Science.gov

Sample records for collision geometry fluctuations

  1. Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions

    SciTech Connect

    Qin Guangyou; Petersen, Hannah; Bass, Steffen A.; Mueller, Berndt

    2010-12-15

    We develop a systematic framework for the study of the initial collision geometry fluctuations in relativistic heavy-ion collisions and investigate how they evolve through different stages of the fireball history and translate into final-particle momentum anisotropies. We find in our event-by-event analysis that only the few lowest momentum anisotropy parameters survive after the hydrodynamical evolution of the system. The geometry of the produced medium is found to be affected by the pre-equilibrium evolution of the medium and the thermal smearing of the discretized event-by-event initial conditions, both of which tend to smear out the spatial anisotropies. We find such effects to be more prominent for higher moments than for lower moments. The correlations between odd and even spatial anisotropy parameters during the pre-equilibrium expansion are quantitatively studied and found to be small. Our study provides a theoretical foundation for the understanding of initial-state fluctuations and the collective expansion dynamics in relativistic heavy-ion collisions.

  2. Collision-geometry fluctuations and triangular flow in heavy-ion collisions

    SciTech Connect

    Alver, B.; Roland, G.

    2010-05-15

    We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multiphase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.

  3. Initial state geometry and fluctuations in deformed and asymmetric nuclear collisions in the IP-Glasma framework

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2014-11-01

    The IP-Glasma model of initial conditions based on the ab initio color glass condensate framework successfully explains most of the bulk features of the global data for various systems like p+p, p+A and A+A over a wide range of energies. We employ this framework to study deformed U+U collisions, asymmetric Cu+Au collisions and the effect of deformation in Au+Au collisions at RHIC. A combined study of these heavy ion systems with varying initial geometries can provide a unique opportunity to determine the origin of different sources of fluctuations that affect global observables like multiplicity and flow. We study the sensitivity of multiplicity, eccentricity and their event-by-event distributions to the details of initial state geometry. Results are compared to a two-component MC-Glauber model implementation that includes Negative-Binomial multiplicity fluctuations. We argue that the measurements of global observables for these systems at RHIC can constrain the mechanism of multi-particle production.

  4. Fourier harmonics of high-pT particles probing the fluctuating initial condition geometries in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Betz, Barbara; Gyulassy, Miklos; Torrieri, Giorgio

    2011-08-01

    Second Fourier harmonics of jet quenching have been thoroughly explored in the literature and shown to be sensitive to the underlying jet path-length dependence of energy loss and the differences between the mean eccentricity predicted by Glauber and color glass condensate (CGC)/Kharzeev-Levin-Nardi (KLN) models of initial conditions. We compute the jet path-length dependence of energy-loss for higher azimuthal harmonics of jet-fragments in a generalized model of energy-loss for Relativistc Heavy Ion Collider energies and find, however, that even the high-pT second moment is most sensitive to the poorly known early time evolution during the first fm/c. Moreover, we demonstrate that higher-jet harmonics are remarkably insensitive to the initial conditions, while the different vn(Npart) vs vnIAA(Npart) correlations between the moments of monojet and dijet nuclear modifications factors remain a most sensitive probe to differentiate between Glauber and CGC/KLN initial state geometries of the strongly-coupled Quark-Gluon Plasma.

  5. Fourier harmonics of high-p{sub T} particles probing the fluctuating initial condition geometries in heavy-ion collisions

    SciTech Connect

    Betz, Barbara; Gyulassy, Miklos; Torrieri, Giorgio

    2011-08-15

    Second Fourier harmonics of jet quenching have been thoroughly explored in the literature and shown to be sensitive to the underlying jet path-length dependence of energy loss and the differences between the mean eccentricity predicted by Glauber and color glass condensate (CGC)/Kharzeev-Levin-Nardi (KLN) models of initial conditions. We compute the jet path-length dependence of energy-loss for higher azimuthal harmonics of jet-fragments in a generalized model of energy-loss for Relativistc Heavy Ion Collider energies and find, however, that even the high-p{sub T} second moment is most sensitive to the poorly known early time evolution during the first fm/c. Moreover, we demonstrate that higher-jet harmonics are remarkably insensitive to the initial conditions, while the different v{sub n}(N{sub part}) vs v{sub n}{sup I{sub AA}}(N{sub part}) correlations between the moments of monojet and dijet nuclear modifications factors remain a most sensitive probe to differentiate between Glauber and CGC/KLN initial state geometries of the strongly-coupled Quark-Gluon Plasma.

  6. Riemannian geometry of fluctuation theory: An introduction

    NASA Astrophysics Data System (ADS)

    Velazquez, Luisberis

    2016-05-01

    Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.

  7. Studies of Fluctuation Processes in Nuclear Collisions

    SciTech Connect

    Ayik, Sakir

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  8. Measurement of quantum fluctuations in geometry

    SciTech Connect

    Hogan, Craig J.

    2008-05-15

    A particular form for the quantum indeterminacy of relative spacetime position of events is derived from the context of a holographic geometry with a minimum length at the Planck scale. The indeterminacy predicts fluctuations from a classically defined geometry in the form of ''holographic noise'' whose spatial character, absolute normalization, and spectrum are predicted with no parameters. The noise has a distinctive transverse spatial shear signature and a flat power spectral density given by the Planck time. An interferometer signal displays noise due to the uncertainty of relative positions of reflection events. The noise corresponds to an accumulation of phase offset with time that mimics a random walk of those optical elements that change the orientation of a wavefront. It only appears in measurements that compare transverse positions and does not appear at all in purely radial position measurements. A lower bound on holographic noise follows from a covariant upper bound on gravitational entropy. The predicted holographic noise spectrum is estimated to be comparable to measured noise in the currently operating interferometric gravitational-wave detector GEO600. Because of its transverse character, holographic noise is reduced relative to gravitational wave effects in other interferometer designs, such as the LIGO observatories, where beam power is much less in the beam splitter than in the arms.

  9. Traces of Thermalization from pt Fluctuations in Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Gavin, S.

    2004-04-01

    Scattering of particles produced in high energy nuclear collisions can wrestle the system into a state near local thermal equilibrium. I illustrate how measurements of the centrality dependence of the mean transverse momentum and its fluctuations can exhibit this thermalization.

  10. ELLIPTIC FLOW, INITIAL ECCENTRICITY AND ELLIPTIC FLOW FLUCTUATIONS IN HEAVY ION COLLISIONS AT RHIC.

    SciTech Connect

    NOUICER,R.; ALVER, B.; BACK, B.B.; BAKER, M.D.; BALLINTIJN, M.; BARTON, D.S.; ET AL.

    2007-02-19

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  11. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE PAGES

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  12. Color Fluctuations in High Energy Hadronand Photon-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Frankfurt, Leonid; Strikman, Mark

    We explain that coherence of high energy QED and QCD processes implies existence of new kind of phenomena which are beyond a framework based on Regge poles (cuts). New phenomena emerge as the consequence of compositeness of the bound states and the Lorentz slowing down of interaction. We focus on the color fluctuations phenomena predicted earlier for pA collisions within QCD and recent evidence for this phenomenon from pA LHC run, significant modification of nuclear shadowing phenomenon in the diffractive photoproduction of vector mesons observed recently in the ultra peripheral collisions at LHC. We outlined briefly general properties of color fluctuations phenomena and perspectives of future studies of this phenomenon in electron (photon) collisions with nuclei.

  13. Correlation and fluctuations in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Mohsin Khan, M.; Ahmad, N.; Kamal, A.; Masoodi, A. A.; Irfan, M.

    2011-01-01

    Correlation and fluctuations are now well accepted analysis techniques in heavy-ion collisions at relativistic energies. At the current stage of RHIC exploration, matter in bulk and many of the physics questions about the final stage of collisions are addressed with the help of correlation techniques. In the present work after a general introduction to the underlying formalism to the exotic phenomena of correlation and fluctuations, discussion on various parameters disentangling dynamical fluctuations is presented. Analysis to investigate dynamical fluctuations and correlation is carried out in terms of F q - and G q -moments. A study of various other parameters involving multiplicity and pseudorapidity of relativistic charged particles produced in high energy nuclear interactions reveals the presence of correlation and fluctuations in particle production in these collisions. The experimental data on 14.5A GeV/c 28Si-nucleus interactions has been analyzed. A parallel analysis of correlation free data generated using MC-RAND Monte Carlo code, UrQMD data and for the HIJING generated events has also been carried out.

  14. Geometry-induced fluctuations of olfactory searches in bounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  15. Geometry-induced fluctuations of olfactory searches in bounded domains.

    PubMed

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  16. Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    SciTech Connect

    Flensburg, Christoffer

    2011-07-15

    Diffractive excitation is usually described by the Good-Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good-Walker formalism the cross section is determined by the fluctuations in the interaction. By taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation in the Good-Walker formalism. In high energy pp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.

  17. Quantum fluctuations of geometry in a hot Universe

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo

    2015-11-01

    The fluctuations of spacetime geometries at finite temperature are evaluated within the linearized theory of gravity. These fluctuations are described by the probability distribution of various configurations of the gravitational field. The field configurations are described by the linearized Riemann-Weyl tensor without any reference to the metric. The probability distribution of various configurations is described by the Wigner functional of the gravitational field. It has a foam-like structure; dominant configurations are those with large changes of geometry at nearby points. In the high-temperature limit one obtains the Bolzmann distribution that enables one to identify the expression for the total energy of the gravitational field. The appearance of the same expression for the total energy when the gravitational field is treated as a collection of gravitons and as the high-temperature limit of the Wigner functional proves the consistency of the whole procedure. Striking differences are found between the fluctuations of the electromagnetic field and the gravitational field; among them is the divergence in the gravitational case of the probability distribution at zero temperature. This divergence is of the ’infrared type’ because it occurs in integrals over the wave vector at small k.

  18. Phenomenology with fluctuating quantum geometries in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Agullo, Ivan; Ashtekar, Abhay; Gupt, Brajesh

    2017-04-01

    The goal of this paper is to probe phenomenological implications of large fluctuations of quantum geometry in the Planck era, using cosmology of the early universe. For the background (Friedmann, Lemaître, Robertson, Walker) quantum geometry, we allow ‘widely spread’ states in which the relative dispersions are as large as 168 % in the Planck regime. By introducing suitable methods to overcome the ensuing conceptual and computational issues, we calculate the power spectrum {{P}R}(k) and the spectral index n s (k) of primordial curvature perturbations. These results generalize the previous work in loop quantum cosmology which focused on those states which were known to remain sharply peaked throughout the Planck regime. Surprisingly, even though the fluctuations we now consider are large, their presence does not add new features to the final {{P}R}(k) and n s (k): within observational error bars, their effect is degenerate with a different freedom in the theory, namely the number of pre-inflationary e-folds {{N}\\text{B\\star}} between the bounce and the onset of inflation. Therefore, with regard to observational consequences, one can simulate the freedom in the choice of states with large fluctuations in the Planck era using the simpler, sharply peaked states, simply by allowing for different values of {{N}\\text{B \\star}} .

  19. Restricted thermodynamic fluctuations and the Ruppeiner geometry of black holes

    NASA Astrophysics Data System (ADS)

    Sahay, Anurag

    2017-03-01

    Thermodynamic fluctuation metrics in Ruppeiner's formalism are worked out for Kerr-AdS black holes in the extended state space. The implications of constraints upon the state space geometry and their correspondence with thermodynamical ensembles are explicitly worked out in the most general setting. The state space scalar curvature for a given ensemble is found to be sensitive to the instabilities or phase transitions therein. In particular, it is found that the appropriate Ruppeiner scalar curvature does encode critical phenomena in the Kerr-AdS black holes. A detailed study is undertaken of the curvature contour of the state space of the 4D Kerr-AdS black hole, and suitable inferences are drawn. In particular, thermodynamic geometry suggests an instability in the Schwarzschild-AdS limit for all the ensembles except the pressure ensemble, which is equivalent to the unextended state space of the Kerr-AdS black holes. The extrinsic geometry of the ensemble hypersurfaces is introduced, and its relevance to constrained thermodynamic fluctuations is discussed. A new interpretation for the thermodynamic curvature of black hole systems is suggested.

  20. PREFACE: Correlations and Fluctuations in Relativistic Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Roland, Gunther; Trainor, Tom

    2005-01-01

    Study of correlations and fluctuations in relativistic nuclear collisions addresses fundamental aspects of quantum chromodynamics (QCD) and the properties of strongly-interacting matter at extreme density and temperature. Correlations and fluctuations reveal the nature of QCD, first through the structure of elementary collisions and then through the properties and dynamics of the colored medium produced in heavy ion (HI) collisions. Five years after first RHIC data we are experiencing a paradigm shift: from two-state indicators that the QCD phase boundary has been traversed to quantitative study of the structure of the QCD medium in the temperature interval Tc 3Tc above the boundary. The expected role of correlations and fluctuations has changed, and has increased in importance relative to single-particle measures. In this workshop we have reviewed correlation and fluctuation measurements in the context of our current theoretical understanding of nuclear collisions and have explored the connections among different measurement approaches. Three themes have emerged, in descending order of correlated-particle transverse momentum pt: high-pt 'triggered' jet correlations and recombination (most interesting at intermediate pt but based on perturbative QCD concepts), fluctuations and correlations which focus on structure at lower pt but are nevertheless dominated by (low-Q2) parton fragment correlations, and critical fluctuations and equilibration which emphasize the long-time and large-scale behavior of the bulk QCD medium. Correlation measurements reveal that RHIC collisions are complex; local structure appears to be dominated by low-Q2 parton fragmentation. High-pt correlations probe the QCD medium at larger scales and shorter times. Provocative phenomena appear at SPS energies where quieter circumstances offer the possibility to observe significant critical fluctuations. New techniques provide unification of high-pt jet correlations with lower-pt fluctuation

  1. Fluctuating glasma initial conditions and flow in heavy ion collisions.

    PubMed

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-06-22

    We compute initial conditions in heavy ion collisions within the color glass condensate framework by combining the impact parameter dependent saturation model with the classical Yang-Mills description of initial Glasma fields. In addition to fluctuations of nucleon positions, this impact parameter dependent Glasma description includes quantum fluctuations of color charges on the length scale determined by the inverse nuclear saturation scale Q(s). The model naturally produces initial energy fluctuations that are described by a negative binomial distribution. The ratio of triangularity to eccentricity ε(3)/ε(2) is close to that in a model tuned to reproduce experimental flow data. We compare transverse momentum spectra and v(2,3,4)(p(T)) of pions from different models of initial conditions using relativistic viscous hydrodynamic evolution.

  2. Multi-particle eccentricities in collisions dominated by fluctuations

    SciTech Connect

    Bzdak, Adam; Skokov, Vladimir

    2015-11-01

    Here we compute analytically the multi-particle eccentricities, ϵm{2n}, for systems dominated by fluctuations, such as proton–nucleus collisions at the Large Hadron Collider. In particular, we derive a general relation for $\\langle$ ϵ$2n\\atop{2}$ $\\rangle$. We further discuss the relations between various multi-particle eccentricities and demonstrate that ϵ2{2}>ϵ2{4}≃ϵ2{6}≃ϵ2{8}, in agreement with recent numerical calculations in a Glauber model.

  3. Multi-particle eccentricities in collisions dominated by fluctuations

    DOE PAGES

    Bzdak, Adam; Skokov, Vladimir

    2015-11-01

    Here we compute analytically the multi-particle eccentricities, ϵm{2n}, for systems dominated by fluctuations, such as proton–nucleus collisions at the Large Hadron Collider. In particular, we derive a general relation formore » $$\\langle$$ ϵ$$2n\\atop{2}$$ $$\\rangle$$. We further discuss the relations between various multi-particle eccentricities and demonstrate that ϵ2{2}>ϵ2{4}≃ϵ2{6}≃ϵ2{8}, in agreement with recent numerical calculations in a Glauber model.« less

  4. Geometry of river networks. I. Scaling, fluctuations, and deviations

    SciTech Connect

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    This paper is the first in a series of three papers investigating the detailed geometry of river networks. Branching networks are a universal structure employed in the distribution and collection of material. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, here we report a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of a subbasin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density, and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling are substantial, and grow with system size. We find strong deviations from scaling at small scales which can be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in exponent values, indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and will not be improved by increases in network resolution.

  5. Color fluctuations in pA collisions at collider energies

    NASA Astrophysics Data System (ADS)

    Strikman, Mark

    2015-04-01

    In pA collisions at collider energies a projectile stays in a frozen configuration over the distances which by far exceed the nuclear diameter. As a result proton coherently interacts with nucleons along its impact parameter. In QCD nucleon is build of configurations of different transverse size which are expected to interact with different strength leading to the fluctuations of the global strength of the projectile interaction. Also, configurations of smaller size are expected to have a reduced gluon field leading to a correlation of soft and hard interactions. The shape of the distribution over the strength of interaction is strongly constrained by the diffractive pp data, behavior of the distribution for σ --> 0 expected in pQCD, etc. We developed a Monte Carlo procedure for taking into account these effects in soft collisions and collisions with a hard trigger taking into account difference of the transverse scales of hard and soft interactions. We predicted that distribution over the number of wounded nucleons should be broader than in the Glauber model in agreement with the recent LHC data. We argue that a strong violation of the Glauber approximation in the dependence of the rate of forward jet production on centrality observed in pA collisions at the LHC provides the first experimental evidence that parton configurations in the projectile proton containing a parton with large xp interact with a nuclei with a significantly smaller than average cross section and have smaller than average size. Implementing effects of the interaction strength fluctuations and using the ATLAS analysis of the dependence of the hadron production at backward rapidities on the number of wounded nucleons, we make quantitative predictions for the centrality dependence of the jet production rate as a function of the interaction strength σ(xp) . We find σ(xp = 0.6) ~σtot(pp)/2 which sheds light on the origin of the EMC effect. Future pA dijet studies along these lines would allow

  6. Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Khan, M. Mohisin; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.

    2017-09-01

    The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at √{s_{NN}}=2.76 TeV and p-Pb collisions at √{s_{NN}}=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region | η| < 0 .8 as a function of centrality and transverse momentum p T using two observables, to search for evidence of p T-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that p T-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Pb-Pb and p-Pb collisions. [Figure not available: see fulltext.

  7. Quantum analysis of fluctuations of electromagnetic fields in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zakharov, B. G.

    2017-06-01

    We perform quantum calculations of fluctuations of the electromagnetic fields in AA collisions at RHIC and LHC energies. The analysis is based on the fluctuation-dissipation theorem. We find that in the quantum picture the field fluctuations are very small. They turn out to be much smaller than the predictions of the classical Monte Carlo simulation with the Woods-Saxon nuclear density.

  8. Spinodal amplification and baryon number fluctuations in nuclear collisions at NICA

    NASA Astrophysics Data System (ADS)

    Steinheimer, Jan; Randrup, Jørgen

    2016-08-01

    We discuss the effect of spinodal instabilities on the fluctuations of conserved flavors in nuclear collisions at NICA. We find that, when the system undergoes a phase transformation, baryon number clumping due to the mechanical instabilities in the spinodal phase occurs. This dynamical clumping enhances the cumulants of the net baryon number residing in a finite test volume of the total collision system.

  9. Forward-backward multiplicity fluctuations in heavy nuclei collisions in the wounded nucleon model

    SciTech Connect

    Bzdak, Adam; Wozniak, Krzysztof

    2010-03-15

    We use the wounded nucleon model to study the forward-backward multiplicity fluctuations measured by the PHOBOS Collaboration in Au + Au collisions at sq root(s{sub N{sub N}})=200 GeV. The enhancement of forward-backward fluctuations in Au + Au collisions with respect to the elementary p+p interactions is explained in this model by the asymmetric shape of the pseudorapidity density of produced particles from a single wounded nucleon and the fluctuations of the number of wounded nucleons in the colliding nuclei. The wounded nucleon model describes these experimental data better than the HIJING, AMPT, or UrQMD models do.

  10. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    SciTech Connect

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja; Mrowczynski, Stanislaw

    2011-05-15

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  11. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    SciTech Connect

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to rare high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.

  12. Initial-state fluctuations in collisions between light and heavy ions

    NASA Astrophysics Data System (ADS)

    Welsh, Kevin; Singer, Jordan; Heinz, Ulrich

    2016-08-01

    In high-energy collisions involving small nuclei (p +p or x +Au collisions where x =p , d , or 3He) the fluctuating size, shape, and internal gluonic structure of the nucleon is shown to have a strong effect on the initial size and shape of the fireball of new matter created in the collision. A systematic study of the eccentricity coefficients describing this initial fireball state for several semirealistic models of nucleon substructure and for several practically relevant collision systems involving small nuclei is presented. The key importance of multiplicity fluctuations in such systems is pointed out. Our results show large differences from expectations based on conventional Glauber model simulations of the initial state created in such collisions.

  13. Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction

    NASA Astrophysics Data System (ADS)

    Asakawa, Masayuki; Kitazawa, Masakiyo

    2016-09-01

    Bulk fluctuations of conserved charges measured by event-by-event analysis in relativistic heavy ion collisions are observables which are believed to carry significant amount of information on the hot medium created by the collisions. Active studies have been done recently experimentally, theoretically, and on the lattice. In particular, non-Gaussianity of the fluctuations has acquired much attention recently. In this review, we give a pedagogical introduction to these issues, and survey recent developments in this field of research. Starting from the definition of cumulants, basic concepts in fluctuation physics, such as thermal fluctuations in statistical mechanics and time evolution of fluctuations in diffusive systems, are described. Phenomena which are expected to occur in finite temperature and/or density QCD matter and their measurement by event-by-event analyses are also elucidated.

  14. Fluctuations in charged particle multiplicities in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mukherjee, Maitreyee; Basu, Sumit; Choudhury, Subikash; Nayak, Tapan K.

    2016-08-01

    Multiplicity distributions of charged particles and their event-by-event fluctuations have been compiled for relativistic heavy-ion collisions from the available experimental data at Brookhaven National Laboratory and CERN and also by the use of an event generator. Multiplicity fluctuations are sensitive to QCD phase transition and to the presence of a critical point in the QCD phase diagram. In addition, multiplicity fluctuations provide baselines for other event-by-event measurements. Multiplicity fluctuation expressed in terms of the scaled variance of the multiplicity distribution is an intensive quantity, but is sensitive to the volume fluctuation of the system. The importance of the choice of narrow centrality bins and the corrections of the centrality bin-width effect for controlling volume fluctuations have been discussed. It is observed that the mean and width of the multiplicity distributions monotonically increase as functions of increasing centrality at all collision energies, whereas the multiplicity fluctuations show minimal variations with centrality. The beam-energy dependence shows that the multiplicity fluctuations have a slow rise at lower collision energies and remain constant at higher energies.

  15. Spectra of identified particles, geometry categorization and bias and global observables in d + Au collisions

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah

    2014-11-01

    Geometry selection in d + Au / p + Pb collisions is crucial for understanding the physics underlying modified nuclear parton distribution functions, gluon saturation or shadowing, initial state energy loss, and possible hydrodynamic flow in these small systems. The PHENIX Collaboration tests for auto-correlation biases in the geometry determination in small collision systems. These biases are well understood and an order of magnitude smaller at RHIC as compared to the LHC. As a result, auto-correlation biases are unable to describe the suppression of high transverse momentum (pT) π0's seen in the ratio of central-to-peripheral d + Au collisions. The centrality dependent d + Au pion, kaon and proton yields relative to binary collision-scaled p + p yields are also reported, including the high pTπ0 and KS0. At intermediate pT, between 2and 5GeV / c, baryons are enhanced in central d + Au collisions. The baryon enhancement is present in d + Au and Au + Au collisions and increases with centrality. We compare identified particle yields in peripheral Au + Au collisions to central d + Au collisions that have a comparable number of participants and binary collisions. The pT dependence of this ratio is strikingly similar for mesons and baryons.

  16. Pseudorapidity profile of transverse momentum fluctuations in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sandeep; BoŻek, Piotr

    2017-07-01

    We investigate pseudorapidity correlations of the average transverse flow of particles emitted in relativistic heavy-ion collisions. We employ 3 +1 -dimensional viscous relativistic hydrodynamics with initial conditions from the quark Glauber Monte Carlo model to confront the recent measurements on the pseudorapidity correlations of the average transverse momentum in Pb+Pb collisions at √{sN N}=2760 GeV. We find good agreement between the model predictions and data. Further, we study two other observables build with the covariance of the average transverse momentum in different rapidity bins. These observables have better stability under various systematics, thus allowing for a robust comparison between data and model. The transverse flow-transverse flow correlation coefficient is directly related to correlations of the underlying collective flow at different pseudorapidities. The three-bin measure of pT factorization breaking in pseudorapidity gives an estimate of possible decorrelation of the average transverse flow in the longitudinal direction.

  17. Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at √{sN N }=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-10-01

    We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of √{sN N }=2.76 TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic v2 and quadrangular v4 flow harmonics, as well as of anticorrelation between v2 and triangular v3 flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, ampt, and hijing models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

  18. Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at sqrt[s_{NN}]=2.76  TeV.

    PubMed

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Incani, E; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lehner, S; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, D; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schuchmann, S; Schukraft, J; Schulc, M; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shahzad, M I; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yang, P; Yano, S; Yasin, Z; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    2016-10-28

    We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of sqrt[s_{NN}]=2.76  TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic v_{2} and quadrangular v_{4} flow harmonics, as well as of anticorrelation between v_{2} and triangular v_{3} flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, ampt, and hijing models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

  19. Power spectrum of flow fluctuations in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Saumia, P. S.; Srivastava, Ajit M.

    2016-10-01

    We carry out hydrodynamical simulation of the evolution of fluid in relativistic heavy-ion collisions with random initial fluctuations. The time evolution of power spectrum of momentum anisotropies shows very strong correspondence with the physics of cosmic microwave anisotropies as was earlier predicted by us. In particular, our results demonstrate suppression of superhorizon fluctuations and the correspondence between the location of the first peak in the power spectrum of momentum anisotropies and the length scale of fluctuations and expected freeze-out time-scale (more precisely, the sound horizon size at freeze-out).

  20. Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions

    DOE PAGES

    Jia, Jiangyong

    2014-12-01

    I review recent measurements of a large set of flow observables associated with event-shape fluctuations and collective expansion in heavy ion collisions. First, these flow observables are classified and experiment methods are introduced. The experimental results for each type of observables are then presented and compared to theoretical calculations. A coherent picture of initial condition and collective flow based on linear and non-linear hydrodynamic responses is derived, which qualitatively describe most experimental results. I discuss new types of fluctuation measurements that can further our understanding of the event-shape fluctuations and collective expansion dynamics.

  1. Experimental evidence and theoretical implications of fluctuations in deep inelastic heavy ion collisions

    SciTech Connect

    Moretto, L.G.

    1981-04-01

    The role of fluctuations in deep inelastic collisions is discussed. The relevance of the statistical equilibrium limit to the description of substantially relaxed degrees of freedom is assessed. The effects of fluctuations are considered specifically for the following processes: (a) the correlation between entrance-channel angular momentum and exit-channel kinetic energy; (b) the sharing of the dissipated kinetic energy between the two fragments; (c) the alignment of the fragment angular momentum. It is found that statistical fluctuations play a major role and that the statistical equilibrium limit seems to have been reached in a number of instances.

  2. Mechanics, kinematics and geometry of pebble abrasion from binary collisions

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Jerolmack, D. J.

    2014-12-01

    As sediment is transported downstream as bedload, it collides with the bed causing sharp edges to chip and wear away, rounding the rock through the process of abrasion. Previous work has linked abrasion to downstream fining and rounding of grains, however, there has been little attempt to understand the underlying kinematics of abrasion. Furthermore, most studies neglect the fine particle produced during the abrasion process, as the initial grain gets smaller and rounder. In this research, we preform well-controlled laboratory experiments to determine the functional dependence between impact energy and mass lost from abrasion. We use a double-pendulum "Newton's Cradle" set-up to examine the abrasion between two grains and with a high-speed camera, we can quantify the impact energies during collision. Results from experiments verify that mass loss is proportional to kinetic energy. We define a material parameter that incorporates material density, Young's modulus, and tensile stress and show that this parameter is directly related to the proportionality between mass loss and energy. We identify an initial region of the mass loss curves in which abrasion is independent of energy and material properties; results suggest this region is determined by shape. We show that grain size distributions of daughter products are universal and independent of material; they follow a Weibull distribution, which is expected distribution from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a thin damage zone near the surface, suggesting that collision energy is attenuated over some small skin depth. Overall, we find that pebble abrasion by collision can be characterized by two universal scaling relations - the mass loss versus energy curves and the size distribution of daughter products. Results will be useful for estimating expected abrasion rates in the field, and additionally demonstrate that low-energy collisions produce large quantities of sand

  3. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Luzum, Matthew; Petersen, Hannah

    2014-06-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field.

