
2016-02-01
We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
Two-photon production of leptons at hadron colliders in semielastic and elastic cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by
The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2014-04-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2015-02-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Future of the beam energy scan program at RHIC
NASA Astrophysics Data System (ADS)
Odyniec, Grazyna
2015-05-01
The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.
Microgravity collisions of dust aggregates as an analogue to early planetesimal formation
NASA Astrophysics Data System (ADS)
Whizin, Akbar; Blum, Jürgen; Colwell, Joshua
2014-11-01
During the early stages of planet formation the dusty progenitors of planetesimals collided with each other continuously to form the seeds of planets. These collisions could result in growth or disruption depending on the individual impact velocities. Based on input from solar nebula models a laboratory-based microgravity dust collision experiment was developed for a drop tower at the Technische Universität Braunschweig, Germany. We collided 1.0 - 1.6 mm SiO2 dust aggregates with clusters of these aggregates at a range of velocities and mass ratios to determine the thresholds between bouncing, sticking, and fragmentation. Presented here are the results of 264 microgravity collisions occurring at velocities of 1 - 160 cm/s with target-impactor mass ratios of 5:1 to 400:1. We also present the coefficient of restitutions for low-velocity collisions and we find the specific collision energy of fragmentation Q* for aggregates of this size. We find sticking occurs at mass ratios larger than 40:1, but only for low velocities ≤ 3 cm/s, clear boundaries exist for bouncing up to 30 cm/s, and fragmentation at ~50 cm/s and up, with total disruption occurring above 1 m/s.
Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...
2016-01-21
The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less
Deposition of nanocomposite Cu-TiO2 using heterogeneous colliding plasmas
NASA Astrophysics Data System (ADS)
Pandey, Pramod K.; Thareja, Raj K.; Singh, Ravi Pratap; Costello, John T.
2018-03-01
The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10-4, 10-2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra λ =390{ nm}( {E=3.18{ eV}} ) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm ( E = 2.56 eV) and 582 nm ( E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.
NASA Astrophysics Data System (ADS)
Ndengue, Steve Alexandre; Dawes, Richard
2017-06-01
Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.
Danisi, Alessandro; Masi, Alessandro; Losito, Roberto
2015-01-01
The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259
Future of the Beam Energy Scan program at RHIC
Odyniec, Grazyna; Bravina, L.; Foka, Y.; ...
2015-05-29
The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore » QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less
Ultra-short wavelength x-ray system
Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD
2008-01-22
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.
Lead Ions and Coulomb's Law at the LHC (CERN)
ERIC Educational Resources Information Center
Cid-Vidal, Xabier; Cid, Ramon
2018-01-01
Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…
NASA Astrophysics Data System (ADS)
Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.
2018-01-01
The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.
2010-11-01
We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.
Design and implementation of a crystal collimation test stand at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.
2017-06-01
Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.
Reinventing the Accelerator for the High Energy Frontier
Rosenzweig, James [UCLA, Los Angeles, California, United States
2017-12-09
The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.
Experimental Verification of Predicted Oscillations near a Spin Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolanoski, Hermann; /Humboldt U., Berlin
2011-12-05
The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.
Stopped nucleons in configuration space
Bialas, Andrzej; Bzdak, Adam; Koch, Volker
2017-05-09
In this note, using the colour string model, we study the configuration space distribution of stopped nucleons in heavy-ion collisions. We find that the stopped nucleons from the target and the projectile end up separated from each other by the distance increasing with the collision energy. In consequence, for the center of mass energies larger than 6 or 10 GeV (depending on the details of the model) it appears that the system created is not in thermal and chemical equilibrium, and the net baryon density reached is likely not much higher than that already present in the colliding nuclei.
LHC Status and Upgrade Challenges
NASA Astrophysics Data System (ADS)
Smith, Jeffrey
2009-11-01
The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley
2017-01-01
In this paper we show that the intrinsic heavy-quark QCD mechanism for the hadroproduction of heavy hadrons at largemore » $$x_F$$ can resolve the apparent conflict between measurements of double-charm baryons by the SELEX fixed-target experiment and the LHCb experiment at the LHC collider. We show that both experiments are compatible, and that both results can be correct. The observed spectroscopy of double-charm hadrons is in agreement with the predictions of supersymmetric light front holographic QCD.« less
Data acquisition using the 168/E. [CERN ISR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, J.T.; Cittolin, S.; Demoulin, M.
1983-03-01
Event sizes and data rates at the CERN anti p p collider compose a formidable environment for a high level trigger. A system using three 168/E processors for experiment UA1 real-time event selection is described. With 168/E data memory expanded to 512K bytes, each processor holds a complete event allowing a FORTRAN trigger algorithm access to data from the entire detector. A smart CAMAC interface reads five Remus branches in parallel transferring one word to the target processor every 0.5 ..mu..s. The NORD host computer can simultaneously read an accepted event from another processor.
First Operational Experience With a High-Energy Physics Run Control System Based on Web Technologies
NASA Astrophysics Data System (ADS)
Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Hatton, Derek; Hwong, Yi Ling; Loizides, Constantin; Ma, Frank; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty; Yoon, Andre Sungho
2012-08-01
Run control systems of modern high-energy particle physics experiments have requirements similar to those of today's Internet applications. The Compact Muon Solenoid (CMS) collaboration at CERN's Large Hadron Collider (LHC) therefore decided to build the run control system for its detector based on web technologies. The system is composed of Java Web Applications distributed over a set of Apache Tomcat servlet containers that connect to a database back-end. Users interact with the system through a web browser. The present paper reports on the successful scaling of the system from a small test setup to the production data acquisition system that comprises around 10.000 applications running on a cluster of about 1600 hosts. We report on operational aspects during the first phase of operation with colliding beams including performance, stability, integration with the CMS Detector Control System and tools to guide the operator.
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons
NASA Astrophysics Data System (ADS)
Angelescu, Andrei; Arcadi, Giorgio
2017-07-01
We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.
A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihara, T.
A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less
Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.
Angelescu, Andrei; Arcadi, Giorgio
2017-01-01
We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kernan, A.; Shen, B.C.; Ma, E.
Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPFmore » will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.« less
Collider constraints and new tests of color octet vectors
NASA Astrophysics Data System (ADS)
Buschmann, Malte; Yu, Felix
2017-09-01
We analyze the collider sensitivity for new colored resonances in t\\overline{t} , b\\overline{b} , and jj final states. While searches in the single production channel are model-dependent, the pair production rate is model independent and the existing ( J J )( J J ) and 4 t searches impose strong constraints on the relevant branching fractions, where J = j or b. We point out the missing, complementary searches in the mixed decay modes, t\\overline{t}(jj) , t\\overline{t}(b\\overline{b}) , and (b\\overline{b})(jj) . We propose analysis strategies for the t\\overline{t}(jj) and t\\overline{t}(b\\overline{b}) decays and find their sensivity surpasses that of existing searches when the decay widths to tops and light jets are comparable. If no other decays are present, collective lower limits on the resonance mass can be set at 1.5 TeV using 37 fb-1 of 13 TeV data.
Laser-plasma-based linear collider using hollow plasma channels
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2016-03-03
A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.
NASA Astrophysics Data System (ADS)
Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles
2018-03-01
We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Quartified leptonic color, bound states, and future electron–positron collider
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...
2017-04-04
The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei
We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design aremore » summarized.« less
Lepton jets and low-mass sterile neutrinos at hadron colliders
NASA Astrophysics Data System (ADS)
Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.
2017-09-01
Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.
Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, L.; Bellavia, S.; Belomestnykh, S.
2013-10-31
This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 10 8 and at 2 K reached a value ofmore » ~6 × 10 9. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.« less
Beam test of CSES silicon strip detector module
NASA Astrophysics Data System (ADS)
Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun
2017-05-01
The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme
Development of the Perception of Object Containment in 9- to 16-Month-Olds
ERIC Educational Resources Information Center
Dejonckheere, Peter J. N.; Smitsman, Ad W.; Deneve, Leni Verhofstadt
2006-01-01
In the present study, 9-, 12- and 16-month-old infants were familiarized to a block that was repeatedly lowered into a container and lifted from that container again. In the subsequent test phase, the block passed through the container opening either without making contact with the container rim or colliding with the rim in three places but…
Design and performance of a straw tube drift chamber
NASA Astrophysics Data System (ADS)
Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.
1991-06-01
The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)
Battaglia, Marco
2018-01-12
How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.
Blazar Jet Physics in the Age of Fermi
2010-11-23
in colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . Keywords. galaxies: jets, gamma rays : observations, gamma rays ...colliding shells ejected from the central supermassive black hole are made. The likelihood that blazars accelerate ultra-high energy cosmic rays is...colliding shells, and whether blazars are sources of ultra-high energy cosmic rays . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assmann, R
2004-06-08
The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less
SuperB Progress Report for Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagini, M.E.; Boni, R.; Boscolo, M.
2012-02-14
This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...
2018-03-15
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
NASA Astrophysics Data System (ADS)
Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás
2018-06-01
A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.
Astrophysical Applications for Charge-Exchange with H, He, and H2 Targets
NASA Astrophysics Data System (ADS)
Cumbee, Renata S.; Mullen, Patrick D.; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.
2018-01-01
When a hot plasma collides with a cold neutral gas, interactions occur between the constituents at the interface of the collision, including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.As the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models in regions in which CX might be significant so that the ion abundance and plasma velocities can be estimated most accurately. Here, a set of CX X-ray line ratios and spectra will be shown for a variety of collision velocities for C-Cl ions colliding with H, He, and H2. An X-ray emission model including these line ratios performed in XSPEC will be presented for a region of the Cygnus Loop supernova remnant and the starburst galaxy M82 in order to highlight the variation in CX spectral models with collision energy and neutral target species.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.
Scanning Synchronization of Colliding Bunches for MEIC Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.
2015-09-01
Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Muon Colliders: The Next Frontier
Tourun, Yagmur
2017-12-22
Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.
The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling
NASA Astrophysics Data System (ADS)
Casey, Daniel
2017-10-01
To achieve hotspot ignition, inertial confinement fusion (ICF) implosions must achieve high hotspot internal energy that is inertially confined by a dense shell of DT fuel. To accomplish this, implosions are designed to achieve high peak implosion velocity, good energy coupling between the hotspot and imploding shell, and high areal-density at stagnation. However, experiments have shown that achieving these simultaneously is extremely challenging, partly because of inherent tradeoffs between these three interrelated requirements. The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the hotspot and shell. This is done by intentionally colliding the shocks in the DT ice layer. This results in a short laser pulse which improves hohlraum symmetry and predictability while the reduced compression improves hydrodynamic stability. The results of this campaign will be reviewed and include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-430 TW in laser power and 0.8-1.7 MJ in laser energy. Results of the 10% scaling between these designs for the hohlraum and capsule will be presented. Hydrodynamic instability growth from engineering features like the capsule fill tube are currently thought to be a significant perturbation to the target performance and a major factor in reducing its performance compared to calculations. Evidence supporting this hypothesis as well as plans going forward will be presented. Ongoing experiments are attempting to measure the impact on target performance from increase in target scale, and the preliminary results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Extra dimension searches at hadron colliders to next-to-leading order-QCD
NASA Astrophysics Data System (ADS)
Kumar, M. C.; Mathews, Prakash; Ravindran, V.
2007-11-01
The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.
Photon collider: a four-channel autoguider solution
NASA Astrophysics Data System (ADS)
Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.
2010-07-01
The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.
Adolescents' cognition of projectile motion: a pilot study.
Zhao, Jun-Yan; Yu, Guoliang
2009-04-01
Previous work on the development of intuitive knowledge about projectile motion has shown a dissociation between action knowledge expressed on an action task and conceptual knowledge expressed on a judgment task for young children. The research investigated the generality of dissociation for adolescents. On the action task, participants were asked to swing Ball A of a bifilar pendulum to some height then release it to collide with Ball B, which was projected to hit a target. On the judgment task, participants indicated orally the desired swing angle at which Ball A should be released so that Ball B would strike a target. Unlike previous findings with adults, the adolescents showed conceptual difficulties on the judgment task and well-developed action knowledge on the action task, which suggests dissociation between the two knowledge systems is also present among adolescents. The result further supports the hypothesis that the two knowledge systems follow different developmental trajectories and at different speeds.
GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma
Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.
2016-01-01
This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327
GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma
NASA Astrophysics Data System (ADS)
Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.
2016-10-01
This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.
Discovering New Light States at Neutrino Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Rouven; /SLAC; Harnik, Roni
2011-08-11
Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less
Target selection for a hypervelocity asteroid intercept vehicle flight validation mission
NASA Astrophysics Data System (ADS)
Wagner, Sam; Wie, Bong; Barbee, Brent W.
