Sample records for collision probability method

  1. Probability Forecasting Using Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Duncan, M.; Frisbee, J.; Wysack, J.

    2014-09-01

    Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.

  2. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  3. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  4. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  5. Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit

    NASA Astrophysics Data System (ADS)

    Vittaldev, Vivek; Russell, Ryan P.

    2017-09-01

    Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.

  6. Detection of Orbital Debris Collision Risks for the Automated Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Peret, L.; Legendre, P.; Delavault, S.; Martin, T.

    2007-01-01

    In this paper, we present a general collision risk assessment method, which has been applied through numerical simulations to the Automated Transfer Vehicle (ATV) case. During ATV ascent towards the International Space Station, close approaches between the ATV and objects of the USSTRACOM catalog will be monitored through collision rosk assessment. Usually, collision risk assessment relies on an exclusion volume or a probability threshold method. Probability methods are more effective than exclusion volumes but require accurate covariance data. In this work, we propose to use a criterion defined by an adaptive exclusion area. This criterion does not require any probability calculation but is more effective than exclusion volume methods as demonstrated by our numerical experiments. The results of these studies, when confirmed and finalized, will be used for the ATV operations.

  7. Conservative Analytical Collision Probabilities for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.

  8. Conservative Analytical Collision Probability for Design of Orbital Formations

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.

  9. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  10. New method for estimating low-earth-orbit collision probabilities

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    An unconventional but general method is described for estimating the probability of collision between an earth-orbiting spacecraft and orbital debris. This method uses a Monte Caralo simulation of the orbital motion of the target spacecraft and each discrete debris object to generate an empirical set of distances, each distance representing the separation between the spacecraft and the nearest debris object at random times. Using concepts from the asymptotic theory of extreme order statistics, an analytical density function is fitted to this set of minimum distances. From this function, it is possible to generate realistic collision estimates for the spacecraft.

  11. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F Landis

    2014-01-01

    This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.

  12. On-Orbit Collision Hazard Analysis in Low Earth Orbit Using the Poisson Probability Distribution (Version 1.0)

    DOT National Transportation Integrated Search

    1992-08-26

    This document provides the basic information needed to estimate a general : probability of collision in Low Earth Orbit (LEO). Although the method : described in this primer is a first order approximation, its results are : reasonable. Furthermore, t...

  13. Crash probability estimation via quantifying driver hazard perception.

    PubMed

    Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang

    2018-07-01

    Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Time Dependence of Collision Probabilities During Satellite Conjunctions

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.

  15. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  16. Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques

    NASA Astrophysics Data System (ADS)

    Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio

    2018-03-01

    In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed PSC approach on pair transfer is the collisions of identical open-shell spherical nuclei.

  17. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  18. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  19. Laser wavelength effect on charge transfer and excitation processes in laser-assisted collisions of Li+ + H

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, F. Javier; Cabrera-Trujillo, R.

    2014-05-01

    Total, n = 2 , and 3 charge transfer and n = 2 target excitation probabilities for collision of Li+ with ground state atomic hydrogen are calculated numerically, in the impact energy collision range 0.25-5 keV. The total wave function at the end of the dynamics of the collision is obtained by solving the time-dependent Schrödinger equation by means the finite-difference method. We use a pseudo-potential method to model the electronic structure of the Li+ ion. The n = 2 , and 3 charge transfer and n = 2 target excitation probabilities are obtained by projecting the stationary states of Lithium and Hydrogen neutral atoms to the total wave function of the collision, respectively; the stationary states of Li and H are obtained numerically. To assess the validity of our method, our numerical results have been compared with those obtained experimentally and by other theoretical methods found in the literature. We study the laser-assited collision by using a short (3 fs at FWHM) and intense (3.15 ×12 W/cm2) Gaussian laser pulse. We consider a wavelength range between 400 - 1000 nm in steps of 100 nm. Finally, we analyze the laser assisted collision by a qualitatively way with a two level approach. We acknowledge support from grant PAPIIT IN 110-714 and CONACyT (Ph.D. scholarship).

  20. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  1. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  2. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the purpose of ADR are also drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is proposed.

  3. Probability-based hazard avoidance guidance for planetary landing

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie

    2018-03-01

    Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.

  4. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  5. A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caflisch, R; Wang, C; Dimarco, G

    2007-10-09

    If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements in continuum algorithms), as well as the wide range of collision rates over the velocity distribution function. This paper considers Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka & Abe and Nanbu. It presents a hybrid method for accelerating the computation of Coulombmore » collisions. The hybrid method represents the velocity distribution function as a combination of a thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete particles). Collisions between particles from the thermal component preserve the Maxwellian; collisions between particles from the kinetic component are performed using the method of or Nanbu. Collisions between the kinetic and thermal components are performed by sampling a particle from the thermal component and selecting a particle from the kinetic component. Particles are also transferred between the two components according to thermalization and dethermalization probabilities, which are functions of phase space.« less

  6. Avian collision risk models for wind energy impact assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masden, E.A., E-mail: elizabeth.masden@uhi.ac.uk; Cook, A.S.C.P.

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measuremore » of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.« less

  7. A collision probability analysis of the double-heterogeneity problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebert, A.

    1993-10-01

    A practical collision probability model is presented for the description of geometries with many levels of heterogeneity. Regular regions of the macrogeometry are assumed to contain a stochastic mixture of spherical grains or cylindrical tubes. Simple expressions for the collision probabilities in the global geometry are obtained as a function of the collision probabilities in the macro- and microgeometries. This model was successfully implemented in the collision probability kernel of the APOLLO-1, APOLLO-2, and DRAGON lattice codes for the description of a broad range of reactor physics problems. Resonance self-shielding and depletion calculations in the microgeometries are possible because eachmore » microregion is explicitly represented.« less

  8. A tool for simulating collision probabilities of animals with marine renewable energy devices.

    PubMed

    Schmitt, Pál; Culloch, Ross; Lieber, Lilian; Molander, Sverker; Hammar, Linus; Kregting, Louise

    2017-01-01

    The mathematical problem of establishing a collision probability distribution is often not trivial. The shape and motion of the animal as well as of the the device must be evaluated in a four-dimensional space (3D motion over time). Earlier work on wind and tidal turbines was limited to a simplified two-dimensional representation, which cannot be applied to many new structures. We present a numerical algorithm to obtain such probability distributions using transient, three-dimensional numerical simulations. The method is demonstrated using a sub-surface tidal kite as an example. Necessary pre- and post-processing of the data created by the model is explained, numerical details and potential issues and limitations in the application of resulting probability distributions are highlighted.

  9. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  10. APOLLO II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, R.; Mondot, J.; Stankovski, Z.

    1988-11-01

    APOLLO II is a new, multigroup transport code under development at the Commissariat a l'Energie Atomique. The code has a modular structure and uses sophisticated software for data structuralization, dynamic memory management, data storage, and user macrolanguage. This paper gives an overview of the main methods used in the code for (a) multidimensional collision probability calculations, (b) leakage calculations, and (c) homogenization procedures. Numerical examples are given to demonstrate the potential of the modular structure of the code and the novel multilevel flat-flux representation used in the calculation of the collision probabilities.

  11. Data Analysis Techniques for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude A.

    2017-10-01

    Preface; How to read this book; 1. The scientific method; Part I. Foundation in Probability and Statistics: 2. Probability; 3. Probability models; 4. Classical inference I: estimators; 5. Classical inference II: optimization; 6. Classical inference III: confidence intervals and statistical tests; 7. Bayesian inference; Part II. Measurement Techniques: 8. Basic measurements; 9. Event reconstruction; 10. Correlation functions; 11. The multiple facets of correlation functions; 12. Data correction methods; Part III. Simulation Techniques: 13. Monte Carlo methods; 14. Collision and detector modeling; List of references; Index.

  12. Collision probability at low altitudes resulting from elliptical orbits

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1990-01-01

    The probability of collision between a spacecraft and another object is calculated for various altitude and orbit conditions, and factors affecting the probability are discussed. It is shown that a collision can only occur when the spacecraft is located at an altitude which is between the perigee and apogee altitudes of the object and that the probability per unit time is largest when the orbit of the object is nearly circular. However, at low altitudes, the atmospheric drag causes changes with time of the perigee and the apogee, such that circular orbits have a much shorter lifetime than many of the elliptical orbits. Thus, when the collision probability is integrated over the lifetime of the orbiting object, some elliptical orbits are found to have much higher total collision probability than circular orbits. Rocket bodies used to boost payloads from low earth orbit to geosynchronous orbit are an example of objects in these elliptical orbits.

  13. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  14. Development of a Nonlinear Probability of Collision Tool for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    McKinley, David P.

    2006-01-01

    The Earth Observing System (EOS) spacecraft Terra, Aqua, and Aura fly in constellation with several other spacecraft in 705-kilometer mean altitude sun-synchronous orbits. All three spacecraft are operated by the Earth Science Mission Operations (ESMO) Project at Goddard Space Flight Center (GSFC). In 2004, the ESMO project began assessing the probability of collision of the EOS spacecraft with other space objects. In addition to conjunctions with high relative velocities, the collision assessment method for the EOS spacecraft must address conjunctions with low relative velocities during potential collisions between constellation members. Probability of Collision algorithms that are based on assumptions of high relative velocities and linear relative trajectories are not suitable for these situations; therefore an algorithm for handling the nonlinear relative trajectories was developed. This paper describes this algorithm and presents results from its validation for operational use. The probability of collision is typically calculated by integrating a Gaussian probability distribution over the volume swept out by a sphere representing the size of the space objects involved in the conjunction. This sphere is defined as the Hard Body Radius. With the assumption of linear relative trajectories, this volume is a cylinder, which translates into simple limits of integration for the probability calculation. For the case of nonlinear relative trajectories, the volume becomes a complex geometry. However, with an appropriate choice of coordinate systems, the new algorithm breaks down the complex geometry into a series of simple cylinders that have simple limits of integration. This nonlinear algorithm will be discussed in detail in the paper. The nonlinear Probability of Collision algorithm was first verified by showing that, when used in high relative velocity cases, it yields similar answers to existing high relative velocity linear relative trajectory algorithms. The comparison with the existing high velocity/linear theory will also be used to determine at what relative velocity the analysis should use the new nonlinear theory in place of the existing linear theory. The nonlinear algorithm was also compared to a known exact solution for the probability of collision between two objects when the relative motion is strictly circular and the error covariance is spherically symmetric. Figure I shows preliminary results from this comparison by plotting the probabilities calculated from the new algorithm and those from the exact solution versus the Hard Body Radius to Covariance ratio. These results show about 5% error when the Hard Body Radius is equal to one half the spherical covariance magnitude. The algorithm was then combined with a high fidelity orbit state and error covariance propagator into a useful tool for analyzing low relative velocity nonlinear relative trajectories. The high fidelity propagator is capable of using atmospheric drag, central body gravitational, solar radiation, and third body forces to provide accurate prediction of the relative trajectories and covariance evolution. The covariance propagator also includes a process noise model to ensure realistic evolutions of the error covariance. This paper will describe the integration of the nonlinear probability algorithm and the propagators into a useful collision assessment tool. Finally, a hypothetical case study involving a low relative velocity conjunction between members of the Earth Observation System constellation will be presented.

  15. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  16. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    NASA Technical Reports Server (NTRS)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  17. Electronic propensity rules in Li-H+ collisions involving initial and/or final oriented states

    NASA Astrophysics Data System (ADS)

    Salas, P. J.

    2000-12-01

    Electronic excitation and capture processes are studied in collisions involving systems with only one active electron such as the alkaline (Li)-proton in the medium-energy region (0.1-15 keV). Using the semiclassical impact parameter method, the probabilities and the orientation parameter are calculated for transitions between initial and/or final oriented states. The results show a strong asymmetry in the probabilities depending on the orientation of the initial and/or final states. An intuitive view of the processes, by means of the concepts of propensity and velocity matching rules, is provided.

  18. Subplane collision probabilities method applied to control rod cusping in 2D/1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M.; Collins, Benjamin S.; Stimpson, Shane G.

    The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2D/1D method to solve neutron transport problems for reactors. The 2D/1D method decomposes the problem into a stack of 2D planes, and uses a high fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially using a lower order solver. Using this scheme, 3D solutions to the transport equation can be obtained at a much lower cost.One assumption made by the 2D/1D method is that the materials are axially homogeneous for each 2D plane.more » Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents two new subgrid methods to address this issue. The first method is polynomial decusping, a simple correction used to address control rods partially inserted into a 2D plane. The second is the subplane collision probabilities method, which is a more accurate, more robust subgrid method that can be applied to other axial heterogeneities.Each method was applied to a variety of problems. Results were compared to fine mesh solutions which had no axial heterogeneity and to Monte Carlo reference solutions generated using KENO-VI. It was shown that the polynomial decusping method was effective in many cases, but it had some limitations, with 3D pin power errors as high as 25% compared to KENO-VI. In conclusion, the subplane collision probabilities method performed much better, lowering the maximum pin power error to less than 5% in every calculation.« less

  19. Subplane collision probabilities method applied to control rod cusping in 2D/1D

    DOE PAGES

    Graham, Aaron M.; Collins, Benjamin S.; Stimpson, Shane G.; ...

    2018-04-06

    The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2D/1D method to solve neutron transport problems for reactors. The 2D/1D method decomposes the problem into a stack of 2D planes, and uses a high fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially using a lower order solver. Using this scheme, 3D solutions to the transport equation can be obtained at a much lower cost.One assumption made by the 2D/1D method is that the materials are axially homogeneous for each 2D plane.more » Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents two new subgrid methods to address this issue. The first method is polynomial decusping, a simple correction used to address control rods partially inserted into a 2D plane. The second is the subplane collision probabilities method, which is a more accurate, more robust subgrid method that can be applied to other axial heterogeneities.Each method was applied to a variety of problems. Results were compared to fine mesh solutions which had no axial heterogeneity and to Monte Carlo reference solutions generated using KENO-VI. It was shown that the polynomial decusping method was effective in many cases, but it had some limitations, with 3D pin power errors as high as 25% compared to KENO-VI. In conclusion, the subplane collision probabilities method performed much better, lowering the maximum pin power error to less than 5% in every calculation.« less

  20. Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation

    NASA Astrophysics Data System (ADS)

    Maltsev, I. A.; Shabaev, V. M.; Tupitsyn, I. I.; Kozhedub, Y. S.; Plunien, G.; Stöhlker, Th.

    2017-10-01

    A method for calculation of electron-positron pair production in low-energy heavy-ion collisions beyond the monopole approximation is presented. The method is based on the numerical solving of the time-dependent Dirac equation with the full two-center potential. The one-electron wave functions are expanded in the finite basis set constructed on the two-dimensional spatial grid. Employing the developed approach the probabilities of bound-free pair production are calculated for collisions of bare uranium nuclei at the energy near the Coulomb barrier. The obtained results are compared with the corresponding values calculated in the monopole approximation.

  1. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-10-01

    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147

  2. Implementation of a Collision Probability Prediction Technique for Constellation Maneuver Planning

    NASA Technical Reports Server (NTRS)

    Concha, Marco a.