  4. Elucidating the event-by-event flow fluctuations in heavy-ion collisions via the event-shape selection technique

    NASA Astrophysics Data System (ADS)

    Huo, Peng; Jia, Jiangyong; Mohapatra, Soumya

    2014-08-01

    The presence of large event-by-event flow fluctuations in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) provides an opportunity to study a broad class of flow observables. This paper explores the correlations among harmonic flow coefficients vn and their phases Φn, as well as the rapidity fluctuation of vn. The study is carried out using the Pb + Pb events generated by the multiphase transport (AMPT) model with fixed impact parameter. The overall ellipticity or triangularity of events is varied by selecting on the eccentricities ɛn or the magnitudes of the flow vector qn in a subevent for n =2 and 3, respectively. The responses of the harmonic coefficients, the event-plane correlations, and the rapidity fluctuations to the change in ɛn and qn are then systematized. Strong positive correlations are observed among all even harmonics v2, v4, and v6 (all increase with q2), between v2 and v5 (both increase with q2), and between v3 and v5 (both increase with q3), consistent with the effects of nonlinear collective response. In contrast, an anticorrelation is observed between v2 and v3 similar to that seen between ɛ2 and ɛ3. These correlation patterns are found to be independent of whether selecting on qn or ɛn, validating the ability of qn in selecting the initial geometry. A forward/backward asymmetry of vn(η) is observed for events selected on qn but not on ɛn, reflecting dynamical fluctuations exposed by the qn selection. Many event-plane correlators show good agreement between qn and ɛn selections, suggesting that their variations with qn are controlled by the change of ɛn in the initial geometry. Hence these correlators may serve as promising observables for disentangling the fluctuations generated in various stages of the evolution of the matter created in heavy ion collisions.

  5. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    DOE PAGES

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to raremore » high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.« less

  6. Geometry-induced modification of fluctuation spectrum in quasi-two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Roy, Arko; Angom, D.

    2016-08-01

    We report the structural transformation of the low-lying spectral modes, especially the Kohn mode, from radial to circular topology as harmonic confining potential is modified to a toroidal one, and this corresponds to a transition from simply to multiply connected geometry. For this we employ the Hartree-Fock-Bogoliubov theory to examine the evolution of low energy quasiparticles. We, then, use the Hartree-Fock-Bogoliubov theory with the Popov approximation to demonstrate the two striking features of quantum and thermal fluctuations. At T = 0, the non-condensate density due to interaction induced quantum fluctuations increases with the transformation from pancake to toroidal geometry. The other feature is, there is a marked change in the density profile of the non-condensate density at finite temperatures with the modification of trapping potential. In particular, the condensate and non-condensate density distributions have overlapping maxima in the toroidal condensate, which is in stark contrast to the case of pancake geometry. The genesis of this difference lies in the nature of the thermal fluctuations.

  7. The Effect of Channel Geometry and Diurnal Discharge Fluctuations on Modeled Stream Temperatures

    NASA Astrophysics Data System (ADS)

    Baker, E. A.; Lautz, L.; McKenzie, J. M.; Glose, A.; Kelleher, C.

    2016-12-01

    Energy balance models are used to predict stream temperature through both space and time. These models often rely on simplifications, such as assuming constant stream discharge through time. While this simplification is justifiable in many settings, some streams have diurnal discharge fluctuations of up to 50%, which, if ignored, could cause error in modeled stream temperatures. Daily discharge variations occur in proglacial settings or areas experiencing high evapotranspiration, or can be induced anthropogenically in dammed rivers. Fluctuations in discharge result in two important, and competing, impacts on stream energy balances. First, increases in discharge mean greater water volume and thermal mass in the stream channel, thereby reducing the change in temperature resulting from a given heat flux. On the other hand, increases in discharge mean a wider stream, which maximizes heat fluxes that increase linearly with channel width, thereby increasing changes in temperature. We investigated the relative importance of these feedbacks in channels with contrasting width-to-depth ratios under various diurnal discharge fluctuation scenarios using Monte Carlo simulations. We updated the HFLUX stream temperature solver, a 1D finite difference model coded in MATLAB, to allow for fluctuating discharge through time and variable stream geometry with each model simulation. Using Manning's equation and assuming a triangular channel shape, we developed a relationship between discharge and stream dimensions to calculate stream width and model node volumes through time as a function of discharge. Model inputs include initial stream temperatures, climate data, stream discharge, groundwater temperature, stream shading, cloudiness, stream dimensions, and sediment type. Unsurprisingly, large daily amplitude fluctuations cause the largest differences from the observed data. However, these large fluctuations matter most when peak discharge occurs around midday. Additionally, simulations

  8. Transverse momentum fluctuations in ultrarelativistic Pb + Pb and p + Pb collisions with "wounded" quarks

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr; Broniowski, Wojciech

    2017-07-01

    We analyze the phenomenon of size-flow transmutation in ultrarelativistic nuclear collisions in a model where the initial size fluctuations are driven by the wounded quarks and the collectivity is provided by viscous hydrodynamics. It is found that the model properly reproduces the data for the transverse momentum fluctuations measured for Pb +Pb collisions at √{sN N}=2.76 TeV by the ALICE Collaboration. The agreement holds for a remarkably wide range of centralities, from 0-5 % up to 70-80 %, and displays a departure from a simple scaling with (dNch/d η ) 1 /2 in the form seen in the data. The overall agreement in the model with wounded quarks is significantly better than with nucleon participants. This feature joins the previously found wounded quark multiplicity scaling in the argumentation in favor of subnucleonic degrees of freedom in the early dynamics. We also examine in detail the correlations between measures of the initial size and final average transverse momentum of hadrons. Predictions are made for the transverse momentum fluctuations in p +Pb collisions at √{sN N}=5.02 TeV.

  9. Degeneracies and fluctuations of Néel skyrmions in confined geometries

    NASA Astrophysics Data System (ADS)

    Keesman, Rick; Leonov, A. O.; van Dieten, P.; Buhrandt, Stefan; Barkema, G. T.; Fritz, Lars; Duine, R. A.

    2015-10-01

    The recent discovery of tunable Dzyaloshinskii-Moriya interactions in layered magnetic materials with perpendicular magnetic anisotropy makes them promising candidates for stabilization and manipulation of skyrmions at elevated temperatures. In this article, we use Monte Carlo simulations to investigate the robustness of skyrmions in these materials against thermal fluctuations and finite-size effects. We find that in confined geometries and at finite temperatures skyrmions are present in a large part of the phase diagram. Moreover, we find that the confined geometry favors the skyrmion over the spiral phase when compared to infinitely large systems. Upon tuning the magnetic field through the skyrmion phase, the system undergoes a cascade of transitions in the magnetic structure through states of different number of skyrmions, elongated and half-skyrmions, and spiral states. We consider how quantum and thermal fluctuations lift the degeneracies that occur at these transitions, and find that states with more skyrmions are typically favored by fluctuations over states with less skyrmions. Finally, we comment on electrical detection of the various phases through the topological and anomalous Hall effects.

  10. Fluctuating initial conditions in heavy ion collisions from the Glauber approach

    SciTech Connect

    Broniowski, Wojciech; Bozek, Piotr; Rybczynski, Maciej

    2007-11-15

    In the framework of the Glauber approach applied to the initial stage of ultra-relativistic heavy-ion collisions we analyze the shape parameters of the early-formed system (fireball) and their event-by-event fluctuations. We test a variety of models: the conventional wounded-nucleon model, a model admixing binary collisions to the wounded nucleons, a model with hot spots, and the hot-spot model where the deposition of energy occurs with a superimposed probability distribution. We look in detail at the so-called participant harmonic moments, {epsilon}*, obtained by an averaging procedure where in each event the system is translated to its center of mass and aligned with the major principal axis of the ellipse of inertia. Quantitative comparisons indicate substantial relative effects for {epsilon}* in variants of Glauber models. However, the dependence of the scaled standard deviation {delta}{epsilon}*/, {epsilon}* on the chosen model is weak. For all models the values range from about 0.5 for the central collisions to about 0.3-0.4 for peripheral collisions, for both gold-gold and copper-copper collisions. They are dominated by statistics and change only by 10-15% from model to model. We provide an approximate analytic expansion for the harmonic moments and their fluctuations given in terms of the fixed-axes moments. For central collisions and in the absence of correlations the expansion gives the simple formula {delta}{epsilon}*/{epsilon}*{approx_equal}{radical}(4/{pi}-1)=0.52. Similarly, we obtain expansions for the radial profiles of the higher harmonics. We investigate the relevance of the shape-fluctuation effects for jet quenching and find them important only for very central events. Finally, we make some comments of relevance for hydrodynamics, the elliptic flow, and its fluctuations. We argue how smooth hydrodynamics leads to the known result v{sub 4}{approx}v{sub 2}{sup 2} and, further, to the prediction {delta}v{sub 4}/v{sub 4}=2{delta}v{sub 2}/v{sub 2}.

  11. Dynamical evolution of critical fluctuations and its observation in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Sakaida, Miki; Asakawa, Masayuki; Fujii, Hirotsugu; Kitazawa, Masakiyo

    2017-06-01

    We study time evolution of critical fluctuations of conserved charges near the QCD critical point in the context of relativistic heavy ion collisions. A stochastic diffusion equation is employed in order to describe the diffusion property of the critical fluctuation arising from the coupling of the order parameter field to conserved charges. We show that the diffusion property gives rise to a possibility of probing the early time fluctuations through the rapidity window dependence of the second-order cumulant and correlation function of conserved charges. It is pointed out that their nonmonotonic behaviors as functions of the rapidity interval are robust experimental signals for the existence of the critical enhancement around the QCD critical point.

  12. Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2013-10-01

    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress, and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wavelength and that they can be propagated mode by mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.

  13. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    DOE PAGES

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-18

    In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in themore » number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.« less

  14. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    SciTech Connect

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-18

    In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in the number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.

  15. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    SciTech Connect

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-18

    In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in the number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.

  16. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.

    PubMed

    Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry

    2016-08-09

    Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry.

  17. Higher Harmonic Jet Tomography as a Probe of Fluctuating Initial Condition Geometries in A+A

    NASA Astrophysics Data System (ADS)

    Betz, Barbara; Torrieri, Giorgio; Gyulassy, Miklos

    2011-04-01

    While 2nd Fourier harmonics of jet quenching has been thoroughly explored in the literature and shown to be sensitive to (1) the underlying jet path length dependence of energy loss and (2) the differences between the mean eccentricity predicted by Glauber and CGC models of initial conditions, the sensitivity of higher harmonics, vn(pT , b) , to differences between the fluctuation spectrum of geometries has remained relatively unexplored. We demonstrate that higher azimuthal jet harmonics (n >= 3) of RA A(pT , φ) and IA A(pT , φ) are remarkably insensitive to the differences of geometrical density fluctuations comparing between Glauber and KLN/CGC models of the initial conditions. Therefore, the differential elliptic v2(pT) vs. v2IAA(pT) moment correlation between the 2nd moment of monojet RAA and dijet IAA nuclear modifications factors remains the most sensitive probe to differentiate between CGC and Glauber initial state sQGP geometries. The authors acknowledge support from DOE under Grant No. DE-FG02-93ER40764. B.B. acknowledges support by the Alexander von Humboldt foundation.

  18. Net-Charge Fluctuations in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Di Giglio, C.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, M.; Ivanov, A.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jang, H. J.; Jangal, S.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, P.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, M.; Kim, M.; Kim, S. H.; Kim, D. J.; Kim, S.; Kim, J. H.; Kim, J. S.; Kim, B.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Korneev, A.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lechman, M.; Lee, S. C.; Lee, K. S.; Lee, G. R.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; Leoncino, M.; León Monzón, I.; León Vargas, H.; Lévai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Mohanty, A. K.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastirčák, B.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puchagin, S.; Puddu, G.; Pujol Teixido, J.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodrigues Fernandes Rabacal, B.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, S.; Sano, M.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Rohni, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stan, I.; Stefanek, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strabykin, K.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymanski, M.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Øvrebekk, G.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, M.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilk, A.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, X.; Zhang, H.; Zhou, F.; Zhou, D.; Zhou, Y.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-04-01

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sNN=2.76TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  19. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and

  20. Event-by-event fluctuations in heavy ion collisions and the QCD critical point

    NASA Astrophysics Data System (ADS)

    Stephanov, M.; Rajagopal, K.; Shuryak, E.

    1999-12-01

    The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at CERN SPS, BNL RHIC, and CERN LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical end point of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out, and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects, which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.

  1. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Mäntysaari, Heikki; Schenke, Björn; Shen, Chun; Tribedy, Prithwish

    2017-09-01

    Results for particle production in √{ s} = 5.02TeV p + Pb collisions at the Large Hadron Collider within a combined classical Yang-Mills and relativistic viscous hydrodynamic calculation are presented. We emphasize the importance of sub-nucleon scale fluctuations in the proton projectile to describe the experimentally observed azimuthal harmonic coefficients vn, demonstrating their sensitivity to the proton shape. We stress that the proton shape and its fluctuations are not free parameters in our calculations. Instead, they have been constrained using experimental data from HERA on exclusive vector meson production. Including temperature dependent shear and bulk viscosities, as well as UrQMD for the low temperature regime, we present results for mean transverse momenta, harmonic flow coefficients for charged hadrons and identified particles, as well as Hanbury-Brown-Twiss radii.

  2. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  3. Conserved charge fluctuations using the D measure in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  4. Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs

    SciTech Connect

    Qiu Zhi; Heinz, Ulrich

    2011-08-15

    Heavy-ion collisions create deformed quark-gluon plasma (QGP) fireballs which explode anisotropically. The viscosity of the fireball matter determines its ability to convert the initial spatial deformation into momentum anisotropies that can be measured in the final hadron spectra. A quantitatively precise empirical extraction of the QGP viscosity thus requires a good understanding of the initial fireball deformation. This deformation fluctuates from event to event, and so does the finally observed momentum anisotropy. We present a harmonic decomposition of the initial fluctuations in shape and orientation of the fireball and perform event-by-event (2 + 1)-dimensional ideal fluid dynamical simulations to extract the resulting fluctuations in the magnitude and direction of the corresponding harmonic components of the final anisotropic flow at midrapidity. The final harmonic flow coefficients are found to depend nonlinearly on the initial harmonic eccentricity coefficients. We show that, on average, initial density fluctuations suppress the buildup of elliptic flow relative to what one obtains from a smooth initial profile of the same eccentricity and discuss implications for the phenomenological extraction of the QGP shear viscosity from experimental elliptic flow data.

  5. The role of statistical fluctuations on the stability of shockwaves through gases with activated inelastic collisions

    NASA Astrophysics Data System (ADS)

    Sirmas, Nick; Radulescu, Matei

    2016-11-01

    The present study addresses the stability of piston driven shock waves through a system of hard particles subject to activated inelastic collisions. Molecular Dynamics (MD) simulations have previously revealed an unstable structure for such a system in the form of high density non-uniformities and convective rolls within the shock structure. The work has now been extended to the continuum level by considering the Euler and Navier-Stokes equations for granular gases with a modified cooling rate to include an impact threshold necessary for inelastic collisions. We find that the pattern formations produced in MD can be reproduced at the continuum level by continually perturbing the incoming density field. By varying the perturbation amplitude and wavelength, we find that fluctuations consistent with the statistical fluctuations seen in MD yield similar instabilities to those previously observed. While the inviscid model predicts a highly chaotic structure from these perturbations, the inclusion of viscosity and heat conductivity yields equivalent wavelengths of pattern formations to those seen in MD, which is equal to the relaxation length scale of the dissipative shock structure. The authors acknowledged funding through the Alexander Graham Bell Canada Graduate Scholarship (NSERC) and Ontario Graduate Scholarship.

  6. Measuring dynamical K/π and p/π fluctuations in AuAu collisions from the STAR experiment

    NASA Astrophysics Data System (ADS)

    Tarnowsky, T.

    2012-05-01

    Results from new measurements of dynamical K/π and p/π ratio fluctuations are presented. Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. The STAR experiment has previously acquired data in AuAu collisions at the energies √{s_{NN} } = 200, 130, 62.4, and 19.6 GeV and CuCu collisions at √{s_{NN} } = 200, 62.4, and 22.4 GeV. The commencing of a QCD critical point search at RHIC has extended the reach of possible measurements of dynamical K/π and p/π ratio fluctuations from AuAu collisions to lower energies. New results are compared to previous measurements and to theoretical predictions from the UrQMD model.

  7. Fate of the initial state perturbations in heavy ion collisions. II. Glauber fluctuations and sounds

    SciTech Connect

    Staig, Pilar; Shuryak, Edward

    2011-09-15

    Heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly ideal) hydrodynamics for average events. In the present paper we study initial state fluctuations appearing on an event-by-event basis and the propagation of perturbations induced by them. We found that (i) fluctuations of several of the lowest harmonics have comparable magnitudes and (ii) that at least all odd harmonics are correlated in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local perturbations should be the source of the ''tiny bang,'' a pulse of sound propagating from it. We identify its two fundamental scales as (i) the ''sound horizon'' (analogous to the absolute ruler in cosmic microwave background and galaxy distributions) and (ii) the ''viscous horizon'' separating damped and undamped harmonics. We then qualitatively describe how one can determine them from the data and thus determine two fundamental parameters of the matter: the (average) speed of sound and viscosity. The rest of the paper explains how one can study mutual coherence of various harmonics. For that, one should go beyond the two-particle correlations to three (or more) particles. Mutual coherence is important for the picture of propagating sound waves.

  8. Constraining the strength of megathrusts from fault geometries and application to the Alpine collision zone

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin

    2017-09-01

    Using Coulomb wedge solutions, we show that the effective strength of megathrusts (μb‧) can be determined from the geometry of out-of-sequence thrusts cutting through an accretionary or orogenic wedge. The method is first tested on central Chilean margin for which it yields a frictional strength of μb‧ = 0.053 (+ 0.043 / - 0.024). The inferred value agrees well with previous strength estimates and with the tectonic response of the central Chilean wedge to 2010 Mw 8.8 Maule earthquake. We then use the approach to constrain the strength of the collision megathrust of the central European Alps ∼30-20 million years ago. We find that the collision megathrust had a strength of μb‧ = 0.065 (+ 0.035 / - 0.026), which is similarly low than the strength of subduction megathrusts. The result is integrated into a static force balance model to examine potential implications of a weak megathrust for the Alpine orogeny. The model results suggest that the Alpine megathrust supported a mean maximum elevation of ∼2,000 m and that growth of the wedge up to this elevation supported a switch from contractional to extensional tectonics in the interior of the Alps around 20 Ma. Finally, using the example of the Himalayas, we show how the strength of megathrusts may be also derived from the geometry of crustal ramps, which provides a valuable alternative if details on out-of-sequence thrusts are missing.

  9. Mapping color fluctuations in the photon in ultraperipheral heavy ion collisions at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Alvioli, M.; Frankfurt, L.; Guzey, V.; Strikman, M.; Zhalov, M.

    2017-04-01

    We model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon-nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν = 1 and large ν > 10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣET and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton-nucleus and nucleus-nucleus ultraperipheral collisions at the LHC and will help to map CFs, whose first indications have already been observed at the LHC.

  10. Mapping color fluctuations in the photon in ultraperipheral heavy ion collisions at the Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Frankfurt, L.; Guzey, V.; ...

    2017-02-20

    Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣET and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC and willmore » help to map CFs, whose first indications have already been observed at the LHC.« less

  11. Azimuthal pion fluctuation in ultra relativistic nuclear collisions and centrality dependence—a study with chaos based complex network analysis

    NASA Astrophysics Data System (ADS)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-07-01

    Various works on multiplicity fluctuation have investigated the dynamics of particle production process and eventually have tried to reveal a signature of phase transition in ultra-relativistic nuclear collisions. Analysis of fluctuations of spatial patterns has been conducted in terms of conventional approach. However, analysis with fractal dynamics on the scaling behavior of the void has not been explored yet. In this work we have attempted to analyze pion fluctuation in terms of the scaling behavior of the void probability distribution in azimuthal space in ultra-relativistic nuclear collisions in the light of complex networks. A radically different and rigorous method viz. Visibility Graph was applied on the data of 32S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The analysis reveals strong scaling behavior of void probability distributions in azimuthal space and a strong centrality dependence.

  12. Geometry of low-frequency solar wind magnetic turbulence: Evidence for radially aligned Alfénic fluctuations

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Bieber, John W.

    1999-05-01

    We employ ``omnitape'' magnetic field data to determine the geometry of low-frequency (5- to 12-hour timescales) magnetic fluctuations in the solar wind. We consider three axisymmetric geometries, slab, two-dimensional (2-D), and isotropic, as well as binary combinations of them. Both the radial direction and the mean magnetic field direction are considered as candidate symmetry axes. We apply simultaneously three different tests for distinguishing these geometries. Our analysis decisively favors a binary geometry composed of 2-D turbulence symmetric with respect to the mean field direction and slab turbulence symmetric with respect to the radial direction. The presence of a slab component with radial symmetry provides observational support for a long-standing theoretical prediction of radially aligned Alfvénic fluctuations at 1 AU. We also find a variation of turbulence properties with solar wind speed, such that magnetic fluctuations in slow wind are more energetic and possess a greater proportion of slab modes than those in fast wind, and the ratio of longitudinal to transverse power in the 2-D component increases with wind speed.

  13. Shape and flow fluctuations in ultracentral Pb + Pb collisions at the energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Qiu, Zhi; Heinz, Ulrich

    2015-07-01

    In ultracentral heavy-ion collisions, anisotropic hydrodynamic flow is generated by density fluctuations in the initial state rather than by geometric overlap effects. For a given centrality class, the initial fluctuation spectrum is sensitive to the method chosen for binning the events into centrality classes. We show that sorting events by total initial entropy or by total final multiplicity yields event classes with equivalent statistical fluctuation properties, in spite of viscous entropy production during the fireball evolution. With this initial entropy-based centrality definition we generate several classes of ultracentral Pb + Pb collisions at Cern Large Hadron Collider energies and evolve the events using viscous hydrodynamics with nonzero shear but vanishing bulk viscosity. Comparing the predicted anisotropic flow coefficients for charged hadrons with CMS data we find that both the Monte Carlo Glauber (MC-Glb) and Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) models produce initial fluctuation spectra that are incompatible with the measured final anisotropic flow power spectrum, for any choice of the specific shear viscosity. In spite of this failure, we show that the hydrodynamic model can qualitatively explain, in terms of event-by-event fluctuations of the anisotropic flow coefficients and flow angles, the breaking of flow factorization for elliptic, triangular, and quadrangular flow measured by the CMS experiment. For elliptic flow, this factorization breaking is large in ultracentral collisions. We conclude that the bulk of the experimentally observed flow factorization breaking effects are qualitatively explained by hydrodynamic evolution of initial-state fluctuations, but that their quantitative description requires a better understanding of the initial fluctuation spectrum.

  14. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Braun-Munzinger, P.; Rustamov, A.; Stachel, J.

    2017-04-01

    We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase-space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.

  15. Coulomb three-body effects in ([ital e],2[ital e]) collisions: The ionization of H in coplanar symmetric geometry

    SciTech Connect

    Whelan, C.T.; Allan, R.J.; Rasch, J.; Walters, H.R.J.; Zhang, X.; Roeder, J.; Jung, K.; Ehrhardt, H. Daresbury Laboratory, Warrington WA4 4AD Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, BT7 1NN Belfast, Northern Ireland Fachbereich Physik, Universitaet Kaiserslautern, Erwin Schroedinger Strasse, D6750, Kaiserslautern )

    1994-11-01

    The role of postcollisional and polarization-correlation effects in energy-sharing ([ital e],2[ital e]) collisions is considered. Theoretical and experimental results are presented for the ionization of hydrogen in a symmetric coplanar geometry. A kinematical regime is identified where the triple-differential cross section is sensitive to three-body effects in both the incident and final channels.

  16. The Facts Are on the Table: Analyzing the Geometry of Coin Collisions

    ERIC Educational Resources Information Center

    Theilmann, Florian

    2014-01-01

    In a typical high school course, the complex physics of collisions is broken up into the dichotomy of perfectly elastic versus completely inelastic collisions. Real-life collisions, however, generally fall between these two extremes. An accurate treatment is still possible, as demonstrated in an investigation of coin collisions. Simple…

  17. The Facts Are on the Table: Analyzing the Geometry of Coin Collisions

    ERIC Educational Resources Information Center

    Theilmann, Florian

    2014-01-01

    In a typical high school course, the complex physics of collisions is broken up into the dichotomy of perfectly elastic versus completely inelastic collisions. Real-life collisions, however, generally fall between these two extremes. An accurate treatment is still possible, as demonstrated in an investigation of coin collisions. Simple…

  18. Multiplicity fluctuation and phase transition in high-energy collision — A chaos-based study with complex network perspective

    NASA Astrophysics Data System (ADS)

    Bhaduri, Susmita; Ghosh, Dipak

    2016-12-01

    Multiplicity fluctuation provides enough information concerning the dynamics of particle production process and even signature of phase transition from hadronic to QGP phase expected in ultrarelativistic nuclear collision. Numerous analyses reported on the fluctuation pattern of pions have been studied from theoretical and phenomenological approaches. Also the fractal properties have been explored to characterize quantitative degree of fluctuation. The present work reports a study of pion fluctuation from a radically different perspective, using science of complexity. For this we have taken two different interactions — one hadron-nucleus and other nucleus-nucleus, namely π--AgBr (350 GeV) and 32S-AgBr (200 AGeV). We have analyzed both data in the light of complex network analysis, viz. visibility graph method. The data reveal that power of the scale-freeness in visibility graph (PSVG), a quantitative parameter related to Hurst exponent, may provide information on the degree of fluctuation. Further, in a recent work, it was shown that phase transition can also be studied using the same methodology. Based on the result of the present study we further propose to use this methodology, where critical phenomena are to be assessed — even in case of pion fluctuation, for obtaining the QGP like phase transition.

  19. The facts are on the table: analyzing the geometry of coin collisions

    NASA Astrophysics Data System (ADS)

    Theilmann, Florian

    2014-09-01

    In a typical high school course, the complex physics of collisions is broken up into the dichotomy of perfectly elastic versus completely inelastic collisions. Real-life collisions, however, generally fall between these two extremes. An accurate treatment is still possible, as demonstrated in an investigation of coin collisions. Simple trigonometry is applied to Newton diagrams of the initial and final momenta. The transition from fully to partially elastic collisions entails a transformation from right triangles to obtuse triangles. Here, the deviation from the right angle is a measure of the relative energy loss. The evaluation of sliding distances independently confirms the trigonometric approach. A set of coin collisions is analyzed with respect to relative energy loss and internal consistency. The relevant data can be extracted from a single snapshot after the collision. The outcome of a complex collision is analyzed using simple geometric arguments and basic physics, making it well suited for high school students.

  20. PHENIX results on fluctuations and Bose-Einstein correlations in Au + Au collisions from the RHIC Beam Energy Scan

    NASA Astrophysics Data System (ADS)

    Garg, Prakhar

    2016-12-01

    The RHIC Beam Energy Scan focuses on mapping the QCD phase diagram and pinpointing the location of a possible critical end point. Bose-Einstein correlations and event-by-event fluctuations of conserved quantities, measured as a function of centrality and collision energy, are promising tools in these studies. Recent lattice QCD and statistical thermal model calculations predict that higher-order cumulants of the fluctuations are sensitive indicators of the phase transition. Products of these cumulants can be used to extract the freeze-out parameters [A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012)] and to locate the critical point [M. A. Stephanov, K. Rajagopal and E. V. Shuryak, Phys. Rev. D 60, 114028 (1999)]. Two-pion interferometry measurements are predicted to be sensitive to potential softening of the equation of state and prolonged emission duration close to the critical point [S. Pratt, Phys. Rev. Lett. 53, 1219 (1984)]. We present recent PHENIX results on fluctuations of net-charge using high-order cumulants and their products in Au+Au collisions at √{sNN} = 7.7- 200 GeV, and measurement of two-pion correlation functions and emission-source radii in Cu+Cu and Au+Au collisions at several beam energies. The extracted source radii are compared to previous measurements at RHIC and LHC in order to study energy dependence of the specific quantities sensitive to expansion velocity and emission duration. Implications for the search of a critical point and baryon chemical potentials at various collision energies are discussed.