2015-02-01
Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth's history these collisions have played a significant role in shaping Earth's biological and geological histories. The planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids and comets that approach or cross Earth's orbit, known as near-Earth objects (NEOs). This paper discusses the preliminary study results of selecting small (100-m class) NEO targets and mission analysis and design trade-offs for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently being investigated for a NIAC (NASA Advanced Innovative Concepts) Phase 2 study. In particular this paper will focus on the mission analysis and design for single spacecraft direct impact trajectories, as well as several mission types that enable a secondary rendezvous spacecraft to observe the HAIV impact and evaluate it's effectiveness.
A Cyber-Astronaut's Final Moves
NASA Technical Reports Server (NTRS)
2005-01-01
This image shows how Deep Impact's impactor targeted comet Tempel 1 as the spacecraft made its final approach in the early morning hours of July 4, Eastern time. The autonomous navigation system on the probe was designed to make as many as three impactor targeting maneuvers, identified as ITMs in this picture, to correct its course to the comet. The upper left dot indicates where the probe would have passed the comet's nucleus if no maneuvers were performed. The dot below the nucleus shows where the probe would have flown past the comet if only the first maneuver was made. The leftmost dot on the nucleus marks the spot where the probe would have crunched the comet if only the first two maneuvers had been performed. The lower dot on the nucleus indicates the vicinity where, once the third maneuver was performed, the probe met its final reward and collided with the comet.Design of a High Luminosity 100 TeV Proton-Antiproton Collider
NASA Astrophysics Data System (ADS)
Oliveros Tautiva, Sandra Jimena
Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.
Design of a High Luminosity 100 TeV Proton Antiproton Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveros Tuativa, Sandra Jimena
2017-04-01
Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.« less
Suppression of the Rayleigh Taylor instability and its implication for the impact ignition
NASA Astrophysics Data System (ADS)
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.
2004-12-01
The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.
Improved formalism for precision Higgs coupling fits
NASA Astrophysics Data System (ADS)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Karl, Robert; List, Jenny; Ogawa, Tomohisa; Peskin, Michael E.; Tian, Junping
2018-03-01
Future e+e- colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e+e- data, based on the effective field theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e+e- colliders.
Physics at a 100 TeV pp Collider: Standard Model Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangano, M. L.; Zanderighi, G.; Aguilar Saavedra, J. A.
This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis
Beniwal, Ankit; Lewicki, Marek; Wells, James D.; ...
2017-08-23
We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.
Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis
NASA Astrophysics Data System (ADS)
Beniwal, Ankit; Lewicki, Marek; Wells, James D.; White, Martin; Williams, Anthony G.
2017-08-01
We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. We discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.
Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beniwal, Ankit; Lewicki, Marek; Wells, James D.
We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.
Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana
2008-08-01
Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less
Latina, Andrea
2017-12-11
The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.
Promoting women's health in an era of globalization: a South Asian perspective.
Mohindra, Katia S
2016-08-04
Promoting the health of women requires an understanding of the full range of factors shaping their health, including globalization. Focusing on South Asia, I outline some of the critical global women's health issues that warrant further attention by health promotion researchers. I discuss the inadequacy of international approaches for improving the health of South Asian women, occupational health hazards associated with global industries targeting women, new forms of gender based violence, gendered ethical challenges arising as global and local forces collide and the rise of transnational feminist networks that can be harnessed for advancing women's health across the region. © The Author(s) 2016.
Energy-range relations for hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Laser-Produced Colliding Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew
2005-10-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them shocks which transport energy. We study the collision of two dense, laser-produced plasmas expanding perpendicular to the background magnetic field, each with an Alfv'en Mach number of approximately 0.5. The plasmas are launched off of two carbon targets, 9cm apart, by a short pulse of laser energy (Nd:YAG, 1J 8ns). Experiments are currently in progress in a small test chamber at UCLA (background plasma n 3x10^12, 3 meters long, B0<700G) and will shortly be migrated to the LaPD (LArge Plasma Device; n 3x10^12, 18 meters long, 70cm diameter, 400G
2008-07-09
VANDENBERG AIR FORCE BASE, Calif. -- Avionics shelf flatness and fillet gap measurements are conducted on the wing of a Pegasus rocket in Building 1555 at Vandenberg AFB. The testing was performed by workers from Advanced Digital Measuring Works using an API laser tracker. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch in October 2008. Photo credit: NASA/Randy Beaudoin
2008-07-11
VANDENBERG AIR FORCE BASE, Calif. -- Avionics shelf flatness and fillet gap measurements are conducted on the wing of a Pegasus rocket in Building 1555 at Vandenberg AFB. The testing was performed by workers from Advanced Digital Measuring Works using an API laser tracker. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch in October 2008. Photo credit: NASA/Randy Beaudoin
Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C
2018-03-19
To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...
2018-03-19
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Cryogenic Design of the New High Field Magnet Test Facility at CERN
NASA Astrophysics Data System (ADS)
Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.
In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.
Experiments on 1,000 km/s flyer acceleration and collisions
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.
2012-10-01
We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).
Improved formalism for precision Higgs coupling fits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon
Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.
Higgs-boson production in nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W. (Principal Investigator)
1990-01-01
Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
Higgs-Boson Production in Nucleus-Nucleus Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zisman, Michael S
2010-05-17
We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zisman, Michael S.
2011-01-05
We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.
Slepton Pair Production at Hadron Colliders
NASA Astrophysics Data System (ADS)
Fuks, B.
2007-04-01
In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.
Improved formalism for precision Higgs coupling fits
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...
2018-03-20
Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.
On the Feasibility of a Pulsed 14 TeV C.M.E. Muon Collider in the LHC Tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir; Neuffer, D.
We discuss the technical feasibility, key machine pa-rameters and major challenges of a 14 TeV c.m.e. muon-muon collider in the LHC tunnel [1]. The luminosity of the collider is evaluated for three alternative muon sources – the PS synchrotron, one of a type developed by the US Muon Accelerator Program (MAP) and a low-emittance option based on resonant μ-pair production.
2017-12-08
When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.
Exotic decays of the 125 GeV Higgs boson at future e +e – colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Wang, Lian -Tao; Zhang, Hao
Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less
Exotic decays of the 125 GeV Higgs boson at future e +e – colliders
Liu, Zhen; Wang, Lian -Tao; Zhang, Hao
2017-06-01
Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less
Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin
2016-03-26
In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.
Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.
2017-07-01
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less
Non-resonant collider signatures of a singlet-driven electroweak phase transition
NASA Astrophysics Data System (ADS)
Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.
2017-08-01
We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.
Non-resonant collider signatures of a singlet-driven electroweak phase transition
Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.
2017-08-22
We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less
Signatures of doubly-charged Higgsinos at colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.
2008-11-23
Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.
Sterile neutrino searches at future e-e+, pp and e-p colliders
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Cazzato, Eros; Fischer, Oliver
2017-05-01
Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.
Spectroscopy and optical imaging of coalescing droplets
NASA Astrophysics Data System (ADS)
Ivanov, Maksym; Viderström, Michel; Chang, Kelken; Ramírez Contreras, Claudia; Mehlig, Bernhard; Hanstorp, Dag
2016-09-01
We report on experimental investigations of the dynamics of colliding liquid droplets by combining optical trapping, spectroscopy and high-speed color imaging. Two droplets with diameters between 5 and 50 microns are suspended in quiescent air by optical traps. The traps allows us to control the initial positions, and hence the impact parameter and the relative velocity of the colliding droplets. Movies of the droplet dynamics are recorded using high-speed digital movie cameras at a frame rate of up to 63000 frames per second. A fluorescent dye is added to one of the colliding droplets. We investigate the temporal evolution of the scattered and fluorescence light from the colliding droplets with concurrent spectroscopy and color imaging. This technique can be used to detect the exchange of molecules between a pair of neutral or charged droplets.
Collider and Detector Protection at Beam Accidents
NASA Astrophysics Data System (ADS)
Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.
2003-12-01
Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.
Effects of Pre-Existing Target Structure on the Formation of Large Craters
NASA Technical Reports Server (NTRS)
Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.
2003-01-01
The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.
CERN Collider, France-Switzerland
2013-08-23
This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammes, Jerome
2011-09-09
The purpose of high energy physics is to improve our knowledge about the fundamental structure of matter, in particular about particles that constitute the world. One of these is the top quark, that was discovered in 1995 by the CDF and D0 collaborations at the Tevatron protons-antiprotons collider. One of the primary aim of the Tevatron has been then the fine study of the top quark properties, in particular the top-antitop production cross section. Different analysis have been performed in the leptons (μ,e,τ) + jets, dileptons, and all hadronic channels to determine accurately the values of these parameters, and thusmore » to test the validity of the Standard Model. The main goal of this thesis is to verify one of the theoretical predictions of the Standard Model of particle physics, the top-antitop production cross section, at the Tevatron collider.« less
The Beginning of the Physics of Leptons
NASA Astrophysics Data System (ADS)
Ting, Samuel C. C.
Over the last 30 years the study of lepton pairs from both hadron and electron accelerators and colliders has led to the discovery of J, ϒ, Z and W particles. The study of acoplanar eμ pairs + missing energy has led to the discovery of the heavy lepton, now called τ lepton. Indeed, the study of lepton pairs with and without missing energy has become the main method in high energy colliders for searching new particles. This paper presents some of the important contributions made by Antonino Zichichi over a 10 year period at CERN and Frascati in opening this new field of physics. This includes the development of instrumentation to distinguish leptons from hadrons, the first experiment on lepton pair production from hadron machines, the precision tests of electrodynamics at very small distances, the production of hadrons from e+e- collisions and most importantly his invention of a new method e+e- → eμ + missing momenta, experimentally proving that, thanks to his new electron and muon detection technology, these signals have very little background.
NASA Astrophysics Data System (ADS)
Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration
2011-10-01
Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.
Collisional excitation of NH3 by atomic and molecular hydrogen
NASA Astrophysics Data System (ADS)
Bouhafs, N.; Rist, C.; Daniel, F.; Dumouchel, F.; Lique, F.; Wiesenfeld, L.; Faure, A.
2017-09-01
We report extensive theoretical calculations on the rotation-inversion excitation of interstellar ammonia (NH3) due to collisions with atomic and molecular hydrogen (both para- and ortho-H2). Close-coupling calculations are performed for total energies in the range 1-2000 cm-1 and rotational cross-sections are obtained for all transitions amongst the lowest 17 and 34 rotation-inversion levels of ortho- and para-NH3, respectively. Rate coefficients are deduced for kinetic temperatures up to 200 K. Propensity rules for the three colliding partners are discussed and we also compare the new results to previous calculations for the spherically symmetrical He and para-H2 projectiles. Significant differences are found between the different sets of calculations. Finally, we test the impact of the new rate coefficients on the calibration of the ammonia thermometer. We find that the calibration curve is only weakly sensitive to the colliding partner and we confirm that the ammonia thermometer is robust.
Improving Identification of Dijet Resonances at Hadron Colliders
NASA Astrophysics Data System (ADS)
Izaguirre, Eder; Shuve, Brian; Yavin, Itay
2015-01-01
The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.
Improving identification of dijet resonances at hadron colliders.
Izaguirre, Eder; Shuve, Brian; Yavin, Itay
2015-01-30
The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.
Development of superconducting links for the Large Hadron Collider machine
NASA Astrophysics Data System (ADS)
Ballarino, Amalia
2014-04-01
In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.
Energetic Particles Dynamics in Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.
2013-01-01
We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface
Analyzing high energy physics data using database computing: Preliminary report
NASA Technical Reports Server (NTRS)
Baden, Andrew; Day, Chris; Grossman, Robert; Lifka, Dave; Lusk, Ewing; May, Edward; Price, Larry
1991-01-01
A proof of concept system is described for analyzing high energy physics (HEP) data using data base computing. The system is designed to scale up to the size required for HEP experiments at the Superconducting SuperCollider (SSC) lab. These experiments will require collecting and analyzing approximately 10 to 100 million 'events' per year during proton colliding beam collisions. Each 'event' consists of a set of vectors with a total length of approx. one megabyte. This represents an increase of approx. 2 to 3 orders of magnitude in the amount of data accumulated by present HEP experiments. The system is called the HEPDBC System (High Energy Physics Database Computing System). At present, the Mark 0 HEPDBC System is completed, and can produce analysis of HEP experimental data approx. an order of magnitude faster than current production software on data sets of approx. 1 GB. The Mark 1 HEPDBC System is currently undergoing testing and is designed to analyze data sets 10 to 100 times larger.