    2007-01-01

    On March 22, 2006, the Space Technology 5 (ST5) constellation spacecraft were successfully delivered to orbit by a Pegasus XI, launch vehicle. An unexpected relative motion experienced by the constellation after orbit insertion brought about a problem. Soon after launch the observed relative position of the inert rocket body was between the leading and the middle spacecraft within the constellation. The successful planning and execution of an orbit maneuver that would create a fly-by of the rocket body was required to establish the.formation. This maneuver would create a close approach that needed to conform to predefined collision probability requirements. On April 21, 2006, the ST5 "155" spacecraft performed a large orbit maneuver and successfully passed the inert Pegasus 3rd Stage Rocket Body on April 30, 2006 15:20 UTC at a distance of 2.55 km with a Probability of Collision of less than 1.0E-06. This paper will outline the technique that was implemented to establish the safe planning and execution of the fly-by maneuver. The method makes use of Gaussian distribution models of state covariance to determine underlying probabilities of collision that arise under low velocity encounters. Specific numerical examples used for this analysis are discussed in detail. The mechanics of this technique are explained to foster deeper understanding of the concepts presented and to improve existing processes for use in future constellation maneuver planning.

  3. Estimating inelastic heavy-particle - hydrogen collision data. II. Simplified model for ionic collisions and application to barium-hydrogen ionic collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-12-01

    Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33

  4. Probabilistic model of nonlinear penalties due to collision-induced timing jitter for calculation of the bit error ratio in wavelength-division-multiplexed return-to-zero systems

    NASA Astrophysics Data System (ADS)

    Sinkin, Oleg V.; Grigoryan, Vladimir S.; Menyuk, Curtis R.

    2006-12-01

    We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.

  5. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  6. A numerical 4D Collision Risk Model

    NASA Astrophysics Data System (ADS)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical field data for assessing the probability of collision risk of animals with an MRE device under varying operating conditions.

  7. Approaches to Evaluating Probability of Collision Uncertainty

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.

  8. Remediating Non-Positive Definite State Covariances for Collision Probability Estimation

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis team estimates the probability of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satellite position+velocity states and their associated covariance matri-ces. On occasion, the software encounters non-positive definite (NPD) state co-variances, which can adversely affect or prevent the Pc estimation process. Inter-polation inaccuracies appear to account for the majority of such covariances, alt-hough other mechanisms contribute also. This paper investigates the origin of NPD state covariance matrices, three different methods for remediating these co-variances when and if necessary, and the associated effects on the Pc estimation process.

  9. Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis; Gold, Dara

    2013-01-01

    We propose a Wald Sequential Probability Ratio Test for analysis of commonly available predictions associated with spacecraft conjunctions. Such predictions generally consist of a relative state and relative state error covariance at the time of closest approach, under the assumption that prediction errors are Gaussian. We show that under these circumstances, the likelihood ratio of the Wald test reduces to an especially simple form, involving the current best estimate of collision probability, and a similar estimate of collision probability that is based on prior assumptions about the likelihood of collision.

  10. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  11. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  12. A collision model for safety evaluation of autonomous intelligent cruise control.

    PubMed

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  13. Positron production in heavy-ion collisions. II. Application of the formalism to the case of the U+U collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomoda, T.

    1982-07-01

    The method developed in the preceding paper is applied to the calculation of the spectra of positrons produced in the U + U collision. Matrix elements of the radial derivative operator between adiabatic basis states are calculated in the monopole approximation, with the finite nuclear size taken into account. These matrix elements are then modified for the supercritical case with the use of the analytical method presented in paper I of this series. The coupled differential equations for the occupation amplitudes of the basis states are solved and the positron spectra are obtained for the U + U collision. Itmore » is shown that the decomposition of the production probability into a spontaneous and an induced part depends on the definition of the resonance state and cannot be given unambiguously. The results are compared with those obtained by Reinhardt et al.« less

  14. Research of the orbital evolution of asteroid 2012 DA14 (in Russian)

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Denisov, S. S.; Derevyanka, A. E.

    Research of the orbital evolution of asteroid 2012 DA14 on the time interval from 1800 to 2206 is made, an object close approaches with Earth and the Moon are detected, the probability of impact with Earth is calculated. The used mathematical model is consistent with the DE405, the integration was performed using a modified Everhart's method of 27th order, the probability of collision is calculated using the Monte Carlo method.

  15. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    This dissertation presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. The flow corridor is a Next Generation Air Transportation System (NextGen) concept to reduce congestion and increase throughput in en-route airspace. The flow corridor has the potential to increase throughput by reducing the controller workload required to manage aircraft outside the corridor and by reducing separation of aircraft within corridor. The analysis in this dissertation is a starting point for the safety analysis required by the Federal Aviation Administration (FAA) to eventually approve and implement the corridor concept. This dissertation develops a hybrid risk analysis methodology that combines Monte Carlo simulation with dynamic event tree analysis. The analysis captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. Monte Carlo simulation is used to model the movement of aircraft in the flow corridor and to identify precursor events that might lead to a collision. Since these precursor events are not rare, standard Monte Carlo simulation can be used to estimate these occurrence rates. Dynamic event trees are then used to model the subsequent series of events that may lead to collision. When two aircraft are on course for a near-mid-air collision (NMAC), the on-board automated separation assurance system provides a series of safety layers to prevent the impending NNAC or collision. Dynamic event trees are used to evaluate the potential failures of these layers in order to estimate the rare-event collision probabilities. The results show that the throughput can be increased by reducing separation to 2 nautical miles while maintaining the current level of safety. A sensitivity analysis shows that the most critical parameters in the model related to the overall collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.

  16. Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework

    PubMed Central

    Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria

    2012-01-01

    This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122

  17. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  18. Collision rates and impact velocities in the Main Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Farinella, Paolo; Davis, Donald R.

    1992-01-01

    Wetherill's (1967) algorithm is presently used to compute the mutual collision probabilities and impact velocities of a set of 682 asteroids with large-than-50-km radius representative of a bias-free sample of asteroid orbits. While collision probabilities are nearly independent of eccentricities, a significant decrease is associated with larger inclinations. Collisional velocities grow steeply with orbital eccentricity and inclination, but with curiously small variation across the asteroid belt. Family asteroids are noted to undergo collisions with other family members 2-3 times more often than with nonmembers.

  19. Quantitative prediction of collision-induced vibration-rotation distributions from physical data

    NASA Astrophysics Data System (ADS)

    Marsh, Richard J.; McCaffery, Anthony J.

    2003-04-01

    We describe a rapid, accurate technique for computing state-to-state cross-sections in collision-induced vibration-rotation transfer (VRT) using only physical data, i.e. spectroscopic constants, bond length, mass and velocity distribution. The probability of linear-to-angular momentum (AM) conversion is calculated for a set of trajectories, each of which is subjected to energy conservation boundary conditions. No mechanism is specified for inducing vibrational state change. In the model, this constitutes a velocity or momentum barrier that must be overcome before rotational AM may be generated in the new vibrational state. The method is subjected to stringent testing by calculating state-to-state VRT probabilities for diatomics in highly excited vibrational, rotational and electronic states. Comparison is made to experimental data and to results from quantum mechanical and from quasi-classical trajectory calculations. There is quantitative agreement with data from all three sources, indicating that despite its simplicity the essential physics of collisions involving highly excited species is captured in the model. We develop further the concept of the molecular efficiency factor as an indicative parameter in collision dynamics, and derive an expression for ji > 0 and for VRT.

  20. Statistical Orbit Determination using the Particle Filter for Incorporating Non-Gaussian Uncertainties

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell

    2012-01-01

    The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.

  1. Non-Parametric Collision Probability for Low-Velocity Encounters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2007-01-01

    An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.

  2. Studies of uncontrolled air traffic patterns, phase 1

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.

    1975-01-01

    The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.

  3. Exit Presentation Fall 2013

    NASA Technical Reports Server (NTRS)

    Yang, Qi Rong

    2014-01-01

    Our current International Space Station Probabilistic Risk Assessment (ISS PRA) model assumes all collisions between a visiting vehicle (VV) and the ISS result in worst case loss of the ISS crew and the vehicle (LOCV). Drawing results from the Mir-Progress collision, we know this assumption is inaccurate because that collision did not lead to LOCV. Therefore the PRA team is conducting a study to determine the likelihood of LOCV when a collision occurs between a VV and the ISS. Kinetic energy is calculated and converted to pounds of TNT for the moving VVs when they collide with the ISS. Different scenarios are evaluated to obtain collision related data such as translational kinetic energy and rotational kinetic energy. These calculated data are integrated into the results from the expert elicitation performed on the Mir- Progress collision. As a result of this study, the PRA model will now calculate the probability of a VV collision with ISS, the probability that collision will result in Loss of Soyuz Crew (LOC) or Loss of ISS Crew and Vehicle (LOCV).

  4. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  5. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed five days in advance. In particular, the PDF model is able to predict rapid enhancements in the solar wind speed. It was found that 60% of the positive predictions were correct, while 91% of the negative predictions were correct, and 20% to 33% of the peaks in the speed were found by the model. En-semble forecasts provide the forecasters with an estimation of the uncertainty in the prediction, which can be used to derive uncertainties in the atmospheric density and in the drag acceleration. The dissertation then demonstrates that uncertainties in the atmospheric density result in large uncertainties in the prediction of the probability of collision. As an example, the effects of a geomagnetic storm on the probability of collision are illustrated. The research aims at providing tools and analyses that help understand and predict the effects of uncertainties in the atmospheric density on the probability of collision. The ultimate motivation is to support mission operators in making the correct decision with regard to a potential collision avoidance maneuver by providing an uncertainty on the prediction of the probability of collision instead of a single value. This approach can help avoid performing unnecessary costly maneuvers, while making sure that the risk of collision is fully evaluated.

  6. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    NASA Technical Reports Server (NTRS)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from theoretical simulations, even few continuous mode 10 kW ground-based lasers, focused by 1.5 m telescopes with adaptive optics, were enough to prevent significant amount of the debris collisions. Simulations were done by propagating all space objects in LEO by 1 year into the future and checking whether the probability of collision was high. For those space objects different ground-based lasers were used to divert them, afterwards collision probabilities were reevaluated. However, the actual accuracy of the LightForce software, which has been developed at NASA AmesResearch Center, depends on the veracity of the input parameters, one of which is the objects ballistic coefficient. It is a measure of bodys ability to overcome air resistance, which has a significant impact on the debris in LEO, and thus it is responsible for the shape of the trajectory of the debris. Having the exact values of the ballistic coefficient would make significantly better collision predictions, unfortunately, we do not know what are the values for most of the objects.In this research, we were working with part of LightForce code, which estimates the ballistic coefficient from ephemerides. Previously used method gave highly inaccurate values, when compared to known objects, and it needed to be changed. The goal of this work was to try out a different method of estimating the ballistic coefficient and to check whether or not it gives noticeable improvements.

  7. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodos, W.

    Collisions with wind turbines can be a problem for many species of birds. Of particular concern are collisions by eagles and other protected species. This research study used the laboratory methods of physiological optics, animal psychophysics, and retinal electrophysiology to analyze the causes of collisions and to evaluate visual deterrents based on the results of this analysis. Bird collisions with the seemingly slow-moving turbines seem paradoxical given the superb vision that most birds, especially raptors, possess. However, our optical analysis indicated that as the eye approaches the rotating blades, the retinal image of the blade (which is the information thatmore » is transmitted to the animal's brain) increases in velocity until it is moving so fast that the retina cannot keep up with it. At this point, the retinal image becomes a transparent blur that the bird probably interprets as a safe area to fly through, with disastrous consequences. This phenomenon is called"motion smear" or"motion blur."« less

  9. Spatial environmental risk factors for pedestrian injury collisions in Ciudad Juárez, Mexico (2008-2009): implications for urban planning.

    PubMed

    Fuentes, Cesar Mario; Hernandez, Vladimir

    2013-01-01

    The aim of this study is to examine the spatial distribution of pedestrian injury collisions and analyse the environmental (social and physical) risk factors in Ciudad Juarez, Mexico. More specifically, this study investigates the influence of land use, density, traffic and socio-economic characteristics. This cross sectional study is based on pedestrian injury collision data that were collected by the Municipal Transit Police during 2008-2009. This research presents an analysis of vehicle-pedestrian collisions and their spatial risk determinants using mixed methods that included (1) spatial/geographical information systems (GIS) analysis of pedestrian collision data and (2) ordinary least squares (OLS) regression analysis to explain the density of pedestrian collisions data. In our model, we found a higher probability for pedestrian collisions in census tracts with population and employment density, large concentration of commercial/retail land uses and older people (65 and more). Interventions to alleviate this situation including transportation planning such as decentralisation of municipal transport system, investment in road infrastructure - density of traffic lights, pedestrian crossing, road design, improves lane demarcation. Besides, land use planning interventions should be implemented in commercial/retail areas, in particular separating pedestrian and vehicular spaces.

  10. Recent developments in multidimensional transport methods for the APOLLO 2 lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zmijarevic, I.; Sanchez, R.

    1995-12-31

    A usual method of preparation of homogenized cross sections for reactor coarse-mesh calculations is based on two-dimensional multigroup transport treatment of an assembly together with an appropriate leakage model and reaction-rate-preserving homogenization technique. The actual generation of assembly spectrum codes based on collision probability methods is capable of treating complex geometries (i.e., irregular meshes of arbitrary shape), thus avoiding the modeling error that was introduced in codes with traditional tracking routines. The power and architecture of current computers allow the treatment of spatial domains comprising several mutually interacting assemblies using fine multigroup structure and retaining all geometric details of interest.more » Increasing safety requirements demand detailed two- and three-dimensional calculations for very heterogeneous problems such as control rod positioning, broken Pyrex rods, irregular compacting of mixed- oxide (MOX) pellets at an MOX-UO{sub 2} interface, and many others. An effort has been made to include accurate multi- dimensional transport methods in the APOLLO 2 lattice code. These include extension to three-dimensional axially symmetric geometries of the general-geometry collision probability module TDT and the development of new two- and three-dimensional characteristics methods for regular Cartesian meshes. In this paper we discuss the main features of recently developed multidimensional methods that are currently being tested.« less

  11. Electronic excitation and quenching of atoms at insulator surfaces

    NASA Technical Reports Server (NTRS)

    Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.

    1988-01-01

    A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.

  12. CS and IOS approximations for fine structure transitions in Na(/sup 2/P)--He(/sup 1/S) collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitz, D.E.; Kouri, D.J.

    1980-11-15

    The l-average CS and IOS approximations are extended to treat fine structure transitions in /sup 2/P atom--/sup 1/S atom scattering. Calculations of degeneracy averaged probabilities and differential cross sections for Na(/sup 2/P)+He(/sup 1/S) collisions in the CS and IOS methods agree well with the CC results. The present nonunitarized form of the CS approximation fails to properly predict all of the jm..-->..j'm' sections and in particular leads to a selection rule forbidding jm..-->..j--m transitions for j=half-odd integer values.

  13. Making inference from wildlife collision data: inferring predator absence from prey strikes

    PubMed Central

    Hosack, Geoffrey R.; Barry, Simon C.