  1. 3D Geometry and Kinematics of the Taiwan Arc-continent Collision

    NASA Astrophysics Data System (ADS)

    Carena, S.; Suppe, J.; Wu, Y. M.

    2015-12-01

    In Taiwan two subduction zones (Manila trench and Ryukyu trench) come together in a quasi-orthogonal, kinematically stable configuration. Subduction is ongoing in both trenches, even though the tectonic setting in the Manila trench is that of an arc-continent collision. The upper crust of Eurasia (EU) is decoupled from the rest of the lithosphere by a detachment horizon, which is the main subduction interface between EU and Philippine Sea plate (PSP). The interface is visible in both seismicity and crustal tomography at shallow depths, and it can be followed into the mantle to 450-500 km depth with global tomography. Shortening across the plate boundary is accomplished by a combination of subduction of EU lithosphere, folding and thrusting in the Eurasian upper crust, and a secondary subduction zone within the PSP. We hypothesize that: (1) once arc-continent collision occurs, subduction of Eurasian continental lower crust and upper mantle can continue by lithospheric delamination and by continuity with the much larger Eurasian slab to the south; (2) the upper crust of EU deforms by faulting and folding; (3) the present convergence rate of about 90 mm/yr is limited at most to the last 2 Ma, whereas the long-term rate is about 30 mm/yr and in Taiwan the difference is being taken up by secondary subduction within the PSP margin; (4) a margin-parallel STEP (Subduction-Transform-Edge-Propagator) fault forms the northern limit of Eurasian subduction, which allows the whole system to propagate self-similarly southwestward. No slab breakoff is required for the kinematics of the margin, and none is observed in geophysical or geological data either. This kinematics is consistent with geologic observations: from timing of opening of the southern Okinawa trough, to geometry of geologic boundaries within the Taiwan mountain belt, to geographic distribution, geochemical character, and timing of Quaternary volcanism in the northern Taiwan volcanic zone. We constrained the long

  2. Explosive Ice Multiplication Induced by multiplicative-Noise fluctuation of Mechanical Break-up in Ice-Ice Collisions

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Phillips, Vaughan

    2017-04-01

    The number of ice fragments generated by break-up of large graupel in collisions with small graupel fluctuates randomly due to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates an impact of the stochasticity of break-up on ice multiplication. When both the rate of generation of primary ice and the initial number concentration of ice-crystals are low, the system most likely loses all the initial ice and graupel due to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase-space. However, a fluctuation of ice break-up number gives a small but finite chance that substantial ice crystal fragments are generated by break-up of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively. The randomness considered here belongs to a particular category called "multiplicative" noise, because the noise amplitude is proportional to a given physical state. In order to contrast the multiplicative-noise nature of ice break-up with a standard "additive" noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker-Planck equation that explicitly describes evolution of the probability distribution with time. As an important conclusion, stability in the phase-space of the cloud-microphysical system of break-up in ice-ice collisions is substantially altered by the multiplicative noise.

  3. Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-04-12

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  4. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 1. Geometry and kinematics

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Ratschbacher, Lothar; Rutte, Daniel; Stanek, Klaus; Minaev, Vladislav; Wiesinger, Maria; Gloaguen, Richard

    2013-07-01

    Cenozoic gneiss domes comprise one third of the surface exposure of the Pamir and provide a window into the deep crustal processes of the India-Asia collision. The largest of these are the doubly vergent, composite Shakhdara-Alichur domes of the southwestern Pamir, Tajikistan, and Afghanistan; they are separated by a low-strain horst. Top-to-SSE, noncoaxial pervasive flow over the up to 4 km thick South Pamir shear zone exhumed crust from 30-40 km depth in the ~250 × 80 km Shakhdara dome; the top-to-NNE Alichur shear zone exposed upper crustal rocks in the ~125 × 25 km Alichur dome. The Gunt shear zone bounds the Shakhdara dome in the north and records alternations of normal shear and dextral transpression; it contributed little to bulk exhumation. Footwall exhumation along two low-angle, normal-sense detachments resulted in up to 90 km syn-orogenic ~N-S extension. Extension in the southwestern Pamir opposes shortening in a fold-thrust belt north of the domes and in particular in the Tajik depression, where an evaporitic décollement facilitated upper crustal shortening. Gravitational collapse of the Pamir-plateau margin drove core-complex formation in the southwestern Pamir and shortening of the weak foreland adjacent to the plateau. Overall, this geometry defines a "vertical extrusion" scenario, comprising frontal and basal underthrusting and thickening, and hanging gravitationally driven normal shear. In contrast to the Himalayan vertical extrusion scenario, erosion in the Pamir was minor, preserving most of the extruded deep crust, including the top of the South Pamir shear zone at peak elevations throughout the dome.

  5. Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Braun-Munzinger, P.; Kalweit, A.; Redlich, K.; Stachel, J.

    2016-12-01

    We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb-Pb collisions at √{sNN} = 2.76 TeV and cover one unit of rapidity. We show that the resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature Tc ≃ 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. Since Lattice QCD calculations are performed at a baryochemical potential of μB = 0, the comparisons with LHC data are the most direct due to the vanishing baryon transport to midrapidity at these high energies.

  6. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  7. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    DOE PAGES

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude ofmore » the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less

  8. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions.

    PubMed

    Steinheimer, Jan; Randrup, Jørgen

    2012-11-21

    Extending a previously developed two-phase equation of state, we simulate head-on relativistic lead-lead collisions with fluid dynamics, augmented with a finite-range term, and study the effects of the phase structure on the evolution of the baryon density. For collision energies that bring the bulk of the system into the mechanically unstable spinodal region of the phase diagram, the density irregularities are being amplified significantly. The resulting density clumping may be exploited as a signal of the phase transition, possibly through an enhanced production of composite particles.

  9. Influence of thermal fluctuations on the geometry of interfaces of the quenched Ising model.

    PubMed

    Corberi, Federico; Lippiello, Eugenio; Zannetti, Marco

    2008-07-01

    We study the role of the quench temperature Tf in the phase-ordering kinetics of the Ising model with single spin flip in d=2,3 . Equilibrium interfaces are flat at Tf=0 , whereas at Tf>0 they are curved and rough (above the roughening temperature in d=3 ). We show, by means of scaling arguments and numerical simulations, that this geometrical difference is important for the phase-ordering kinetics as well. In particular, while the growth exponent z=2 of the size of domains L(t) approximately t 1/z is unaffected by Tf, other exponents related to the interface geometry take different values at Tf=0 or Tf>0 . For Tf>0 a crossover phenomenon is observed from an early stage where interfaces are still flat and the system behaves as at Tf=0 , to the asymptotic regime with curved interfaces characteristic of Tf>0 . Furthermore, it is shown that the roughening length, although subdominant with respect to L(t) , produces appreciable correction to scaling up to very long times in d=2 .

  10. Quantitative estimate of pion fluctuation and its multiplicity dependence in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipak; Deb, Argha; Dutta, Srimonti

    2009-02-01

    This paper presents the results of an investigation on the multiplicity dependence of the fluctuation pattern of pions for the entire accelerator energy range from 2.1 to 200 AGeV. The data set for produced pions is divided into four sets depending on the number of shower tracks ns. Analysis is carried out in two-dimensional η-phi space with the Hurst exponent to take care of the anisotropy of the phase space. The Hurst exponent is extracted by fitting one-dimensional factorial moment saturation curves to Ochs' saturation formula. The values of the effective fluctuation strength α eff are estimated and multiplicity dependence is studied w.r.t. α eff and the Hurst exponent H. It is highly interesting to observe that both fluctuation strength and degree of anisotropy (characterized by H) depend on pion multiplicity. The multiplicity dependence is more pronounced at lower projectile energy. The results of the study are discussed in detail.

  11. Net-charge fluctuation in Au+Au collisions at energies available at the Facility for Antiproton and Ion Research using the UrQMD model

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Mali, Provash; Mukhopadhyay, Amitabha

    2017-08-01

    We have studied the dynamical fluctuation of net charge of hadrons produced in Au+Au collisions at energies that in near future will be available at the Facility for Antiproton and Ion Research (FAIR). Data simulated by a microscopic transport model based on ultrarelativistic quantum molecular dynamics are analyzed for this purpose. The centrality and pseudorapidity dependence of the net-charge fluctuation of hadrons are examined. Our simulated results are compared with the results available for nucleus-nucleus collision experiments held at similar energies. The gross features of our simulated results on net-charge fluctuations are found to be consistent with the experiment. At incident beam energy Elab=10 A GeV, the magnitude of net-charge fluctuation is very large, and in comparison with the rest its centrality dependence appears to be a little unusual. The effect of global charge conservation is expected to be very crucial at FAIR energies. The charge fluctuations measured with varying pesudorapidity window size depend on the collision centrality. The dependence is, however, exactly opposite in nature to that observed in the Pb+Pb collision at √{sNN}=2.76 TeV.

  12. SU-E-T-106: Development of a Collision Prediction Algorithm for Determining Problematic Geometry for SBRT Treatments Using a Stereotactic Body Frame

    SciTech Connect

    Wagar, M; Friesen, S; Mannarino, E

    2014-06-01

    Purpose: Collision between the gantry and the couch or patient during Radiotherapy is not a common concern for conventional RT (static fields or arc). With the increase in the application of stereotactic planning techniques to the body, collisions have become a greater concern. Non-coplanar beam geometry is desirable in stereotatic treatments in order to achieve sharp gradients and a high conformality. Non-coplanar geometry is less intuitive in the body and often requires an iterative process of planning and dry runs to guarantee deliverability. Methods: Purpose written software was developed in order to predict the likelihood of collision between the head of the gantry and the couch, patient or stereotatic body frame. Using the DICOM plan and structures set, exported by the treatment planning system, this software is able to predict the possibility of a collision. Given the plan's isocenter, treatment geometry and exterior contours, the software is able to determine if a particular beam/arc is clinically deliverable or if collision is imminent. Results: The software was tested on real world treatment plans with untreatable beam geometry. Both static non-coplanar and VMAT plans were tested. Of these, the collision prediction software could identify all as having potentially problematic geometry. Re-plans of the same cases were also tested and validated as deliverable. Conclusion: This software is capable of giving good initial indication of deliverability for treatment plans that utilize complex geometry (SBRT) or have lateral isocenters. This software is not intended to replace the standard pre-treatment QA dry run. The effectiveness is limited to those portions of the patient and immobilization devices that have been included in the simulation CT and contoured in the planning system. It will however aid the planner in reducing the iterations required to create complex treatment geometries necessary to achieve ideal conformality and organ sparing.

  13. Event-by-event charged-neutral fluctuations in Pb+Pb collisions at 158 A~GeV.

    SciTech Connect

    WA98, Collaboration

    2011-01-01

    Charged particles and photons have been measured in central Pb + Pb collisions at 158 AGeV in a common ({eta}-{phi})-phase space region in the WA98 experiment at the CERN SPS. The measured distributions have been analyzed to quantify the frequency with which phase space regions of varying sizes have either small or large neutral pion fraction. The measured results are compared with VENUS model simulated events and with mixed events. Events with both large and small charged-neutral fluctuations are observed to occur more frequently than expected statistically, as deduced from mixed events, or as predicted by model simulations, with the difference becoming more prominent with decreasing size of the {Delta}{eta}-{Delta}{phi} region.

  14. Event-by-Event Charged-Neutral Fluctuations in Pb + Pb Collisions at 158 A GeV

    SciTech Connect

    Aggarwal, M. M.; Ahammed, Z.; Plasil, F; Silvermyr, David O; Stankus, Paul W; WA98, Collaboration

    2011-01-01

    Charged particles and photons have been measured in central Pb + Pb collisions at 158 A GeV in a common ( )-phase space region in the WA98 experiment at the CERN SPS. The measured distributions have been analyzed to quantify the frequency with which phase space regions of varying sizes have either small or large neutral pion fraction. The measured results are compared with VENUS model simulated events and with mixed events. Events with both large and small charged neutral fluctuations are observed to occur more frequently than expected statistically, as deduced from mixed events, or as predicted by model simulations, with the difference becoming more prominent with decreasing size of the region.

  15. Analysis of single events in ultrarelativistic nuclear collisions: A new method to search for critical fluctuations

    SciTech Connect

    Stock, R.

    1995-07-15

    The upcoming generation of experiments with ultrarelativistic heavy nuclear projectiles, at the CERN SPS and at RHIC and LHC, will confront researchers with several thousand identified hadrons per event, suitable detectors provided. An analysis of individual events becomes meaningful concerning a multitude of hadronic signals thought to reveal a transient deconfinement phase transition, or the related critical precursor fluctuations. Transverse momentum spectra, the kaon to pion ratio, and pionic Bose-Einstein correlation are examined, showing how to separate the extreme, probably rare candidate events from the bulk of average events. This type of observables can already be investigated with the Pb beam of the SPS. The author then discusses single event signals that add to the above at RHIC and LHC energies, kaon interferometry, rapidity fluctuation, jet and {gamma} production.

  16. Searching for gluon number fluctuations effects in eA collisions

    SciTech Connect

    Kugeratski, M. S.; Gonçalves, V. P.; Santana Amaral, J. T. de

    2014-11-11

    We propose to investigate the gluon number fluctuations effects in deep inelastic electron-ion scattering at high energies. We estimate the nuclear structure function F{sub 2}{sup A}(x,Q{sup 2}), as well the longitudinal and charm contributions, using a generalization for nuclear targets of the Golec-Biernat-Wusthoff (GBW) model which describes the electron proton HERA data. Here we consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities. For a first investigation we study the scattering with Ca and Pb nuclei. Our preliminary results predict that the effects of gluon number fluctuations are small in the region of the future electron ion collider.

  17. Fluctuations of the multiplicity of produced particles in onium-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Liou, Tseh; Mueller, A. H.; Munier, S.

    2017-01-01

    We address the general features of event-by-event fluctuations of the multiplicity of gluons produced in the scattering of a dilute hadron off a large nucleus at high energy in the fragmentation region of the dilute hadron. We relate these fluctuations to the stochasticity of the number of quanta contained in the hadron at the time of the interaction. For simplicity, we address the ideal case in which the hadron is an onium and investigate different kinematical regimes in the rapidity and onium size. We show that at large rapidity, the multiplicity distribution exhibits an exponential tail in the large-multiplicity region, which is qualitatively consistent with the proton-nucleus data. But interestingly enough, the exponential shape is determined by confinement.

  18. Energy dependence of K π , p π , and K p fluctuations in Au + Au collisions from √{sN N}=7.7 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; S'anchez, M. Calder'on de la Barca; campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Z. M.; Li, C.; Li, Y.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, Z.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, F.; Wang, J. S.; Wang, H.; Wang, G.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, Z.; Yang, Y.; Yang, S.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Y.; Zhang, S.; Zhang, X. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-08-01

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the BNL Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical K π , p π , and K p fluctuations as measured by the STAR experiment in central 0-5% Au + Au collisions from center-of-mass collision energies √{sN N}=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the K π , p π , and K p pairs. The energy dependences of these fluctuations from central 0-5% Au + Au collisions all demonstrate a smooth evolution with collision energy.

  19. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    SciTech Connect

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.

  20. Evidence for x-dependent proton color fluctuations in pA collisions at the CERN Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...

    2016-01-21

    The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less

  1. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump

    SciTech Connect

    Dong, R.; Chu, S.; Katz, J.

    1997-07-01

    Particle Image Velocimetry (PIV), pressure, and noise measurements are used to study the effect of modifications to tongue and impeller geometries on the flow structure and resulting noise in a centrifugal pump. It is demonstrated that the primary sources of noise are associated with interactions of the nonuniform outflux from the impeller (jet/wake phenomenon) with the tongue. Consequently, significant reduction of noise is achieved by increasing the gap between the tongue and the impeller up to about 20% of the impeller radius. Further increase in the gap affects the performance adversely with minimal impact on the noise level. When the gap is narrow, the primary sources of noise are impingement of the wake on the tip of the tongue, and tongue oscillations when the pressure difference across it is high. At about 20% gap, the entire wake and its associated vorticity trains miss the tongue, and the only (quite weak) effect of nonuniform outflux is the impingement of the jet on the tongue. An attempt is also made to reduce the nonuniformity in outflux from the impeller by inserting short vanes between the blades. They cause reduction in the size of the original wakes, but generate an additional jet/wake phenomenon of their own. Both wakes are weak to a level that their impacts on local pressure fluctuations and noise are insignificant. The only remaining major contributor to noise is tongue oscillations. This effect is shown to be dependent on the stiffness of the tongue.

  2. Exploiting Intrinsic Triangular Geometry in Relativistic He3+Au Collisions to Disentangle Medium Properties

    NASA Astrophysics Data System (ADS)

    Nagle, J. L.; Adare, A.; Beckman, S.; Koblesky, T.; Koop, J. Orjuela; McGlinchey, D.; Romatschke, P.; Carlson, J.; Lynn, J. E.; McCumber, M.

    2014-09-01

    Recent results in d +Au and p +Pb collisions at RHIC and the LHC provide evidence for collective expansion and flow of the created medium. We propose a control set of experiments to directly compare particle emission patterns from p +Pb, d +Au, and He3+Au or t +Au collisions at the same √sNN . Using a Monte Carlo Glauber simulation we find that a He3 or triton projectile, with a realistic wave function description, induces a significant intrinsic triangular shape to the initial medium. If the system lives long enough, this survives into a significant third-order flow moment v3 even with viscous damping. By comparing systems with one, two, and three initial hot spots, one could disentangle the effects from the initial spatial distribution of the deposited energy and viscous damping. These are key tools for answering the question of how small a droplet of matter is necessary to form a quark-gluon plasma described by nearly inviscid hydrodynamics.

  3. Exploiting intrinsic triangular geometry in relativistic (3)He+Au collisions to disentangle medium properties.

    PubMed

    Nagle, J L; Adare, A; Beckman, S; Koblesky, T; Koop, J Orjuela; McGlinchey, D; Romatschke, P; Carlson, J; Lynn, J E; McCumber, M

    2014-09-12

    Recent results in d+Au and p+Pb collisions at RHIC and the LHC provide evidence for collective expansion and flow of the created medium. We propose a control set of experiments to directly compare particle emission patterns from p+Pb, d+Au, and ^{3}He+Au or t+Au collisions at the same sqrt[s_{NN}] . Using a Monte Carlo Glauber simulation we find that a ^{3}He or triton projectile, with a realistic wave function description, induces a significant intrinsic triangular shape to the initial medium. If the system lives long enough, this survives into a significant third-order flow moment v_{3} even with viscous damping. By comparing systems with one, two, and three initial hot spots, one could disentangle the effects from the initial spatial distribution of the deposited energy and viscous damping. These are key tools for answering the question of how small a droplet of matter is necessary to form a quark-gluon plasma described by nearly inviscid hydrodynamics.

  4. Universal relations between non-Gaussian fluctuations in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Deng, Jian; Kohyama, Hiroaki; Labun, Lance

    2017-01-01

    We show that universality near a critical end point implies a characteristic relation between third- and fourth-order baryon susceptibilities χ3 and χ4, resulting in a banana-shaped loop when χ4 is plotted as a function of χ3 along a freeze-out line. This result relies only on the derivative relation between χ3 and χ4, the enhancement of the correlation length and the scaling symmetry near a critical point, and the freeze-out line near the critical point not too parallel to the μB axis. Including the individual enhancements of χ3 and χ4 near a critical point, these features may be a consistent set of observations supporting the interpretation of baryon fluctuation data as arising from criticality.

  5. Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections

    PubMed Central

    2015-01-01

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data. PMID:25360896

  6. Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections.

    PubMed

    Stow, Sarah M; Goodwin, Cody R; Kliman, Michal; Bachmann, Brian O; McLean, John A; Lybrand, Terry P

    2014-12-04

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data.

  7. Azimuthal Anisotropy of pi Production in Au+Au Collisions at s_NN = 200 GeV: Path-length Dependence of Jet-Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; PHENIX, Collaboration

    2010-01-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1 < p{sub T} < 18 GeV/c for Au+Au collisions at {radical}s{sub NN} = 200 GeV. The observed anisotropy shows a gradual decrease for 3 {approx}< p {approx}< 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least {approx}10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  8. The energy dependence of p_t angular correlations inferred frommean -pt fluctuation scale dependence in heavy ion collisions at the SPSand RHIC

    SciTech Connect

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson,B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski,J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland,L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderonde la Barca Sanchez, M.; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; Kollegger, T.; et al.

    2006-05-17

    We present the first study of the energy dependence of ptangular correlations inferred from event-wise mean transverse momentumfluctuations in heavy ion collisions. We compare ourlarge-acceptance measurements at CM energies sqrt sNN = 19.6, 62.4, 130and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. pt angularcorrelation structure suggests that the principal source of ptcorrelations and fluctuations is minijets (minimum-bias partonfragments). We observe a dramatic increase in correlations andfluctuations from SPS to RHIC energies, increasing linearly with ln sqrtsNN from the onset of observable jet-related pt fluctuations near 10GeV.

  9. Net Charge Fluctuations at Mid-rapidity in Au+Au Collisions at √s_nn = 130 GeV

    NASA Astrophysics Data System (ADS)

    Tydesjo, Henrik

    2001-04-01

    The fluctuations in net charge have been studied in Au+Au collisions with the central tracking arm in the Phenix experiment at RHIC. The drift chambers and multi-wire proportional chambers with pad read-out have been used to reconstruct the tracks and momenta of charged particles for this analysis. The event-by-event fluctuations in net charge, Q=N+ - N_-, where N+ and N- are the number of reconstructed positive and negative particles, respectively, have been studied as a function of centrality. A simple scaling of the variance of Q with N_ch = N+ + N- is expected from purely statistical fluctuations in the multiplicity. Deviations from statistical fluctuations has been proposed as a probe of the multiplicity of resonances (mainly ρ and ω) in a hadron-gas and may according to some models be sensitive to a quark-gluon plasma phase transition[1,2]. The fluctuations in Q can be directly related to the fluctuations in the ratio of positive to negative particles, N_+/N_-. 1. S.Jeon and V.Koch Phys. Rev. Lett. 83(1999)5435; 85(2000)2076. 2. M.Asakawa, U.Heinz, B.Muller Phys. Rev. Lett. 85(2000)2072.

  10. Two-gluon correlations in heavy-light ion collisions: Energy and geometry dependence, IR divergences, and kT-factorization

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Wertepny, Douglas E.

    2014-05-01

    We study the properties of the cross section for two-gluon production in heavy-light ion collisions derived in our previous paper [1] in the saturation/Color Glass Condensate framework. Concentrating on the energy and geometry dependence of the corresponding correlation functions we find that the two-gluon correlator is a much slower function of the center-of-mass energy than the one- and two-gluon production cross sections. The geometry dependence of the correlation function leads to stronger azimuthal near- and away-side correlations in the tip-on-tip U+U collisions than in the side-on-side U+U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark-gluon plasma: a study of azimuthal correlations in the U+U collisions may thus help to disentangle the two sources of correlations. We demonstrate that the cross section for two-gluon production in heavy-light ion collisions contains a power-law infrared (IR) divergence even for fixed produced gluon momenta: while saturation effects in the target regulate some of the power-law IR-divergent terms in the lowest-order expression for the two-gluon correlator, other power-law IR-divergent terms remain, possibly due to absence of saturation effects in the dilute projectile. Finally we rewrite our result for the two-gluon production cross-section in a kT-factorized form, obtaining a new factorized expression involving a convolution of one- and two-gluon Wigner distributions over both the transverse momenta and impact parameters. We show that the two-gluon production cross-section depends on two different types of unintegrated two-gluon Wigner distribution functions.

  11. Measurement of event background fluctuations for charged particle jet reconstruction in Pb-Pb collisions at sqrt {{{s_{text{NN}}}}} = {2}{.76} {text{TeV}}

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; De Azevedo Moregula, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Huber, S.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, V.; Ivanov, M.; Ivanytskyi, O.; Jacholkowski, A.; Jacobs, P. M.; Jancurová, L.; Jang, H. J.; Jangal, S.; Janik, R.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A. B.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, P.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. J.; Kim, D. W.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, S. H.; Kim, S.; Kim, T.; Kim, B.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Korneev, A.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; La Rocca, P.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Michalon, A.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Mohanty, A. K.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Pal, S.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastirčák, B.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Perales, M.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D. B.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puchagin, S.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stocco, D.; Stolpovskiy, M.; Strabykin, K.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Thomas, J. H.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernekohl, D. C.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, Y.; Vinogradov, L.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vranic, D.; Øvrebekk, G.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wan, R.; Wang, Y.; Wang, M.; Wang, D.; Wang, Y.; Watanabe, K.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilk, A.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, X.; Zhou, F.; Zhou, D.; Zhou, Y.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.

    2012-03-01

    The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at sqrt {{{s_{text{NN}}}}} = {2}{.76} {text{TeV}} has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high p t particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti- k t jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track p t between 0.15 GeV/ c and 2 GeV/ c. For embedded jets reconstructed from charged particles with p t > 0 .15 GeV/ c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/ c (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/ c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/ c, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/ c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.[Figure not available: see fulltext.

  12. A new approach of chaos and complex network method to study fluctuation and phase transition in nuclear collision at high energy

    NASA Astrophysics Data System (ADS)

    Bhaduri, Susmita; Bhaduri, Anirban; Ghosh, Dipak

    2017-06-01

    In the endeavour to study fluctuation and a signature of phase transition in ultrarelativistic nuclear collision during the process of particle production, an approach based on chaos and complex network is proposed. In this work we have attempted an exhaustive study of pion fluctuation in η space, φ space, their cross-correlation and finally two-dimensional fluctuation in terms of scaling of void probability distribution. The analysis is done on the η values and their corresponding φ values extracted from the 32S-Ag/Br interaction at an incident energy of 200GeV per nucleon. The methods used are Multifractal Detrended Cross-Correlation Analysis (MF-DXA) and a chaos-based rigorous complex network method - Visibility Graph. The analysis reveals that the highest degree of cross-correlation between pseudorapidity and azimuthal angles exists in the most central region of the interaction. The analysis further shows that two-dimensional void distribution corresponding to the η - φ space reveals a strong scaling behaviour. Both cross-correlation coefficients of MF-DXA and PSVG (Power of the Scale-freeness in Visibility Graph, which is implicitly connected with the Hurst exponent) can be effectively used for the quantitative assessment of pion fluctuation in a very precise manner and have the capability to assess the tendency of approaching criticality for phase transitions.

  13. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    DOE PAGES

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the secondmore » Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.« less

  14. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    SciTech Connect

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

  15. On the role of fluctuations, cathode placement, and collisions on the transport of electrons in the near-field of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Smith, A. W.; Cappelli, M. A.

    2010-09-01

    The performance of Hall thrusters can be highly sensitive to the position and operational parameters of the external cathode, hinting that the electron transport in the near-field is strongly dependent on the emitted electrons' initial properties. In addition, the plasma plumes of Hall discharges often exhibit fluctuations which are expected to alter electron trajectories. By implementing recent near-field plasma potential measurements made on a low-power Hall thruster in 3D electron-trajectory simulations, it is shown that electron transport from the external cathode to the thruster channel is strongly sensitive to cathode parameters including position, orientation, and electron emission divergence. Periodic, low-frequency (i.e., 25 kHz) plasma potential fluctuations reduce electron transport to the channel of the thruster by more than 65% compared to the transport achieved with static 3D fields and substantially homogenize the electron density distribution. Additional gas-phase collisions are found to have only marginal effects, even when prescribed to occur at exaggerated rates (reaching 10 MHz). The three-dimensionality of the E and B fields, together with electron-wall collisions, appear to be important drivers of cross-field transport in this region of the discharge, yielding sufficient levels of electron transport to the channel without invoking plasma turbulence.