PREFACE: 1st Tensor Polarized Solid Target Workshop
NASA Astrophysics Data System (ADS)
2014-10-01
These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.
Promising diphoton signals of the little radion at hadron colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudiasl, H.; McElmurry, T; Soni, A.
2010-12-28
In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.
Dark spectroscopy at lepton colliders
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi
2018-03-01
Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.
Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, Greg
In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.
Anomalous quartic couplings in W+W- gamma production at e+e- colliders
NASA Astrophysics Data System (ADS)
Leil, G. A.; Stirling, W. J.
1995-04-01
We study the process $e^+e^- \\rightarrow W^+W^- \\gamma$ at high-energy $e^+ e^-$ colliders to investigate the effect of genuine quartic $W^+W^-\\gamma\\gamma$ and $W^+W^- Z\\gamma$ anomalous couplings on the cross section. Deviations from the Standard Model predictions are quantified. We show how bounds on the anomalous couplings can be improved by choosing specific initial state helicity combinations. The dependence of the anomalous contributions on the collider energy is studied.
Studies for a Dedicated B Detector at the Fermilab Collider
NASA Astrophysics Data System (ADS)
McBride, Patricia
1996-06-01
The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.
Structure of bicomponent particles synthesized from colliding metal clusters
NASA Astrophysics Data System (ADS)
Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.
2017-12-01
Here, based on a molecular dynamics simulation with many-body interaction potentials, we consider several scenarios of the formation of bicomponent particles from colliding clusters in an electrical explosion of Cu and Ni wires. The data suggest that the structure of bicomponent particles depends largely on the explosion time of one wire with respect to the other and on the phase state of colliding clusters. Diagrams are presented demonstrating the dynamics of bicomponent particles with block structure synthesized from crystalline Ni and molten Cu clusters.
Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade
NASA Astrophysics Data System (ADS)
Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.
2018-05-01
The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.
A plasma lens for a linear collider final focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norem, J.; Cline, D.B.; Cole, B.
High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.
Top quark studies at hadron colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinervo, P.K.
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, R.E.
1993-02-01
Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less
Study of cluster shapes in a monolithic active pixel detector
NASA Astrophysics Data System (ADS)
Maçzewski, ł.; Adamus, M.; Ciborowski, J.; Grzelak, G.; łużniak, P.; Nieżurawski, P.; Żarnecki, A. F.
2009-11-01
Beamstrahlung will constitute an important source of background in a pixel vertex detector at the future International Linear Collider. Electron and positron tracks of this origin impact the pixel planes at angles generally larger than those of secondary hadrons and the corresponding clusters are elongated. We report studies of cluster characteristics using test beam electron tracks incident at various angles on a MIMOSA-5 monolithic active pixel sensor matrix.
Real Time Control of the SSC String Magnets
NASA Astrophysics Data System (ADS)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software . It resides in a VME crate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Real time control of the SSC string magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software. It resides in a VME orate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Rare b-hadron decays as probe of new physics
NASA Astrophysics Data System (ADS)
Lanfranchi, Gaia
2018-05-01
The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.
A test of the Feynman scaling in the fragmentation region
NASA Technical Reports Server (NTRS)
Doke, T.; Innocente, V.; Kasahara, K.; Kikuchi, J.; Kashiwagi, T.; Lanzano, S.; Masuda, K.; Murakami, H.; Muraki, Y.; Nakada, T.
1985-01-01
The result of the direct measurement of the fragmentation region will be presented. The result will be obtained at the CERN proton-antiproton collider, being exposured the Silicon calorimeters inside beam pipe. This experiment clarifies a long riddle of cosmic ray physics, whether the Feynman scaling does villate at the fragmentation region or the Iron component is increasing at 10 to the 15th power eV.
Testing beam-induced quench levels of LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.
2015-06-01
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.
Testing Bayesian and heuristic predictions of mass judgments of colliding objects
Sanborn, Adam N.
2014-01-01
Mass judgments of colliding objects have been used to explore people's understanding of the physical world because they are ecologically relevant, yet people display biases that are most easily explained by a small set of heuristics. Recent work has challenged the heuristic explanation, by producing the same biases from a model that copes with perceptual uncertainty by using Bayesian inference with a prior based on the correct combination rules from Newtonian mechanics (noisy Newton). Here I test the predictions of the leading heuristic model (Gilden and Proffitt, 1989) against the noisy Newton model using a novel manipulation of the standard mass judgment task: making one of the objects invisible post-collision. The noisy Newton model uses the remaining information to predict above-chance performance, while the leading heuristic model predicts chance performance when one or the other final velocity is occluded. An experiment using two different types of occlusion showed better-than-chance performance and response patterns that followed the predictions of the noisy Newton model. The results demonstrate that people can make sensible physical judgments even when information critical for the judgment is missing, and that a Bayesian model can serve as a guide in these situations. Possible algorithmic-level accounts of this task that more closely correspond to the noisy Newton model are explored. PMID:25206345
NASA Astrophysics Data System (ADS)
2016-11-01
Officials at the International Linear Collider (ILC) - a proposed successor to the Large Hadron Collider at CERN - have turned to Hello Kitty to help promote the project, which is set to be built in Japan.
The Quirky Collider Signals of Folded Supersymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng
2008-08-01
We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channelmore » for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.« less
NASA Astrophysics Data System (ADS)
Li, Ming; Kapusta, Joseph I.
2017-01-01
In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
The Muon Collider as a $H/A$ factory
Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN
2013-11-22
We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A withmore » $$m_H$$- $$m_A$$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; ...
2017-06-13
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less
Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.
Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg
2011-07-15
One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1995-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, R.
2013-01-01
Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less
Exotic decays of the 125 GeV Higgs boson at future e+e- colliders
NASA Astrophysics Data System (ADS)
Liu, Zhen; Wang, Lian-Tao; Zhang, Hao
2017-06-01
The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)
Space-charge limitations in a collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Heimerle, M.
Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less
Is passenger vehicle incompatibility still a problem?