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application. PMID:28243534

  14. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  15. Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data

    NASA Astrophysics Data System (ADS)

    Pamukçu, Oya Ankaya; Akçığ, Zafer; Demirbaş, Şevket; Zor, Ekrem

    2007-12-01

    The tectonic regime of Eastern Anatolia is determined by the Arabia-Eurasia continent-continent collision. Several dynamic models have been proposed to characterize the collision zone and its geodynamic structure. In this study, change in crustal thickness has been investigated using gravity, magnetic and topographic data of the region. In the first stage, two-dimensional low-pass filter and upward analytical continuation techniques were applied to the Bouguer gravity data of the region to investigate the behavior of the regional gravity anomalies. Next the moving window power spectrum method was used, and changes in the probable structural depths from 38 to 52 km were determined. The changes in crustal thickness where free air gravity and magnetic data have inversely correlated and the type of the anomaly resources were investigated applying the Euler deconvolution method to Bouguer gravity data. The obtained depth values are consistent with the results obtained using the power spectrum method. It was determined that the types of anomaly resources are different in the west and east of the 40° E longitude. Finally, using the obtained findings from this study and seismic velocity models proposed for this region by previous studies, a probable two-dimensional crust model was constituted.

  16. Odds of observing the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlen, A.

    2010-03-15

    Eternal inflation predicts that our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that liesmore » in the forward light cone of a collision; in the case of collisions with bubbles of identical vacua, this bound is given by the bubble nucleation rate times (H{sub O}/H{sub I}){sup 2}, where H{sub O} is the Hubble scale outside the bubbles and H{sub I} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel et al. using a different method for the case of collisions with bubbles of much larger cosmological constant; here, it is shown to hold in the case of collisions with identical bubbles as well.« less

  17. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2013-08-01

    In present work, we applied two sets of new multi-dimensional geochemical diagrams (Verma et al., 2013) obtained from linear discriminant analysis (LDA) of natural logarithm-transformed ratios of major elements and immobile major and trace elements in acid magmas to decipher plate tectonic settings and corresponding probability estimates for Paleoproterozoic rocks from Amazonian craton, São Francisco craton, São Luís craton, and Borborema province of Brazil. The robustness of LDA minimizes the effects of petrogenetic processes and maximizes the separation among the different tectonic groups. The probability based boundaries further provide a better objective statistical method in comparison to the commonly used subjective method of determining the boundaries by eye judgment. The use of readjusted major element data to 100% on an anhydrous basis from SINCLAS computer program, also helps to minimize the effects of post-emplacement compositional changes and analytical errors on these tectonic discrimination diagrams. Fifteen case studies of acid suites highlighted the application of these diagrams and probability calculations. The first case study on Jamon and Musa granites, Carajás area (Central Amazonian Province, Amazonian craton) shows a collision setting (previously thought anorogenic). A collision setting was clearly inferred for Bom Jardim granite, Xingú area (Central Amazonian Province, Amazonian craton) The third case study on Older São Jorge, Younger São Jorge and Maloquinha granites Tapajós area (Ventuari-Tapajós Province, Amazonian craton) indicated a within-plate setting (previously transitional between volcanic arc and within-plate). We also recognized a within-plate setting for the next three case studies on Aripuanã and Teles Pires granites (SW Amazonian craton), and Pitinga area granites (Mapuera Suite, NW Amazonian craton), which were all previously suggested to have been emplaced in post-collision to within-plate settings. The seventh case studies on Cassiterita-Tabuões, Ritápolis, São Tiago-Rezende Costa (south of São Francisco craton, Minas Gerais) showed a collision setting, which agrees fairly reasonably with a syn-collision tectonic setting indicated in the literature. A within-plate setting is suggested for the Serrinha magmatic suite, Mineiro belt (south of São Francisco craton, Minas Gerais), contrasting markedly with the arc setting suggested in the literature. The ninth case study on Rio Itapicuru granites and Rio Capim dacites (north of São Francisco craton, Serrinha block, Bahia) showed a continental arc setting. The tenth case study indicated within-plate setting for Rio dos Remédios volcanic rocks (São Francisco craton, Bahia), which is compatible with these rocks being the initial, rift-related igneous activity associated with the Chapada Diamantina cratonic cover. The eleventh, twelfth and thirteenth case studies on Bom Jesus-Areal granites, Rio Diamante-Rosilha dacite-rhyolite and Timbozal-Cantão granites (São Luís craton) showed continental arc, within-plate and collision settings, respectively. Finally, the last two case studies, fourteenth and fifteenth showed a collision setting for Caicó Complex and continental arc setting for Algodões (Borborema province).

  18. Reactive multi-particle collision dynamics with reactive boundary conditions

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Rohlf, Katrin

    2018-07-01

    In the present study, an off-lattice particle-based method called the reactive multi-particle collision (RMPC) dynamics is extended to model reaction-diffusion systems with reactive boundary conditions in which the a priori diffusion coefficient of the particles needs to be maintained throughout the simulation. To this end, the authors have made use of the so-called bath particles whose purpose is only to ensure proper diffusion of the main particles in the system. In order to model partial adsorption by a reactive boundary in the RMPC, the probability of a particle being adsorbed, once it hits the boundary, is calculated by drawing an analogy between the RMPC and Brownian Dynamics. The main advantages of the RMPC compared to other molecular based methods are less computational cost as well as conservation of mass, energy and momentum in the collision and free streaming steps. The proposed approach is tested on three reaction-diffusion systems and very good agreement with the solutions to their corresponding partial differential equations is observed.

  19. Covariance Based Pre-Filters and Screening Criteria for Conjunction Analysis

    NASA Astrophysics Data System (ADS)

    George, E., Chan, K.

    2012-09-01

    Several relationships are developed relating object size, initial covariance and range at closest approach to probability of collision. These relationships address the following questions: - Given the objects' initial covariance and combined hard body size, what is the maximum possible value of the probability of collision (Pc)? - Given the objects' initial covariance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the combined hard body radius, what is the minimum miss distance for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the miss distance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? The first relationship above allows the elimination of object pairs from conjunction analysis (CA) on the basis of the initial covariance and hard-body sizes of the objects. The application of this pre-filter to present day catalogs with estimated covariance results in the elimination of approximately 35% of object pairs as unable to ever conjunct with a probability of collision exceeding 1x10-6. Because Pc is directly proportional to object size and inversely proportional to covariance size, this pre-filter will have a significantly larger impact on future catalogs, which are expected to contain a much larger fraction of small debris tracked only by a limited subset of available sensors. This relationship also provides a mathematically rigorous basis for eliminating objects from analysis entirely based on element set age or quality - a practice commonly done by rough rules of thumb today. Further, these relations can be used to determine the required geometric screening radius for all objects. This analysis reveals the screening volumes for small objects are much larger than needed, while the screening volumes for pairs of large objects may be inadequate. These relationships may also form the basis of an important metric for catalog maintenance by defining the maximum allowable covariance size for effective conjunction analysis. The application of these techniques promises to greatly improve the efficiency and completeness of conjunction analysis.

  20. Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.

    2006-02-01

    The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass.more » For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.« less

  1. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    NASA Astrophysics Data System (ADS)

    Khalifa, N. S.

    2015-06-01

    The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change Δ V ‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser Δ V ‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  2. A Method to Estimate the Probability That Any Individual Cloud-to-Ground Lightning Stroke Was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2010-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.

  3. Dynamics of electronic transitions and reemission spectra of attosecond electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2014-05-01

    The processes of reemission of attosecond electromagnetic pulses by systems in nonstationary states have been considered. The probabilities of the reemission of attosecond electromagnetic pulses at the resonance charge exchange of a proton on a hydrogen atom and at the decay of a quasistationary state, as well as the probabilities of the reemission of attosecond pulses by a system in a resonance external field, have been calculated as examples. The developed method can be applied to more complex targets, including targets in the collision state, and to various chemical reactions.

  4. An Upper Bound on Orbital Debris Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.

  5. Comet and asteroid hazard to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.

  6. Collinear collision chemistry. II. Energy disposition in reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, B.H.

    1974-06-01

    A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.

  7. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Technical Reports Server (NTRS)

    Frigm, Ryan C.; Hejduk, Matthew D.; Johnson, Lauren C.; Plakalovic, Dragan

    2015-01-01

    On-orbit collision risk is becoming an increasing mission risk to all operational satellites in Earth orbit. Managing this risk can be disruptive to mission and operations, present challenges for decision-makers, and is time-consuming for all parties involved. With the planned capability improvements to detecting and tracking smaller orbital debris and capacity improvements to routinely predict on-orbit conjunctions, this mission risk will continue to grow in terms of likelihood and effort. It is very real possibility that the future space environment will not allow collision risk management and mission operations to be conducted in the same manner as it is today. This paper presents the concept of a finite conjunction assessment-one where each discrete conjunction is not treated separately but, rather, as a continuous event that must be managed concurrently. The paper also introduces the Total Probability of Collision as an analogous metric for finite conjunction assessment operations and provides several options for its usage in a Concept of Operations.

  8. Relating centrality to impact parameter in nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Das, Sruthy Jyothi; Giacalone, Giuliano; Monard, Pierre-Amaury; Ollitrault, Jean-Yves

    2018-01-01

    In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision by using a single observable, say n , typically given by the transverse energy or the number of tracks observed in a dedicated detector. The correlation between n and the impact parameter b of the collision is then inferred by fitting a specific model of the collision dynamics, such as the Glauber model, to experimental data. The goal of this paper is to assess precisely which information about b can be extracted from data without any specific model of the collision. Under the sole assumption that the probability distribution of n for a fixed b is Gaussian, we show that the probability distribution of the impact parameter in a narrow centrality bin can be accurately reconstructed up to 5 % centrality. We apply our methodology to data from the Relativistic Heavy Ion Collider and the Large Hadron Collider. We propose a simple measure of the precision of the centrality determination, which can be used to compare different experiments.

  9. Anisotropic Stochastic Vortex Structure Method for Simulating Particle Collision in Turbulent Shear Flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing

    2017-11-01

    Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.

  10. Electron Impact Exciation of Fe IX

    NASA Astrophysics Data System (ADS)

    Tayal, Swaraj; Zatsarinny, Oleg

    2015-05-01

    Transition probabilities and electron impact excitation collision strengths and rates for astrophysically important extreme ultraviolet lines of Fe IX are calculated. The 322 fine-structure levels of the 3s2 3p6 , 3s2 3p5 3 d , 3 s 3p6 3 d , 3s2 3p5 4 s , and 3s2 3p4 3d2 configurations are included in our calculations. The collision strengths have been calculated using the B-spline Breit-Pauli R-matrix method for all fine-structure transitions among the 322 levels. The mass, Darwin, and spin-orbit relativistic effects are included in the Breit-Pauli Hamiltonian in the scattering calculation. The one-body and two-body relativistic operators are included in the multi-configuration Hartree-Fock calculations of transition probabilities. Several sets of non-orthogonal spectroscopic and correlation radial orbitals are used to obtain accurate description of Fe IX levels and to represent the scattering functions. The calculated excitation energies are in very good agreement with experiment and represents an improvement over the previous calculations. The present collision strengths show reasonable agreement with the previously available R-matrix and distorted-wave calculations. This research is supported by NASA grant from the Solar and Heliophysics Program.

  11. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Astrophysics Data System (ADS)

    Frigm, R.; Johnson, L.

    The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive maneuvers for multiple conjunction events is time-consuming and would disrupt mission and science operations beyond what is tolerable. At the point when the number of conjunctions is so large that it is no longer possible to consider each individually, some sort of an amalgamation of events and risk must be considered. This shift is to one where each conjunction cannot be treated individually and the effects of all conjunctions within a given period of time must be considered together. This new paradigm is called finite Conjunction Assessment (CA) risk management. This paper considers the use of the Total Probability of Collision (TPc) as an analogous collision risk metric in the finite CA paradigm. TPc is expressed by the equation below and provides an aggregate probability of colliding with any one of the predicted conjunctions under consideration. TPc=1-?(1-Pc,i) While the TPc computation is straightforward and its physical meaning is understandable, the implications of its usage operationally requires a change in mindset and approach to collision risk management. This paper explores the necessary changes to evolve the basic CA and collision risk management CONOPS from discrete to finite CA, including aspects of collision risk assessment and collision risk mitigation. It proposes numerical and graphical decision aids to understand both the “risk outlook” for a given primary as well as mitigation options for the total collision risk. Both concepts make use of the TPc as a metric for finite collision risk management. Several operational scenarios are used to demonstrate the proposed concepts in practice.

  12. Coordinate space translation technique for simulation of electronic process in the ion-atom collision.

    PubMed

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S

    2011-04-21

    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  13. Earth Observing System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Hejduk, Matthew D.

    2016-01-01

    The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.

  14. Derivation of the collision probability between orbiting objects The lifetimes of Jupiter's outer moons

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1981-01-01

    A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.

  15. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa.

    PubMed

    Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu

    2017-09-01

    Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A system for predicting close approaches and potential collisions in geosynchronous orbits

    NASA Astrophysics Data System (ADS)

    Beusch, J.; Abbot, R.; Sridharan, R.

    The geosynchronous orbit is getting crowded with over 300 active, revenue producing large satellites and over 500 inactive dead resident space objects that pose a physical collision threat to the active satellites. The in situ demise of a particular satellite, Telstar 401, followed by a similar demise of SOLIDARIDAD 1, initiated a research and development effort at MIT Lincoln Laboratory to address this threat. This work with commercial satellite operators is accomplished using the mechanism of Cooperative Research and Development Agreements. Initial work to detect and warn of close approaches with these two failed satellites led to more extensive research on the collision threat over the entire geosynchronous belt. It is apparent that: a) There is a significant probability of collision; b) The probability has increased considerably in the last decade or so; c) The continuing failure of geosynchronous satellites and injection of rocket bodies into or near geosynchronous orbit will increase the threat; d) Debris in or near geosynchronous orbit poses another problem that has to be addressed. This paper surveys what has been achieved so far in predicting the threat and protecting satellites. An assessment of the probability of collision is presented as well as a description of the Geosynchronous Monitoring and Warning System. The operations of the GMWS are described as well as some of the results achieved so far. Areas of current research are mentioned.

  17. Molecular vibrational states during a collision

    NASA Technical Reports Server (NTRS)

    Recamier, Jose A.; Jauregui, Rocio

    1995-01-01

    Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.

  18. The impact of inertial navigation on air safety.

    DOT National Transportation Integrated Search

    1971-05-01

    An analysis of inertial navigation system performance data was carried out to assess the probable impact of inertial navigation on the aircraft collision risk in the North Atlantic region. These data were used to calculate the collision risk between ...

  19. The Torino Impact Hazard Scale

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.

    2000-04-01

    Newly discovered asteroids and comets have inherent uncertainties in their orbit determinations owing to the natural limits of positional measurement precision and the finite lengths of orbital arcs over which determinations are made. For some objects making predictable future close approaches to the Earth, orbital uncertainties may be such that a collision with the Earth cannot be ruled out. Careful and responsible communication between astronomers and the public is required for reporting these predictions and a 0-10 point hazard scale, reported inseparably with the date of close encounter, is recommended as a simple and efficient tool for this purpose. The goal of this scale, endorsed as the Torino Impact Hazard Scale, is to place into context the level of public concern that is warranted for any close encounter event within the next century. Concomitant reporting of the close encounter date further conveys the sense of urgency that is warranted. The Torino Scale value for a close approach event is based upon both collision probability and the estimated kinetic energy (collision consequence), where the scale value can change as probability and energy estimates are refined by further data. On the scale, Category 1 corresponds to collision probabilities that are comparable to the current annual chance for any given size impactor. Categories 8-10 correspond to certain (probability >99%) collisions having increasingly dire consequences. While close approaches falling Category 0 may be no cause for noteworthy public concern, there remains a professional responsibility to further refine orbital parameters for such objects and a figure of merit is suggested for evaluating such objects. Because impact predictions represent a multi-dimensional problem, there is no unique or perfect translation into a one-dimensional system such as the Torino Scale. These limitations are discussed.