  16. Event-by-event fluctuations in relativistic heavy-ion collisions and their consequences for azimuthally sensitive Hanbury Brown-Twiss interferometry

    NASA Astrophysics Data System (ADS)

    Plumberg, Christopher J.

    The relativistic heavy-ion program is dedicated to systematically probing the properties of the atomic nucleus and the theory of quantum chromodynamics at extremely high temperatures and energy densities. Numerous observables have been developed and studied over the past several decades, allowing one to extract valuable information about heavy-ion collisions and their evolution, including total multiplicity, anisotropic flows, mean transverse momentum, interferometric radii, and so on. Many of these observables have been studied on an event-by-event basis, allowing them, along with their event-by-event probability distributions, to be used for constraining the role of event-by-event fluctuations in the evolution of heavy-ion collisions. In this thesis, I discuss the possibility of treating the Hanbury Brown-Twiss radii as event-by-event observables, and consider the ways in which their event-by-event probability distributions might be related to interesting theoretical quantities, such as transport coefficients in the quark-gluon plasma, or used to constrain viable models of the initial state in heavy-ion collisions.

  17. New PHOBOS results on event-by-event fluctuations

    SciTech Connect

    Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Stephans, G. S. F.; Vale, C.; Nieuwenhuizen, G. J. van; Vaurynovich, S. S.; Verdier, R.

    2006-04-11

    We present new results from the PHOBOS experiment at RHIC on event-by-event fluctuations of particle multiplicities and angular distributions in nucleus-nucleus collisions at RHIC. Our data for Au+Au collisions at {radical}(s{sub NN}) = 200 GeV show that at a level of 10-4 or less, no rare, large-amplitude fluctuations in the total multiplicity distributions or the shape of the pseudorapidity distributions are observed. We however find significant short-range multiplicity correlations in these data, that can be described as particle production in clusters. In Cu+Cu collisions, we observe large final-state azimuthal anisotropies {nu}2. A common scaling behavior for Cu+Cu and Au+Au for these anisotropies emerges when fluctuations in the initial state geometry are taken into account.

  18. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions

    NASA Astrophysics Data System (ADS)

    Noah-Vanhoucke, Joyce E.; Andersen, Hans C.

    2007-08-01

    We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is

  19. Elliptic Flow Fluctuations

    NASA Astrophysics Data System (ADS)

    Mrowczynski, Stanislaw; Shuryak, Edward V.

    2003-08-01

    We suggest to perform systematic measurements of the elliptic flow fluctuations which are sensitive to the early stage dynamics of heavy-ion collisions at high-energies. Significant flow fluctuations are shown to be generated due to the formation of topological clusters and development of the filamentation instability. The statistical noise and hydrodynamic fluctuations are also estimated.

  20. Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofeng; Xu, Ji; Mohanty, Bedangadas; Xu, Nu

    2013-10-01

    Moments (variance (σ2), skewness (S), kurtosis (κ)) of multiplicity distributions of conserved quantities, such as net-baryon, net-charge and net-strangeness, are predicted to be sensitive to the correlation length of the system and connected to the thermodynamic susceptibilities computed in the Lattice QCD and Hadron Resonance Gas model. In this paper, we present several measurement artifacts that could lead to volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions using the ultra-relativistic quantum molecular dynamics model. We discuss methods to overcome these artifacts so that the extracted moments can be used to obtain physical conclusions. In addition, we present methods to properly estimate the statistical errors in moment analysis.

  1. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    SciTech Connect

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  2. Measurement of nonrandom event-by-event fluctuations of average transverse momentum in square root of (sNN)=200 GeV Au+Au and p+p collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2004-08-27

    Event-by-event fluctuations of the average transverse momentum of produced particles near midrapidity have been measured by the PHENIX Collaboration in square root of (sNN)=200 GeV Au+Au, and p+p collisions at the Relativistic Heavy Ion Collider. The fluctuations are observed to be in excess of the expectation for statistically independent particle emission for all centralities. The excess fluctuations exhibit a dependence on both the centrality of the collision and on the pT range over which the average is calculated. Both the centrality and pT dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard-scattering processes.

  3. Hadronization geometry and charge-dependent two-particlecorrelation on momentum subspace (eta, phi) in Au-Au collisions atsqrt(sNN) = 130 GeV

    SciTech Connect

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson,B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski,J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.V.; Bravar,A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de laBarca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopdhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; De Moura, M.M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip,P.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K.J.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Guiterrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry,T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann,G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones,P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrv,V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov,A.I.; et al.

    2004-09-23

    We present the first measurements of charge-dependent two-particle correlations on momentum-space difference variables {eta}{sub 1}-{eta}{sub 2} (pseudorapidity) and {phi}{sub 1}-{phi}{sub 2} (azimuth) for primary charged hadrons with transverse momentum 0.15 {le} p{sub t} {le} 2 GeV/c and |{eta}| {le} 1.3 from Au-Au collisions at {radical}s{sub NN} = 130 GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings to higher-dimensional fragmentation of a hadron-opaque bulk medium.

  4. Transverse-energy production and fluctuations over centrality and acceptance in relativistic heavy-ion and nucleon-nucleon collisions: Quark versus nucleon interactions and a search for the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Armendariz, Raul L.

    Measuring energy produced in relativistic heavy-ion collisions is a way to investigate if a model of quark participants, or nucleon participants better describes the internal dynamics of the collision. The energy produced is proportional to the energy density in the interaction region; changes in fluctuations of energy production could be a signature for a phase transition between ordinary hadronic matter to a liberated quark-gluon plasma phase, QGP, thought to have existed one millionth of a second after the Big Bang creation of the Universe and before protons and neutrons had formed. Three experimental nuclear physics data-analyses were conducted using the sum energy of all particles produced in the direction transverse to the beam, ET, when nuclei collide in a 2.4 mile long circular atom smasher. The nuclei are accelerated in opposite directions at 99.995% the speed of light, and center-of-mass energies available for new particle production of sNN = 62.4 GeV, and 200 GeV per colliding nucleon pair were studied. The ET was recorded by the lead-scintillator electromagnetic calorimeter detectors of the Pioneering High Energy Interactions Experiment (PHENIX), at the Relativistic heavy Ion Collider (RHIC), of Brookhaven National Laboratory (BNL). The collision systems studied were 200 GeV protons with protons ( p + p), deuterons with Au ions (d+Au), and 62.4 GeV and 200 GeV gold ions with gold ions (Au+Au). The first analysis, mean ET in collision centrality, explores whether a model of nucleon participants, or quark participants, better describes energy production with collision impact. The second analysis, ET fluctuations in collision centrality, looks for non-random fluctuations in ET distributions when the density of colliding partons becomes high. The third analysis, ET fluctuations in geometric acceptance, examines fluctuations as a function of detector fiducial volume in a search for correlated energy distribution in space (correlations ), known to occur in

  5. Fluctuations of charge separation perpendicular to the event plane and local parity violation in √sNN =200 GeV Au + Au collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Leyva, A. Davila; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; de Souza, R. Derradi; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2013-12-01

    Previous experimental results based on data (˜15×106 events) collected by the STAR detector at the BNL Relativistic Heavy Ion Collider suggest event-by-event charge-separation fluctuations perpendicular to the event plane in noncentral heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high-statistics 200-GeV Au + Au collisions data set (57×106 events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge-separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same- and opposite-charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion.

  6. Hadronic Correlations and Fluctuations

    SciTech Connect

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  7. Yakataga fold-and-thrust belt: Structural geometry and tectonic implications of a small continental collision zone

    NASA Astrophysics Data System (ADS)

    Wallace, Wesley K.

    Collision of the Yakutat terrane with southern Alaska created a collisional fold-and-thrust belt along the Pacific-North America plate boundary. This southerner fold-and-thrust belt formed within continental sedimentary rocks but with the seaward vergence and tectonic position typical of an accretionary wedge. Northward exposure of progressively older rocks reflects that the fold-and-thrust belt forms a southward-tapered orogenic wedge that increases northward in structural relief and depth of erosion. Narrow, sharp anticlines separate wider, flat-bottomed synclines. Relatively steep thrust faults commonly cut the forelimbs of anticlines. Fold shortening and fault displacement both generally increase northward, whereas fault dip generally decreases northward. The coal-bearing lower part of the sedimentary section serves as a detachment for both folds and thrust faults. The folded and faulted sedimentary section defines a regional south dip of about 8°. The structural relief combined with the low magnitude of shortening of the sedimentary section suggest that the underlying basement is structurally thickened. I propose a new interpretation in which this thickening was accommodated by a passive-roof duplex with basement horses that are separated from the overlying folded and thrust-faulted sedimentary cover by a roof thrust with a backthrust sense of motion. Basement horses are ˜7 km thick, based on the thickness between the inferred roof thrust and the top of the basement in offshore seismic reflection data. This thickness is consistent with the depth of the zone of seismicity onshore. The inferred zone of detachment and imbrication of basement corresponds with the area of surface exposure of the fold-and-thrust belt within the Yakutat terrane and with the Wrangell subduction zone and arc farther landward. By contrast, to the west, the crust of the Yakutat terrane has been carried down a subduction zone that extends far landward with a gentle dip, corresponding

  8. An X-ray/optical study of the geometry and dynamics of MACS J0140.0-0555, a massive post-collision cluster merger

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Ebeling, Harald; Richard, Johan

    2012-11-01

    We investigate the physical properties, geometry and dynamics of the massive cluster merger MACS J0140.0-0555 (z = 0.451) using X-ray and optical diagnostics. Featuring two galaxy overdensities separated by about 250 kpc in projection on the sky, and a single peak in the X-ray surface brightness distribution located between them, MACS J0140.0-0555 shows the tell-tale X-ray/optical morphology of a binary, post-collision merger. Our spectral analysis of the X-ray emission, as measured by our Chandra ACIS-I observation of the system, finds the intra-cluster medium to be close to isothermal (˜8.5 keV) with no clear signs of cool cores or shock fronts. Spectroscopic follow-up of galaxies in the field of MACS J0140.0-0555 yields a velocity dispersion of 875-100+70 km s-1 (nz = 66) and no significant evidence of bimodality or substructure along the line of sight. In addition, the difference in radial velocity between the brightest cluster galaxies of the two sub-clusters of 144 ± 25 km s-1 is small compared to typical collision velocities of several 1000 km s-1. A strongly lensed background galaxy at z = 0.873 (which features variable X-ray emission from an active nucleus) provides the main constraint on the mass distribution of the system. We measure M(<75 kpc) = (5.6 ± 0.5) × 1013 M⊙ for the north-western cluster component and a much less certain estimate of (1.5-3) × 1013 M⊙ for the south-eastern sub-cluster. These values are in good agreement with our X-ray mass estimates which yield a total mass of MACS J0140.0-0555 of M(

  9. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect

    Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.; Kolesnikov, V. I.; Malakhov, A. I.; Melkumov, G. L.; Barna, D.; Csato, P.; Fodor, Z.; Gal, J.; Hegyi, S.; Laszlo, A.; Levai, P.; Molnar, J.; Palla, G.; Sikler, F.; Szentpetery, I.; Sziklai, J.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  10. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect

    NA49 Collaboration; Anticic, T.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  11. Baryon number fluctuations from a crossover equation of state compared to heavy-ion collision measurements in the beam energy range √{sNN}=7.7 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Albright, M.; Kapusta, J.; Young, C.

    2015-10-01

    Fluctuations of the proton number distribution in central Au-Au collisions have been measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The motivation is a search for evidence of a critical point in the equation of state. It was found that the skewness and kurtosis display an interesting energy dependence. We compare these measurements to an equation of state which smoothly interpolates between an excluded volume hadron resonance gas at low energy density to a perturbative plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with the lattice QCD equation of state. The crossover equation of state can reproduce the data if the fluctuations are frozen at a temperature significantly lower than the average chemical freeze-out.

  12. Geometry and Excitation Energy Fluctuations of NMA in Aqueous Solution with CHARMM, AMBER, OPLS, and GROMOS Force Fields: Implications for Protein Ultraviolet Spectra Simulation.

    PubMed

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-04

    Molecular dynamics (MD) simulations are performed for N-methylamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the npi* and pipi* transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue-shifted npi* and pipi* energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  13. Geometry and excitation energy fluctuations of NMA in aqueous solution with CHARMM, AMBER, OPLS, and GROMOS force fields: Implications for protein ultraviolet spectra simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-01

    Molecular dynamics (MD) simulations are performed for N-methylacetamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the nπ∗ and ππ∗ transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue shifted nπ∗ and ππ∗ energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  14. Evidence for transverse-momentum- and pseudorapidity-dependent event-plane fluctuations in PbPb and p Pb collisions

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Wang, M.; Wang, Q.; Xu, Z.; Yang, D.; Zhang, F.; Zhang, L.; Zhang, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Bagaturia, I.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Devetak, D.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2015-09-01

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and p Pb collisions. The data were taken with the CMS detector for PbPb collisions at √{sNN}=2.76 TeV and p Pb collisions at √{s NN}=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η . When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η . The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity p Pb collisions. The η -dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

  15. Multiplicity distributions in nuclear collisions

    SciTech Connect

    Capella, A.; Casado, J.A.; Pajares, C.; Ramallo, A.V.; Tran Tranh Van, J.

    1987-05-01

    Multiplicity distributions in nuclear collisions are calculated in the framework of the dual parton model. A comparison with experimental data is performed. The multiplicity distributions for /sup 16/O-/sup 207/Pb collisions at 200 Gev/c per nucleon is predicted. The fluctuations of the energy density in the central rapidity region for such collisions are estimated.

  16. Collective effects in light-heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  17. Detailed Crustal Geometry of the Continental Collision between India and Eurasia: Constraints from Deep Seismic Reflection Profiles across the Yarlung-Zangbo Suture, Tibet, at 88°E

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, W.; Guo, X.; Li, H.; Lu, Z.; He, R.; Zeng, L.; Klemperer, S. L.; Huang, X.

    2016-12-01

    The Tibetan plateau was created by continental collision between India and Eurasia and their ongoing convergence. The extent of subduction of Indian crust is central to our understanding the geodynamics of continental collision. However, owing to the lack of high-resolution data on the crustal-scale geometry of the Himalayan collision zone, the thickness of Indian crust subducting beneath the Yarlung-Zangbo Suture has been poorly known. Here we present two new deep seismic reflection profiles, respectively 100-km and 60-km long, across the central part of the Yarlung-Zangbo suture at c. 88°E (Figure 1). Seismic data processing used the CGG, ProMAX, and GeoEast systems. Processing included tomographic static correction, true-amplitude recovery, frequency analysis, filter-parameter tests, surface-consistent-amplitude corrections, surface-consistent deconvolution, coherent noise suppression, random noise attenuation, human-computer interactive velocity analysis, residual statics correction, Kirchhoff pre-stack time migration incorporating the rugged topography, and post-stack polynomial fitting to remove noise. Our two profiles both trace the Main Himalayan Thrust continuously from the mid-crust to deep beneath southern Tibet. Together with prominent Moho reflections at the base of the double-normal-thickness crust, the geometry of the subducting Indian crust is well defined. Both profiles image a limited extent of the Indian crust beneath southern Tibet and indicate that north-dipping Indian crust and south-dipping Lhasa crust converge beneath the Xietongmen region, above the remnant mantle suture. Figure 1. Geological map of the Xietongmen Region, south Tibet. The deep seismic reflection profile is shown as a solid red line, the location of big shots are shown as black stars.

  18. Pinning down QCD-matter shear viscosity in A + A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

    NASA Astrophysics Data System (ADS)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.; Tuominen, K.

    2016-12-01

    We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-pT observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio η / s of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5 TeV Pb + Pb collisions.

  19. Evidence for x-dependent proton color fluctuations in pA collisions at the CERN Large Hadron Collider

    SciTech Connect

    Alvioli, M.; Cole, B. A.; Frankfurt, L.; Perepelitsa, D. V.; Strikman, M.

    2016-01-21

    The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strength and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.

  20. K/pi Fluctuations at relativistic energies.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; de la Barca Sánchez, M Calderón; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Clarke, R F; Codrington, M J M; Corliss, R; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; De Silva, L C; Dedovich, T G; DePhillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Mazumdar, M R Dutta; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, N; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Raniwala, R; Raniwala, S; Redwine, R; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Molen, A M Vander; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, P; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-08-28

    We report K/pi fluctuations from Au + Au collisions at sqrt[s(NN)]= 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. K/pi fluctuations in central collisions show little dependence on incident energy and are on the same order as those from NA49 at the Super Proton Synchrotron in central Pb + Pb collisions at sqrt[s(NN)]=12.3 and 17.3 GeV. We report results for the collision centrality dependence of K/pi fluctuations and results for charge-separated fluctuations. We observe that the K/pi fluctuations scale with the charged particle multiplicity density.

  1. The impact of fluctuations and correlations in droplet growth by collision-coalescence revisited - Part 1: Numerical calculation of post-gel droplet size distribution

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Raga, Graciela B.

    2017-06-01

    The impact of stochastic fluctuations in cloud droplet growth is a matter of broad interest, since stochastic effects are one of the possible explanations of how cloud droplets cross the size gap and form the raindrop embryos that trigger warm rain development in cumulus clouds. Most theoretical studies on this topic rely on the use of the kinetic collection equation, or the Gillespie stochastic simulation algorithm. However, the kinetic collection equation is a deterministic equation with no stochastic fluctuations. Moreover, the traditional calculations using the kinetic collection equation are not valid when the system undergoes a transition from a continuous distribution to a distribution plus a runaway raindrop embryo (known as the sol-gel transition). On the other hand, the stochastic simulation algorithm, although intrinsically stochastic, fails to adequately reproduce the large end of the droplet size distribution due to the huge number of realizations required. Therefore, the full stochastic description of cloud droplet growth must be obtained from the solution of the master equation for stochastic coalescence. In this study the master equation is used to calculate the evolution of the droplet size distribution after the sol-gel transition. These calculations show that after the formation of the raindrop embryo, the expected droplet mass distribution strongly differs from the results obtained with the kinetic collection equation. Furthermore, the low-mass bins and bins from the gel fraction are strongly anticorrelated in the vicinity of the critical time, this being one of the possible explanations for the differences between the kinetic and stochastic approaches after the sol-gel transition. Calculations performed within the stochastic framework provide insight into the inability of explicit microphysics cloud models to explain the droplet spectral broadening observed in small, warm clouds.

  2. Fluctuation Probes of Quark Deconfinement

    SciTech Connect

    Asakawa, Masayuki; Heinz, Ulrich; Mueller, Berndt

    2000-09-04

    The size of the average fluctuations of net baryon number and electric charge in a finite volume of hadronic matter differs widely between the confined and deconfined phases. These differences may be exploited as indicators of the formation of a quark-gluon plasma in relativistic heavy-ion collisions, because fluctuations created in the initial state survive until freeze-out due to the rapid expansion of the hot fireball. (c) 2000 The American Physical Society.

  3. Skewness of elliptic flow fluctuations

    NASA Astrophysics Data System (ADS)

    Giacalone, Giuliano; Yan, Li; Noronha-Hostler, Jacquelyn; Ollitrault, Jean-Yves

    2017-01-01

    Using event-by-event hydrodynamic calculations, we find that the fluctuations of the elliptic flow (v2) in the reaction plane have a negative skew. We compare the skewness of v2 fluctuations to that of initial eccentricity fluctuations. We show that skewness is the main effect lifting the degeneracy between higher-order cumulants, with negative skew corresponding to the hierarchy v2{4 } >v2{6 } observed in Pb+Pb collisions at the CERN Large Hadron Collider. We describe how the skewness can be measured experimentally and show that hydrodynamics naturally reproduces its magnitude and centrality dependence.

  4. Light incoherence due to background space fluctuations

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2016-12-01

    Working by analogy, we use the description of light fluctuations due to random collisions of the radiating atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the fluctuating background space is negligibly small to be observed by the stellar interferometry.

  5. Event-by-event elliptic flow fluctuations from PHOBOS.

    SciTech Connect

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Physics; BNL; Inst. of Nuclear Physics; Massachusetts Inst. of Tech.; National Central Univ.; Univ. of Maryland; Univ. of Rochester

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in Au + Au collisions at {radical}s{sub NN} = 200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  6. Multiplicity fluctuations in the string clustering approach

    NASA Astrophysics Data System (ADS)

    Cunqueiro, L.; Ferreiro, E. G.; Moral, F. Del; Pajares, C.

    2005-08-01

    We present our results on multiplicity fluctuations in the framework of the string clustering approach. We compare our results—with and without clustering formation—with CERN Super Proton Synchrotron NA49 data. We find a nonmonotonic behavior of these fluctuations as a function of the collision centrality, which has the same origin as the observed fluctuations of transverse momentum: the correlations between the produced particles because of the cluster formation.

  7. Longitudinal fluctuations and decorrelation of anisotropic flow

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-12-01

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  8. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    NASA Astrophysics Data System (ADS)

    Biswas, Shyamal

    2015-05-01

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over 4He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  9. Fluctuation phenomena

    SciTech Connect

    Montroll, E.W.; Lebowitz, J.L.

    1986-01-01

    Fluctuation phenomena are the ''tip of the iceberg'' revealing the existence, behind even the most quiescent appearing macroscopic states, of an underlying world of agitated, ever-changing microscopic processes. While the presence of these fluctuations can be ignored in some cases, e.g. if one is satisfied with purely thermostatic description of systems in equilibrium, they are central to the understanding of other phenomena, e.g. the nucleation of a new phase following the quenching of a system into the co-existence region. This volume contains a collection of review articles, written by experts in the field, on the subject of fluctuation phenomena. Some of the articles are of a very general nature discussing the modern mathematical formulation of the problems involved, while other articles deal with specific topics such as kinetics of phase transitions and conductivity in solids. The juxtaposition of the variety of physical situations in which fluctuation phenomena play an important role is novel and should give the reader an insight into this subject.

  10. Subtracted geometry

    NASA Astrophysics Data System (ADS)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  11. K/pi Fluctuations at Relativistic Energies

    SciTech Connect

    STAR Collaboration; Abelev, B.I.

    2009-08-24

    We report results for K/{pi} fluctuations from Au+Au collisions at {radical}sNN = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/{pi} fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at {radical}sNN = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/{pi} fluctuations as well as results for K{sup +}/{pi}{sup +}, K{sup -}/{pi}{sup -}, K{sup +}/{pi}{sup -}, and K{sup -}/{pi}{sup +} fluctuations. We observe that the K/{pi} fluctuations scale with the multiplicity density, dN/d{eta}, rather than the number of participating nucleons.

  12. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  13. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  14. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  15. Strongly intensive measures for multiplicity fluctuations

    NASA Astrophysics Data System (ADS)

    Begun, V. V.; Konchakovski, V. P.; Gorenstein, M. I.; Bratkovskaya, E. L.

    2013-04-01

    The two recently proposed families of strongly intensive measures of fluctuations and correlations are studied within the hadron-string-dynamics (HSD) transport approach to nucleus-nucleus collisions. We consider the measures ΔKπ and ΣKπ for kaon and pion multiplicities in Au+Au collisions in a wide range of collision energies and centralities. These strongly intensive measures appear to cancel the participant number fluctuations. This allows to enlarge the centrality window in the analysis of event-by-event fluctuations for up to at least 10% of the most central collisions. We also present a comparison of the HSD results with the data of the NA49 and STAR Collaborations. HSD describes ΣKπ reasonably well. However, the HSD results depend monotonously on collision energy and do not reproduce the bump-dip structure of ΔKπ observed from the NA49 data in the region of the center of mass energy of the nucleon pair \\sqrt{s_{NN}}= 8{--}12 GeV. This observation deserves further study. The origin of this ‘structure’ is not connected with simple geometrical or limited acceptance effects, as these effects are taken into account in HSD simulations.

  16. Correlations and Fluctuations: Status and Perspectives

    SciTech Connect

    Koch, Volker; Koch, Volker

    2008-04-15

    We will provide an overview of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. Observables, which have been discussed in the literature will be briefly reviewed and put in context with experiment and information from Lattice QCD. Special attention will be given to the QCD critical point and the first order co-existence region.

  17. Cold nuclear matter effects on J/ψ yields as a function of rapidity and nuclear geometry in d+A collisions at sqrt[s(NN)]=200  GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Caringi, A; Chang, B S; Chang, W C; Charvet, J-L; Chen, C-H; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Hadj Henni, A; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Klay, J; Klein-Boesing, C; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Mašek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Niita, T; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zolin, L

    2011-09-30

    We present measurements of J/ψ yields in d+Au collisions at sqrt[s(NN)]=200  GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/ψ rapidity (-2.2

  18. A unified theory of tokamak transport via the generalized Balescu--Lenard collision operator

    SciTech Connect

    Mynick, H.E.; Duvall, R.E.

    1988-06-01

    A unified basis from which to study the transport of tokamaks at low collisionality is provided by specializing the ''generalized Balescu--Lenard'' collision operator to toridal geometry. Explicitly evaluating this operator, ripple, turbulent, and neoclassical transport coefficients are obtained, simply by further specializing the single operator to different particular classes of fluctuation wavelength and mode structure. For each class of fluctuations, the operator possesses a diffusive, test-particle contribution D, and in addition a dynamic drag term F, which makes the operator self-consistent, and whose presence is accordingly essential for the resultant fluxes to possess the appropriate conservation laws and symmetrics. These properties, well-known for axisymmetric transport, are demonstrated for one type of turbulent transport, chosen for definiteness, by explicit evaluation of both ''anomalous diffusion'' term arising from D, as well as the closely related test particle calculations, but is shown to have an important impact on the predicted fluxes. 16 refs., 1 fig.

  19. Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-08-01

    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.

  20. Maps of the little bangs through energy density and temperature fluctuations

    SciTech Connect

    Basu, Sumit Chatterjee, Rupa; Nayak, Tapan K.

    2016-01-22

    Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

  1. Geometry in transition: a model of emergent geometry.

    PubMed

    Delgadillo-Blando, Rodrigo; O'Connor, Denjoe; Ydri, Badis

    2008-05-23

    We study a three matrix model with global SO(3) symmetry containing at most quartic powers of the matrices. We find an exotic line of discontinuous transitions with a jump in the entropy, characteristic of a 1st order transition, yet with divergent critical fluctuations and a divergent specific heat with critical exponent alpha=1/2. The low temperature phase is a geometrical one with gauge fields fluctuating on a round sphere. As the temperature increased the sphere evaporates in a transition to a pure matrix phase with no background geometrical structure. Both the geometry and gauge fields are determined dynamically. It is not difficult to invent higher dimensional models with essentially similar phenomenology. The model presents an appealing picture of a geometrical phase emerging as the system cools and suggests a scenario for the emergence of geometry in the early Universe.

  2. Eccentricity fluctuations are not the only source of elliptic flow fluctuations in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Liu, Feng; Wang, Fu-Qiang

    2017-09-01

    Sources of event-by-event elliptic flow fluctuations in relativistic heavy-ion collisions are investigated in a multiphase parton transport model (AMPT). Besides the well-known initial eccentricity fluctuations, several other sources of elliptic flow dynamical fluctuations are identified. One is fluctuations in initial parton configurations at a given eccentricity. Configuration fluctuations are found to be as important as eccentricity fluctuations in elliptic flow development. A second is quantum fluctuations in parton-parton interactions during system evolution. A third is fluctuations caused by hadronization and final-state hadronic scatterings. The magnitudes of these fluctuations are investigated relative to the eccentricity fluctuations and the average elliptic flow magnitude. The fluctuations from the latter two sources are found to be negative. The results may have important implications for the interpretation of elliptic flow data. Supported by MOST, China, under 973 Grant 2015CB856901, National Natural Science Foundation of China (11521064, 11547143, 11228513), U.S. Department of Energy (DE-FG02-88ER40412), Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ15001) and Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University (2013YBZD18)

  3. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, Jicai; Hwa, Rudolph C.

    1992-12-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ecco is extended to three-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnpT, and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν=1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  4. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, J.; Hwa, R. C.