Teoh, Eric R; Nolan, Joseph M
2012-01-01
Passenger cars often are at a disadvantage when colliding with light trucks (sport utility vehicles [SUVs] and pickups) due to differences in mass, vehicle structural alignment, and stiffness. In 2003, vehicle manufacturers agreed to voluntary measures to improve compatibility, especially in front-to-front and front-to-side crashes, with full adherence to be achieved by September 2009. This study examined whether fatality rates are consistent with the expected benefit of this agreement. Analyses examined 2 death rates for 1- to 4-year-old passenger vehicles during 2000-2001 and 2008-2009 in the United States: occupant deaths per million registered vehicle years in these vehicles and deaths in other cars that collided with these vehicles in 2-vehicle crashes per million registered vehicle years. These rates were computed for each study period and for cars/minivans (referred to as cars), SUVs, and pickups by curb weight (in 500-pound increments). The latter death rate, referred to as the car crash partner death rate, also was computed for front-to-front crashes and front-to-side crashes where the front of the 1- to 4-year-old vehicle struck the side of the partner car. In both study periods, occupant death rates generally decreased for each vehicle type both with increasing curb weight and over time. SUVs experienced the greatest declines compared with cars and pickups. This is due in part to the early fitment of electronic stability control in SUVs, which drastically reduced the incidence of single-vehicle rollover crashes. Pickups had the highest death rates in both study periods. Car crash partner death rates generally declined over time for all vehicle categories but more steeply for SUVs and pickups colliding with cars than for cars colliding with cars. In fact, the car crash partner death rates for SUVs and cars were nearly identical during 2008-2009, suggesting that the voluntary design changes for compatibility have been effective. Car crash partner death rates also declined for pickups, but their rates were consistently the highest in both study periods. It is impossible to disentangle the individual contributions of the compatibility agreement, improved crashworthiness of cars, and other factors in reducing car crash partner fatality rates. However, the generally larger reductions in car crash partner death rates for SUVs and pickups indicate the likely benefits of the agreement. Overall, this study finds that the system of regulatory testing, voluntary industry initiatives, and consumer information testing has led to a passenger vehicle fleet that is much more compatible in crashes.
Relic neutralino surface at a 100 TeV collider
Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...
2015-03-11
We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less
Hadron-collider limits on new electroweak interactions from the heterotic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
del Aguila, F.; Moreno, J.M.; Quiros, M.
1990-01-01
We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less
Constraining the equation of state with identified particle spectra
NASA Astrophysics Data System (ADS)
Monnai, Akihiko; Ollitrault, Jean-Yves
2017-10-01
We show that in a central nucleus-nucleus collision, the variation of the mean transverse mass with the multiplicity is determined, up to a rescaling, by the variation of the energy over entropy ratio as a function of the entropy density, thus providing a direct link between experimental data and the equation of state. Each colliding energy thus probes the equation of state at an effective entropy density, whose approximate value is 19 fm-3 for Au+Au collisions at 200 GeV and 41 fm-3 for Pb+Pb collisions at 2.76 TeV, corresponding to temperatures of 227 and 279 MeV if the equation of state is taken from lattice calculations. The relative change of the mean transverse mass as a function of the colliding energy gives a direct measure of the pressure over energy density ratio P /ɛ , at the corresponding effective density. Using Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) data, we obtain P /ɛ =0.21 ±0.10 , in agreement with the lattice value P /ɛ =0.23 in the corresponding temperature range. Measurements over a wide range of colliding energies using a single detector with good particle identification would help reduce the error.
HIV testing updates and challenges: when regulatory caution and public health imperatives collide.
Branson, Bernard M
2015-03-01
Numerous improvements in HIV testing technology led recently to the first revision of recommendations for diagnostic laboratory testing in the USA in 25 years. Developments in HIV testing continue to produce tests that identify HIV infection earlier with faster turnaround times for test results. These play an important role in identifying HIV infection during the highly infectious acute phase, which has implication for both patient management and public health interventions to control the spread of HIV. Access to these developments, however, is often delayed by the regulatory apparatus for approval and oversight of HIV testing in the USA. This article summarizes recent developments in HIV diagnostic testing technology, outlines their implications for clinical management and public health, describes current systems of regulatory oversight for HIV testing in the USA, and proposes alternatives that could expedite access to improved tests as they become available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, D.L.
1998-07-01
There are important goals in particle physics to be addressed by a TeV-scale electron-positron linear collider. Recent developments in accelerator physics and technologies aimed for the realization of such a collider are discussed in this paper.
1983-11-29
floated downriver. One barge sank about 1 mile from the bridge, a second barge collided with barges moored at a chemical barge loading facility, and...about 1 mile from the bridge, a second barge collided with barges moored at a Monsanto Chemical Company barge loading facility, and the other barge...Poplar Street bridge along the Illinois side of the river. One or two of the breakaway barges collided with barges moored at a Monsanto Chemical
Branon search in hadronic colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.
2004-11-01
In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.
Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC
NASA Astrophysics Data System (ADS)
Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration
2017-01-01
A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.
Observing a light dark matter beam with neutrino experiments
NASA Astrophysics Data System (ADS)
Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam
2011-10-01
We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.
Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)
None
2017-12-09
This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. The lectures are aimed at graduate students.
Higgs boson production at hadron colliders at N3LO in QCD
NASA Astrophysics Data System (ADS)
Mistlberger, Bernhard
2018-05-01
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan
2015-09-01
JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.
2017-04-01
The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milardi, C.; Alesini, D.; Biagini, M.E.
DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less
Mid-infrared lasers for energy frontier plasma accelerators
Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.
2016-09-12
Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO 2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the designmore » of such a machine. In conclusion, the revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO 2 laser technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...
2017-03-09
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Observations of beam losses due to bound-free pair production in a heavy-ion collider.
Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R
2007-10-05
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.
Final muon cooling for a muon collider
NASA Astrophysics Data System (ADS)
Acosta Castillo, John Gabriel
To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.
Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crease, Robert P.
2007-12-12
As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, themore » discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.« less
Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus
NASA Astrophysics Data System (ADS)
Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.
2015-10-01
A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.
NASA Astrophysics Data System (ADS)
Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco
2017-09-01
As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.
Model identification of new heavy Z‧ bosons at ILC with polarized beams
NASA Astrophysics Data System (ADS)
Pankov, A. A.; Tsytrinov, A. V.
2017-12-01
Extra neutral gauge bosons, Z‧s, are predicted by many theoretical scenarios of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z‧s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z‧ exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the expected sensitivity to Z‧ parameters of fermion-pair production cross sections at the planned International Linear Collider (ILC), especially as regards the potential of distinguishing different Z‧ models once such deviations are observed. Specifically, we evaluate the discovery and identification reaches on Z‧ gauge bosons pertinent to the E 6, LR, ALR, and SSM classes of models at the ILC.