  20. Multicharmed Baryon Production in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxing; Zhuang, Pengfei

    2017-03-01

    We study nuclear medium effect on multicharmed baryon production in relativistic heavy ion collisions. By solving the three-quark Schroedinger equation at finite temperature, we calculate the wave functions and Wigner functions for doubly and triply charmed baryons Ξ_{cc} and Ω_{ccc}. Their production in nuclear collisions is largely enhanced due to the combination of uncorrelated charm quarks in the quark-gluon plasma. It is most probable to discover these new particles in heavy ion collisions at the RHIC and LHC energies.

  1. A Method to Estimate the Probability that any Individual Cloud-to-Ground Lightning Stroke was Within any Radius of any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  2. A Method to Estimate the Probability that Any Individual Cloud-to-Ground Lightning Stroke was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.

  3. Schwinger-variational-principle theory of collisions in the presence of multiple potentials

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Giannakeas, P.; Greene, Chris H.

    2015-08-01

    A theoretical method for treating collisions in the presence of multiple potentials is developed by employing the Schwinger variational principle. The current treatment agrees with the local (regularized) frame transformation theory and extends its capabilities. Specifically, the Schwinger variational approach gives results without the divergences that need to be regularized in other methods. Furthermore, it provides a framework to identify the origin of these singularities and possibly improve the local frame transformation. We have used the method to obtain the scattering parameters for different confining potentials symmetric in x ,y . The method is also used to treat photodetachment processes in the presence of various confining potentials, thereby highlighting effects of the infinitely many closed channels. Two general features predicted are the vanishing of the total photoabsorption probability at every channel threshold and the occurrence of resonances below the channel thresholds for negative scattering lengths. In addition, the case of negative-ion photodetachment in the presence of uniform magnetic fields is also considered where unique features emerge at large scattering lengths.

  4. A New Aloha Anti-Collision Algorithm Based on CDMA

    NASA Astrophysics Data System (ADS)

    Bai, Enjian; Feng, Zhu

    The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.

  5. Evaluation of minimum coverage size and orbital accuracy at different orbital regimes for one order of magnitude reduction of the catastrophic collision risk

    NASA Astrophysics Data System (ADS)

    Sánchez-Ortiz, Noelia; Domínguez-González, Raúl; Krag, Holger

    2015-03-01

    One of the main objectives of Space Surveillance and Tracking (SST) systems is to support space collision avoidance activities. This collision avoidance capability aims to significantly reduce the catastrophic collision risk of space objects. In particular, for the case of the future European SST, the objective is translated into a risk reduction of one order of magnitude whilst keeping a low number of false alarm events. In order to translate this aim into system requirements, an evaluation of the current catastrophic collision risk for different orbital regimes is addressed. The reduction of such risk depends on the amount of catalogued objects (coverage) and the knowledge of the associated orbits in the catalogue (accuracy). This paper presents an analysis of the impact of those two aspects in the capability to reduce the catastrophic collision risk at some orbital regimes. A reliable collision avoidance support depends on the accuracy of the predicted miss-events. The assessment of possible conjunctions is normally done by computing the estimated miss-distances between objects (which is compared with a defined distance threshold) or by computing the associated collision risk (which is compared with the corresponding accepted collision probability level). This second method is normally recommended because it takes into account the reliability of the orbits and allows reducing false alarm events. The collision risk depends on the estimated miss-distance, the object sizes and the accuracy of the two orbits at the time of event. This accuracy depends on the error of the orbits at the orbit determination epoch and the error derived from the propagation from that epoch up to the time of event. The modified DRAMA ARES (Domínguez-González et al., 2012, 2013a,b; Gelhaus et al., 2014) provides information on the expected number of encounters for a given mission and year. It also provides information on the capacity to reduce the risk of collision by means of avoidance manoeuvres as a function of the accepted collision probability level and the cataloguing performance of the surveillance system (determined by the limiting coverage size-altitude function and the orbital data accuracy). The assessment of avoidance strategies takes into account statistical models of the space object environment, as provided by ESA's MASTER-2009 model, and a mathematical framework for the collision risk estimation as used in satellite operations. In this papers, results are provided for some orbit types, covering different orbital regimes. The analysis is done for different cataloguing capacity levels (accuracy and coverage), concluding that 5 cm are to be covered at LEO for diminishing the catastrophic collision risk by one order of magnitude. For MEO and GEO regime, coverage down to 40 and 100 cm respectively allow similar reduction of risk.

  6. A model for evaluation of satellite population management alternatives

    NASA Astrophysics Data System (ADS)

    Penny, R. E., Jr.; Jones, R. K.

    1983-12-01

    A Q-GERT model was developed to simulate the satellite environment, including the untracked man-made population, and to calculate a probability of collision for any satellite of interest. Provision for launches, explosions, collisions (including ASAT), retrieval, reposition, and decay was made. The model is structured to easily vary the rates at which these activities occur and to observe changes in the satellite population through which a satellite of interest must travel. Variance of the rates, and the resultant change in probability of collision allows evaluation of satellite population management alternatives such as reducing launch rates or increasing retrieval of spent, but still capable of exploding, satellites. The model is proposed for use by both the USAF SPACE COMMAND and NASA.

  7. Mass and angular distributions of the reaction products in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  8. The calculation of aircraft collision probabilities

    DOT National Transportation Integrated Search

    1971-10-01

    The basic limitation of, air traffic compression, from the safety point of view, is the increased risk of collision due to reduced separations. In order to evolve new procedures, and eventually a fully, automatic system, it is desirable to have a mea...

  9. Theory of Aircraft Collision-Avoidance System Design and Evaluation

    DOT National Transportation Integrated Search

    1971-05-01

    The problem of aircraft anti-collision system design and evaluation is discussed in this work. Two evaluation criteria, conflict ratio and probability of missed critical alarm are formulated and are found to be independent of both traffic density and...

  10. Relative Velocity as a Metric for Probability of Collision Calculations

    NASA Technical Reports Server (NTRS)

    Frigm, Ryan Clayton; Rohrbaugh, Dave

    2008-01-01

    Collision risk assessment metrics, such as the probability of collision calculation, are based largely on assumptions about the interaction of two objects during their close approach. Specifically, the approach to probabilistic risk assessment can be performed more easily if the relative trajectories of the two close approach objects are assumed to be linear during the encounter. It is shown in this analysis that one factor in determining linearity is the relative velocity of the two encountering bodies, in that the assumption of linearity breaks down at low relative approach velocities. The first part of this analysis is the determination of the relative velocity threshold below which the assumption of linearity becomes invalid. The second part is a statistical study of conjunction interactions between representative asset spacecraft and the associated debris field environment to determine the likelihood of encountering a low relative velocity close approach. This analysis is performed for both the LEO and GEO orbit regimes. Both parts comment on the resulting effects to collision risk assessment operations.

  11. Monte Carlo solution of Boltzmann equation for a simple model of highly nonequilibrium diatomic gases: Translational rotational energy relaxation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1978-01-01

    The semiclassical transition probability was incorporated in the simulation for energy exchange between rotational and translational energy. The results provide details on the fundamental mechanisms of gas kinetics where analytical methods were impractical. The validity of the local Maxwellian assumption and relaxation time, rotational-translational energy transition, and a velocity analysis of the inelastic collision were discussed in detail.

  12. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  13. Theoretical cratering rates on Ida, Mathilde, Eros and Gaspra

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Asher, D. J.; Bailey, M. E.

    2002-11-01

    We investigate the main influences on crater size distributions, by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY (Chambers 1999) numerical integrator. The use of an efficient, Öpik-type, collision code enables the calculation of a velocity histogram and the probability of impact. This when combined with a crater scaling law and an impactor size distribution, through a Monte Carlo method, results in a crater size distribution. The resulting crater probability distributions are in good agreement with observed crater distributions on these asteroids.

  14. The impact of vehicle moving violations and freeway traffic flow on crash risk: An application of plugin development for microsimulation.

    PubMed

    Wang, Junhua; Kong, Yumeng; Fu, Ting; Stipancic, Joshua

    2017-01-01

    This paper presents the use of the Aimsun microsimulation program to simulate vehicle violating behaviors and observe their impact on road traffic crash risk. Plugins for violations of speeding, slow driving, and abrupt stopping were developed using Aimsun's API and SDK module. A safety analysis plugin for investigating probability of rear-end collisions was developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Clustering algorithm was developed to identify high risk states in different road segments over time. Results of a simulation experiment based on the G15 Expressway in Shanghai showed that abrupt stopping had the greatest impact on increasing collision risk, and the impact of violations increased with traffic volume. The methodology allows for the evaluation and monitoring of risks, alerting of road hazards, and identification of hotspots, and could be applied to the operations of existing facilities or planning of future ones.

  15. The impact of vehicle moving violations and freeway traffic flow on crash risk: An application of plugin development for microsimulation

    PubMed Central

    Kong, Yumeng; Stipancic, Joshua

    2017-01-01

    This paper presents the use of the Aimsun microsimulation program to simulate vehicle violating behaviors and observe their impact on road traffic crash risk. Plugins for violations of speeding, slow driving, and abrupt stopping were developed using Aimsun’s API and SDK module. A safety analysis plugin for investigating probability of rear-end collisions was developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Clustering algorithm was developed to identify high risk states in different road segments over time. Results of a simulation experiment based on the G15 Expressway in Shanghai showed that abrupt stopping had the greatest impact on increasing collision risk, and the impact of violations increased with traffic volume. The methodology allows for the evaluation and monitoring of risks, alerting of road hazards, and identification of hotspots, and could be applied to the operations of existing facilities or planning of future ones. PMID:28886141

  16. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    NASA Astrophysics Data System (ADS)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  17. Vibration-translation energy transfer in anharmonic diatomic molecules. 1: A critical evaluation of the semiclassical approximation

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1974-01-01

    The semiclassical approximation is applied to anharmonic diatomic oscillators in excited initial states. Multistate numerical solutions giving the vibrational transition probabilities for collinear collisions with an inert atom are compared with equivalent, exact quantum-mechanical calculations. Several symmetrization methods are shown to correlate accurately the predictions of both theories for all initial states, transitions, and molecular types tested, but only if coupling of the oscillator motion and the classical trajectory of the incident particle is considered. In anharmonic heteronuclear molecules, the customary semiclassical method of computing the classical trajectory independently leads to transition probabilities with anomalous low-energy resonances. Proper accounting of the effects of oscillator compression and recoil on the incident particle trajectory removes the anomalies and restores the applicability of the semiclassical approximation.

  18. Bacteria survival probability in bactericidal filter paper.

    PubMed

    Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2014-05-01

    Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. In-situ monitoring and assessment of post barge-bridge collision damage for minimizing traffic delay and detour : final report.

    DOT National Transportation Integrated Search

    2016-07-31

    This report presents a novel framework for promptly assessing the probability of barge-bridge : collision damage of piers based on probabilistic-based classification through machine learning. The main : idea of the presented framework is to divide th...

  20. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Use of probability of collision (Pc) has brought sophistication to CA. Made possible by JSpOC precision catalogue because provides covariance. Has essentially replaced miss distance as basic CA parameter. Embrace of Pc has elevated methods to 'manipulate' covariance to enable/improve CA calculations. Two such methods to be examined here; compensation for absent or unreliable covariances through 'Maximum Pc' calculation constructs, projection (not propagation) of epoch covariances forward in time to try to enable better risk assessments. Two questions to be answered about each; situations to which such approaches are properly applicable, amount of utility that such methods offer.

  1. Collision frequency of artificial satellites - The creation of a debris belt

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.

    1978-01-01

    The probability of satellite collisions increases with the number of satellites. In the present paper, possible time scales for the growth of a debris belt from collision fragments are determined, and possible consequences of continued unrestrained launch activities are examined. Use is made of techniques formerly developed for studying the evolution (growth) of the asteroid belt. A model describing the flux from the known earth-orbiting satellites is developed, and the results from this model are extrapolated in time to predict the collision frequency between satellites. Hypervelocity impact phenomena are then examined to predict the debris flux resulting from collisions. The results are applied to design requirements for three types of future space missions.

  2. Escape probability of the super-Penrose process

    NASA Astrophysics Data System (ADS)

    Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei; Igata, Takahisa

    2017-06-01

    We consider a head-on collision of two massive particles that move in the equatorial plane of an extremal Kerr black hole, which results in the production of two massless particles. Focusing on a typical case, where both of the colliding particles have zero angular momenta, we show that a massless particle produced in such a collision can escape to infinity with arbitrarily large energy in the near-horizon limit of the collision point. Furthermore, if we assume that the emission of the produced massless particles is isotropic in the center-of-mass frame but confined to the equatorial plane, the escape probability of the produced massless particle approaches 5 /12 , and almost all escaping massless particles have arbitrarily large energy at infinity and an impact parameter approaching 2 G M /c2, where M is the mass of the black hole.

  3. Migration of comets to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Mather, John C.

    2007-05-01

    The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of magnitude than the values for parent comets. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sci., v. 1017, 46-65. [2] Ipatov S.I. et al. (2004) Annals of the New York Acad. of Sci., v. 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Adv. in Space Res., v. 37, N 1, 126-137.

  4. An investigation of collisions between fiber positioning units in LAMOST

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jie; Wang, Gang

    2016-04-01

    The arrangement of fiber positioning units in the LAMOST focal plane may lead to collisions during the fiber allocation process. To avoid these collisions, a software-based protection system has to abandon some targets located in the overlapping field of adjacent fiber units. In this paper, we first analyze the probability of collisions between fibers and infer their possible reasons. It is useful to solve the problem of collisions among fiber positioning units so as to improve the efficiency of LAMOST. Based on this, a collision handling system is designed by using a master-slave control structure between the micro control unit and microcomputer. Simulated experiments validate that the system can provide real-time inspection and swap information between the fiber unit controllers and the main controller.

  5. Neutron coincidence measurements when nuclear parameters vary during the multiplication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ming-Shih; Teichmann, T.

    1995-07-01

    In a recent paper, a physical/mathematical model was developed for neutron coincidence counting, taking explicit account of neutron absorption and leakage, and using dual probability generating function to derive explicit formulae for the single and multiple count-rates in terms of the physical parameters of the system. The results of this modeling proved very successful in a number of cases in which the system parameters (neutron reaction cross-sections, detection probabilities, etc.) remained the same at the various stages of the process (i.e. from collision to collision). However, there are practical circumstances in which such system parameters change from collision to collision,more » and it is necessary to accommodate these, too, in a general theory, applicable to such situations. For instance, in the case of the neutron coincidence collar (NCC), the parameters for the initial, spontaneous fission neutrons, are not the same as those for the succeeding induced fission neutrons, and similar situations can be envisaged for certain other experimental configurations. This present document shows how the previous considerations can be elaborated to embrace these more general requirements.« less

  6. Comparison of heavy-ion transport simulations: Collision integral in a box

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen

    2018-03-01

    Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.

  7. The young Huygens solves the problem of elastic collisions

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    1997-02-01

    Christiaan Huygens was probably the first person to solve the problem of elastic collisions. He did this in the 1650s when he was only in his early twenties. The first formal publication of his general rule for the outcome of a head-on hard collision was in March 1669 in the Journal des Sçavans. Our present paper describes in detail Huygens' work on elastic collisions. We focus particularly on how Huygens' instinct for symmetry led him to a solution in the center-of-gravity reference frame. He readily transformed this solution to other frames using what we now call the Galilean velocity transformation. Huygens' symmetry approach is quite different from the modern description of collisions using Newtonian action and reaction forces.