    1992-06-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in 1np(sub T), and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle (phi). The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent nu = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  5. Reaction-diffusion equation for quark-hadron transition in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bagchi, Partha; Das, Arpan; Sengupta, Srikumar; Srivastava, Ajit M.

    2015-09-01

    Reaction-diffusion equations with suitable boundary conditions have special propagating solutions which very closely resemble the moving interfaces in a first-order transition. We show that the dynamics of the chiral order parameter for the chiral symmetry breaking transition in heavy-ion collisions, with dissipative dynamics, is governed by one such equation; specifically, the Newell-Whitehead equation. Furthermore, required boundary conditions are automatically satisfied due to the geometry of the collision. The chiral transition is, therefore, completed by a propagating interface, exactly as for a first-order transition, even though the transition actually is a crossover for relativistic heavy-ion collisions. The same thing also happens when we consider the initial confinement-deconfinement transition with the Polyakov loop order parameter. The resulting equation, again with dissipative dynamics, can then be identified with the reaction-diffusion equation known as the FitzHugh-Nagumo equation which is used in population genetics. Observational constraints imply that the entire phase conversion cannot be achieved by such slow moving fronts, and some alternate faster dynamics needs also to be invoked; for example, involving fluctuations. We discuss the implications of these results for heavy-ion collisions. We also discuss possible extensions for the case of the early universe.

  6. Thermal fluctuations in a hyperscaling-violation background

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Faizal, Mir; Upadhyay, Sudhaker; Asfar, Lina Al

    2017-08-01

    In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background.

  7. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  8. Economic fluctuations and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Plerou, Vasiliki; Gopikrishnan, Parameswaran; Nunes Amaral, Luís A.; Gabaix, Xavier; Eugene Stanley, H.

    2000-09-01

    We quantify the relation between trading activity - measured by the number of transactions NΔt-and the price change GΔt for a given stock, over a time interval [t, t+Δt]. To this end, we analyze a database documenting every transaction for 1000 U.S. stocks for the two-year period 1994-1995. We find that price movements are equivalent to a complex variant of classic diffusion, where the diffusion constant fluctuates drastically in time. We relate the analog for stock price fluctuations of the diffusion constant-known in economics as the volatility-to two microscopic quantities: (i) the number of transactions NΔt in Δt, which is the analog of the number of collisions and (ii) the variance W2Δt of the price changes for all transactions in Δt, which is the analog of the local mean square displacement between collisions. Our results are consistent with the interpretation that the power-law tails of P(GΔt) are due to P(WΔt), and the long-range correlations in \\|GΔt\\| are due to NΔt.

  9. Enrichment Activities for Geometry.

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    1983-01-01

    Enrichment activities that teach about geometry as they instruct in geometry are given for some significant topics. The facets of geometry included are tessellations, round robin tournaments, geometric theorems on triangles, and connections between geometry and complex numbers. (MNS)

  10. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  11. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  12. An introductory analysis of satellite collision probabilities

    NASA Astrophysics Data System (ADS)

    Carlton-Wippern, Kitt C.

    This paper addresses a probailistic approach in assessing the probabilities of a satellite collision occurring due to relative trajectory analyses and probability density functions representing the satellites' position/momentum vectors. The paper is divided into 2 parts: Static and Dynamic Collision Probabilities. In the Static Collision Probability section, the basic phenomenon under study is: given the mean positions and associated position probability density functions for the two objects, calculate the probability that the two objects collide (defined as being within some distance of each other). The paper presents the classic Laplace problem of the probability of arrival, using standard uniform distribution functions. This problem is then extrapolated to show how 'arrival' can be classified as 'collision', how the arrival space geometries map to collision space geometries and how arbitrary position density functions can then be included and integrated into the analysis. In the Dynamic Collision Probability section, the nature of collisions based upon both trajectory and energy considerations is discussed, and that energy states alone cannot be used to completely describe whether or not a collision occurs. This fact invalidates some earlier work on the subject and demonstrates why Liouville's theorem cannot be used in general to describe the constant density of the position/momentum space in which a collision may occur. Future position probability density functions are then shown to be the convolution of the current position and momentum density functions (linear analysis), and the paper further demonstrates the dependency of the future position density functions on time. Strategies for assessing the collision probabilities for two point masses with uncertainties in position and momentum at some given time, and thes integrated with some arbitrary impact volume schema, are then discussed. This presentation concludes with the formulation of a high level design

  13. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    SciTech Connect

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  14. Hydrodynamics of charge fluctuations and balance functions

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Springer, Todd; Stephanov, Mikhail

    2014-06-01

    We apply stochastic hydrodynamics to the study of charge-density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge-density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, χT /s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high-energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of (2πT)-1, characteristic of a strongly coupled plasma.

  15. Eventwise mean-pt fluctuations versus minimum-bias jets (minijets) at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2015-08-01

    Fluctuation measurements of eventwise mean transverse momentum for p -p and Pb-Pb collisions at the CERN Large Hadron Collider (LHC) have been reported recently. In that study it was concluded that the strength of "nonstatistical" fluctuations decreases with increasing particle multiplicity nch (or A -A centrality) and is nearly independent of collision energy over a large interval. Among several potential mechanisms for those trends the onset of thermalization and collectivity are mentioned. The LHC analysis employed one fluctuation measure selected from several possibilities. An alternative fluctuation measure reveals a strong increase of pt fluctuations with nc h (or A -A centrality) and collision energy, consistent with previous measurements at the BNL Relativistic Heavy Ion Collider (RHIC). The pt fluctuation data for LHC p -p collisions can be described accurately by a two-component (soft +hard ) model (TCM) in which the hard component represents dijet production. The data for Pb-Pb collisions are described accurately by a TCM reference for more-peripheral collisions (suggesting transparent collisions), but the data deviate quantitatively from the reference for more-central collisions, suggesting a modification of jet formation. Overall fluctuation data trends suggest that minimum-bias jets (minijets) dominate pt fluctuations at both the LHC and the RHIC.

  16. Geometry in the Computer Age.

    ERIC Educational Resources Information Center

    Scott, Paul

    1988-01-01

    Discusses the use of computer graphics in the teaching of geometry. Describes five types of geometry: Euclidean geometry, transformation geometry, coordinate geometry, three-dimensional geometry, and geometry of convex sets. (YP)

  17. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  18. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  19. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  20. Galaxy collisions.

    NASA Astrophysics Data System (ADS)

    Struck, C.

    Theories of how galaxies, the fundamental constituents of large-scale structure, form and evolve have undergone a dramatic paradigm shift in the last few decades. Earlier views were of rapid, early collapse and formation of basic structures, followed by slow evolution of the stellar populations and steady buildup of the chemical elements. Current theories emphasize hierarchical buildup via recurrent collisions and mergers, separated by long periods of relaxation and secular restructuring. Thus, collisions between galaxies are now seen as a primary process in their evolution. This article begins with a brief history of how this once peripheral subject found its way to center stage. The author then tours parts of the vast array of collisional forms that have been discovered to date. Many examples are provided to illustrate how detailed numerical models and multiwaveband observations have allowed the general chronological sequence of collisional morphologies to be deciphered, and how these forms are produced by the processes of tidal kinematics, hypersonic gas dynamics, collective dynamical friction and violent relaxation. Galaxy collisions may trigger the formation of a large fraction of all the stars ever formed, and play a key role in fueling active galactic nuclei. Current understanding of the processes involved is reviewed. The last decade has seen exciting new discoveries about how collisions are orchestrated by their environment, how collisional processes depend on environment, and how these environments depend on redshift or cosmological time. These discoveries and prospects for the future are summarized in the final sections.

  1. Evidence of strong proton shape fluctuations from incoherent diffraction

    SciTech Connect

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  2. Evidence of strong proton shape fluctuations from incoherent diffraction

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  3. Online immunoaffinity liquid chromatography/tandem mass spectrometry determination of a type II collagen peptide biomarker in rat urine: Investigation of the impact of collision-induced dissociation fluctuation on peptide quantitation.

    PubMed

    Berna, Michael; Schmalz, Chris; Duffin, Kevin; Mitchell, Peter; Chambers, Mark; Ackermann, Brad

    2006-09-15

    Proteolytic fragments of type II collagen, a major component of joint tissue, have recently been identified as biomarkers for osteoarthritis, a progressive disease associated with cartilage degeneration. A liquid chromatography/tandem mass spectrometry (MS/MS) assay that utilizes online immunoaffinity chromatography and column switching was developed in our laboratory for the neoepitope of type II collagen (NET2C). During method development, peptide collision-induced dissociation (CID) was found to be a significant source of assay variation, which exceeded 10% CV, despite the fact that a stable-isotope-labeled (SIL) internal standard was used to minimize imprecision. This phenomenon was studied in detail using peptides and associated SIL internal standards of varying lengths and amino acid compositions. Variability in peptide CID necessitated the monitoring of multiple MS/MS transitions to obtain acceptable assay precision. The assay was subsequently validated to measure NET2C concentrations in rat urine over the range of 0.1 to 10 ng/mL. The interday accuracy and precision ranged from 3.9 to 13.1 (%CV) and 10.7 to 5.3 (%RE), respectively, across the range of validated concentrations. A specific application of the assay is presented in which the role of estrogen deficiency in the development and progression of osteoarthritis was investigated. In this study, the effect of estrogen on lowering NET2C concentrations in urine in ovariectomized rats was demonstrated.

  4. A low-power, linear-geometry Hall plasma source with an open electron-drift

    NASA Astrophysics Data System (ADS)

    Schmidt, D. P.; Meezan, N. B.; Hargus, W. A., Jr.; Cappelli, M. A.

    2000-02-01

    This paper presents a discussion of the physics of modern Hall plasma thrusters and its impact on the design of new plasma thrusters of varying geometry and power. A particular emphasis is placed on the design and development of a linear-geometry (non- coaxial) source with an open electron-drift current. The operating characteristics of a linear-geometry Hall discharge scaled to operate in the 50 to 100 W power range are presented. Two thruster acceleration channels were fabricated—one of alumina and one of boron nitride. Differences in operation with the two channel materials are attributable to differences in the secondary electron emission properties. In either case, however, operation is achieved despite the lack of a closed electron current drift in the Hall direction, suggesting that there is an anomalous axial electron mobility, due to either plasma fluctuations or collisions with the channel wall. Strong low-frequency oscillations in the discharge current, associated with the depletion of propellant within the discharge, are seen to appear and vary with changes in the applied magnetic field strength. The frequency of this oscillatory mode is higher than that seen in larger (and higher power) discharges, due to the decreased residence time of the propellant within the channel.

  5. Identity method-a new tool for studying chemical fluctuations

    SciTech Connect

    Mackowiak, M.

    2012-06-15

    Event-by-event fluctuations of the chemical composition of the hadronic system produced in nuclear collisions are believed to be sensitive to properties of the transition between confined and deconfined strongly interacting matter. In this paper a new technique for the study of chemical fluctuation, the identity method, is introduced and its features are discussed. The method is tested using data on central PbPb collisions at 40 A GeV registered by the NA49 experiment at the CERN SPS.

  6. Packing of charged chains on toroidal geometries?

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Olvera de La Cruz, Monica

    2013-03-01

    We study sequential Langmuir adsorption of a flexible charged polyelectrolyte chain on tori. In the regime of monomer-monomer electrostatic interaction dominating over thermal fluctuations, it becomes a generalized Thomson problem. Various patterns of adsorbed chain are found including double spirals, disclination-like structures, Janus tori and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry. Their broken mirror symmetry and energetics are analyzed. In particular, we find a power law for the electrostatic energy; the dependence of the power on the geometry of tori implies a geometric origin. Furthermore, in the regime of large thermal fluctuation, we systematically study random walks on tori that generate chain configurations; the features associated with the toroidal geometry are discussed. This work was funded by grants from the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-10-1-0167.

  7. Revealing "flickering" of the interaction strength in pA collisions at the CERN LHC

    NASA Astrophysics Data System (ADS)

    Alvioli, M.; Frankfurt, L.; Guzey, V.; Strikman, M.

    2014-09-01

    Using the high-energy color fluctuation formalism to include inelastic diffractive processes and taking into account the collision geometry and short-range nucleon-nucleon correlations in nuclei, we assess various manifestations of "flickering" of the parton wave function of a rapid proton in pA interactions focusing at energies available at the CERN Large Hadron Collider (LHC) in soft QCD processes and in the special soft QCD processes accompanying hard processes. We evaluate the number of wounded nucleons, Ncoll—the number of inelastic collisions of projectiles—in these processes and find a nontrivial relation between the hard collision rate and centrality. We study the distribution over Ncoll for a hard trigger selecting configurations in the nucleon with the strength larger or smaller than the average one and argue that the pattern observed in the LHC pA measurements by CMS and ATLAS for jets carrying a large fraction of the proton momentum, xp, is consistent with the expectation that these configurations interact with the strength which is significantly smaller than the average one, a factor of two smaller for xp˜0.5. We also study the leading twist shadowing and the European Muon Collaboration effects for superdense nuclear matter configurations probed in the events with a larger-than-average number of wounded nucleons. We also argue that taking into account energy-momentum conservation does not change the distribution over Ncoll but suppresses hadron production at central rapidities.

  8. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  9. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  10. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  11. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  12. Collision lifetimes of polyatomic molecules at low temperatures: Benzene-benzene vs benzene-rare gas atom collisions

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Li, Zhiying; Krems, Roman V.

    2014-10-01

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  13. Collision lifetimes of polyatomic molecules at low temperatures: benzene-benzene vs benzene-rare gas atom collisions.

    PubMed

    Cui, Jie; Li, Zhiying; Krems, Roman V

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  14. Puck collisions

    NASA Astrophysics Data System (ADS)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  15. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    SciTech Connect

    Frankfurt, L. ); Miller, G.A. ); Strikman, M. )

    1993-11-01

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  16. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  17. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  18. Sequential binary collision ionization mechanisms

    NASA Astrophysics Data System (ADS)

    van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.

    2004-03-01

    Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).

  19. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  20. Twisted spectral geometry for the standard model

    NASA Astrophysics Data System (ADS)

    Martinetti, Pierre

    2015-07-01

    In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.

  1. Fluctuations in Cerebral Hemodynamics

    DTIC Science & Technology

    2003-12-01

    Determination of scaling properties Detrended Fluctuations Analysis (see (28) and references therein) is commonly used to determine scaling...pressure (averaged over a cardiac beat) of a healthy subject. First 1000 values of the time series are shown. (b) Detrended fluctuation analysis (DFA...1000 values of the time series are shown. (b) Detrended fluctuation analysis of the time series shown in (a). Fig . 3 Side-by-side boxplot for the

  2. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at [Formula: see text] TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hann, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Heng, Y; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at [Formula: see text] TeV are shown using a dataset of approximately 7 [Formula: see text]b[Formula: see text] collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta [Formula: see text] GeV and in the pseudorapidity range [Formula: see text]. The anisotropy is characterized by the Fourier coefficients, [Formula: see text], of the charged-particle azimuthal angle distribution for [Formula: see text]-4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the [Formula: see text] coefficients are presented. The elliptic flow, [Formula: see text], is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, [Formula: see text] and [Formula: see text], are determined with two- and four-particle cumulants. Flow harmonics [Formula: see text] measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to [Formula: see text] measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.

  3. Fluctuation relations for spintronics.

    PubMed

    López, Rosa; Lim, Jong Soo; Sánchez, David

    2012-06-15

    Fluctuation relations are derived in systems where the spin degree of freedom and magnetic interactions play a crucial role. The form of the nonequilibrium fluctuation theorems relies on the assumption of a local balance condition. We demonstrate that in some cases the presence of magnetic interactions violates this condition. Nevertheless, fluctuation relations can be obtained from the microreversibility principle sustained only at equilibrium as a symmetry of the cumulant generating function for spin currents. We illustrate the spintronic fluctuation relations for a quantum dot coupled to partially polarized helical edge states.

  4. Hydrodynamic fluctuations near a critical endpoint and Hanbury-Brown-Twiss interferometry

    NASA Astrophysics Data System (ADS)

    Plumberg, Christopher; Kapusta, Joseph I.

    2017-04-01

    The field of high-energy nuclear collisions has witnessed a surge of interest in the role played by hydrodynamic fluctuations. Hydrodynamic fluctuations may have significant effects on matter created in heavy-ion accelerators whose trajectories in the plane of temperature versus chemical potential pass near a possible critical endpoint. We extend previous studies to explore the impact of these fluctuations on Hanbury-Brown-Twiss interferometry of identical hadrons. With an appropriately defined correlation function we find that the fluctuations increase substantially when the trajectory passes near a critical endpoint and also displays a damped oscillatory behavior in the rapidity distance Δ y unlike that originating from initial-state fluctuations.

  5. Theory of stress fluctuations

    PubMed

    Wallace

    2000-09-01

    The current status of the theory of stress fluctuations is marked by two circumstances: no currently available formulas are valid for a metallic system, and a series of contradictory formulas remains unresolved. Here we derive formulas for shear- and isotropic-stress energy fluctuations, in the primary statistical mechanics ensembles. These formulas are valid for a classical monatomic system representing a metal or nonmetal, in cubic crystal, amorphous solid, or liquid phases. Current contradictions in fluctuation formulas are resolved through the following observations. First, the expansion of a dynamical variable A in terms of the fluctuations explicit in a given ensemble distribution, for example deltaA=adeltaN+bdeltaH in the grand canonical ensemble, is correct if and only if deltaA is a function only of deltaN and deltaH. The common use of this expansion has produced incorrect fluctuation formulas. Second, the thermodynamic fluctuations of Landau and Lifshitz do not correspond to statistical mechanics fluctuations, and the two types of fluctuations have essentially different values.

  6. Fluctuations in Proteins

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2007-03-01

    Proteins are the machines of life. In order to perform their functions, they must move continuously. The motions correspond to equilibrium fluctuations and to non-equilibrium relaxations. At least three different fluctuation processes occur: α- and β-fluctuations and processes that occur even below one Kelvin. The α-fluctuations can be approximated by the Vogel-Tammann-Fulcher relation, while the β-fluctuations appear to follow a conventional Arrhenius law (but may in some cases be better characterized by a Ferry law). Both are usually nonexponential in time. These phenomena are similar in proteins and glasses, but there is a fundamental difference between fluctuations in glasses and proteins: In glasses, they are independent of the environment, in proteins the α-fluctuations are slaved to the α-fluctuations in the solvent surrounding the protein; they follow their rate coefficients but they are entropically slowed. The studies of the protein motions are actually still in their infancy, but we can expect that future work will not only help understanding protein functions, but will also feed back to the physics of glasses.

  7. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  8. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  9. Revisiting detrended fluctuation analysis

    PubMed Central

    Bryce, R. M.; Sprague, K. B.

    2012-01-01

    Half a century ago Hurst introduced Rescaled Range (R/S) Analysis to study fluctuations in time series. Thousands of works have investigated or applied the original methodology and similar techniques, with Detrended Fluctuation Analysis becoming preferred due to its purported ability to mitigate nonstationaries. We show Detrended Fluctuation Analysis introduces artifacts for nonlinear trends, in contrast to common expectation, and demonstrate that the empirically observed curvature induced is a serious finite-size effect which will always be present. Explicit detrending followed by measurement of the diffusional spread of a signals' associated random walk is preferable, a surprising conclusion given that Detrended Fluctuation Analysis was crafted specifically to replace this approach. The implications are simple yet sweeping: there is no compelling reason to apply Detrended Fluctuation Analysis as it 1) introduces uncontrolled bias; 2) is computationally more expensive than the unbiased estimator; and 3) cannot provide generic or useful protection against nonstationaries. PMID:22419991

  10. Sheared-flow Modes in Toroidal Geometry

    SciTech Connect

    J.L.V. Lewandowski; T.S. Hahm; W.W. Lee; Z. Lin

    1999-10-01

    Using a Fourier-Bessel representation for the fluctuating (turbulent) electrostatic potential, an equation governing the sheared-flow modes in toroidal geometry is derived from the gyrokinetic Poisson equation, where both the adiabatic and non-adiabatic responses of the electrons are taken into account. It is shown that the principal geometrical effect on sheared-flow modes of the electrostatic potential is due to the flux-surface average of 1/B, where B is the magnetic field strength.

  11. Onset of radial flow in p+p collisions

    DOE PAGES

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; ...

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7more » TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.« less

  12. Vorticity Fluctuations in Plane Couette Flow

    NASA Astrophysics Data System (ADS)

    Ortiz de Zarate, Jose; Sengers, Jan V.

    2010-11-01

    In this presentation we evaluate the flow-induced amplification of the thermal noise in plane Couette configuration. The physical origin of the noise is the random nature of molecular collisions, that contribute with a stochastic component to the stress tensor (Landau's fluctuating hydrodynamics). This intrinsic stochastic forcing is then amplified by the mode- coupling mechanisms associated to shear flow. In a linear approximation, noise amplification can be studied by solving stochastic Orr-Sommerfeld and Squire equations. We compare the efficiency of the different mechanisms, being the most important the direct coupling between Squire and Orr-Sommerfed equations. The main effect is to amplify wall-normal vorticity fluctuations with an spanwise modulation at wave number around 1.5, a configuration that resembles the streaks that have been proposed as precursors of the flow instability.

  13. Interferometric tests of Planckian quantum geometry models

    SciTech Connect

    Kwon, Ohkyung; Hogan, Craig J.

    2016-04-19

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographic bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.

  14. Interferometric tests of Planckian quantum geometry models

    SciTech Connect

    Kwon, Ohkyung; Hogan, Craig J.

    2016-04-19

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographic bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.

  15. Interferometric tests of Planckian quantum geometry models

    DOE PAGES

    Kwon, Ohkyung; Hogan, Craig J.

    2016-04-19

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographicmore » bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.« less

  16. Current transients in single nanoparticle collision events.

    PubMed

    Xiao, Xiaoyin; Fan, Fu-Ren F; Zhou, Jiping; Bard, Allen J

    2008-12-10

    Electrochemical hydrazine oxidation and proton reduction occur at a significantly higher rate at Pt than at Au or C electrodes. Thus, the collision and adhesion of a Pt particle on a less active Au or C electrode leads to a large current amplification by electrocatalysis at single nanoparticles (NPs). At low particle concentrations, the collision of Pt NPs was characterized by current transients composed of individual current profiles that rapidly attained a steady state, signaling single NP collisions. The characteristic steady-state current was used to estimate the particle size. The fluctuation in collision frequency with time indicates that the collision of NPs at the detector electrodes occurs in a statistically random manner, with the average frequency a function of particle concentration and diffusion coefficient. A longer term current decay in single current transients, as opposed to the expected steady-state behavior, was more pronounced for proton reduction than for hydrazine oxidation, revealing microscopic details of the nature of the particle interaction with the detector electrode and the kinetics of electrocatalysis at single NPs. The study of single NP collisions allows one to screen particle size distributions and estimate NP concentrations and diffusion coefficients.

  17. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  18. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  19. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  20. Continuous information flow fluctuations

    NASA Astrophysics Data System (ADS)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  1. Chiral Magnetic Effect in Heavy Ion Collisions

    SciTech Connect

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview on the status of such efforts.

  2. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less

  3. Styles of Cenozoic collisions in the western and southwestern Pacific and their applications to Palaeozoic collisions in the Tasmanides of eastern Australia

    NASA Astrophysics Data System (ADS)

    Glen, R. A.; Meffre, S.

    2009-12-01

    The western and southwestern Pacific preserve evidence of Cenozoic collisions that guide our understanding of processes and geometries involved in collisions in ancient orogens, in particular in this case, the Palaeozoic Tasmanides of southeastern Australia. Although several styles of collisions are present in the Pacific, ranging from arc-arc collision to arc-plateau collision, the dominant two are oblique and strike-slip collisions between island arcs and rifted continental fragments, and collisions between forearc lithosphere and continental fragments. The 58 Ma collision along the northern margin of the Australian plate in New Guinea, the 44-34 Ma collision preserved in New Caledonia and the 26-25 Ma collision in the North Island of New Zealand may be parts of a single plate boundary collision that migrated southwards along the plate boundary. They characterize the main style of deformation in which a collision between forearc crust and continental fragment produces subduction flip or rollback, thereby avoiding a classic arc-continent collision. Processes involved in, and geometries that have developed from, SW and W Pacific style collisions have been applied to the interpretation of the evolution of the Delamerian Orogen and Lachlan Orogen in the southern Tasmanides with varying degrees of success. The ophiolite obduction model has been successfully applied to the western Tasmania part of the Delamerian Orogen, although there is discussion about its applicability to the mainland. The best example of an arc accretion, that of the Ordovician Macquarie Arc in the eastern Lachlan Orogen, developed from rare geometry in the western Pacific wherein (with the constraint that no forearc or subduction complex has been identified) the arc lies on the continental plate, above a continental-dipping subduction zone. The multiple subduction zone model of Halmahera has been widely applied to the back arc of the Lachlan Orogen, but evidence for clear subduction zones or arcs

  4. Scaling metabolic rate fluctuations

    PubMed Central

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a “universal” form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents −0.352 and −1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  5. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  6. Geometric localization of thermal fluctuations in red blood cells

    PubMed Central

    Evans, Arthur A.; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J.

    2017-01-01

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, “singular lines,” leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes. PMID:28242681

  7. Geometric localization of thermal fluctuations in red blood cells.

    PubMed

    Evans, Arthur A; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J

    2017-03-14

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, "singular lines," leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes.

  8. Developments in special geometry

    NASA Astrophysics Data System (ADS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-02-01

    We review the special geometry of Script N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we disucss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  9. Enhancement of thermal fluctuations in Plane Couette Flow

    NASA Astrophysics Data System (ADS)

    Ortiz de Zarate, Jose M.; Sengers, Jan V.

    2011-11-01

    Mode-coupling phenomena in systems outside equilibrium generically cause an enhancement of thermal fluctuations. These enhancements can be studied by Landau's fluctuating hydrodynamics. Here we present a detailed study for the case of plane Couette flow based on stochastically forced Orr-Sommerfeld and Squire equations. The forcing arises from random contributions to the stress tensor due to the stochastic nature of molecular collisions. This intrinsic stochastic forcing is then amplified by mode- coupling mechanisms associated with the shear flow. We discuss the different coupling mechanisms, the most important one being the direct coupling between fluctuations of the wall-normal velocity and vorticity. The most pronounced effect is amplification of wall-normal vorticity fluctuations with a spanwise modulation at dimensionless wave numbers q∥ around 1.5. Financial support: MICINN FIS2008/03801.

  10. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  11. Collision avoidance in computer optimized treatment planning.

    PubMed

    Humm, J L

    1994-07-01

    Of major concern in fully automated computerized treatment delivery is the possibility of gantry/couch or gantry/patient collisions. In this work, software has been developed to detect collisions between gantry and couch or patient for both transaxial and noncoplanar treatment fields during the treatment planning process. The code uses the gantry angles, turntable angles, and position of the couch surface relative to the isocenter supplied by the planner for the prescribed radiation fields. In addition, the maximum patient anterior-posterior and lateral separations are entered in order to model the patient outline by a conservative cylindrical ellipse. By accessing a database containing the precise mechanical dimensions of the therapy equipment, 3D analytical geometry is used to test for collisions between gantry/patient and gantry/couch for each treatment field. When collisions are detected, the software inspects the use of an extended distance treatment, by recalculating and testing for collisions, with the couch at a greater distance from the collimator along the direction of the central axis. If a collision is avoided at extended distance, the lateral, longitudinal, and vertical motions of the couch are recorded for entry into the treatment plan, or else a warning message is printed, together with the nearest permissible collision-free gantry angle. Upon inspection, the planner can either elect to use the calculated closest permissible gantry angle or reject the plan. The software verifies that each proposed treatment field is safe, but also that the transition between fields is collision-free. This requires that the sequence of the treatment fields be ordered, preferably into a sequence which minimizes the delivery time compatible with patient safety.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Intermittency in {sup 32}S + S and {sup 32}S + Au collisions at the CERN SPS

    SciTech Connect

    Bloomer, M.A.; Jacobs, P.; WA80 Collaboration

    1991-12-01

    Nonstatistical or ``intermittent`` fluctuations of charged particle multiplicities have been investigated at the CERN SPS with the WA80 multiplicity array for {sup 32}S+S and {sup 32}S+Au collisions of varying centrality. Within the phase space domain studied there is no evidence for intermittency in these collisions beyond that accounted for by FRITIOF filtered through a full detector simulation.