2009 Linear Collider Workshop of the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidel, Sally
The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less
NASA Astrophysics Data System (ADS)
Childers, J. T.; Uram, T. D.; LeCompte, T. J.; Papka, M. E.; Benjamin, D. P.
2017-01-01
As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application and the performance that was achieved.
Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity
NASA Astrophysics Data System (ADS)
Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong
2015-04-01
We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.
Resistive Plate Chambers for imaging calorimetry — The DHCAL
NASA Astrophysics Data System (ADS)
Repond, J.
2014-09-01
The DHCAL — the Digital Hadron Calorimeter — is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 × 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abusleme, A.; Afanaciev, K.; Benhammou, Y.; Bortko, L.; Borysov, O.; Borysova, M.; Bozovic-Jelisavcic, I.; Chelkov, G.; Daniluk, W.; Dannheim, D.; Elsener, K.; Firlej, M.; Firu, E.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Hempel, M.; Henschel, H.; Idzik, M.; Ignatenko, A.; Ishikawa, A.; Kananov, S.; Karacheban, O.; Klempt, W.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz.; Lange, W.; Leonard, J.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukic, S.; Moron, J.; Moszczynski, A.; Neagu, A. T.; Nuiry, F.-X.; Pandurovic, M.; Pawlik, B.; Preda, T.; Rosenblat, O.; Sailer, A.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Smolyanskiy, P.; Swientek, K.; Terlecki, P.; Uggerhoj, U. I.; Wistisen, T. N.; Wojton, T.; Yamamoto, H.; Zawiejski, L.; Zgura, I. S.; Zhemchugov, A.
2018-02-01
A prototype of a luminometer, designed for a future e^+e^- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Molière radius has been determined to be 24.0 ± 0.6 (stat.) ± 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2009-10-15
The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less
Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact
Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A
NASA Astrophysics Data System (ADS)
Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.
2017-12-01
Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer. This work is based on observations carried out under project numbers S14AW and S16AU with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework
van Hameren, A.; Kotko, P.; Kutak, K.; ...
2016-12-12
We study the production of forward di-jets in proton-lead and proton-proton collisions at the Large Hadron Collider. Such configurations, with both jets produced in the forward direction, impose a dilute-dense asymmetry which allows to probe the gluon density of the lead or proton target at small longitudinal momentum fractions. Even though the jet momenta are always much bigger than the saturation scale of the target, Qs, the transverse momentum imbalance of the di-jet system may be either also much larger than Qs, or of the order Qs, implying that the small-x QCD dynamics involved is either linear or non-linear, respectively.more » The small-x improved TMD factorization framework deals with both situations in the same formalism. In the latter case, which corresponds to nearly back-to-back jets, we find that saturation effects induce a significant suppression of the forward di-jet azimuthal correlations in proton-lead versus proton-proton collisions.« less
Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Hameren, A.; Kotko, P.; Kutak, K.
We study the production of forward di-jets in proton-lead and proton-proton collisions at the Large Hadron Collider. Such configurations, with both jets produced in the forward direction, impose a dilute-dense asymmetry which allows to probe the gluon density of the lead or proton target at small longitudinal momentum fractions. Even though the jet momenta are always much bigger than the saturation scale of the target, Qs, the transverse momentum imbalance of the di-jet system may be either also much larger than Qs, or of the order Qs, implying that the small-x QCD dynamics involved is either linear or non-linear, respectively.more » The small-x improved TMD factorization framework deals with both situations in the same formalism. In the latter case, which corresponds to nearly back-to-back jets, we find that saturation effects induce a significant suppression of the forward di-jet azimuthal correlations in proton-lead versus proton-proton collisions.« less
Shot Peening Numerical Simulation of Aircraft Aluminum Alloy Structure
NASA Astrophysics Data System (ADS)
Liu, Yong; Lv, Sheng-Li; Zhang, Wei
2018-03-01
After shot peening, the 7050 aluminum alloy has good anti-fatigue and anti-stress corrosion properties. In the shot peening process, the pellet collides with target material randomly, and generated residual stress distribution on the target material surface, which has great significance to improve material property. In this paper, a simplified numerical simulation model of shot peening was established. The influence of pellet collision velocity, pellet collision position and pellet collision time interval on the residual stress of shot peening was studied, which is simulated by the ANSYS/LS-DYNA software. The analysis results show that different velocity, different positions and different time intervals have great influence on the residual stress after shot peening. Comparing with the numerical simulation results based on Kriging model, the accuracy of the simulation results in this paper was verified. This study provides a reference for the optimization of the shot peening process, and makes an effective exploration for the precise shot peening numerical simulation.
Radial scaling in inclusive jet production at hadron colliders
NASA Astrophysics Data System (ADS)
Taylor, Frank E.
2018-03-01
Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
The ATLAS Experiment at the CERN Large Hadron Collider
NASA Astrophysics Data System (ADS)
ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.
2008-08-01
The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas
The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.
R&D Toward a Neutrino Factory and Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zisman, Michael S
2011-03-20
Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.
Efficiency Versus Instability in Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2017-01-05
Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.
Charge recombination in the muon collider cooling channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernow, R. C.; Palmer, R. B.
2012-12-21
The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.
ISR effects for resonant Higgs production at future lepton colliders
Greco, Mario; Han, Tao; Liu, Zhen
2016-11-04
We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less
Search for the right-handed W R boson and a heavy neutrino at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Krasnikov, N. V.; Matveev, V. A.
2014-12-01
We present a brief review of the SU c ( 3)⊗SU L ( 2)⊗SU R ( 2)⊗U( 1) left-right symmetric gauge model. We discuss a possibility of detecting the right-handed W R boson and a heavy neutrino in pp collisions at the Large Hadron Collider. We present restrictions on the masses of the W R boson and the heavy neutrino obtained using the analysis of experimental data from the CMS and ATLAS detectors with a total energy of colliding protons of 7-8 TeV.