  8. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan

    2015-11-15

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy ofmore » the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.« less

  9. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    PubMed Central

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735

  10. A Model for Risk Analysis of Oil Tankers

    NASA Astrophysics Data System (ADS)

    Montewka, Jakub; Krata, Przemysław; Goerland, Floris; Kujala, Pentti

    2010-01-01

    The paper presents a model for risk analysis regarding marine traffic, with the emphasis on two types of the most common marine accidents which are: collision and grounding. The focus is on oil tankers as these pose the highest environmental risk. A case study in selected areas of Gulf of Finland in ice free conditions is presented. The model utilizes a well-founded formula for risk calculation, which combines the probability of an unwanted event with its consequences. Thus the model is regarded a block type model, consisting of blocks for the probability of collision and grounding estimation respectively as well as blocks for consequences of an accident modelling. Probability of vessel colliding is assessed by means of a Minimum Distance To Collision (MDTC) based model. The model defines in a novel way the collision zone, using mathematical ship motion model and recognizes traffic flow as a non homogeneous process. The presented calculations address waterways crossing between Helsinki and Tallinn, where dense cross traffic during certain hours is observed. For assessment of a grounding probability, a new approach is proposed, which utilizes a newly developed model, where spatial interactions between objects in different locations are recognized. A ship at a seaway and navigational obstructions may be perceived as interacting objects and their repulsion may be modelled by a sort of deterministic formulation. Risk due to tankers running aground addresses an approach fairway to an oil terminal in Sköldvik, near Helsinki. The consequences of an accident are expressed in monetary terms, and concern costs of an oil spill, based on statistics of compensations claimed from the International Oil Pollution Compensation Funds (IOPC Funds) by parties involved.

  11. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study.

    PubMed

    Yokosawa, Koichi; Watanabe, Tatsuya; Kikuzawa, Daichi; Aoyama, Gakuto; Takahashi, Makoto; Kuriki, Shinya

    2013-01-01

    Detection of a collision risk and avoiding the collision are important for survival. We have been investigating neural responses when humans anticipate a collision or intend to take evasive action by applying collision-simulating images in a predictable manner. Collision-simulating images and control images were presented in random order to 9 healthy male volunteers. A cue signal was also given visually two seconds before each stimulus to enable each participant to anticipate the upcoming stimulus. Magnetoencephalograms (MEG) were recorded with a 76-ch helmet system. The amplitude of alpha band (8-13 Hz) rhythm when anticipating the upcoming collision-simulating image was significantly smaller than that when anticipating control images even just after the cue signal. This result demonstrates that anticipating a negative (dangerous) event induced event-related desynchronization (ERD) of alpha band activity, probably caused by attention. The results suggest the feasibility of detecting endogenous brain activities by monitoring alpha band rhythm and its possible applications to engineering systems, such as an automatic collision evasion system for automobiles.

  12. Magnetic merging in colliding flux tubes

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Rhoads, James E.

    1995-01-01

    We develop an analytical theory of reconnection between colliding, twisted magnetic flux tubes. Our analysis is restricted to direct collisions between parallel tubes and is based on the collision dynamics worked out by Bogdan (1984). We show that there is a range of collision velocities for which neutral point reconnection of the Parker-Sweet type can occur, and a smaller range for which reconnection leads to coalescence. Mean velocities within the solar convection zone are probably significantly greater than the upper limit for coalescence. This suggests that the majority of flux tube collisions do not result in merging, unless the frictional coupling of the tubes to the background flow is extremely strong.

  13. Molecular spectroscopy and collisional excitation. [in astrophysics

    NASA Technical Reports Server (NTRS)

    Green, S.

    1975-01-01

    The paper examines the basic principles underlying the molecular transitions responsible for interstellar molecular spectra. The energy levels of molecules are discussed in detail with special attention given to the Born-Oppenheimer approximation, the electronic Hamiltonian, and the parameters of vibrational and rotational energy. The probabilities for radiative and collisional transitions are calculated. A brief review of techniques for molecular spectroscopy is presented along with methods used to determine collision cross sections on both an experimental and a theoretical basis.

  14. Transition and Electron Impact Excitation Collision Rates for O III

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  15. Toward a Physical Characterization of Raindrop Collision Outcome Regimes

    NASA Technical Reports Server (NTRS)

    Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.

    2011-01-01

    A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.

  16. Scattering of water from the glycerol liquid-vacuum interface

    NASA Technical Reports Server (NTRS)

    Benjamin, I.; Wilson, M. A.; Pohorille, A.; Nathanson, G. M.

    1995-01-01

    Molecular dynamics calculations of the scattering of D2O from the glycerol surface at different collision energies are reported. The results for the trapping probabilities and energy transfer are in good agreement with experiments. The calculations demonstrate that the strong attractive forces between these two strongly hydrogen bonding molecules have only a minor effect on the initial collision dynamics. The trapping probability is influenced to a significant extent by the repulsive hard sphere-like initial encounter with the corrugated surface and, only at a later stage, by the efficiency of energy flow in the multiple interactions between the water and the surface molecules.

  17. Incorporating Road Crossing Data into Vehicle Collision Risk Models for Moose (Alces americanus) in Massachusetts, USA.

    PubMed

    Zeller, Katherine A; Wattles, David W; DeStefano, Stephen

    2018-05-09

    Wildlife-vehicle collisions are a human safety issue and may negatively impact wildlife populations. Most wildlife-vehicle collision studies predict high-risk road segments using only collision data. However, these data lack biologically relevant information such as wildlife population densities and successful road-crossing locations. We overcome this shortcoming with a new method that combines successful road crossings with vehicle collision data, to identify road segments that have both high biological relevance and high risk. We used moose (Alces americanus) road-crossing locations from 20 moose collared with Global Positioning Systems as well as moose-vehicle collision (MVC) data in the state of Massachusetts, USA, to create multi-scale resource selection functions. We predicted the probability of moose road crossings and MVCs across the road network and combined these surfaces to identify road segments that met the dual criteria of having high biological relevance and high risk for MVCs. These road segments occurred mostly on larger roadways in natural areas and were surrounded by forests, wetlands, and a heterogenous mix of land cover types. We found MVCs resulted in the mortality of 3% of the moose population in Massachusetts annually. Although there have been only three human fatalities related to MVCs in Massachusetts since 2003, the human fatality rate was one of the highest reported in the literature. The rate of MVCs relative to the size of the moose population and the risk to human safety suggest a need for road mitigation measures, such as fencing, animal detection systems, and large mammal-crossing structures on roadways in Massachusetts.

  18. A Geometric Analysis to Protect Manned Assets from Newly Launched Objects - Cola Gap Analysis

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Beaver, Brian A.

    2013-01-01

    A safety risk was identified for the International Space Station (ISS) by The Aerospace Corporation, where the ISS would be unable to react to a conjunction with a newly launched object following the end of the launch Collision Avoidance (COLA) process. Once an object is launched, there is a finite period of time required to track, catalog, and evaluate that new object as part of standard onorbit COLA screening processes. Additionally, should a conjunction be identified, there is an additional period of time required to plan and execute a collision avoidance maneuver. While the computed prelaunch probability of collision with any object is extremely low, NASA/JSC has requested that all US launches take additional steps to protect the ISS during this "COLA gap" period. This paper details a geometric-based COLA gap analysis method developed by the NASA Launch Services Program to determine if launch window cutouts are required to mitigate this risk. Additionally, this paper presents the results of several missions where this process has been used operationally.

  19. Chance-Constrained Guidance With Non-Convex Constraints

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of failure) is below a user-specified bound known as the risk bound. An example problem is to drive a car to a destination as fast as possible while limiting the probability of an accident to 10(exp -7). This framework allows users to trade conservatism against performance by choosing the risk bound. The more risk the user accepts, the better performance they can expect.

  20. I-MAC: an incorporation MAC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Li, Yikun; Li, Dengao; Lin, Xiaojie

    2017-11-01

    This paper proposes an innovative MAC protocol called I-MAC. Protocol for wireless sensor networks, which combines the advantages of collision tolerance and collision cancellation. The protocol increases the number of antenna in wireless sensor nodes. The purpose is to monitor the occurrence of packet collisions by increasing the number of antenna in real time. The built-in identity structure is used in the frame structure in order to help the sending node to identify the location of the receiving node after a data packet collision is detected. Packets can be recovered from where the conflict occurred. In this way, we can monitor the conflict for a fixed period of time. It can improve the channel utilisation through changing the transmission probability of collision nodes and solve the problem of hidden terminal through collision feedback mechanism. We have evaluated our protocol. Our results show that the throughput of I-MAC is 5 percentage points higher than that of carrier sense multiple access/collision notification. The network utilisation of I-MAC is more than 92%.

  1. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  2. Probabilistic Based Modeling and Simulation Assessment

    DTIC Science & Technology

    2010-06-01

    different crash and blast scenarios. With the integration of the high fidelity neck and head model, a methodology to calculate the probability of injury...variability, correlation, and multiple (often competing) failure metrics. Important scenarios include vehicular collisions, blast /fragment impact, and...first area of focus is to develop a methodology to integrate probabilistic analysis into finite element analysis of vehicle collisions and blast . The

  3. Relativistic Many-Body Approach to Calculating Radiation and Autoionization Probabilities, Electron Collision Strengths For Multicharged Ions in a Plasma: Debae Approximation

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Loboda, Andrey; Nikola, Ludmila

    2011-10-01

    We present the uniform energy approach, formally based on the gauge-invariant relativistic many-body perturbation theory for the calculation of the radiative and autoionization probabilities, electron collision strengths and rate coefficients in a multicharged ions (in a collisionally pumped plasma). An account for the plasma medium influence is carried out within a Debae shielding approach. The aim is to study, in a uniform manner, elementary processes responsible for emission-line formation in a plasma. The energy shift due to the collision is arisen at first in the second PT order in the form of integral on the scattered electron energy. The cross-section is linked with imaginary part of the scattering energy shift. The electron collision excitation cross-sections and rate coefficients for some plasma Ne-, Ar-like multicharged ions are calculated within relativistic energy approach. We present the results of calculation the autoionization resonances energies and widths in heavy He-like multicharged ions and rare-earth atoms of Gd and Tm. To test the results of calculations we compare the obtained data for some Ne-like ions with other authors' calculations and available experimental data for a wide range of plasma conditions.

  4. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  5. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  6. Improved phase shift approach to the energy correction of the infinite order sudden approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, B.; Eno, L.; Rabitz, H.

    1980-07-15

    A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less

  7. Formula for the Transition Probability Induced by Long-range Potential Terms Varying as R-8 and R-10 for Atom-dimer Collisions

    NASA Astrophysics Data System (ADS)

    Matthews, N. F.; Robson, D.; Grant, M. A.

    1990-12-01

    An explicit formula is derived for the transition probability between two different states of the atom-dimer collisional system governed by second-order long-range interaction potential terms varying as R-8 and R-10.

  8. Trending in Probability of Collision Measurements

    NASA Technical Reports Server (NTRS)

    Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.

    2015-01-01

    A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.

  9. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  10. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  11. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  12. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  13. Cross Sections for Electron Impact Excitation of Astrophysically Abundant Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    Electron collisional excitation rates and transition probabilities are important for computing electron temperatures and densities, ionization equilibria, and for deriving elemental abundances from emission lines formed in the collisional and photoionized astrophysical plasmas. Accurate representation of target wave functions that properly account for the important correlation and relaxation effects and inclusion of coupling effects including coupling to the continuum are essential components of a reliable collision calculation. Non-orthogonal orbitals technique in multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities. The effect of coupling to the continuum spectrum is included through the use of pseudostates which are chosen to account for most of the dipole polarizabilities of target states. The B-spline basis is used in the R-matrix approach to calculate electron excitation collision strengths and rates. Results for oscillator strengths and electron excitation collision strengths for transitions in N I, O I, O II, O IV, S X and Fe XIV have been produced

  14. OH{sup +} in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Carrasco, Susana; Godard, Benjamin; Lique, François

    The rate constants required to model the OH{sup +} observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H{sub 2}(v = 0, J = 0, 1) + O{sup +}({sup 4} S) → H + OH{sup +}(X {sup 3}Σ{sup –}, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to assess the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sectionsmore » in the 0.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH{sup +} have been obtained for all astronomically significant rovibrational bands involving the X {sup 3}Σ{sup –} and/or A {sup 3}Π electronic states. For this purpose, the potential energy curves and electric dipole transition moments for seven electronic states of OH{sup +} are calculated with ab initio methods at the highest level, including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH{sup +}(X {sup 3}Σ{sup –}) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH{sup +}. In the models considered, the excitation resulting from the chemical formation of OH{sup +} increases the line fluxes by about 10% or less depending on the density of the gas.« less

  15. Vector correlations study of the reaction N(2D)+H2(X1Σg+)→NH(a1Δ)+H(2S) with different collision energies and reagent vibration excitations

    NASA Astrophysics Data System (ADS)

    Li, Yong-Qing; Zhang, Yong-Jia; Zhao, Jin-Feng; Zhao, Mei-Yu; Ding, Yong

    2015-11-01

    Vector correlations of the reaction are studied based on a recent DMBE-SEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(ϕr), and P(θr, ϕr). Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158) , the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).

  16. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less

  17. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  18. A Collision Avoidance Strategy for a Potential Natural Satellite around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Carpenter, J. Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  19. A Collision Avoidance Strategy for a Potential Natural Satellite Around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Carpenter, Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  20. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.

  1. Self-Consistent Simulation of the Brownian Stage of Dust Growth

    NASA Technical Reports Server (NTRS)

    Kempf, S.; Pfalzner, S.; Henning, Th.

    1996-01-01

    It is a widely accepted view that in proto-planetary accretion disks the collision and following sticking of dust particles embedded in the gas eventually leads to the formation of planetesimals (coagulation). For the smallest dust grains, Brownian motion is assumed to be the dominant source of their relative velocities leading to collisions between these dust grains. As the dust grains grow they eventually couple to the turbulent motion of the gas which then drives the coagulation much more efficiently. Many numerical coagulation simulations have been carried out to calculate the fractal dimension of the aggregates, which determines the duration of the ineffective Brownian stage of growth. Predominantly on-lattice and off-lattice methods were used. However, both methods require simplification of the astrophysical conditions. The aggregates found by those methods had a fractal dimension of approximately 2 which is equivalent to a constant, mass-independent friction time. If this value were valid for the conditions in an accretion disk, this would mean that the coagulation process would finally 'freeze out' and the growth of a planetesimal would be impossible within the lifetime of an accretion disk. In order to investigate whether this fractal dimension is model independent, we simulate self-consistently the Brownian stage of the coagulation by an N-particle code. This method has the advantage that no further assumptions about homogeneity of the dust have to be made. In our model, the dust grains are considered as aggregates built up of spheres. The equation of motion of the dust grains is based on the probability density for the diffusive transport within the gas atmosphere. Because of the very low number density of the dust grains, only 2-body-collisions have to be considered. As the Brownian stage of growth is very inefficient, the system is to be simulated over long periods of time. In order to find close particle pairs of the system which are most likely to undergo a collision, we use a particle-in-cell (PIC) method for the early stages of the simulation where the system is still very homogeneous and a tree method later when the particles are more clustered.