  13. Intermittency in sup 32 S + S and sup 32 S + Au collisions at the CERN SPS

    SciTech Connect

    Bloomer, M.A.; Jacobs, P.

    1991-12-01

    Nonstatistical or intermittent'' fluctuations of charged particle multiplicities have been investigated at the CERN SPS with the WA80 multiplicity array for {sup 32}S+S and {sup 32}S+Au collisions of varying centrality. Within the phase space domain studied there is no evidence for intermittency in these collisions beyond that accounted for by FRITIOF filtered through a full detector simulation.

  14. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  15. Drift Mode Calculations in Nonaxisymmetric Geometry

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.A. Cooper; W.M. Tang

    1999-07-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.

  16. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  17. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  18. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  19. Twistors to twisted geometries

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.

  20. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  1. Euclidean Geometry via Programming.

    ERIC Educational Resources Information Center

    Filimonov, Rossen; Kreith, Kurt

    1992-01-01

    Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability…

  2. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  3. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  4. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at √sNN = 2.76  TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2014-11-26

    ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7 μb–1 collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients aremore » presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. As a result, models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.« less

  5. Non-Gaussian fluctuations near the QCD critical point.

    PubMed

    Stephanov, M A

    2009-01-23

    We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity (deltaN)3 approximately xi4.5 and the quartic cumulant (deltaN)4c approximately xi7. We estimate the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton multiplicities.

  6. Search for QCD Phase Transitions and the Critical Point Utilizing Particle Ratio Fluctuations and Transverse Momentum Correlations from the STAR Experiment

    NASA Astrophysics Data System (ADS)

    Tribedy, Prithwish

    2013-05-01

    Dynamical fluctuations of the globally conserved quantities in heavy ion collisions, such as baryon number, strangeness, charge, and isospin are suggested to carry information about the deconfinement and chiral phase transitions. The STAR experiment has performed a comprehensive study of the collision energy and charge dependence of dynamical particle ratio (K/π, p/π, and K/p) fluctuations, net-charge fluctuations, and transverse momentum correlations at mid-rapidity, as well as neutral-charge pion fluctuations at forward rapidity. The centrality, charge, and collision energy dependence from new measurements of the fluctuation observables νdyn, and r, and the energy dependence of transverse momentum correlations from s=7.7 - 200GeV Au + Au collisions are presented. These results are also compared to predictions from hadronic models.

  7. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  8. A space-based concept for a collision warning sensor

    NASA Technical Reports Server (NTRS)

    Talent, David L.; Vilas, Faith

    1990-01-01

    This paper describes a concept for a space-based collision warning sensor experiment, the Debris Collision Warning Sensor (DCWS) experiment, in which the sensor will rely on passive sensing of debris in optical and IR passband. The DCWS experiment will be carried out under various conditions of solar phase angle and pass geometry; debris from 1.5 m to 1 mm diam will be observable. The mission characteristics include inclination in the 55-60 deg range and an altitude of about 500 km. The results of the DCWS experiment will be used to generate collision warning scenarios for the Space Station Freedom.

  9. Turbulent magnetohydrodynamic density fluctuations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Montgomery, David

    1988-01-01

    A spectral-method numerical code is used to compute mass-density fluctuation spectra in turbulent magnetofluids. The computations are used to test and extend the analytical theory of density variations in slightly compressible magnetofluids given by Montgomery, et al. (1987) and used to infer inertial-range density-fluctuation spectra for the nearby interstellar medium and solar wind. A local equation of state is assumed, relating density to pressure. Constant, scalar resistivities and viscosities are used. In the limit of low Mach numbers and high mechanical-to-magnetic pressure ratios, the fit of the computations to the analytical theory is seen to be close.

  10. Order parameter fluctuations in the holographic superconductor

    NASA Astrophysics Data System (ADS)

    Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.

    2017-03-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.

  11. Cumulants of multiplicity distributions in most-central heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie

    2016-11-01

    I investigate the volume corrections on cumulants of total charge distributions and net proton distributions. The required volume information is generated by an optical Glauber model. I find that the corrected statistical expectations of multiplicity distributions mimic the negative binomial distributions at noncentral collisions, and they tend to approach the Poisson ones at most-central collisions due to the "boundary effects," which suppress the volume corrections. However, net proton distributions and reference multiplicity distributions are sensitive to the external volume fluctuations at most-central collisions, which imply that one has to consider the details of volume distributions in event-by-event multiplicity fluctuation studies.

  12. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  13. Initial-State Quantum Fluctuations in the Little Bang

    SciTech Connect

    Gelis, François; Schenke, Björn

    2016-06-01

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  14. Variable geometry trusses

    NASA Technical Reports Server (NTRS)

    Robertshaw, H. H.; Reinholtz, C. F.

    1989-01-01

    Vibration control and kinematic control with variable-geometry trusses are covered. The analytical approach taken is to model each actuator with lumped masses and model a beam with finite elements, including in each model the generalized reaction forces from the beam on the actuator or vice versa. It is concluded that, from an operational standpoint, the variable-geometry truss actuator is more favorable than the inertia-type actuator. A spatial variable-geometry truss is used to test out rudimentary robotic tasks.

  15. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  16. Fluctuating transport in microstructures

    SciTech Connect

    Xie, X.

    1988-01-01

    In this dissertation, we study electronic transport properties of various kinds of quasi-one dimensional (Q1D) systems. The dissertation can be divided into the following categories: (1) Conductance fluctuations and phase coherence in microstructures. We study the conductance fluctuations for three different regimes of electronic transport: ballistic, diffusive and variable-range-hopping (VRH). Various numerical methods are used in the calculations. In the VRH problem, we also examine the possibility of observing the Aharonov-Bohm effect. We develop a technique based on the recursive Kubo formula to study the universal conductance fluctuations in the diffusive regime. Close comparison with relevant experiments is made and good agreement is found. (2) Drude transport properties of quasi-one dimensional systems. In this problem, we calculate the density of states and Drude conductivity for the screened impurity scattering using many body theory. The DOS and conductivity show strong oscillatory behavior as a function of the Fermi-energy. Self-consistency is included in our theory. Good agreement with experiment is found. (3) Transport in quasicrystals. In solving this problem we use the Landauer formula approach. We find that the electrical resistance of a finite 1D Fibonacci-sequence quasicrystal shows strong fluctuations as resonant tunneling occurs through the allowed energy states of the system. Power law localization and self-similarity can be seen in the transport properties. A possible experiment to observe this phenomenon is suggested.

  17. Nonequilibrium mesoscopic conductance fluctuations

    NASA Astrophysics Data System (ADS)

    Ludwig, T.; Blanter, Ya. M.; Mirlin, A. D.

    2004-12-01

    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V . For noninteracting electrons, the variance ⟨δg2⟩ increases with V . The asymptotic large- V behavior is ⟨δg2⟩˜V/Vc (where eVc=D/L2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/Vc only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/Vc≲30 , where the conductance variance increases by a factor ˜3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V→0 ). We further analyze the effect of dephasing due to the electron-electron scattering on ⟨δg2⟩ at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a nonmonotonic function of V . Specifically, ⟨δg2⟩ drops as 1/V for voltages V≫gVc , where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.

  18. Active fluctuation symmetries

    NASA Astrophysics Data System (ADS)

    Maes, Christian; Salazar, Alberto

    2014-01-01

    In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.

  19. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  20. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  1. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  2. Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics

    DOE PAGES

    Monnai, A.; Schenke, B.

    2015-11-26

    We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, an,m, in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the an,m provide important constraints on initial state fluctuations and the transport properties of the quark gluonmore » plasma.« less

  3. Searching for the QCD critical point using particle ratio fluctuations and higher moments of multiplicity distributions

    NASA Astrophysics Data System (ADS)

    Tarnowsky, Terence J.; STAR Collaboration

    2011-12-01

    Dynamical fluctuations in global conserved quantities such as baryon number, strangeness or charge may be observed near a QCD critical point. Results from new measurements of dynamical K/π, p/π and K/p ratio fluctuations are presented. The commencing of a QCD critical point search at the RHIC has extended the reach of possible measurements of dynamical K/π, p/π and K/p ratio fluctuations from Au+Au collisions to lower energies. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies \\sqrt{s_{NN}} = 7.7, 11.5, 39, 62.4 and 200 GeV. New results are compared to previous measurements and to theoretical predictions from several models. The measured dynamical K/π fluctuations are found to be independent of collision energy, while dynamical p/π and K/p fluctuations have a negative value that increases toward zero at top RHIC energy. Fluctuations of the higher moments of conserved quantities (net-proton and net-charge) distributions, which are predicted to be sensitive to the presence of a critical point, are also presented.

  4. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  5. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  6. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  7. Flyby Geometry Optimization Tool

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2007-01-01

    The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.

  8. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  9. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  10. Facilitating Understandings of Geometry.

    ERIC Educational Resources Information Center

    Pappas, Christine C.; Bush, Sara

    1989-01-01

    Illustrates some learning encounters for facilitating first graders' understanding of geometry. Describes some of children's approaches using Cuisenaire rods and teacher's intervening. Presents six problems involving various combinations of Cuisenaire rods and cubes. (YP)

  11. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  12. Critical geometry of a thermal big bang

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Magueijo, João

    2016-11-01

    We explore the space of scalar-tensor theories containing two nonconformal metrics, and find a discontinuity pointing to a "critical" cosmological solution. Due to the different maximal speeds of propagation for matter and gravity, the cosmological fluctuations start off inside the horizon even without inflation, and will more naturally have a thermal origin (since there is never vacuum domination). The critical model makes an unambiguous, nontuned prediction for the spectral index of the scalar fluctuations: nS=0.96478 (64 ) . Considering also that no gravitational waves are produced, we have unveiled the most predictive model on offer. The model has a simple geometrical interpretation as a probe 3-brane embedded in an E AdS2×E3 geometry.

  13. Electron cyclotron current drive efficiency in general tokamak geometry

    SciTech Connect

    Lin-Liu, Y. R.; Chan, V. S.; Prater, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.

  14. Software Geometry in Simulations

    NASA Astrophysics Data System (ADS)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  15. SOC and Fractal Geometry

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. J.

    2013-06-01

    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  16. Common Geometry Module

    SciTech Connect

    Tautges, Timothy J.

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  17. Local geometry of isoscalar surfaces.

    PubMed

    Dopazo, César; Martín, Jesús; Hierro, Juan

    2007-11-01

    An inert dynamically passive scalar in a constant density fluid forced by a statistically homogeneous field of turbulence has been investigated using the results of a 256(3) grid direct numerical simulation. Mixing characteristics are characterized in terms of either principal curvatures or mean and Gauss curvatures. The most probable small-scale scalar geometries are flat and tilelike isosurfaces. Preliminary correlations between flow and scalar small-scale structures associate highly curved saddle points with large-strain regions and elliptic points with vorticity-dominated zones. The concavity of the scalar profiles along the isosurface normal coordinate xn correlates well with negative mean curvatures, Gauss curvatures displaying any sign, which correspond to scalar minima, tiles, or saddle points; on the other hand, convexity along xn is associated with positive mean curvatures, Gauss curvatures ranging from negative to positive signs, featuring maxima, tiles, or saddle points; inflection points along xn correlate well with small values of the mean curvature and zero or negative values of kg, corresponding to plane isosurfaces or saddle points with curvatures of equal and opposite signs. Small values of the scalar gradient are associated with elliptic points, either concave or convex (kg>0) , for both concave and convex scalar profiles along xn. Large values of the scalar gradient (or, equivalently, scalar fluctuation dissipation rates) are generally connected with small values of the Gauss curvature (either flat or moderate-curvature tilelike local geometries), with both concave and convex scalar profiles along xn equally probable. Vortical local flow structures correlate well with small and moderate values of the scalar gradient, while strain-dominated regions are associated with large values.

  18. Anomalous Resistivity in a Slab Geometry

    NASA Astrophysics Data System (ADS)

    Tang, William; Dorfman, Seth; Qin, Hong; Ji, Hantao; Yamada, Masaaki

    2007-11-01

    A broad spectrum of electromagnetic fluctuations is often observed during fast magnetic reconnection both in nature and in laboratory experiments such as the Magnetic Reconnection Experiment (MRX). While much past work has focused on fluctuations in the lower hybrid range of frequenciesootnotetextH. Ji, et al., Phys. Rev. Lett. 92, 115001 (2004), the fluctuation amplitudes are higher at lower frequencies below the ion cyclotron frequency. In the present study, we use linear gyrokinetic theory and a simple Krook collision model to examine the conductivityootnotetextH. Qin, Princeton PhD Thesis (1998) in the presence of a density gradient and constant magnetic field in a parameter regime relevant to the strong guide field case in MRX. A simple Fortran code is used to solve the resulting dispersion relation for the coupled drift and Alfven waves. A robust instability is identified in a broad parameter range. These growing modes are found to have a significant effect on the calculated gyrokinetic conductivity; thus this regime is identified as a promising area for further study with a more complex model. This work was supported by DOE FES Fellowship, DOE, NASA, and NSF.

  19. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  20. Using Geometry Description Markup Language to store the geometry of FNAL E-906

    NASA Astrophysics Data System (ADS)

    Hague, Tyler

    2009-10-01

    The primary goal of FNAL E-906 is to investigate the ratio of d(bar)/u(bar) in the nucleon sea. To do this, the Drell-Yan cross section ratio will be measured in proton-proton and proton-deuterium collisions. FNAL E-906 is utilizing Geometry Description Markup Language (GDML) to describe the geometry of the spectrometer. GDML is capable of describing the spectrometer in great detail and is fully functional with GEANT4 and ROOT. By using this we will have a common geometry input for all of our software codes including two Monte Carlo simulations, primary data analysis code, and a ROOT-based event display. The use of such a language creates the need for an easy way to read it and extract data, as well as to update the geometry when changes are made. A tool has been developed to convert a GDML file into an experiment-specific, easy to read ASCII file. Another tool is in development to create a simple interface to update a GDML file without knowledge of the language. These tools use ROOT's geometry tree to traverse the volumes described in GDML. This poster will describe the advantages of using GDML and its implementation.

  1. The spectrum of static subtracted geometries

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Castro, Alejandra; Cohen-Maldonado, Diego

    2017-05-01

    Subtracted geometries are black hole solutions of the four dimensional STU model with rather interesting ties to asymptotically flat black holes. A peculiar feature is that the solutions to the Klein-Gordon equation on this subtracted background can be organized according to representations of the conformal group SO(2, 2). We test if this behavior persists for the linearized fluctuations of gravitational and matter fields on static, electrically charged backgrounds of this kind. We find that there is a subsector of the modes that do display conformal symmetry, while some modes do not. We also discuss two different effective actions that describe these subtracted geometries and how the spectrum of quasinormal modes is dramatically different depending upon the action used.

  2. Reversible fluctuation rectifier

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    1999-10-01

    The analysis of a Feynman's ratchet system [J. M. R. Parrondo and P. Español, Am. J. Phys. 64, 1125 (1996)] and of its electrical counterpart, a diode engine [I. M. Sokolov, Europhys. Lett. 44, 278 (1998)] has shown that ``fluctuation rectifiers'' consisting of a nonlinear element (ratchet, diode) and a linear element (vane, resistor) kept at different temperatures always show efficiency smaller than the Carnot value, thus indicating the irreversible mode of operation. We show that this irreversibility is not intrinsic for a system in simultaneous contact with two heat baths at different temperatures and that a fluctuation rectifier can work reversibly. This is illustrated by a model with two diodes switched in opposite directions, where the Carnot efficiency is achieved when backward resistivity of the diodes tends to infinity.

  3. Beam-energy and system-size dependence of dynamical net charge fluctuations.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of IIlinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2009-01-01

    We present measurements of net charge fluctuations in Au+Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at {radical}s{sub NN} = 62.4 and 200 GeV, and p+p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub +-,dyn}. We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  4. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  5. Net baryon fluctuations from a crossover equation of state

    NASA Astrophysics Data System (ADS)

    Kapusta, J.; Albright, M.; Young, C.

    2016-08-01

    We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.

  6. Chiral fluctuations in achiral systems

    NASA Astrophysics Data System (ADS)

    Harris, Robert A.

    2001-12-01

    "Chiral fluctuations" are defined, and their relation to "dynamic chirality" is discussed. Simple experiments to measure chiral fluctuations are proposed. The unique aspects of these measurements for systems such as atomic clusters and gases are outlined.

  7. Integrable Background Geometries

    NASA Astrophysics Data System (ADS)

    Calderbank, David M. J.

    2014-03-01

    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently

  8. Contact Geometry of Curves

    NASA Astrophysics Data System (ADS)

    Vassiliou, Peter J.

    2009-10-01

    Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.

  9. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Azimuthal Anisotropy in U +U and Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-11-01

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2 } and v2{4 }, for charged hadrons from U +U collisions at √{sNN }=193 GeV and Au +Au collisions at √{sNN}=200 GeV . Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2 } on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U +U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  11. Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at √{sNN}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-03-01

    We report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at √{sNN}=2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v2 to be almost independent of transverse momentum pT, which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.

  12. Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at sNN=2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-03-31

    Here, we report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at root √sNN = 2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v2 to be almost independent of transverse momentum pT, which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow,more » indicating an interplay between radial and elliptic flow.« less

  13. The Fluctuation Theorem

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.

    2002-11-01

    The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situation. In 1993 we discovered a relation, subsequently known as the Fluctuation Theorem (FT), which gives an analytical expression for the probability of observing Second Law violating dynamical fluctuations in thermostatted dissipative non-equilibrium systems. The relation was derived heuristically and applied to the special case of dissipative non-equilibrium systems subject to constant energy 'thermostatting'. These restrictions meant that the full importance of the Theorem was not immediately apparent. Within a few years, derivations of the Theorem were improved but it has only been in the last few of years that the generality of the Theorem has been appreciated. We now know that the Second Law of Thermodynamics can be derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads to the possibility of irreversible macroscopic behaviour. The Fluctuation Theorem does much more than merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in small systems observed for a short time. Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt's observation that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 'anti-trajectory', are both solutions of the underlying equations of motion. Indeed the standard proofs of

  14. Networks based on collisions among mobile agents

    NASA Astrophysics Data System (ADS)

    González, Marta C.; Lind, Pedro G.; Herrmann, Hans J.

    2006-12-01

    We investigate in detail a recent model of colliding mobile agents [M.C. González, P.G. Lind, H.J. Herrmann, Phys. Rev. Lett. 96 (2006) 088702. cond-mat/0602091], used as an alternative approach for constructing evolving networks of interactions formed by collisions governed by suitable dynamical rules. The system of mobile agents evolves towards a quasi-stationary state which is, apart from small fluctuations, well characterized by the density of the system and the residence time of the agents. The residence time defines a collision rate, and by varying this collision rate, the system percolates at a critical value, with the emergence of a giant cluster whose critical exponents are the ones of two-dimensional percolation. Further, the degree and clustering coefficient distributions, and the average path length, show that the network associated with such a system presents non-trivial features which, depending on the collision rules, enables one not only to recover the main properties of standard networks, such as exponential, random and scale-free networks, but also to obtain other topological structures. To illustrate, we show a specific example where the obtained structure has topological features which characterize the structure and evolution of social networks accurately in different contexts, ranging from networks of acquaintances to networks of sexual contacts.

  15. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  16. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  17. Single-shot fluctuations in waveguided high-harmonic generation.

    PubMed

    Goh, S J; Tao, Y; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K-J

    2015-09-21

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

  18. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  19. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    NASA Astrophysics Data System (ADS)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  20. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  1. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  2. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  3. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  4. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  5. Fluctuations, Intermittency and Predictivity

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.

  6. Study on Pyroelectric Harvesters with Various Geometry.

    PubMed

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-08-11

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance.

  7. Study on Pyroelectric Harvesters with Various Geometry

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  8. Thermodynamic geometry: Evolution, correlation and phase transition

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Tiwari, B. N.

    2011-06-01

    Under the fluctuation of the electric charge and atomic mass, this paper considers the theory of the thin film depletion layer formation of an ensemble of finitely excited, non-empty d/f-orbital heavy materials, from the thermodynamic geometric perspective. At each state of the local adiabatic evolutions, we examine the nature of the thermodynamic parameters, viz., electric charge and mass, changing at each respective embedding. The definition of the intrinsic Riemannian geometry and differential topology offers the properties of (i) local heat capacities, (ii) global stability criterion and (iv) global correlation length. Under the Gaussian fluctuations, such an intrinsic geometric consideration is anticipated to be useful in the statistical coating of the thin film layer of a desired quality-fine high cost material on a low cost durable coatant. From the perspective of everyday applications, thermodynamic geometry is thus intrinsically self-consistent with the theory of local and global economic optimizations. Following the above procedure, the quality of the thin layer depletion could self-consistently be examined to produce quality products economically.

  9. Fluctuation relations for anisotropic systems

    NASA Astrophysics Data System (ADS)

    Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.

    2014-02-01

    Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.

  10. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  11. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  12. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  13. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  14. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  15. Core Geometry Manual.

    ERIC Educational Resources Information Center

    Hirata, Li Ann

    Core Geometry is a course offered in the Option Y sequence of the high school mathematics program described by the Hawaii State Department of Education's guidelines. The emphasis of this course is on the general awareness and use of the relationships among points, lines, and figures in planes and space. This sample course is based on the…

  16. Emergent Hyperbolic Network Geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  17. Emergent Hyperbolic Network Geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-07

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  18. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  19. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  20. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  1. Emergent Hyperbolic Network Geometry

    PubMed Central

    Bianconi, Ginestra; Rahmede, Christoph

    2017-01-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry. PMID:28167818

  2. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  3. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  4. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  5. Teaching Geometry with Tangrams.

    ERIC Educational Resources Information Center

    Russell, Dorothy S.; Bologna, Elaine M.

    1982-01-01

    Geometry is viewed as the most neglected area of the elementary school mathematics curriculum. Tangram activities provide numerous worthwhile mathematical experiences for children. A method of constructing tangrams through paper folding is followed by suggested spatial visualization, measurement, and additional activities. (MP)

  6. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…

  7. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  8. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  9. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  10. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  11. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…

  12. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  13. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  14. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  15. Future foam: Nontrivial topology from bubble collisions in eternal inflation

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Yang, I-S.; Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard; Yeh, C.-P.

    2008-09-15

    We study pocket universes which have zero cosmological constant and nontrivial boundary topology. These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the thin-wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino, Susskind and Yeh, should include summation over the genus of the base space of the dual conformal field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.

  16. Centrality determination in heavy-ion collisions with the CBM experiment

    NASA Astrophysics Data System (ADS)

    Klochkov; Selyuzhenkov, I.; CBM collaboration

    2017-01-01

    The size and evolution of the medium created in a heavy-ion collision depends on collision geometry. Experimentally collisions can be characterized by the measured particle multiplicities around midrapidity or by the energy measured in the forward rapidity region, which is sensitive to the spectator fragments. In the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) the multiplicity of produced particles is measured with the silicon tracking system (STS). The projectile spectator detector (PSD) measures the energy of spectator fragments. We present the procedure of collision centrality determination in CBM and its performance using the PSD and the STS information.

  17. Morphology of high-multiplicity events in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Naselsky, P.; Christensen, C. H.; Christensen, P. R.; Damgaard, P. H.; Frejsel, A.; Gaardhøje, J. J.; Hansen, A.; Hansen, M.; Kim, J.; Verkhodanov, O.; Wiedemann, U. A.

    2012-08-01

    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the cosmic microwave background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow, and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of noncollective origin such as jets.

  18. Frequency Spectrum of Fluctuations Near a Rational Surface in a Toroidal Heliac

    NASA Astrophysics Data System (ADS)

    Zama, Tatsuya; Kitajima, Sumio; Takayama, Masakazu; Takeuchi, Nobunao; Watanabe, Hiroshige

    1993-03-01

    Density and space potential fluctuations have been studied in electron cyclotron resonance heating (ECRH) plasma of a helical axis stellarator TU Heliac using Langmuir probe techniques. These fluctuations are coherent and global, which can be explained by a drift instability model in cylindrical geometry. A particular fluctuation mode vanishes inside a rational surface. The ratio of this mode, n/m, corresponds to the rotational transform \\includegraphics{dummy.eps} of this rational surface, (m, n: poloidal, toroidal fluctuation modes, respectively). This phenomenon near the rational surface can also be explained by a drift instability theory.

  19. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  20. Fluctuation Measurements in MRX

    NASA Astrophysics Data System (ADS)

    Carter, T.; Hsu, S.; Zaharia, S.; Ji, H.; Yamada, M.; Kulsrud, R.; Mazzucato, E.

    1998-11-01

    Recently, data(H. Ji, et al), Phys. Rev. Lett., 80, 3256 (1998) from the Magnetic Reconnection Experiment (MRX) have shown agreement with an MHD (Sweet-Parker) scaling modified to include, among other effects, an experimentally measured resistivity in collisionless current sheets for which η > η_Spitzer. Consistent with the observation of enhanced resistivity in these experiments was the measurement of current sheet widths on the order of ρ_i. Current sheet width scaling with ρi implies a drift parameter (v_d,i-v_d,e)/v_th,i which is constant with density. A potential explanation for these three observations is the existence of a current-driven instability in the current sheet of MRX which limits the relative drift speed, enhances the resistivity and widens the reconnection layer. Studies of fluctuations in the current sheet of MRX have begun, and preliminary fluctuation measurements using floating Langmuir and magnetic pick-up probes reveal frequency spectra with strong features near 30 MHz (≈ ω_LH). Theoretical studies of instabilities in the MRX current sheet and detailed measurements of frequency spectra using these diagnostics will be presented along with preliminary measurements using a new 35.6 cm-1 microwave scattering system.

  1. Kinetic simulation of a plasma collision experiment

    NASA Astrophysics Data System (ADS)

    Larroche, Olivier

    1993-08-01

    The ionic Fokker-Planck code which was written for describing plasma shock wave fronts [M. Casanova et al. Phys. Rev. Lett. 67, 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic (``particle-in-cell'') simulations.

  2. Turbulent magnetic fluctuations in laboratory reconnection

    NASA Astrophysics Data System (ADS)

    Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas

    2016-07-01

    The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies

  3. Interferometric probes of Planckian quantum geometry

    NASA Astrophysics Data System (ADS)

    Kwon, Ohkyung

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for non-standard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from Planck scale holographic bounds on directional information. Specific models of holographic spatial position states are adopted to predict mathematical characteristics of a possible quantum geometric departure from perfect coherence of a classical spacetime. Predictions in this case are shown to be close to current experimental bounds from GEO-600 and projected future sensitivity for the Fermilab Holometer. A model-independent statistical framework is also presented. This serves as a generalized method of data interpretation in systems such as the Fermilab Holometer, where the mean time derivative of positional cross correlation between world lines, a measure of geometrical quantum decoherence, is measured with a precision smaller than the Planck time. A parameterized candidate set of possible time domain correlation functions caused by holographic decoherence is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Corresponding predicted frequency-domain power spectra are derived, and simple projections of sensitivity for specific interferometric set-ups show that measurements will directly yield constraints on a universal time derivative of the correlation function, and

  4. Centrality dependence of high-p(T) hadron suppression in Au+Au collisions at sqrt[s(NN)]=130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-11-11

    Inclusive transverse momentum distributions of charged hadrons within 0.2collisions at sqrt[s(NN)]=130 GeV. Hadron yields are suppressed at high p(T) in central collisions relative to peripheral collisions and to a nucleon-nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results indicate significant nuclear medium effects on high-p(T) hadron production in heavy-ion collisions at high energy.