The Curious Ontology of a Light Higgs Boson
NASA Astrophysics Data System (ADS)
Riordan, Michael
2016-03-01
When the Superconducting Super Collider was being contemplated and designed in the mid-1980s, few high-energy physicists considered it likely that a light Higgs boson, as was eventually discovered at the Large Hadron Collider, would exist. Most theorists expected that the Higgs boson would occur at a mass near the TeV scale, and accelerator physicists designed the Super Collider accordingly. The possibility of a light Higgs boson with a mass less than 200 GeV began to be taken seriously during the 1990s, especially after the 1995 Fermilab discovery of the top quark near 175 GeV, but it was too late to influence the SSC design. With a peak collision energy of 40 TeV, this collider was guaranteed to discover the Higgs boson -- or whatever other mass-generating phenomenon might be occurring in the Standard Model -- even if it were to appear at masses or energies up to 2 TeV. As it turned out, therefore, the SSC was overdesigned for its principal physics goal. A substantially smaller Fermilab project known as the Dedicated Collider, which never made it beyond the drawing boards, could probably have allowed the 125 GeV Higgs boson to be discovered at least a decade earlier than it occurred at the LHC.
Colliding Winds in Symbiotic Binary Systems. I. Analytic and Numerical Solutions
NASA Astrophysics Data System (ADS)
Kenny, H. T.; Taylor, A. R.
2005-01-01
We present new formulations of binary colliding wind models appropriate to symbiotic star systems. The derived models differ from previous formulations in assuming mixing of the shocked material from both incoming streams, rather than postulating a self-sustaining contact discontinuity. The CWb model (colliding winds, binary) extends the work of Girard and Willson by the derivation of an adiabatic temperature, the consideration of radiative cooling, the inclusion of thermal pressures in the incoming winds, and the treatment of interaction shells of finite thickness and density. The finite thickness of the interaction shell allows for calculation of its radiative intensity distribution. The CWc model (colliding winds, concentric) is a similar extension of the model of Kwok, Purton, and Fitzgerald. It is derived in a manner parallel to that of the CWb model, thereby facilitating a unification of the two models. A unified model is desired since wind collisions in symbiotic systems should include aspects of both CWb and CWc interactions. Two examples of model applications are presented: a comparison of the flux densities arising from colliding winds (CWb model) with those arising from the ionization of the surrounding medium (STB model) in the galactic population of symbiotic stars, and model imaging of the symbiotic nova HM Sge.
Proceedings of the 2005 International Linear Collider Workshop (LCWS05)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, JoAnne,; /SLAC
2006-12-18
Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.« less
The ribbon continent of northwestern South America
NASA Astrophysics Data System (ADS)
Altamira-Areyan, Armando
The tectonic structure of the Plate Boundary Zone (PBZ) between the Caribbean Plate (CARIB) and the South American Plate (SOAM) is interpreted using models that require CARIB motion from the Pacific into the Atlantic. Those models can be subdivided into: (1) those in which the island arc rocks that are now in the CARIB-SOAM PBZ have collided with the northern South America margin, either obliquely or directly during the Cretaceous or during the Cenozoic, and (2) those in which the island arc rocks now in the CARIB-SOAM PBZ collided with the west coast of South America during the Cretaceous and were transferred to the northern margin by transform motion during the Cenozoic. Magnetic anomalies were first rotated in the Central and South Atlantic, holding Africa fixed to establish how much NOAM had converged on SOAM during the Cenozoic. WSW convergence was discovered to have been accommodated in the northern boundary of the CARIB. There is no evidence of convergence in the form of Cenozoic island arc igneous rocks on the north coast of South America. Those results are consistent only with models of Class (2) that call for transform movement of material that had collided with the west coast of South America along the CARIB-SOAM PBZ on the northern margin of South America. 40Ar/39Ar ages of island arc rocks from northern Venezuela were found to be older than ca 70 Ma, which is consistent with a requirement of models of Class (2) that those rocks are from an island arc which collided with the west coast of South America during Cretaceous times. Testing that conclusion using data from Ecuador, Colombia, Venezuela, the Netherlands Antilles, Trinidad and Tobago has led to the construction of a new ribbon continent model of the northwestern Cordillera of South America. Because the part of the ribbon continent on the north coast of South America has been experiencing substantial deformation in the Maracaibo block during the past 10 m.y., structures in that body have had to be retro-deformed to establish the form and history of the ribbon continent on the north coast of South America.
Application of the first collision source method to CSNS target station shielding calculation
NASA Astrophysics Data System (ADS)
Zheng, Ying; Zhang, Bin; Chen, Meng-Teng; Zhang, Liang; Cao, Bo; Chen, Yi-Xue; Yin, Wen; Liang, Tian-Jiao
2016-04-01
Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source (CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results. Supported by Major National S&T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2011ZX06004-007), National Natural Science Foundation of China (11505059, 11575061), and the Fundamental Research Funds for the Central Universities (13QN34).
Mei Bai
2017-12-09
Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Supersymmetric dark matter in the harsh light of the Large Hadron Collider
Peskin, Michael E.
2015-01-01
I review the status of the model of dark matter as the neutralino of supersymmetry in the light of constraints on supersymmetry given by the 7- to 8-TeV data from the Large Hadron Collider (LHC). PMID:25331902
Isomer Energy Source for Space Propulsion Systems
2004-03-01
1,590 Engine F/W (no shield) 3.4 5.0 20.0 A similar core design replacing the fission fuel with the isomer 178Hfm2 is the starting point for this...particles interact and collide with other atoms in the fuel material, reactor core , or coolant, their energy can be transferred to thermal energy...thrust (44). The program produced several reactors that made it all the way through the testing stages of development . The reactors used uranium-235
Measuring impact rebound with photography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumali, Hartono
2010-05-01
To study the rebound of a sphere colliding against a flat wall, a test setup was developed where the sphere is suspended with strings as a pendulum, elevated, and gravity-released to impact the wall. The motion of the sphere was recorded with a highspeed camera and traced with an image-processing program. From the speed of the sphere before and after each collision, the coefficient of restitution was computed, and shown to be a function of impact speed as predicted analytically.
Design and development of an optical scanning mechanism (OSMA) with minimum momentum transfer
NASA Technical Reports Server (NTRS)
Sainz, L. B. F.; Herrera, E.; Bajo, J. M.; Mallard, H. J.
1981-01-01
The development model for an optical scanning mechanism assembly is described as being two equal inertial masses which collide with each other to minimize the momentum transfer to the satellite and other mounted instruments. The design criteria for the mirror, the compensating inertia structure and other components are given. The details of the design are discussed and related test results are presented, which show the validity of the design concept for momentum compensation.
NASA Astrophysics Data System (ADS)
Mäntysaari, Heikki; Venugopalan, Raju
2018-06-01
We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number A and the virtuality Q2 of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.