  2. Percolation

    NASA Astrophysics Data System (ADS)

    Dã¡Vila, Alã¡N.; Escudero, Christian; López, Jorge, , Dr.

    2004-10-01

    Several methods have been developed in order to study phase transitions in nuclear fragmentation. The one used in this research is Percolation. This method allows us to adjust resulting data to heavy ion collisions experiments. In systems, such as atomic nuclei or molecules, energy is put into the system. The system's particles move away from each other until their links are broken. Some particles will still be linked. The fragments' distribution is found to be a power law. We are witnessing then a critical phenomenon. In our model the particles are represented as occupied spaces in a cubical array. Each particle has a bound to each one of its 6 neighbors. Each bound can be active if the two particles are linked or inactive if they are not. When two or more particles are linked, a fragment is formed. The probability for a specific link to be broken cannot be calculated, so the probability for a bound to be active is going to be used as parameter when trying to adjust the data. For a given probability p several arrays are generated. The fragments are counted. The fragments' distribution is then adjusted to a power law. The probability that generates the better fit is going to be the critical probability that indicates a phase transition. The better fit is found by seeking the fragments' distribution that gives the minimal chi squared when compared to a power law. As additional evidence of criticality the entropy and normalized variance of the mass are also calculated for each probability.

  3. Defect-free atomic array formation using the Hungarian matching algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-05-01

    Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.

  4. Elimination des constantes arbitraires dans la theorie relativiste des quanta [85

    NASA Astrophysics Data System (ADS)

    This article shows how the influence of the undetermined constants in the integral theory of collisions1)2)3)4) can be avoided. A rule is given by which the probability amplitudes (5[F]-matrix) may be calculated in terms of a given local action. The procedure of the integral method differs essentially from the differential method employed by Tomonaga6), Schwikger5), FÅÕímaí7) and Dyson8) in that the two sorts of diverging terms occuring in the formal solution of a Schroedinqer equation are avoided. These two divergencies are: 1) the well known «.self energy» divergencies which have been since corrected by methods of regularization (Rivikr1), Pattli and Villaks9)); 2) the more serious boundary divergencies (Stueckelberg4)) due to the sharp spatio-temporal limitation of the space-time region of evolution V in which the collisions occur. The convergent parts (anomalous g-factor of the electron and the Lamb-Rethekford shift) obtained by Schwinger are, in the present theory, the boundary independent amplitudes in fourth approximation. Üp to this approximation the rule eliminates the arbitrary constants from all conservative processes.

  5. Selected considerations of implementation of the GNSS

    NASA Astrophysics Data System (ADS)

    Cwiklak, Janusz; Fellner, Andrzej; Fellner, Radoslaw; Jafernik, Henryk; Sledzinski, Janusz

    2014-05-01

    The article describes analysis of the safety and risk for the implementation of precise approach procedures (Localizer Performance and Vertical Guidance - LPV) with GNSS sensor at airports in Warsaw and Katowice. There were used some techniques of the identification of threats (inducing controlled flight into terrain, landing accident, mid-air collision) and evaluations methods based on Fault Tree Analysis, probability of the risk, safety risk evaluation matrix and Functional Hazard Assesment. Also safety goals were determined. Research led to determine probabilities of appearing of threats, as well as allow compare them with regard to the ILS. As a result of conducting the Preliminary System Safety Assessment (PSSA), there were defined requirements essential to reach the required level of the safety. It is worth to underline, that quantitative requirements were defined using FTA.

  6. Constraints on the pre-impact orbits of Solar system giant impactors

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Gabriel, Travis S. J.; Asphaug, Erik I.

    2018-03-01

    We provide a fast method for computing constraints on impactor pre-impact orbits, applying this to the late giant impacts in the Solar system. These constraints can be used to make quick, broad comparisons of different collision scenarios, identifying some immediately as low-probability events, and narrowing the parameter space in which to target follow-up studies with expensive N-body simulations. We benchmark our parameter space predictions, finding good agreement with existing N-body studies for the Moon. We suggest that high-velocity impact scenarios in the inner Solar system, including all currently proposed single impact scenarios for the formation of Mercury, should be disfavoured. This leaves a multiple hit-and-run scenario as the most probable currently proposed for the formation of Mercury.

  7. Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows

    DTIC Science & Technology

    2014-01-01

    prediction of radiative emission spectra. I. Introduction Excitation and quenching of vibrational energy modes through collision relaxation is an...restrict the VEDF to the first two excited states. For the combined excitation/ quenching cases (v i = 4), there is a greater probability of a... quenching process than a vibrationally excited collision. This is expected because the initial vibrational energy exceeds 60% of the total collisional energy

  8. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces.

    PubMed

    Otto, Frank; Gatti, Fabien; Meyer, Hans-Dieter

    2008-02-14

    We study the process of rotational excitation in the collisions of para-H(2) with para-H(2) by propagating wave packets with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Transition probabilities are then calculated by the method of Tannor and Weeks based on time-correlation functions. Calculations were carried out up to a total angular momentum of J=70 to compute integral cross sections up to 1.2 eV in collision energy and thermal rate coefficients from 100 to 3000 K. The process is studied on the full-dimensional potential energy surface of Boothroyd-Martin-Keogh-Peterson (BMKP) as well as on the rigid rotor surface of Diep and Johnson. We test the validity of the rigid rotor approximation by also considering two rigid rotor restrictions of the BMKP potential energy surface (PES). Additionally, we investigate a variant of the BMKP PES suggested by Pogrebnya and Clary [Chem. Phys. Lett. 363, 523 (2002)] with reduced anisotropy. We compare our results with previous theoretical data for the cross sections and with experimental data for the rate coefficients at low temperatures.

  9. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.

    PubMed

    Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus

    2018-02-28

    Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.

  10. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  11. Congestion estimation technique in the optical network unit registration process.

    PubMed

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  12. The Effect of the Spin-Forbidden Co((sup 1) Sigma plus) plus O((sup 3) P) Yields CO2 (1 Sigma (sub G) plus) Recombination Reaction on Afterbody Heating of Mars Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Xu, Lu T.; Jaffe, Richard L.; Schwenke, David W.; Panesi, Marco

    2017-01-01

    Vibrationally excited CO2, formed by two-body recombination from CO((sup 1) sigma plus) and O((sup 3) P) in the wake behind spacecraft entering the Martian atmosphere reaction, is potentially responsible for the higher than anticipated radiative heating of the backshell, compared to pre-flight predictions. This process involves a spin-forbidden transition of the transient triplet CO2 molecule to the longer-lived singlet. To accurately predict the singlet-triplet transition probability and estimate the thermal rate coefficient of the recombination reaction, ab initio methods were used to compute the first singlet and three lowest triplet CO2 potential energy surfaces and the spin-orbit coupling matrix elements between these states. Analytical fits to these four potential energy surfaces were generated for surface hopping trajectory calculations, using Tully's fewest switches surface hopping algorithm. Preliminary results for the trajectory calculations are presented. The calculated probability of a CO((sup 1) sigma plus) and O((sup 3) P) collision leading to singlet CO2 formation is on the order of 10 (sup -4). The predicted flowfield conditions for various Mars entry scenarios predict temperatures in the range of 1000 degrees Kelvin - 4000 degrees Kelvin and pressures in the range of 300-2500 pascals at the shoulder and in the wake, which is consistent with a heavy-particle collision frequency of 10 (sup 6) to 10 (sup 7) per second. Owing to this low collision frequency, it is likely that CO((sup 1) sigma plus) molecules formed by this mechanism will mostly be frozen in a highly nonequilibrium rovibrational energy state until they relax by photoemission.

  13. Developing safety performance functions incorporating reliability-based risk measures.

    PubMed

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Reptile road-kills in Southern Brazil: Composition, hot moments and hotspots.

    PubMed

    Gonçalves, Larissa Oliveira; Alvares, Diego Janisch; Teixeira, Fernanda Zimmermann; Schuck, Gabriela; Coelho, Igor Pfeifer; Esperandio, Isadora Beraldi; Anza, Juan; Beduschi, Júlia; Bastazini, Vinicius Augusto Galvão; Kindel, Andreas

    2018-02-15

    Understanding road-kill patterns is the first step to assess the potential effects of road mortality on wildlife populations, as well as to define the need for mitigation and support its planning. Reptiles are one of the vertebrate groups most affected by roads through vehicle collisions, both because they are intentionally killed by drivers, and due to their biological needs, such as thermoregulation, which make them more prone to collisions. We conducted monthly road surveys (33months), searching for carcasses of freshwater turtles, lizards, and snakes on a 277-km stretch of BR-101 road in Southernmost Brazil to estimate road-kill composition and magnitude and to describe the main periods and locations of road-kills. We modeled the distribution of road-kills in space according to land cover classes and local traffic volume. Considering the detection capacity of our method and carcass persistence probability, we estimated that 15,377 reptiles are road-killed per year (55reptiles/km/year). Road-kills, especially lizards and snakes, were concentrated during summer, probably due to their higher activity in this period. Road-kill hotspots were coincident among freshwater turtles, lizards, and snakes. Road-kill distribution was negatively related to pine plantations, and positively related to rice plantations and traffic volume. A cost-benefit analysis highlighted that if mitigation measures were installed at road-kill hotspots, which correspond to 21% of the road, they could have avoided up to 45% of recorded reptile fatalities, assuming a 100% mitigation effectiveness. Given the congruent patterns found for all three taxa, the same mitigation measures could be used to minimize the impacts of collision on local herpetofauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows.

    PubMed

    Lombardi, A; Faginas-Lago, N; Pacifici, L; Grossi, G

    2015-07-21

    Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO2 characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO2 + CO2 collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO2 structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.

  16. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimicmore » the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.« less

  17. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; Damiao, D. De Jesus; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M., Jr.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Ellithi Kamel, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Blanco, J. Martin; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Anuar, A. A. Bin; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Defranchis, M. M.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; El Morabit, K.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza; R; Ramirez-Sanchez; G.; Duran-Osuna; C., M.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo; I., R.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Baginyan, A.; Golunov, A.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kashunin, I.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Trofimov, V.; Yuldashev, B. S.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Sevilla, M. Franco; Golf, F.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-05-01

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated bar t events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

  18. The Relationship Between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision

    PubMed Central

    Quistberg, D. Alex; Howard, Eric J.; Hurvitz, Philip M.; Moudon, Anne V.; Ebel, Beth E.; Rivara, Frederick P.; Saelens, Brian E.

    2017-01-01

    Abstract Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian–motor vehicle collision is unknown. We examined associations between individuals’ walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008–2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. PMID:28338921

  19. Gossamer sails for satellite de-orbiting: Mission analysis and applications

    NASA Astrophysics Data System (ADS)

    Visagie, Lourens

    The requirement for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Studies have been used to formulate space debris mitigation guidelines, and adherence to these guidelines would theoretically lead to a sustainable environment for future satellite launches and operations. Deployable sail designs that have traditionally been studied and used for solar sails are increasingly being considered for de-orbit applications. Such sail designs benefit from a low mass and large surface area to achieve efficient thrust. A sail has the potential to be used for drag augmentation, to reduce the time until re-entry, or as an actual solar sail - to deorbit from higher orbits. A number of concerns for sail-based deorbiting are addressed in this thesis. One of these concerns is the ability of a sail to mitigate the risk of a collision. By investigating both the area-time-product (ATP) and collision probability it is shown that a gossamer sail used for deorbiting will lead to a reduction in overall collision risk. The extent to which the risk is reduced is investigated and the contributing factors assessed. Another concern is that of attitude stability of a host satellite and deorbit sail. One of the biggest benefits of drag augmentation is the fact that it can achieve the deorbiting goal with an inactive host satellite. There is thus no need for active control, communications or power after deployment. But a simple 2D sail will lose efficiency as a deorbiting device if it is not optimally oriented. It was found in this research that it is possible for a host satellite with attached sail to maintain a stable attitude under passive conditions in a drag deorbiting mode. Finally, in order to fully prove the benefit of sail-based deorbiting it is shown that in certain scenarios this alternative might be more efficient at reducing collision risk, weighs less, and has less operational requirements than other alternatives such as electrodynamic tethers and conventional propulsion. This thesis aims to cover the fundamental concerns of a sail-based deorbiting device at mission level by firstly addressing the mission analysis aspects and then applying it to specific scenarios. The theory and methods required to perform mission analysis for a sail-based deorbiting strategy is presented. These methods are then used to demonstrate passive attitude stability for a drag sail, and reduction in collision risk, both in terms of the Area-Time-Product and collision probability. The analysis results are then further applied by identifying scenarios to which the proposed deorbiting device applies, and then performing a meaningful comparison by analysing a number of case studies. The application is made more concrete by comparison with likely contenders - traditional propulsion, electrodynamic tethers and an inflatable sphere.

  20. The Probable Ages of Asteroid Families

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1993-01-01

    There has been considerable debate recently over the ages of the Hirayama families, and in particular if some of the families are very oung(u) It is a straightforward task to estimate the characteristic time of a collision between a body of a given diameter, d_o, by another body of diameter greater of equal to d_1. What is less straightforward is to estimate the critical diameter ratio, d_1/d_o, above which catastrophic disruption occurs, from which one could infer probable ages of the Hirayama families, by knowing the diameter of the parent body, d_o. One can gain some insight into the probable value of d_1/d_o, and of the likely ages of existing families, from the plot below. I have computed the characteristic time between collisions in the asteroid belt of a size ratio greater of equal to d_1/d_o, for 4 sizes of target asteroids, d_o. The solid curves to the lower right are the characteristic times for a single object...

  1. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environmentmore » by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.« less

  2. On the Relation Between Spherical Harmonics and Simplified Spherical Harmonics Methods

    NASA Astrophysics Data System (ADS)

    Coppa, G. G. M.; Giusti, V.; Montagnini, B.; Ravetto, P.

    2010-03-01

    The purpose of the paper is, first, to recall the proof that the AN method and, therefore, the SP2N-1 method (of which AN was shown to be a variant) are equivalent to the odd order P2N-1, at least for a particular class of multi-region problems; namely the problems for which the total cross section has the same value for all the regions and the scattering is supposed to be isotropic. By virtue of the introduction of quadrature formulas representing first collision probabilities, this class is then enlarged in order to encompass the systems in which the regions may have different total cross sections. Some examples are reported to numerically validate the procedure.

  3. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  4. Operational Implementation of a Pc Uncertainty Construct for Conjunction Assessment Risk Analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.; Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    Earlier this year the NASA Conjunction Assessment and Risk Analysis (CARA) project presented the theoretical and algorithmic aspects of a method to include the uncertainties in the calculation inputs when computing the probability of collision (Pc) between two space objects, principally uncertainties in the covariances and the hard-body radius. The output of this calculation approach is to produce rather than a single Pc value an entire probability density function that will represent the range of possible Pc values given the uncertainties in the inputs and bring CA risk analysis methodologies more in line with modern risk management theory. The present study provides results from the exercise of this method against an extended dataset of satellite conjunctions in order to determine the effect of its use on the evaluation of conjunction assessment (CA) event risk posture. The effects are found to be considerable: a good number of events are downgraded from or upgraded to a serious risk designation on the basis of consideration of the Pc uncertainty. The findings counsel the integration of the developed methods into NASA CA operations.