  5. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  6. Absence of jet quenching in peripheral nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Morsch, Andreas

    2017-10-01

    Medium effects on the production of high-pT particles in nucleus-nucleus (AA) collisions are generally quantified by the nuclear modification factor (RAA), defined to be unity in absence of nuclear effects. Modeling particle production including a nucleon-nucleon impact parameter dependence, we demonstrate that RAA at midrapidity in peripheral AA collisions can be significantly affected by event selection and geometry biases. Even without jet quenching and shadowing, these biases cause an apparent suppression for RAA in peripheral collisions, and are relevant for all types of hard probes and all collision energies. Our studies indicate that calculations of jet quenching in peripheral AA collisions should account for the biases, or else they will overestimate the relevance of parton energy loss. Similarly, expectations of parton energy loss in light-heavy collision systems based on comparison with apparent suppression seen in peripheral RAA should be revised. Our interpretation of the peripheral RAA data would unify observations for lighter collision systems or lower energies where significant values of elliptic flow are observed despite the absence of strong jet quenching.

  7. Azimuthal anisotropy in U+U collisions at STAR

    SciTech Connect

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)

  8. Azimuthal anisotropy in U+U collisions at STAR

    DOE PAGES

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degreemore » Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less

  9. Quantifying economic fluctuations

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Nunes Amaral, Luis A.; Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki

    2001-12-01

    This manuscript is a brief summary of a talk designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena-scale invariance and universality-can be useful in guiding research on interpreting empirical data on economic fluctuations. Using this conceptual framework as a guide, we empirically quantify the relation between trading activity-measured by the number of transactions N-and the price change G( t) for a given stock, over a time interval [ t, t+Δ t]. We relate the time-dependent standard deviation of price changes-volatility-to two microscopic quantities: the number of transactions N( t) in Δ t and the variance W2( t) of the price changes for all transactions in Δ t. We find that the long-ranged volatility correlations are largely due to those of N. We then argue that the tail-exponent of the distribution of N is insufficient to account for the tail-exponent of P{ G> x}. Since N and W display only weak inter-dependency, our results show that the fat tails of the distribution P{ G> x} arises from W. Finally, we review recent work on quantifying collective behavior among stocks by applying the conceptual framework of random matrix theory (RMT). RMT makes predictions for “universal” properties that do not depend on the interactions between the elements comprising the system, and deviations from RMT provide clues regarding system-specific properties. We compare the statistics of the cross-correlation matrix C-whose elements Cij are the correlation coefficients of price fluctuations of stock i and j-against a random matrix having the same symmetry properties. It is found that RMT methods can distinguish random and non-random parts of C. The non-random part of C which deviates from RMT results, provides information regarding genuine collective behavior among stocks. We also discuss results that are reminiscent of phase transitions in spin systems, where the divergent behavior of the response function at

  10. Conjunctions and Collision Avoidance with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Levin, E.

    2013-09-01

    Electrodynamic propulsion technology is currently in development by NASA, ESA, and JAXA for the purpose of affordable removal of large debris objects from LEO. At the same time, the Naval Research Laboratory is preparing a 3U CubeSat with a 1-km electrodynamic tether for a flight demonstration of electrodynamic propulsion. This type of propulsion does not require fuel. The electrodynamic thrust is the Lorentz force acting on the electric current in a long conductor (tether) in the geomagnetic field. Electrons are collected from the ambient plasma on one end and emitted back into the plasma from the other end. The electric current loop is closed through the ionosphere, as demonstrated in two previous flights. The vehicle is solar powered. To support safe navigation of electrodynamic tethers, proper conjunction analysis and collision avoidance strategies are needed. The typical lengths of electrodynamic tethers for near-term applications are measured in kilometers, and the conjunction geometry is very different from the geometry of conjunctions between compact objects. It is commonly thought that the collision cross-section in a conjunction between a tether and a compact object is represented by the product of the tether length and the size of the object. However, rigorous analysis shows that this is not the case, and that the above assumption leads to grossly overestimated collision probabilities. The paper will present the results of a detailed mathematical analysis of the conjunction geometry and collision probabilities in close approaches between electrodynamic tethers and compact objects, such as satellites, rocket bodies, and debris fragments. Electrodynamic spacecraft will not require fuel, and therefore, can thrust constantly. Their orbit transfers can take many days, but can result in major orbit changes, including large rotations of the orbital plane, both in the inclination and the node. During these orbit transfers, the electrodynamic spacecraft will

  11. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

  12. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  13. The fluctuation test.

    PubMed

    Bridges, B A

    1980-11-01

    The fluctuation test is an assay for the detection of mutation induction in bacteria by chemicals, carried out in liquid medium, and scored by counting the number out of around 50 tubes or wells that turn yellow. It is suitable for the Ames Salmonella strains or for Escherichia coli WP2 trp and its derivatives. Calcium precipitated microsomes, S9 fraction or freshly prepared hepatocytes can be incorporated for metabolic activation. It is comparable to the Ames test in its ability to detect mutagens and carcinogens and generally shares the limitations of that test as regards extrapolation to animals and man. Its disadvantages are that it is marginally slower and slightly more labour intensive than the Ames protocol. For certain applications, however, these disadvantages may be offset by the advantages of somewhat greater sensitivity, ability to be automated, and facility for using hepatocytes for metabolic activation. The test is particularly suitable for the testing of aqueous samples containing low levels of mutagen.

  14. Fluctuations in polymer translocation

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Mallick, K.

    2010-07-01

    We investigate a model of chaperone-assisted polymer translocation through a nanopore in a membrane. Translocation is driven by irreversible random sequential absorption of chaperone proteins that bind to the polymer on one side of the membrane. The proteins are larger than the pore and hence the backward motion of the polymer is inhibited. This mechanism rectifies Brownian fluctuations and results in an effective force that drags the polymer in a preferred direction. The translocated polymer undergoes an effective biased random walk and we compute the corresponding diffusion constant. Our methods allow us to determine the large deviation function which, in addition to velocity and diffusion constant, contains the entire statistics of the translocated length.

  15. E 8 geometry

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin; Rosabal, J. A.

    2015-07-01

    We investigate exceptional generalised diffeomorphisms based on E 8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL( n + 1) is sketched. Some related issues are discussed.

  16. Emergent geometry, emergent forces

    NASA Astrophysics Data System (ADS)

    Selesnick, S. A.

    2017-10-01

    We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein

  17. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  18. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  19. Nanoscale thermal fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Louis

    The utilization of thermal fluctuations or Johnson/Nyquist noise as a spectroscopic method to determine transport properties in conductors or semiconductors is developed in this paper. The autocorrelation function is obtained from power spectral density measurements thus enabling electronic transport property calculation through the Green-Kubo formalism. This experimental approach is distinct from traditional numerical methods such as molecular dynamics simulations, which have been used to extract the autocorrelation function and directly related physics only. This work reports multi-transport property measurements consisting of the electronic relaxation time, resistivity, mobility, diffusion coefficient, electronic contribution to thermal conductivity and Lorenz number from experimental data. Double validation of the experiment was accomplished through the use of a standard reference material and a standard measurement method, i.e. four-probe collinear resistivity technique. The advantages to this new experimental technique include the elimination of any required thermal or potential gradients, multi-transport property measurements within one experiment, very low error and the ability to apply controlled boundary conditions while gathering data. This research has experimentally assessed the gas pressure and flow effects of helium and argon on 30 nm Au and Cu thin films. The results show a reduction in Au and Cu electronic thermal conductivity and electrical resistivity when subjected to helium and argon pressure and flow. The perturbed electronic transport coefficients, attributed to increased electron scattering at the surface, were so dominant that further data was collected through straight-forward resistance measurements. The resistance data confirmed the thermal noise measurements thus lending considerable evidence to the presence of thin film surface scattering due to elastic and inelastic gas particle scattering effects with the electron ensemble. Keywords

  20. Fluctuating multicomponent lattice Boltzmann model.

    PubMed

    Belardinelli, D; Sbragaglia, M; Biferale, L; Gross, M; Varnik, F

    2015-02-01

    Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.

  1. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  2. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  3. Noncommutative geometry and arithmetics

    NASA Astrophysics Data System (ADS)

    Almeida, P.

    2009-09-01

    We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.

  4. Poisson-Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Beggs, Edwin J.; Majid, Shahn

    2017-04-01

    We study noncommutative bundles and Riemannian geometry at the semiclassical level of first order in a deformation parameter λ, using a functorial approach. This leads us to field equations of 'Poisson-Riemannian geometry' between the classical metric, the Poisson bracket and a certain Poisson-compatible connection needed as initial data for the quantisation of the differential structure. We use such data to define a functor Q to O(λ2) from the monoidal category of all classical vector bundles equipped with connections to the monoidal category of bimodules equipped with bimodule connections over the quantised algebra. This is used to 'semiquantise' the wedge product of the exterior algebra and in the Riemannian case, the metric and the Levi-Civita connection in the sense of constructing a noncommutative geometry to O(λ2) . We solve our field equations for the Schwarzschild black-hole metric under the assumption of spherical symmetry and classical dimension, finding a unique solution and the necessity of nonassociativity at order λ2, which is similar to previous results for quantum groups. The paper also includes a nonassociative hyperboloid, nonassociative fuzzy sphere and our previously algebraic bicrossproduct model.

  5. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  6. Integral geometry and holography

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  7. Robot motion planning with virtually modified geometry

    NASA Astrophysics Data System (ADS)

    Baginski, Boris

    1998-07-01

    We present a novel approach to motion planning for robot manipulators in known environments. The key concept is to evaluate complete trajectories between start and goal in the workspace and to reshape them incrementally. The evaluation is based on virtual modifications, especially shrinking and expansion, of the geometry model of the robot. The trajectories are bended in space to be improved with respect to the evaluation. We initialize this planning with a possibly colliding connection, evaluate it in our world model and incrementally decrease the degree of collision for the whole trajectory. The planning is applicable to realistic robot tasks, even problems with a high number of degrees of freedom can be solved easily. The principle of planning with whole trajectories instead of a moving position along a trajectory can be seen as a shift of perspective that may serve as an example for other planning domains.

  8. Transport generated by dichotomous fluctuations

    NASA Astrophysics Data System (ADS)

    Kula, J.; Czernik, T.; łuczka, J.

    1996-02-01

    Overdamped motion of Brownian particles in spatially periodic potentials and subjected to fluctuations modeled by asymmetric exponentially correlated two-state noise of zero mean value is considered. The probability current is presented in a closed form and analyzed in asymptotic regimes of very long and very short correlation times of the fluctuations. Explicit results are obtained for a piecewise linear potential. The role of correlations and temporal asymmetry of fluctuations is elucidated.

  9. Emergent fuzzy geometry and fuzzy physics in four dimensions

    NASA Astrophysics Data System (ADS)

    Ydri, Badis; Rouag, Ahlam; Ramda, Khaled

    2017-03-01

    A detailed Monte Carlo calculation of the phase diagram of bosonic mass-deformed IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a noncommutative U (1) gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres SN2 and SN2 × SN2 respectively. The three and six matrix models are effectively in the same universality class. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit M ⟶ ∞, where M is the mass of the normal fluctuations. The behaviors of the eigenvalue distribution in the two theories are also different. We also sketch how we can obtain a stable fuzzy four-sphere SN2 × SN2 in the large N limit for all values of M as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.

  10. Thermodynamic theory of equilibrium fluctuations

    SciTech Connect

    Mishin, Y.

    2015-12-15

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  11. Theory of slightly fluctuating ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.

    2017-04-01

    We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.

  12. Asteroidal collision probabilities

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Greenberg, R.

    1993-05-01

    Several past calculations of collision probabilities between pairs of bodies on independent orbits have yielded inconsistent results. We review the methodologies and identify their various problems. Greenberg's (1982) collision probability formalism (now with a corrected symmetry assumption) is equivalent to Wetherill's (1967) approach, except that it includes a way to avoid singularities near apsides. That method shows that the procedure by Namiki and Binzel (1991) was accurate for those cases where singularities did not arise.

  13. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  14. ACCELERATION OF VERY SMALL DUST GRAINS DUE TO RANDOM CHARGE FLUCTUATIONS

    SciTech Connect

    Hoang, Thiem; Lazarian, A.

    2012-12-20

    We study the acceleration of very small dust grains including polycyclic aromatic hydrocarbons arising from electrostatic interactions of dust grains that have charge fluctuating randomly in time. Random charge fluctuations of very small grains due to discrete charging events (i.e., sticking collisions with electrons and ions in plasma, and emission of photoelectrons by UV photons) are simulated using the Monte Carlo (MC) method. The motion of dust grains in randomly fluctuating electric fields induced by surrounding charged grains is studied using MC simulations. We identify the acceleration induced by random charge fluctuations as a dominant acceleration mechanism for very small grains in the diffuse interstellar medium (ISM). We find that this acceleration mechanism is efficient for environments with a low degree of ionization (i.e., large Debye length), where charge fluctuations are slow but have a large amplitude. The implications of the present acceleration mechanism for grain coagulation and shattering in the diffuse ISM and dark clouds are also discussed.

  15. Investigating the multiparticle decay in intermediate energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    del Zoppo, A.; Alba, R.; Coniglione, R.; Agodi, C.; Bellia, G.; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Migneco, E.; Peghaire, A.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1994-06-01

    Exclusive measurements of light charged products (LCP) in the 132Xe+197Au collisions at 44 MeV/nucleon have been performed using MEDEA 4π detection system. The admixture of each partricle type into the LCP multiplicity is found to be almost independent of the impact parameter. The data are analyzed with a formalism where the fluctuations of the multiparticle decay are described by uncorrelated Poissonian statistical distributions. The impact parameter filtering is performed using the LCP multiplicity. Self-correlation and impact parameter averagining effects are identified. The dominance of the statistical contribution in the fluctuations of the LCP multiplicity is deduced.

  16. Speed-dependent collision effects on radar back-scattering from the ionosphere. [incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Behl, Y. K.; Theimer, O. H.

    1982-01-01

    The question whether the differences between fluctuation spectra for linearly speed-dependent and speed-independent collision frequencies could account for disagreements between rocket and incoherent scatter estimate was addressed. The basic theory used for computing the fluctuation spectrum is outlined. The speed-dependence of the charge-neutral collision frequency is discussed, with special emphasis on its derivation from the mobility measurements. Various developments of the computer code used for the computation of the fluctuation spectrum are described. The range of values of input parameters typical to the collision-dominated ionosphere are briefly described. The computational results are presented, and the significance and limitation of these results and the future scope of the research are discussed.

  17. Fluctuations in electron cyclotron resonance plasma in a divergent magnetic field

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Fredriksen, Åshild; Chandra, Sayan

    2016-02-01

    The dependence of fluctuations on electron-neutral collision frequency (νen) and the radial location is investigated in an electron cyclotron resonance plasma in a divergent magnetic field region for a set of magnetic fields. Results indicate that the fluctuations depend strongly on the collision frequency. At lower magnetic fields and νen, the fluctuation levels are small and are observed to peak around 3-5 cm from the central plasma region. Coherent wave modes are found to contribute up to about 30% of the total fluctuation power, and two to three harmonics are present in the power spectra. There are two principal modes present in the discharge: one appears to be a dissipative mode associated with a collisional drift wave instability initiated at a lower pressure (collision frequencies) (˜0.5 mTorr) and is stabilized at a higher pressure (≳3 mTorr). The other mode appears at intermediate pressure (≳1.75 mTorr) and possesses the signature of a flute instability. The fluctuation levels indicate that flute modes are predominant in the discharge at higher pressures ( >1.75 mTorr) and at higher values of the magnetic field (˜540 Gauss).

  18. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    SciTech Connect

    Nygård, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-02-16

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  19. Arcminute fluctuations in the microwave background from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Blumenthal, G. R.; Forman, W.; Jones, C.; Suniaev, R. A.

    1992-01-01

    A method for computing arcmin microwave fluctuations produced by Compton scattering of the cosmic background photons by hot electrons in clusters of galaxies is described. Microwave images of the sky for a range of Omega and primordial fluctuation spectral index n are generated which are then 'observed' to determine Delta T/T in precisely the same manner as actual observations to determine if the cluster-induced fluctuations are consistent with the measured upper limit. The geometry used by Uson and Wilkinson (1984) in the NRAO experiment and Readhead et al. (1989) in the OVRO experiment are applied to the simulated images. The 95 percent confidence lower limit for Omega is found to be about 1/10 for n = -1 (which approximates the CDM mass spectrum for clusters), while for n = 0 it is 1/7; for n = +1 the limit is 1/5 if the gas density profile extends to five core radii.

  20. BABE - a brush cathode discharge for thermal fluctuation measurements

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Dilecce, G.; Tolias, P.

    2015-04-01

    For experimental tests of fluctuation theory in ideal plasmas and plasmas seeded with dust, the ideal environment would be that of stable quiescent plasma. In most laboratory plasmas the homogeneous state of the positive column is often unstable, rare exceptions are the so-called brush cathode discharges, proposed in the 60s, where a specially manufactured cathode allows stable operation in the abnormal glow regime and the only fluctuations present are those due the thermal motion of the particles. Such a device, the BAri Brush Electrode (BABE), has recently been built in a novel configuration that combines the advantages of the inverse design with those of the reflex geometry. The region between the two anodes is essentially field-free and extremely stable in wide range of plasma densities and collisionalities. Unprecedented low fluctuation levels of δn/n <= 10-5 in He and δn/n <= 5 × 10-6 in Ar discharges have been achieved.

  1. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-01-01

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  2. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  3. Physics of Nuclear Collisions at High Energy

    SciTech Connect

    Hwa, Rudolph C.

    2012-05-01

    A wide range of problems has been investigated in the research program during the period of this grant. Although the major effort has been in the subject of heavy-ion collisions, we have also studied problems in biological and other physical systems. The method of analysis used in reducing complex data in multiparticle production to simple descriptions can also be applied to the study of complex systems of very different nature. Phase transition is an important phenomenon in many areas of physics, and for heavy-ion collisions we study the fluctuations of multiplicities at the critical point. Human brain activities as revealed in EEG also involve fluctuations in time series, and we have found that our experience enables us to find the appropriate quantification of the fluctuations in ways that can differentiate stroke and normal subjects. The main topic that characterizes the research at Oregon in heavy-ion collisions is the recombination model for the treatment of the hadronization process. We have avoided the hydrodynamical model partly because there is already a large community engaged in it, but more significantly we have found the assumption of rapid thermalization unconvincing. Recent results in studying LHC physics lead us to provide more evidence that shower partons are very important even at low p_T, but are ignored by hydro. It is not easy to work in an environment where the conventional wisdom regards our approach as being incorrect because it does not adhere to the standard paradigm. But that is just what a vibrant research community needs: unconventional approach may find evidences that can challenge the orthodoxy. An example is the usual belief that elliptic flow in fluid dynamics gives rise to azimuthal anisotropy. We claim that it is only sufficient but not necessary. With more data from LHC and more independent thinkers working on the subject what is sufficient as a theory may turn out to be incorrect in reality. Another area of investigation that

  4. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, P.J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to

  5. Extreme localized exhumation at syntaxes initiated by subduction geometry

    NASA Astrophysics Data System (ADS)

    Bendick, Rebecca; Ehlers, Todd A.

    2014-08-01

    Some of the highest and most localized rates of lithospheric deformation in the world are observed at the transition between adjacent plate boundary subduction segments. The initiating perturbation of this deformation has long been attributed to vigorous erosional processes as observed at Nanga Parbat and Namche Barwa in the Himalaya and at Mount St. Elias in Alaska. However, an erosion-dominated mechanism ignores the 3-D geometry of curved subducting plates. Here we present an alternative explanation for rapid exhumation at these locations based on the 3-D thermomechanical evolution of collisions between plates with nonplanar geometries. Comparison of model predictions with existing data reproduces the defining characteristics of these mountains and offers an explanation for their spatial correlation with arc termini. These results demonstrate a "bottom-up" tectonic rather than "top-down" erosional initiation of feedbacks between erosion and tectonic deformation; hence, the importance of 3-D subduction geometry.

  6. Visually guided collision avoidance and collision achievement.

    PubMed

    Regan; Gray

    2000-03-01

    To survive on today's highways, a driver must have highly developed skills in visually guided collision avoidance. To play such games as cricket, tennis or baseball demands accurate, precise and reliable collision achievement. This review discusses evidence that some of these tasks are performed by predicting where an object will be at some sharply defined instant, several hundred milliseconds in the future, while other tasks are performed by utilizing the fact that some of our motor actions change what we see in ways that obey lawful relationships, and can therefore be learned. Several monocular and binocular visual correlates of the direction of an object's motion relative to the observer's head have been derived theoretically, along with visual correlates of the time to collision with an approaching object. Although laboratory psychophysics can identify putative neural mechanisms by showing which of the known correlates are processed by the human visual system independently of other visual information, it is only field research on, for example, driving, aviation and sport that can show which visual cues are actually used in these activities. This article reviews this research and describes a general psychophysically based rational approach to the design of such field studies.

  7. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  8. GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS

    SciTech Connect

    Wu, Benjamin; Loo, Sven Van; Tan, Jonathan C.; Bruderer, Simon

    2015-09-20

    We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.

  9. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  10. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  11. Teaching of Geometry in Bulgaria

    ERIC Educational Resources Information Center

    Bankov, Kiril

    2013-01-01

    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  12. Geometrie verstehen: statisch - kinematisch

    NASA Astrophysics Data System (ADS)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  13. Models of molecular geometry.

    PubMed

    Gillespie, Ronald J; Robinson, Edward A

    2005-05-01

    Although the structure of almost any molecule can now be obtained by ab initio calculations chemists still look for simple answers to the question "What determines the geometry of a given molecule?" For this purpose they make use of various models such as the VSEPR model and qualitative quantum mechanical models such as those based on the valence bond theory. The present state of such models, and the support for them provided by recently developed methods for analyzing calculated electron densities, are reviewed and discussed in this tutorial review.

  14. Diffusion in quantum geometry

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca

    2012-08-01

    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.

  15. Chemical Applications of Fluctuation Spectroscopy.

    ERIC Educational Resources Information Center

    Green, Michael E.

    1984-01-01

    Examines some of the possibilities for applying the noise spectroscopic technique as well as the origin of noise (or fluctuations) which accompanies transport in physical systems. Indicates that fluctuation techniques are useful in studying liposome and micelle suspensions, liquid-liquid surfaces, semiconductors, and semiconductor devices. (JN)

  16. Fluctuation Relations for Molecular Motors

    NASA Astrophysics Data System (ADS)

    Lacoste, David; Mallick, Kirone

    This review is focused on the application of specific fluctuation relations, such as the Gallavotti-Cohen relation, to ratchet models of a molecular motor. A special emphasis is placed on two-state models such as the flashing ratchet model. We derive the Gallavotti-Cohen fluctuation relation for these models and we discuss some of its implications.

  17. Fluctuating Selection in the Moran

    PubMed Central

    Dean, Antony M.; Lehman, Clarence; Yi, Xiao

    2017-01-01

    Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises dn/ds ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the dn/ds ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. PMID:28108586

  18. Chemical Applications of Fluctuation Spectroscopy.

    ERIC Educational Resources Information Center

    Green, Michael E.

    1984-01-01

    Examines some of the possibilities for applying the noise spectroscopic technique as well as the origin of noise (or fluctuations) which accompanies transport in physical systems. Indicates that fluctuation techniques are useful in studying liposome and micelle suspensions, liquid-liquid surfaces, semiconductors, and semiconductor devices. (JN)

  19. Time ordering in atomic collisions

    NASA Astrophysics Data System (ADS)

    McGuire, J. H.; Godunov, A. L.; Shakov, Kh Kh; Kaplan, L.; Burin, A.; Uskov, D.

    2007-06-01

    Time ordering constrains interactions to occur in increasing (or decreasing) order. This places a constraint on the time evolution of the system and can lead to correlations in time of different particles in a few/many body system. Unlike overall time reversal, time ordering is not a conserved symmetry of the atomic system. A number of examples of observable effects of time ordering are presented. A convenient way to describe time ordering is to define the limit of no time ordering by replacing the instantaneous interaction by its time average. This is similar to the way in which spatial correlation is defined. Like spatial correlation, time ordering is usually formulated in the interaction representation. The effects of time ordering can differ in different representations. In energy space, conjugate to time space, time ordering is imposed as the i ɛ term in the Greens' function that corresponds to an initial condition (usually incoming plane waves and outgoing scattered waves). This permits off-energy-shell (energy non- conserving) fluctuations during the collision consistent with the Uncertainty Principle.

  20. Signatures of new phenomena in ultrarelativistic nuclear collisions

    SciTech Connect

    Gyulassy, M.

    1983-11-01

    Three classes of observables are discussed which may shed light on the properties of the quark-gluon plasma formed in ultrarelativistic nuclear collisions. They are: (1) thermometers: the penetrating probes ..mu../sup +/..mu../sup -/, ..gamma.., c, (2) barometers: transverse flow via

    , and (3) seismometers: fluctuations of dN/dy and dE perpendicular/dy. The need for reliable estimates of the background due to the non-equilibrium processes is emphasized. 49 references.

  1. Frequency fluctuations in silicon nanoresonators

    PubMed Central

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien

    2016-01-01

    Frequency stability is key to performance of nanoresonators. This stability is thought to reach a limit with the resonator’s ability to resolve thermally-induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature, and found a similar discrepancy. We propose a new method to show this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826

  2. Cosmic fluctuations from a quantum effective action

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-10-01

    Does the observable spectrum of cosmic fluctuations depend on detailed initial conditions? This addresses the question if the general inflationary paradigm is sufficient to predict within a given model the spectrum and amplitude of cosmic fluctuations, or if additional particular assumptions about the initial conditions are needed. The answer depends on the number of e -foldings Nin between the beginning of inflation and horizon crossing of the observable fluctuations. We discuss an interacting inflaton field in an arbitrary homogeneous and isotropic geometry, employing the quantum effective action Γ . An exact time evolution equation for the correlation function involves the second functional derivative Γ(2 ) . The operator formalism and quantum vacua for interacting fields are not needed. Use of the effective action also allows one to address the change of frames by field transformations (field relativity). Within the approximation of a derivative expansion for the effective action we find the most general solution for the correlation function, including mixed quantum states. For not too large Nin the memory of the initial conditions is preserved. In this case the cosmic microwave background cannot disentangle between the initial spectrum and its processing at horizon crossing. The inflaton potential cannot be reconstructed without assumptions about the initial state of the universe. We argue that for very large Nin a universal scaling form of the correlation function is reached for the range of observable modes. This can be due to symmetrization and equilibration effects, not yet contained in our approximation, which drive the short distance tail of the correlation function toward the Lorentz invariant propagator in flat space.

  3. Core geometry in perspective

    PubMed Central

    Dillon, Moira R.; Spelke, Elizabeth S.

    2015-01-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089

  4. Proterozoic Geomagnetic Field Geometry

    NASA Astrophysics Data System (ADS)

    Panzik, J. E.; Evans, D. A.

    2011-12-01

    Pre-Mesozoic continental reconstructions and paleoclimatic inferences from paleomagnetism rely critically upon the assumption of a time-averaged geocentric axial dipole (GAD) magnetic field. We have been testing the GAD assumption and localized non-dipole components in a different manner, by observing directional variations within the Matachewan, Mackenzie and Franklin dyke swarms. Large dyke swarms, commonly emplaced within a few million years, provide the necessary broad areal coverage to perform a test of global geomagnetic field geometry. Our analysis varies the quadrupole and octupole values of the generalized paleolatitude equation to determine a minimal angular dispersion and maximum precision of paleopoles from each dyke swarm. As a control, paleomagnetic data from the central Atlantic magmatic province (CAMP) show the sensitivities of our method to non-GAD contributions to the ancient geomagnetic field. Within the uncertainties, CAMP data are consistent with independent estimates of non-GAD contributions derived from global tectonic reconstructions (Torsvik & Van der Voo, 2002). Current results from the three Proterozoic dyke swarms all have best fits that are non-dipolar, but they differ in their optimal quadrupole/ octupole components. Treated together under the hypothesis of a static Proterozoic field geometry, the data allow a pure GAD geodynamo within the uncertainty of the method. Current results were performed using Fisherian statistics, but Bingham statistics will be included to account for the ellipticity of data.

  5. Centrality and multiparticle production in ultrarelativistic nuclear collisions

    SciTech Connect

    Drozhzhova, T. A.; Kovalenko, V. N.; Seryakov, A. Yu.; Feofilov, G. A.