  5. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters inmore » two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.« less

  6. Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

    NASA Astrophysics Data System (ADS)

    Barrios, Lizandra; Rubayo-Soneira, Jesús; González-Lezana, Tomás

    2016-03-01

    Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0 ,j = 1) → SH + H and Si + O2(v = 0 ,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

  7. On the alleged collisional origin of the Kirkwood Gaps. [in asteroid belt

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1975-01-01

    This paper examines two proposed mechanisms whereby asteroidal collisions and close approaches may have given rise to the Kirkwood Gaps. The first hypothesis is that asteroids in near-resonant orbits have markedly increased collision probabilities and so are preferentially destroyed, or suffer decay in population density, within the resonance zones. A simple order-of-magnitude analysis shows that this hypothesis is untenable since it leads to conclusions which are either unrealistic or not in accord with present understanding of asteroidal physics. The second hypothesis is the Brouwer-Jefferys theory that collisions would smooth an asteroidal distribution function, as a function of Jacobi constant, thus forming resonance gaps. This hypothesis is examined by direct numerical integration of 50 asteroid orbits near the 2:1 resonance, with collisions simulated by random variables. No tendency to form a gap was observed.

  8. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  9. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  10. The Relationship Between Objectively Measured Walking and Risk of Pedestrian-Motor Vehicle Collision.

    PubMed

    Quistberg, D Alex; Howard, Eric J; Hurvitz, Philip M; Moudon, Anne V; Ebel, Beth E; Rivara, Frederick P; Saelens, Brian E

    2017-05-01

    Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian-motor vehicle collision is unknown. We examined associations between individuals' walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008-2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare the performance with linearly extrapolated collision detection logic. For the path planning and collision avoidance part, we present multiple reactive path planning algorithms. We first propose a collision avoidance algorithm based on a simulated chain that responds to a virtual force field produced by encountering intruders. The key feature of the proposed approach is to model the future motion of both the intruder and the ownship using a chain of waypoints that are equally spaced in time. This timing information is used to continuously re-plan paths that minimize the probability of collision. Second, we present an innovative collision avoidance logic using an ownship centered coordinate system. The technique builds a graph in the local-level frame and uses the Dijkstra's algorithm to find the least cost path. An advantage of this approach is that collision avoidance is inherently a local phenomenon and can be more naturally represented in the local coordinates than the global coordinates. Finally, we propose a two step path planner for ground-based SAA systems. In the first step, an initial suboptimal path is generated using A* search. In the second step, using the A* solution as an initial condition, a chain of unit masses connected by springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations that is driven by virtual forces to find the steady-state equilibrium. The simulation results show that the proposed approach produces collision-free plans while minimizing the path length. To move towards a deployable system, we apply collision detection and avoidance techniques to a variety of simulation and sensor modalities including camera, radar and ADS-B along with suitable tracking schemes. Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  12. Evaluation of the safety performance of highway alignments based on fault tree analysis and safety boundaries.

    PubMed

    Chen, Yikai; Wang, Kai; Xu, Chengcheng; Shi, Qin; He, Jie; Li, Peiqing; Shi, Ting

    2018-05-19

    To overcome the limitations of previous highway alignment safety evaluation methods, this article presents a highway alignment safety evaluation method based on fault tree analysis (FTA) and the characteristics of vehicle safety boundaries, within the framework of dynamic modeling of the driver-vehicle-road system. Approaches for categorizing the vehicle failure modes while driving on highways and the corresponding safety boundaries were comprehensively investigated based on vehicle system dynamics theory. Then, an overall crash probability model was formulated based on FTA considering the risks of 3 failure modes: losing steering capability, losing track-holding capability, and rear-end collision. The proposed method was implemented on a highway segment between Bengbu and Nanjing in China. A driver-vehicle-road multibody dynamics model was developed based on the 3D alignments of the Bengbu to Nanjing section of Ning-Luo expressway using Carsim, and the dynamics indices, such as sideslip angle and, yaw rate were obtained. Then, the average crash probability of each road section was calculated with a fixed-length method. Finally, the average crash probability was validated against the crash frequency per kilometer to demonstrate the accuracy of the proposed method. The results of the regression analysis and correlation analysis indicated good consistency between the results of the safety evaluation and the crash data and that it outperformed the safety evaluation methods used in previous studies. The proposed method has the potential to be used in practical engineering applications to identify crash-prone locations and alignment deficiencies on highways in the planning and design phases, as well as those in service.

  13. On real statistics of relaxation in gases

    NASA Astrophysics Data System (ADS)

    Kuzovlev, Yu. E.

    2016-02-01

    By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.

  14. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. In conclusion, the heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  15. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-05-08

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. In conclusion, the heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  16. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-05-08

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  17. Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 8.16 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The elliptic azimuthal anisotropy coefficient (more » $$v_2$$) is measured for charm (D$^0$) and strange (K$$_\\mathrm{S}^0$$, $$\\Lambda$$, $$\\Xi^-$$, and $$\\Omega^-$$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 8.16 TeV. A significant positive $$v_2$$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $$v_2$$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 5.02 TeV, also presented.« less

  18. Investigation of safety analysis methods using computer vision techniques

    NASA Astrophysics Data System (ADS)

    Shirazi, Mohammad Shokrolah; Morris, Brendan Tran

    2017-09-01

    This work investigates safety analysis methods using computer vision techniques. The vision-based tracking system is developed to provide the trajectory of road users including vehicles and pedestrians. Safety analysis methods are developed to estimate time to collision (TTC) and postencroachment time (PET) that are two important safety measurements. Corresponding algorithms are presented and their advantages and drawbacks are shown through their success in capturing the conflict events in real time. The performance of the tracking system is evaluated first, and probability density estimation of TTC and PET are shown for 1-h monitoring of a Las Vegas intersection. Finally, an idea of an intersection safety map is introduced, and TTC values of two different intersections are estimated for 1 day from 8:00 a.m. to 6:00 p.m.

  19. Quenching of highly vibrationally excited pyrimidine by collisions with CO2

    NASA Astrophysics Data System (ADS)

    Johnson, Jeremy A.; Duffin, Andrew M.; Hom, Brian J.; Jackson, Karl E.; Sevy, Eric T.

    2008-02-01

    Relaxation of highly vibrationally excited pyrimidine (C4N2H4) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E'=40635cm-1) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 0000 ground state of CO2 resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J =58-80 of the 0000 state. Rate constants and probabilities for collisions populating these CO2 rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of ΔE to create the energy transfer distribution function, P(E,E'), from E'-E˜1300-7000cm-1. P(E,E') is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO2 and parameters that can be compared to previously studied systems using this technique, pyrazine/CO2, C6F6/CO2, and methylpyrazine/CO2. P(E,E') parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E') is analyzed in the context of two models, one which suggests that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E') can be determined by how the donor molecule final density of states changes with ΔE.

  20. Dependence of elastic hadron collisions on impact parameter

    NASA Astrophysics Data System (ADS)

    Procházka, Jiří; Lokajíček, Miloš V.; Kundrát, Vojtěch

    2016-05-01

    Elastic proton-proton collisions represent probably the greatest ensemble of available measured data, the analysis of which may provide a large amount of new physical results concerning fundamental particles. It is, however, necessary to analyze first some conclusions concerning pp collisions and their interpretations differing fundamentally from our common macroscopic experience. It has been argued, e.g., that elastic hadron collisions have been more central than inelastic ones, even if any explanation of the existence of so different processes, i.e., elastic and inelastic (with hundreds of secondary particles) collisions, under the same conditions has not been given until now. The given conclusion has been based on a greater number of simplifying mathematical assumptions (already done in earlier calculations), without their influence on physical interpretation being analyzed and entitled; the corresponding influence has started to be studied in the approach based on the eikonal model. The possibility of a peripheral interpretation of elastic collisions will be demonstrated and the corresponding results summarized. The arguments will be given on why no preference may be given to the mentioned centrality against the standard peripheral behaviour. The corresponding discussion on the contemporary description of elastic hadronic collision in dependence on the impact parameter will be summarized and the justification of some important assumptions will be considered.

  1. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  2. Modeling Aircraft Position and Conservatively Calculating Airspace Violations for an Autonomous Collision Awareness System for Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Ueunten, Kevin K.

    With the scheduled 30 September 2015 integration of Unmanned Aerial System (UAS) into the national airspace, the Federal Aviation Administration (FAA) is concerned with UAS capabilities to sense and avoid conflicts. Since the operator is outside the cockpit, the proposed collision awareness plugin (CAPlugin), based on probability and error propagation, conservatively predicts potential conflicts with other aircraft and airspaces, thus increasing the operator's situational awareness. The conflict predictions are calculated using a forward state estimator (FSE) and a conflict calculator. Predicting an aircraft's position, modeled as a mixed Gaussian distribution, is the FSE's responsibility. Furthermore, the FSE supports aircraft engaged in the following three flight modes: free flight, flight path following and orbits. The conflict calculator uses the FSE result to calculate the conflict probability between an aircraft and airspace or another aircraft. Finally, the CAPlugin determines the highest conflict probability and warns the operator. In addition to discussing the FSE free flight, FSE orbit and the airspace conflict calculator, this thesis describes how each algorithm is implemented and tested. Lastly two simulations demonstrates the CAPlugin's capabilities.

  3. Determination of barge impact probabilities for bridge design.

    DOT National Transportation Integrated Search

    2016-04-01

    Waterway bridges in the United States are designed to resist vessel collision loads according to design provisions released by the American Association of State : Highway and Transportation Officials (AASHTO). These provisions provide detailed proced...

  4. Investigating the collision energy dependence of η /s in the beam energy scan at the BNL Relativistic Heavy Ion Collider using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Auvinen, Jussi; Bernhard, Jonah E.; Bass, Steffen A.; Karpenko, Iurii

    2018-04-01

    We determine the probability distributions of the shear viscosity over the entropy density ratio η /s in the quark-gluon plasma formed in Au + Au collisions at √{sN N}=19.6 ,39 , and 62.4 GeV , using Bayesian inference and Gaussian process emulators for a model-to-data statistical analysis that probes the full input parameter space of a transport + viscous hydrodynamics hybrid model. We find the most likely value of η /s to be larger at smaller √{sN N}, although the uncertainties still allow for a constant value between 0.10 and 0.15 for the investigated collision energy range.

  5. Accretion of Rocky Planets by Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in ~4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N ~ 103) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities—both speeds and impact parameters—for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  6. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward infinity, while the Hill sphere method results in a severely underestimated probability. We provide a discussion of the reasons for these differences, and we finally present the results of the MOID method in the form of probability maps for the Earth and Mars on their current orbits. These maps show a relatively flat probability distribution, except for the occurrence of two ridges found at small inclinations and for coinciding projectile/target perihelion distances. Conclusions: Our results verify the standard formulae in the general case, away from the singularities. In fact, severe shortcomings are limited to the immediate vicinity of those extreme orbits. On the other hand, the new Monte Carlo methods can be used without excessive consumption of computer time, and the MOID method avoids the problems associated with the other methods. Appendices are available in electronic form at http://www.aanda.org

  7. Department of Defense Air Traffic Control and Airspace Management Systems

    DTIC Science & Technology

    1989-08-08

    service. The potential near-term impacts of incompatible and non- interoperable systems on the Air Force are described in terms of safety and...impacts of incompatible and non-interoperable systems on the Air Force are described in terms of safety and operational effectiveness and probable...derogation of safety , from the standpoint of aircraft collision avoidance, is probable where service specific systems are operating in adjacent or

  8. Methodology for safety optimization of highway cross-sections for horizontal curves with restricted sight distance.

    PubMed

    Ibrahim, Shewkar E; Sayed, Tarek; Ismail, Karim

    2012-11-01

    Several earlier studies have noted the shortcomings with existing geometric design guides which provide deterministic standards. In these standards the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from the standards. To mitigate these shortcomings, probabilistic geometric design has been advocated where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a mechanism for risk measurement to evaluate the safety impact of deviations from design standards. This paper applies reliability analysis for optimizing the safety of highway cross-sections. The paper presents an original methodology to select a suitable combination of cross-section elements with restricted sight distance to result in reduced collisions and consistent risk levels. The purpose of this optimization method is to provide designers with a proactive approach to the design of cross-section elements in order to (i) minimize the risk associated with restricted sight distance, (ii) balance the risk across the two carriageways of the highway, and (iii) reduce the expected collision frequency. A case study involving nine cross-sections that are parts of two major highway developments in British Columbia, Canada, was presented. The results showed that an additional reduction in collisions can be realized by incorporating the reliability component, P(nc) (denoting the probability of non-compliance), in the optimization process. The proposed approach results in reduced and consistent risk levels for both travel directions in addition to further collision reductions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-02-01

    We present a detailed dynamical study of the kinetics of O(P3)+NO(Π2) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest A'2 and A″2 potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr∝T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, ΔZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.

  10. Mantle Discontinuities under Iranian Plateau and Turan Shield from the Modeling of Seismic Triplications

    NASA Astrophysics Data System (ADS)

    Tseng, Tai-Lin; Chi, Hui-Ching; Huang, Bor-Shouh; Godoladze, Tea; Javakhishvili, Zurab; Karakhanyan, Arkadi

    2015-04-01

    Recent studies of seismic tomography show velocity anomalies in the mantle transition zone (TZ) under Zagros and Iranian Plateau, which are created by active collision between Africa and Eurasia. Remnants of Neo-Tethys slab that subducted before the collision might had experienced a break-off and likely be rested in the deep mantle. In this study, we utilize triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath this continental collision zone and the surroundings. By combining several broadband arrays in eastern Turkey and Caucasus, we construct a fan of profiles, each about 800 km long, which consist of triplicate waveforms generated from the 410- and 660-km discontinuities. The method is particularly sensitive to the size of the velocity contrast for the sampled regions, including the central Iranian Plateau, Turan shield and part of South Caspian basin. Our results show that the lower TZ under the stable Turan shield is fast. The corresponding 660-km contrast is about 4.5% only, smaller than the value in global average model IASP91, but fairly close to that under the northern Indian shield in Precambrian age. For profiles sampling Iran, we observe azimuthal changes in the waveforms which require further data division or grouping. The preliminary analysis suggests that the velocity near the bottom of the TZ is comparable to model appropriate for Turan and probably has a slightly shallower 660-km discontinuity. We hope the comparisons between velocity structures under different terranes can improve our understandings to the lithosphere-mantle dynamics under the process of continental collision.

  11. Rapidity window dependences of higher order cumulants and diffusion master equation

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo

    2015-10-01

    We study the rapidity window dependences of higher order cumulants of conserved charges observed in relativistic heavy ion collisions. The time evolution and the rapidity window dependence of the non-Gaussian fluctuations are described by the diffusion master equation. Analytic formulas for the time evolution of cumulants in a rapidity window are obtained for arbitrary initial conditions. We discuss that the rapidity window dependences of the non-Gaussian cumulants have characteristic structures reflecting the non-equilibrium property of fluctuations, which can be observed in relativistic heavy ion collisions with the present detectors. It is argued that various information on the thermal and transport properties of the hot medium can be revealed experimentally by the study of the rapidity window dependences, especially by the combined use, of the higher order cumulants. Formulas of higher order cumulants for a probability distribution composed of sub-probabilities, which are useful for various studies of non-Gaussian cumulants, are also presented.