    2016-09-15

    A critical analysis of methods for selecting central events in high-energy proton–nucleus (pA) and nucleus–nucleus (AA) collisions is presented. A sample of event classes in which background fluctuations associated with the dispersion of the impact parameter of each event or the number of participant nucleons are minimal is examined. At the SPS and LHC energies, the numbers of nucleon–nucleon collisions are estimated with the aid of the Monte Carlo event generators HIJING and AMPT, which take into account energy–momentum conservation, and on the basis of a non-Glauber model involving string fusion and a modified Glauber model. The results obtained in this way demonstrate the need for revising the extensively used application of the Glauber model in normalizing multiplicity yields in experimental data on pA and AA collisions in the soft region of the spectrum.

  6. Solving a generalized distance geometry problem for protein structure determination.

    PubMed

    Sit, Atilla; Wu, Zhijun

    2011-12-01

    We propose a new approach to the problem of determining an ensemble of protein structures with a set of interatomic distance bounds in NMR protein modeling. Similarly to X-ray crystallography, we assume that the protein has an equilibrium structure and the atoms fluctuate around their equilibrium positions. Then, the problem can be formulated as a generalized distance geometry problem, to find the equilibrium positions and maximal possible fluctuation radii for the atoms in the protein, subject to the condition that the fluctuations should be within the given distance bounds. We describe the scientific background of the work, the motivation of the new approach and the formulation of the problem. We develop a geometric buildup algorithm for an approximate solution to the problem and present some preliminary test results as a first step concept proofing. We also discuss related theoretical and computational issues and potential impacts of this work in NMR protein modeling.

  7. Geometry of escort distributions

    NASA Astrophysics Data System (ADS)

    Abe, Sumiyoshi

    2003-09-01

    Given an original distribution, its statistical and probabilistic attributes may be scanned using the associated escort distribution introduced by Beck and Schlögl and employed in the formulation of nonextensive statistical mechanics. Here, the geometric structure of the one-parameter family of the escort distributions is studied based on the Kullback-Leibler divergence and the relevant Fisher metric. It is shown that the Fisher metric is given in terms of the generalized bit variance, which measures fluctuations of the crowding index of a multifractal. The Cramér-Rao inequality leads to a fundamental limit for the precision of the statistical estimate of the order of the escort distribution. We also show quantitatively that it is inappropriate to use the original distribution instead of the escort distribution for calculating the expectation values of physical quantities in nonextensive statistical mechanics.

  8. Relating measurable correlations in heavy ion collisions to bulk properties of equilibrated QCD matter

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Young, Clint

    2017-05-01

    To compare theoretical calculations of thermal fluctuations of conserved quantities, such as charge susceptibilities or specific heat, to experimentally measured correlations and fluctuations in heavy ion collisions, one must confront the reality of changing conditions within the collision environment and transport of conserved quantities within the finite duration of the expansion and dissolution of the reaction. In previous work, fluctuations of conserved charges from lattice calculations, where charge is allowed to fluctuate within the designated volume consistent with the grand canonical ensemble, was linked to correlations in heavy ion collisions, which accounted for the finite time with which to transport absolutely conserved quantities. In this case details of the correlations were related to the evolution of the susceptibility. In this work, this paradigm is extended to compare fluctuations of momentum or energy to transverse energy correlations that can be measured in heavy ion collisions. The sensitivity of these correlations to the equation of state, viscosity, and diffusion is illustrated by considering simple models without transverse expansion. Only correlations in relative spatial rapidity are discussed here, but the prospects for extending these ideas to realistic calculations and for making realistic connections with experiment are discussed.

  9. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.

    PubMed

    Mardoukhi, Yousof; Jeon, Jae-Hyung; Metzler, Ralf

    2015-11-28

    We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.

  10. Statistical interpretation of traveltime fluctuations

    NASA Astrophysics Data System (ADS)

    Roth, Michael

    1997-02-01

    A ray-theoretical relation between the autocorrelation functions of traveltime and slowness fluctuations is established for recording profiles with arbitrary angles to the propagation direction of a plane wave. From this relation follows that the variance of traveltime fluctuations is independent of the profile orientation and proportional to the variance, ɛ2, of slowness fluctuations, to the correlation distance, a, and to the propagation distance L. The halfwidth of the autocorrelation function of traveltime fluctuations is proportional to a and decreases with increasing profile angle. This relationship allows us to estimate the statistical parameters ɛ and a from observed traveltime fluctuations. Numerical experiments for spatial isotropic random media characterized by a Gaussian autocorrelation function show that the statistical parameters can be reproduced successfully if L/a ≤ 10 . For larger L/a the correlation distance is overestimated and the standard deviation is underestimated. However, the results of the numerical experiments provide empirical factors to correct for these effects. The theory is applied to observed traveltime fluctuations of the Pg phase on a profile of the BABEL project. For the upper crust east of Øland (Sweden) slowness fluctuations with standard deviation ɛ = 2.2-5% and correlation distance a = 330-600 m are found.

  11. Suppression of Acoustic Fluctuations in a Supersonic MHD Shear Flow

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger; Adamovich, Igor; Zhong, Xiaolin; Gogineni, Sivaram

    2002-11-01

    MHD effects on low-temperature ionized supersonic flows have been investigated experimentally. The main objective was to determine whether the Lorentz force produced by permanent magnets in supersonic flows of nonequilibrium plasmas affects the intensity of turbulent boundary layer pressure fluctuations. A combination of transverse RF and transverse non-self-sustained DC discharges generate stable ionization in steady-state M=4 helium flows, and sustain a transverse current that produces a streamwise Lorentz force in the presence of a magnetic field. Changing the polarity of the transverse DC field changes the Lorentz force direction between an accelerating and a retarding force. A miniature microphone placed in the test section wall is used to measure a reproducible effect of the Lorentz force on the pressure fluctuation spectra. In particular, the pressure fluctuation intensity is reduced for a retarding Lorentz force. When the magnetic field direction is reversed, the same effect of reduction of the pressure fluctuation intensity is observed for the opposite DC field polarity, i.e. again for the retarding Lorentz force. Changing the DC field polarity in a non-magnetic supersonic nozzle of the same geometry and at the same plenum and plasma conditions did not produce any detectable effect on the pressure fluctuation spectrum.

  12. Critique of information geometry

    SciTech Connect

    Skilling, John

    2014-12-05

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  13. Noncommutative geometry of Zitterbewegung

    NASA Astrophysics Data System (ADS)

    Eckstein, Michał; Franco, Nicolas; Miller, Tomasz

    2017-03-01

    Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung—the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

  14. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  15. Analyzing cosmic bubble collisions

    SciTech Connect

    Gobbetti, Roberto; Kleban, Matthew E-mail: mk161@nyu.edu

    2012-05-01

    We develop a set of controlled, analytic approximations to study the effects of bubble collisions on cosmology. We expand the initial perturbation to the inflaton field caused by the collision in a general power series, and determine its time evolution during inflation in terms of the coefficients in the expansion. In models where the observer's bubble undergoes sufficient slow-roll inflation to solve the flatness problem, in the thin wall limit only one coefficient in the expansion is relevant to observational cosmology, allowing nearly model-independent predictions. We discuss two approaches to determining the initial perturbation to the inflaton and the implications for the sign of the effect (a hot or cold spot on the Cosmic Microwave Background temperature map). Lastly, we analyze the effects of collisions with thick-wall bubbles, i.e. away from the thin-wall limit.

  16. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  17. Collision of cosmic superstrings

    SciTech Connect

    Copeland, E. J.; Firouzjahi, H.; Kibble, T. W. B.; Steer, D. A.

    2008-03-15

    We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.

  18. Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Ma, Y. G.; Chen, J. H.; He, W. B.; Zhong, C.

    2017-06-01

    The initial geometry effect on collective flows, which are inherited from initial projectile structure, is studied in relativistic heavy-ion collisions of 12C+197Au by using a multiphase transport model (AMPT). Elliptic flow (v2) and triangular flow (v3) which are significantly resulted from the chain and triangle structure of 12C with three-α clusters, respectively, in central 12C+197Au collisions are compared with the flow from the Woods-Saxon distribution of nucleons in 12C. v3/v2 is proposed as a probe to distinguish the pattern of α -clustered 12C. This study demonstrates that the initial geometry of the collision zone inherited from nuclear structure can be explored by collective flow at the final stage in heavy-ion collisions.

  19. Magnetism in curved geometries

    DOE PAGES

    Streubel, Robert; Fischer, Peter; Kronast, Florian; ...

    2016-08-17

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. Asmore » a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.« less

  20. Magnetism in curved geometries

    SciTech Connect

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-08-17

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  1. Magnetism in curved geometries

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  2. Fluctuation theorem: A critical review

    NASA Astrophysics Data System (ADS)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  3. Steady flow through a constricted cylinder by multiparticle collision dynamics.

    PubMed

    Bedkihal, Salil; Kumaradas, J Carl; Rohlf, Katrin

    2013-10-01

    The flow characterization of blood through healthy and diseased flow geometries is of interest to researchers and clinicians alike, as it may allow for early detection, and monitoring, of cardiovascular disease. In this paper, we use a numerically efficient particle-based flow model called multiparticle collision dynamics (MPC for short) to study the effect of compressibility and slip of flow of a Newtonian fluid through a cylinder with a local constriction. We use a cumulative averaging method to compare our MPC results to the finite-element solution of the incompressible no-slip Navier-Stokes equations in the same geometry. We concentrate on low Reynolds number flows [[Formula: see text

  4. About the Collision Repair Campaign

    EPA Pesticide Factsheets

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  5. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  6. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  7. Calculation of eigenvalues for neutron transport equation using Henyey-Greenstein phase function in slab geometry

    NASA Astrophysics Data System (ADS)

    Bülbül, Ahmet

    2016-11-01

    Eigenvalues are obtained for one-dimensional steady-state neutron transport equation in slab geometry using Henyey-Greenstein (HG) phase function. Firstly, HG phase function is inserted into neutron transport equation then eigenvalues are calculated for different values of collision parameters c and t parameters. All results are calculated for P9 and U9 approximation and these results compared each other.

  8. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  9. Quantum entanglement and temperature fluctuations.

    PubMed

    Ourabah, Kamel; Tribeche, Mouloud

    2017-04-01

    In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.

  10. Local fluctuations in solution mixtures

    PubMed Central

    Ploetz, Elizabeth A.; Smith, Paul E.

    2011-01-01

    An extension of the traditional Kirkwood-Buff (KB) theory of solutions is outlined which provides additional fluctuating quantities that can be used to characterize and probe the behavior of solution mixtures. Particle-energy and energy-energy fluctuations for local regions of any multicomponent solution are expressed in terms of experimentally obtainable quantities, thereby supplementing the usual particle-particle fluctuations provided by the established KB inversion approach. The expressions are then used to analyze experimental data for pure water over a range of temperatures and pressures, a variety of pure liquids, and three binary solution mixtures – methanol and water, benzene and methanol, and aqueous sodium chloride. In addition to providing information on local properties of solutions it is argued that the particle-energy and energy-energy fluctuations can also be used to test and refine solute and solvent force fields for use in computer simulation studies. PMID:21806137

  11. Nonequilibrium quantum fluctuations of work.

    PubMed

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  12. TURBULENCE-INDUCED RELATIVE VELOCITY OF DUST PARTICLES. IV. THE COLLISION KERNEL

    SciTech Connect

    Pan, Liubin; Padoan, Paolo E-mail: ppadoan@icc.ub.edu

    2014-12-20

    Motivated by its importance for modeling dust particle growth in protoplanetary disks, we study turbulence-induced collision statistics of inertial particles as a function of the particle friction time, τ{sub p}. We show that turbulent clustering significantly enhances the collision rate for particles of similar sizes with τ{sub p} corresponding to the inertial range of the flow. If the friction time, τ{sub p,} {sub h}, of the larger particle is in the inertial range, the collision kernel per unit cross section increases with increasing friction time, τ{sub p,} {sub l}, of the smaller particle and reaches the maximum at τ{sub p,} {sub l} = τ{sub p,} {sub h}, where the clustering effect peaks. This feature is not captured by the commonly used kernel formula, which neglects the effect of clustering. We argue that turbulent clustering helps alleviate the bouncing barrier problem for planetesimal formation. We also investigate the collision velocity statistics using a collision-rate weighting factor to account for higher collision frequency for particle pairs with larger relative velocity. For τ{sub p,} {sub h} in the inertial range, the rms relative velocity with collision-rate weighting is found to be invariant with τ{sub p,} {sub l} and scales with τ{sub p,} {sub h} roughly as ∝ τ{sub p,h}{sup 1/2}. The weighting factor favors collisions with larger relative velocity, and including it leads to more destructive and less sticking collisions. We compare two collision kernel formulations based on spherical and cylindrical geometries. The two formulations give consistent results for the collision rate and the collision-rate weighted statistics, except that the spherical formulation predicts more head-on collisions than the cylindrical formulation.

  13. Turbulence-induced Relative Velocity of Dust Particles. IV. The Collision Kernel

    NASA Astrophysics Data System (ADS)

    Pan, Liubin; Padoan, Paolo

    2014-12-01

    Motivated by its importance for modeling dust particle growth in protoplanetary disks, we study turbulence-induced collision statistics of inertial particles as a function of the particle friction time, τp. We show that turbulent clustering significantly enhances the collision rate for particles of similar sizes with τp corresponding to the inertial range of the flow. If the friction time, τp, h, of the larger particle is in the inertial range, the collision kernel per unit cross section increases with increasing friction time, τp, l, of the smaller particle and reaches the maximum at τp, l = τp, h, where the clustering effect peaks. This feature is not captured by the commonly used kernel formula, which neglects the effect of clustering. We argue that turbulent clustering helps alleviate the bouncing barrier problem for planetesimal formation. We also investigate the collision velocity statistics using a collision-rate weighting factor to account for higher collision frequency for particle pairs with larger relative velocity. For τp, h in the inertial range, the rms relative velocity with collision-rate weighting is found to be invariant with τp, l and scales with τp, h roughly as {\\proptoτ} _p,h1/2. The weighting factor favors collisions with larger relative velocity, and including it leads to more destructive and less sticking collisions. We compare two collision kernel formulations based on spherical and cylindrical geometries. The two formulations give consistent results for the collision rate and the collision-rate weighted statistics, except that the spherical formulation predicts more head-on collisions than the cylindrical formulation.

  14. Generalized Kähler Geometry

    NASA Astrophysics Data System (ADS)

    Gualtieri, Marco

    2014-10-01

    Generalized Kähler geometry is the natural analogue of Kähler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We prove that generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of a 2-dimensional sigma model with (2, 2) supersymmetry. We also prove the existence of natural holomorphic Courant algebroids for each of the underlying complex structures, and that these split into a sum of transverse holomorphic Dirac structures. Finally, we explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kähler geometry.

  15. Medical management of motor fluctuations.

    PubMed

    Dewey, Richard B

    2008-08-01

    Given the magnitude of the problem of motor fluctuations in patients who have Parkinson's disease treated with levodopa, a significant effort has been expended by physicians, researchers, and pharmaceutical manufacturers over the years to find effective treatments. This article briefly reviews the medical options for managing motor fluctuations that are in common use in the United States or that are expected to be available soon.

  16. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  17. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  18. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  19. Thermodynamics of Asymptotically Conical Geometries.

    PubMed

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  20. Fluctuations in classical sum rules

    NASA Astrophysics Data System (ADS)

    Elton, John R.; Lakshminarayan, Arul; Tomsovic, Steven

    2010-10-01

    Classical sum rules arise in a wide variety of physical contexts. Asymptotic expressions have been derived for many of these sum rules in the limit of long orbital period (or large action). Although sum-rule convergence may well be exponentially rapid for chaotic systems in a global phase-space sense with time, individual contributions to the sums may fluctuate with a width which diverges in time. Our interest is in the global convergence of sum rules as well as their local fluctuations. It turns out that a simple version of a lazy baker map gives an ideal system in which classical sum rules, their corrections, and their fluctuations can be worked out analytically. This is worked out in detail for the Hannay-Ozorio sum rule. In this particular case the rate of convergence of the sum rule is found to be governed by the Pollicott-Ruelle resonances, and both local and global boundaries for which the sum rule may converge are given. In addition, the width of the fluctuations is considered and worked out analytically, and it is shown to have an interesting dependence on the location of the region over which the sum rule is applied. It is also found that as the region of application is decreased in size the fluctuations grow. This suggests a way of controlling the length scale of the fluctuations by considering a time dependent phase-space volume, which for the lazy baker map decreases exponentially rapidly with time.

  1. Generalised tensor fluctuations and inflation

    SciTech Connect

    Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk

    2015-01-01

    Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.

  2. Universal properties of branching random walks in confined geometries

    NASA Astrophysics Data System (ADS)

    de Mulatier, C.; Mazzolo, A.; Zoia, A.

    2014-08-01

    Characterizing the occupation statistics of random walks through confined geometries amounts to assessing the distribution of the travelled length ℓ and the number of collisions n performed by the stochastic process in a given region, for which remarkably simple Cauchy-like formulas were established in the case of branching Pearson random walks with exponentially distributed jumps. In this letter, we derive two key results: first, we show that such formulas strikingly carry over to the much broader class of branching processes with arbitrary jumps, and have thus a universal character; second, we obtain a stronger version of these formulas relating the travelled length density and the collision density at any point of the phase space. Our results are key to such technological issues as the analysis of radiation flow for nuclear reactor design and medical diagnosis and apply more broadly to physical and biological systems with diffusion, reproduction and death.

  3. Planetary Image Geometry Library

    NASA Technical Reports Server (NTRS)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  4. Two-gluon correlations in heavy-light ion collisions

    NASA Astrophysics Data System (ADS)

    Wertepny, Douglas E.

    2014-11-01

    We derive the cross-section for two-gluon production in heavy-light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark-gluon plasma.

  5. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at √sNN = 2.76  TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2014-11-26

    ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7 μb–1 collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. As a result, models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.

  6. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  7. Space collision threat mitigation

    NASA Astrophysics Data System (ADS)

    Zatezalo, Aleksandar; Stipanović, Dušan; Mehra, Raman K.; Pham, Khanh

    2014-06-01

    Mitigation of possible collision threats to current and future operations in space environments is an important an challenging task considering high nonlinearity of orbital dynamics and discrete measurement updates. Such discrete observations are relatively scarce with respect to space dynamics including possible unintentional or intentional rocket propulsion based maneuvers even in scenarios when measurement collections are focused to a one single target of interest. In our paper, this problem is addressed in terms of multihypothesis and multimodel estimation in conjunction with multi-agent multigoal game theoretic guaranteed evasion strategies. Collision threat estimation is formulated using conditional probabilities of time dependent hypotheses and spacecraft controls which are computed using Liapunov-like approach. Based on this formulation, time dependent functional forms of multi-objective utility functions are derived given threat collision risk levels. For demonstrating developed concepts, numerical methods are developed using nonlinear filtering methodology for updating hypothesis sets and corresponding conditional probabilities. Space platform associated sensor resources are managed using previously developed and demonstrated information-theoretic objective functions and optimization methods. Consequently, estimation and numerical methods are evaluated and demonstrated on a realistic Low Earth Orbit collision encounter.

  8. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  9. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  10. Atomic collisions, inelastic indeed

    NASA Astrophysics Data System (ADS)

    Bercegol, Herve; Ferrando, Gwenael; Lehoucq, Roland

    At the turn of the twentieth century, a hot controversy raged about the ability of Boltzmann's framework to take care of irreversibility. The so-called Loschmidt's paradox progressively faded with time during the last hundred years, due to the predictive efficiency of statistical mechanics. However, one detail at the origin of the controversy - the elasticity of atomic collisions - was not completely challenged. A semi-classical treatment of two atoms interacting with the vacuum zero-point field permits to predict a friction force acting against the rotation of the pair of atoms. By its form and its level, the calculated torque is a candidate as a physical cause for diffusion of energy and angular momentum, and consequently for entropy growth. It opens the way to a revision of the standard vision of irreversibility. This presentation will focus on two points. First we will discuss the recent result in a broader context of electromagnetic interactions during microscopic collisions. The predicted friction phenomenon can be compared to and distinguished from Collision-Induced Emission and other types of inelastic collisions. Second we will investigate the consequences of the friction torque on calculated trajectories of colliding atoms, quantifying the generation of dimers linked by dispersion forces.

  11. Investigating Fractal Geometry Using LOGO.

    ERIC Educational Resources Information Center

    Thomas, David A.

    1989-01-01

    Discusses dimensionality in Euclidean geometry. Presents methods to produce fractals using LOGO. Uses the idea of self-similarity. Included are program listings and suggested extension activities. (MVL)

  12. Geometry of blind thrusts

    SciTech Connect

    Kligfield, R.; Geiser, P.; Geiser, J.

    1985-01-01

    Blind thrusts are structures which at no time in their history broke the erosion surface and along which displacement progressively changes upwards. Faults of the stiff layer along which displacement progressively decreases to zero (tip) are one prominent type of blind thrust structure. Shortening above such tips is accommodated entirely by folding whereas shortening below the tip is partitioned between folding and faulting. For these types of faults it is possible to determine the original length of the stiff layer for balancing purposes. A systematic methodology for line length and area restoration is outlined for determining blind thrust geometry. Application of the methodology is particularly suitable for use with microcomputers. If the folded form of the cover is known along with the position of the fault and its tip, then it is possible to locate hanging and footwall cutoffs. If the fault trajectory, tip, and a single hanging wall footwall cutoff pair are known, then the folded form of the cover layer can be determined. In these constructions it is necessary to specify pin lines for balancing purposes. These pin lines may or may not have a zero displacement gradient, depending upon the amount of simple shear deformation. Examples are given from both Laramide structures of the western USA and the Appalachians.

  13. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels.

    PubMed

    Zeng, Wen; Jacobi, Ian; Beck, David J; Li, Songjing; Stone, Howard A

    2015-02-21

    We study pressure and flow-rate fluctuations in microchannels, where the flow rate is supplied by a syringe pump. We demonstrate that the pressure fluctuations are induced by the flow-rate fluctuations coming from mechanical oscillations of the pump motor. Also, we provide a mathematical model of the effect of the frequency of the pump on the normalized amplitude of pressure fluctuations and introduce a dimensionless parameter incorporating pump frequency, channel geometry and mechanical properties that can be used to predict the performance of different microfluidic device configurations. The normalized amplitude of pressure fluctuations decreases as the frequency of the pump increases and the elasticity of the channel material decreases. The mathematical model is verified experimentally over a range of typical operating conditions and possible applications are discussed.

  14. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.; Nystrand, Joakim; Seger, Janet; Gorbunov, Yuri; Butterworth, Joey

    2017-03-01

    Ultra-peripheral collisions (UPCs) have been a significant source of study at RHIC and the LHC. In these collisions, the two colliding nuclei interact electromagnetically, via two-photon or photonuclear interactions, but not hadronically; they effectively miss each other. Photonuclear interactions produce vector meson states or more general photonuclear final states, while two-photon interactions can produce lepton or meson pairs, or single mesons. In these interactions, the collision geometry plays a major role. We present a program, STARlight, that calculates the cross-sections for a variety of UPC final states and also creates, via Monte Carlo simulation, events for use in determining detector efficiency.

  15. Charge-dependent azimuthal correlations from AuAu to UU collisions

    NASA Astrophysics Data System (ADS)

    Bloczynski, John; Huang, Xu-Guang; Zhang, Xilin; Liao, Jinfeng

    2015-07-01

    We study the charge-dependent azimuthal correlations in relativistic heavy ion collisions, as motivated by the search for the Chiral Magnetic Effect (CME) and the investigation of related background contributions. In particular we aim to understand how these correlations induced by various proposed effects evolve from collisions with AuAu system to that with UU system. To do that, we quantify the generation of magnetic field in UU collisions at RHIC energy and its azimuthal correlation with the matter geometry using event-by-event simulations. Taking the experimental data for charge-dependent azimuthal correlations from AuAu collisions and extrapolating to UU with reasonable assumptions, we examine the resulting correlations to be expected in UU collisions and compare them with recent STAR measurements. Based on such analysis we discuss the viability for explaining the data with a combination of the CME-like and flow-induced contributions.

  16. Geometrical methods in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    Currently there exists no known way to construct the Stress-Energy tensor (Tmunu) of the medium produced in heavy ion collisions at strong coupling from purely theoretical grounds. In this work, some steps are taken in that direction. In particular, the evolution of Tmunu at strong coupling and at high energies is being studied for early proper times (tau). This is achieved in the context of the AdS/CFT duality by constructing the evolution of the dual geometry in an AdS5 background. We consider high energy collisions of two shock waves in AdS5 as a model of ultra-relativistic nucleus-nucleus collisions in the boundary theory. We first calculate the graviton field produced in the collisions in the LO, NLO and NNLO approximations, corresponding to two, three and four-graviton exchanges with the shock waves. We use this model to study Tmunu and in particular the energy density of the strongly-coupled matter created immediately after the collision because as we argue, the expansion of the energy density (epsilon) in the powers of proper time tau squared corresponds on the gravity side to a perturbative expansion of the metric in graviton exchanges. We point out that shock waves corresponding to physical energy-momentum tensors of the nuclei is likely to completely stop after the collision; on the field theory side, this corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. This motivates a more detailed investigation. For this reason we consider the asymmetric limit where the energy density in one shock wave is much higher than in the other one. In the boundary theory this setup corresponds to proton-nucleus collisions. Employing the eikonal approximation we find the exact high energy analytic solution for the metric in AdS5 for the asymmetric collision of two delta-function shock waves. The solution resums all-order graviton exchanges with the nucleus-shock wave and a single-graviton exchange with the proton

  17. Properties and uses of factorial cumulants in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo; Luo, Xiaofeng

    2017-08-01

    We discuss properties and applications of factorial cumulants of various particle numbers and for their mixed channels measured by event-by-event analysis in relativistic heavy-ion collisions. After introducing the factorial cumulants for systems with multiparticle species, their properties are described. The uses of factorial cumulants in the study of critical fluctuations are discussed. We point out that factorial cumulants play useful roles in understanding fluctuation observables when they have underlying physics approximately described by the binomial distribution. As examples, we suggest novel utilization methods of the factorial cumulants in the study of the momentum cut and rapidity window dependences of fluctuation observables.

  18. Conformal Lorentz geometry revisited

    NASA Astrophysics Data System (ADS)

    Teleman, Kostake

    1996-02-01

    . We also show that Mach's principle on inertial motions receives an explanation in our theory by considering the particular geodesic paths, for which one of the partners of an interacting pair is fixed and sent to infinity. In fact we study a dynamical system (W,L) which presents some formal and topological similarities with a system of two particles interacting gravitationally. (W,L) is the only conformally invariant relativistic two-point dynamical system. At the end we show that W can be naturally regarded as the base of a principal GL(2,C)-bundle which comes with a natural connection. We study this bundle from differential geometric point of view. Physical interpretations will be discussed in a future paper. This text is an improvement of a previous version, which was submitted under the title ``Hypertwistor Geometry.'' [See, K. Teleman, ``Hypertwistor Geometry (abstract),'' 14th International Conference on General Relativity and Gravitation, Florence, Italy, 1995.] The change of the title and many other improvements are due to the valuable comments of the referee, who also suggested the author to avoid hazardous interpretations.

  19. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  20. Sex Differences in Geometry Achievement.

    ERIC Educational Resources Information Center

    Dees, Roberta L.

    The following questions are addressed: (1) Are there sex differences in achievement, either in entering knowledge of geometry in the fall, or in achievement in acquiring standard geometry content by year's end? (2) Are there sex differences in the performance of students on the van Hiele test, either at the beginning or end of the year? and (3)…

  1. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  2. Linguistic geometry for autonomous navigation

    SciTech Connect

    Stilman, B.

    1995-09-01

    To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.

  3. Research on plasma turbulence involving binary particle collisions and collective effects

    NASA Technical Reports Server (NTRS)

    Sandri, G.

    1972-01-01

    Plasmas in which binary collisions are important are studied by means of nonadiabatic methods. Two- and three-body correlations are calculated to determine the one-particle distribution for the ionization model. The general dispersion analysis is summarized, and examples of the ionization model and of the static fluctuations are discussed.

  4. Time evolution of linearized gauge field fluctuations on a real-time lattice

    NASA Astrophysics Data System (ADS)

    Kurkela, A.; Lappi, T.; Peuron, J.

    2016-12-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system o