  12. Comparison of two MAC protocols based on LEO satellite networks

    NASA Astrophysics Data System (ADS)

    Guan, Mingxiang; Wang, Ruichun

    2009-12-01

    With the development of LEO satellite communication, it is the basic requirement that various kinds of services will be provided. Considering that weak channel collision detection ability, long propagation delay and heavy load in LEO satellite communication system, a valid adaptive access control protocol APRMA is proposed. Different access probability functions for different services are obtained and appropriate access probabilities for voice and data users are updated slot by slot based on the estimation of the voice traffic and the channel status. Finally simulation results demonstrate that the performance of system is improved by the APRMA compared with the conventional PRMA, with an acceptable trade-off between QoS of voice and delay of data. Also the APRMA protocol will be suitable for HAPS (high altitude platform station) with the characters of weak channel collision detection ability, long propagation delay and heavy load.

  13. Treating electron transport in MCNP{sup trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, H.G.

    1996-12-31

    The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. Themore » theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.« less

  14. Impact origin of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, W.L.

    1998-12-31

    A few years after the Apollo flights to the Moon, it became clear that all of the existing theories on the origin of the Moon would not satisfy the growing body of constraints which appeared with the data gathered by the Apollo flights. About the same time, researchers began to realize that the inner (terrestrial) planets were not born quietly -- all had evidences of impacts on their surfaces. This fact reinforced the idea that the planets had formed by the accumulation of planetesimals. Since the Earth`s moon is unique among the terrestrial planets, a few researchers realized that perhapsmore » the Moon originated in a singular event; an event that was quite probable, but not so probable that one would expect all the terrestrial planets to have a large moon. And thus was born the idea that a giant impact formed the Moon. Impacts would be common in the early solar system; perhaps a really large impact of two almost fully formed planets of disparate sizes would lead to material orbiting the proto-earth, a proto-moon. This idea remained to be tested. Using a relatively new, but robust, method of doing the hydrodynamics of the collision (Smoothed-Particle Hydrodynamics), the author and his colleagues (W. Benz, Univ. of Arizona, and A.G.W. Cameron, Harvard College Obs.) did a large number of collision simulations on a supercomputer. The author found two major scenarios which would result in the formation of the Moon. The first was direct formation; a moon-sized object is boosted into orbit by gravitational torques. The second is when the orbiting material forms a disk, which, with subsequent evolution can form the Moon. In either case the physical and chemical properties of the newly formed Moon would very neatly satisfy the physical and chemical constraints of the current Moon. Also, in both scenarios the surface of the Earth would be quite hot after the collision. This aspect remains to be explored.« less

  15. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China

    PubMed Central

    Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao

    2018-01-01

    The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551

  16. Simulating the universe(s) III: observables for the full bubble collision spacetime

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew C.; Wainwright, Carroll L.; Aguirre, Anthony; Peiris, Hiranya V.

    2016-07-01

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methods against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.

  17. On the neutralization in low energy ion scattering spectroscopy (leiss): He + ions on clean and oxygen covered Ni(001) surfaces

    NASA Astrophysics Data System (ADS)

    Preuss, E.

    1981-10-01

    A formula for the He + ion survival probability against neutralization is presented, which was derived from the fit of the azimuthal angular dependence of the Ni peak heights on clean and O covered Ni(001) surfaces observed in LEISS experiments and computer simulations. The formula contains a collision- and two Auger-type neutralization terms for the ion trajectories prolonged by multiple collisions above the "neutralization surface plane", which was assumed to be corrugated and shaped like muffin-tins.

  18. A giant impact origin of Pluto-Charon.

    PubMed

    Canup, Robin M

    2005-01-28

    Pluto and its moon, Charon, are the most prominent members of the Kuiper belt, and their existence holds clues to outer solar system formation processes. Here, hydrodynamic simulations are used to demonstrate that the formation of Pluto-Charon by means of a large collision is quite plausible. I show that such an impact probably produced an intact Charon, although it is possible that a disk of material orbited Pluto from which Charon later accumulated. These findings suggest that collisions between 1000-kilometer-class objects occurred in the early inner Kuiper belt.

  19. Molecular collision processes in the presence of picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Lee, H. W.; George, T. F.

    1979-01-01

    Radiative transitions in molecular collision processes taking place in the presence of picosecond pulses are studied within a semiclassical formalism. An expression for adiabatic potential surfaces in the electronic-field representation is obtained, which directly leads to the evaluation of transition probabilities. Calculations with a Landau-Zener-type model indicate that picosecond pulses can be much more effective in inducing transitions than a single long pulse of the same intensity and the same total energy, if the intensity is sufficiently high that the perturbation treatment is not valid.

  20. A collision risk model to predict avian fatalities at wind facilities: an example using golden eagles, Aquila chrysaetos

    USGS Publications Warehouse

    New, Leslie; Bjerre, Emily; Millsap, Brian A.; Otto, Mark C.; Runge, Michael C.

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation.

  1. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos

    PubMed Central

    New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C.; Runge, Michael C.

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation. PMID:26134412

  2. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.

    PubMed

    New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C; Runge, Michael C

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation.

  3. Motor vehicle driving in high incidence psychiatric disability: comparison of drivers with ADHD, depression, and no known psychopathology.

    PubMed

    Aduen, Paula A; Kofler, Michael J; Cox, Daniel J; Sarver, Dustin E; Lunsford, Erin

    2015-05-01

    Although not often discussed in clinical settings, motor vehicle driving is a complex multitasking endeavor during which a momentary attention lapse can have devastating consequences. Previous research suggests that drivers with high incidence psychiatric disabilities such as ADHD contribute disproportionately to collision rates, which in turn portend myriad adverse social, financial, health, mortality, and legal outcomes. However, self-referral bias and the lack of psychiatric comparison groups constrain the generalizability of these findings. The current study addressed these limitations and examined the unique associations among ADHD, Depression, and adverse driving outcomes, independent of self-selection, driving exposure, and referral bias. The Strategic Highway Research Program (SHRP-2) Naturalistic Driving Study comprises U.S. drivers from six sites selected via probability-based sampling. Groups were defined by Barkley ADHD and psychiatric diagnosis questionnaires, and included ADHD (n = 275), Depression (n = 251), and Healthy Control (n = 1828). Primary outcomes included self-reported traffic collisions, moving violations, collision-related injuries, and collision fault (last 3 years). Accounting for demographic differences, ADHD but not Depression portended increased risk for multiple violations (OR = 2.3) and multiple collisions (OR = 2.2). ADHD but not Depression portended increased risk for collision fault (OR = 2.1). Depression but not ADHD predicted increased risk for self-reported injury following collisions (OR = 2.4). ADHD appears uniquely associated with multiple collisions, multiple violations, and collision fault, whereas Depression is uniquely associated with self-reported injury following a collision. Identification of the specific mechanisms underlying this risk will be critical to designing effective interventions to improve long-term functioning for drivers with high incidence psychiatric disability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia

    2018-03-01

    Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.

  5. Modeling dust growth in protoplanetary disks: The breakthrough case

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Windmark, F.; Dullemond, C. P.

    2014-07-01

    Context. Dust coagulation in protoplanetary disks is one of the initial steps toward planet formation. Simple toy models are often not sufficient to cover the complexity of the coagulation process, and a number of numerical approaches are therefore used, among which integration of the Smoluchowski equation and various versions of the Monte Carlo algorithm are the most popular. Aims: Recent progress in understanding the processes involved in dust coagulation have caused a need for benchmarking and comparison of various physical aspects of the coagulation process. In this paper, we directly compare the Smoluchowski and Monte Carlo approaches to show their advantages and disadvantages. Methods: We focus on the mechanism of planetesimal formation via sweep-up growth, which is a new and important aspect of the current planet formation theory. We use realistic test cases that implement a distribution in dust collision velocities. This allows a single collision between two grains to have a wide range of possible outcomes but also requires a very high numerical accuracy. Results: For most coagulation problems, we find a general agreement between the two approaches. However, for the sweep-up growth driven by the "lucky" breakthrough mechanism, the methods exhibit very different resolution dependencies. With too few mass bins, the Smoluchowski algorithm tends to overestimate the growth rate and the probability of breakthrough. The Monte Carlo method is less dependent on the number of particles in the growth timescale aspect but tends to underestimate the breakthrough chance due to its limited dynamic mass range. Conclusions: We find that the Smoluchowski approach, which is generally better for the breakthrough studies, is sensitive to low mass resolutions in the high-mass, low-number tail that is important in this scenario. To study the low number density features, a new modulation function has to be introduced to the interaction probabilities. As the minimum resolution needed for breakthrough studies depends strongly on setup, verification has to be performed on a case by case basis.

  6. Guidelines for Enhancement of Visual Conspicuity of Trains at Grade Crossings

    DOT National Transportation Integrated Search

    1975-05-01

    This report summarizes a comprehensive study of potential means of reducing the probability of train-motor vehicle collisions at railroad-highway grade crossings through enhancement of the visual conspicuity of locomotives. Passive techniques are rev...

  7. Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models

    DOE PAGES

    He, Liang; Edmonds, Terrence; Lin, Zi-Wei; ...

    2015-12-22

    We trace the development of azimuthal anisotropy (v n, n = 2, 3) via parton-parton collision history in two transport models. The parton v n is studied as a function of the number of collisions of each parton in Au+Au and d+Au collisions at √ s NN = 200 GeV. Findings show that the majority of v n comes from the anisotropic escape probability of partons, with no fundamental difference at low and high transverse momenta. The contribution to v n from hydrodynamic-type collective flow is found to be small. Only when the parton-parton cross-section is set unrealistically large doesmore » this contribution start to take over. Our findings challenge the current paradigm emerged from hydrodynamic comparisons to anisotropy data.« less

  8. Towards high-speed autonomous navigation of unknown environments

    NASA Astrophysics Data System (ADS)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  9. The Top 10 Questions for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.

    2010-01-01

    This slide presentation reviews the requirement and issues around removal of debris from the earth orbital environment. The 10 questions discussed are: 1. Which region (LEO/MEO/GEO) has the fastest projected growth rate and the highest collision activities? 2. Can the commonly-adopted mitigation measures stabilize the future environment? 3. What are the objectives of active debris removal (ADR)? 4. How can effective ADR target selection criteria to stabilize the future LEO environment be defined? 5. What are the keys to remediate the future LEO environment? 6. What is the timeframe for ADR implementation? 7. What is the effect of practical/operational constraints? 8. What are the collision probabilities and masses of the current objects? 9. What are the benefits of collision avoidance maneuvers? 10. What is the next step?

  10. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.

    PubMed

    Xu, Shenghua; Sun, Zhiwei

    2007-04-14

    Collisions of a particle pair induced by optical tweezers have been employed to study colloidal stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in the optical trap that were observed in experimental approaches at the particle level, the authors carry out a Brownian dynamics simulation. In the simulation, various contributing factors, including the Derjaguin-Landau-Verwey-Overbeek interaction of particles, hydrodynamic interactions, optical trapping forces on the two particles, and the Brownian motion, were all taken into account. The simulation reproduces the tendencies of the accumulated sticking probability during the trapping duration for the trapped particle pair described in our previous study and provides an explanation for why the two entangled particles in the trap experience two different statuses.

  11. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  12. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  13. Situation analysis for automotive pre-crash systems

    NASA Astrophysics Data System (ADS)

    Böhning, Marcus A.; Ritter, Henning; Rohling, Herrman

    2008-01-01

    According to the "World Report on Road Traffic Injury Prevention" jointly issued by the World Health Organization and the World Bank about 1.2 million people are killed and up to 50 million people are injured in road traffic accidents worldwide each year. While passive safety systems like the airbag are already deployed successfully to reduce fatalities and injuries, active safety systems assist the driver by issuing a warning or by taking corrective actions to either avoid a collision completely or, if impossible, to mitigate collision consequences. Today's radar sensors have the ability to detect and track objects with a high accuracy in range and velocity, therefore a collision warning system may consist of a radar sensor, a data processing unit and a model to describe possible evasion maneuvers. This allows to analyze the probability of a collision and to calculate the danger potential of the current situation. In this paper, such a system is proposed and it is verified with synthetic as well as real sensor data.

  14. Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  15. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    PubMed Central

    Zhang, Wei; Wei, Shilin; Teng, Yanbin; Zhang, Jianku; Wang, Xiufang; Yan, Zheping

    2017-01-01

    In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment. PMID:29186878

  16. Evaluating and addressing the effects of regression to the mean phenomenon in estimating collision frequencies on urban high collision concentration locations.

    PubMed

    Lee, Jinwoo; Chung, Koohong; Kang, Seungmo

    2016-12-01

    Two different methods for addressing the regression to the mean phenomenon (RTM) were evaluated using empirical data: Data from 110 miles of freeway located in California were used to evaluate the performance of the EB and CRP methods in addressing RTM. CRP outperformed the EB method in estimating collision frequencies in selected high collision concentration locations (HCCLs). Findings indicate that the performance of the EB method can be markedly affected when SPF is biased, while the performance of CRP remains much less affected. The CRP method was more effective in addressing RTM. Published by Elsevier Ltd.

  17. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    NASA Astrophysics Data System (ADS)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  18. Median barrier crash severity: some new insights.

    PubMed

    Hu, Wen; Donnell, Eric T

    2010-11-01

    Median barrier is used to prevent cross-median crashes on divided highways. Although it is well documented that crash frequencies increase after installing median barrier, little is known about median barrier crash severity outcomes. The present study estimated a nested logit model of median barrier crash severity using 5 years of data from rural divided highways in North Carolina. Vehicle, driver, roadway, and median cross-section design data were factors considered in the model. A unique aspect of the data used to estimate the model was the availability of median barrier placement and median cross-slope data, two elements not commonly included in roadway inventory data files. The estimation results indicate that collisions with a cable median barrier increase the probability of less-severe crash outcomes relative to collisions with a concrete or guardrail median barrier. Increasing the median barrier offset was associated with a lower probability of severe crash outcomes. The presence of a cable median barrier installed on foreslopes that were between 6H:1V and 10H:1V were associated with an increase in severe crash probabilities when compared to cable median barrier installations on foreslopes that were 10H:1V or flatter. 2010 Elsevier Ltd. All rights reserved.

  19. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  20. Navigational Traffic Conflict Technique: A Proactive Approach to Quantitative Measurement of Collision Risks in Port Waters

    NASA Astrophysics Data System (ADS)

    Debnath, Ashim Kumar; Chin, Hoong Chor

    Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.

  1. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

  2. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa

    PubMed Central

    Reid, Tim; du Plessis, Johan; Colyn, Robin; Benn, Grant; Millikin, Rhonda

    2018-01-01

    Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16–29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development. PMID:29408877

  3. Collision lifetimes and impact statistics of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, W. F., Jr.; Nolan, M. C.; Greenberg, R.

    1993-01-01

    We have examined the lifetimes of Near-Earth asteroids (NEA's) by directly computing the collision probabilities with other asteroids and with the terrestrial planets. We compare these to the dynamical lifetimes, and to collisional lifetimes assumed by other workers. We discuss the implications of the differences. The lifetimes of NEA's are important because, along with the statistics of craters on the Earth and Moon, they help us to compute the number of NEA's and the rate at which new NEA's are brought to the vicinity of the Earth. Assuming that the NEA population is in steady-state, the lifetimes determine the flux of new bodies needed to replenish the population. Earlier estimates of the lifetimes ignored (or incompletely accounted for) the differences in the velocities of asteroids as they move in their orbits, so our results differ from (for example) Greenberg and Chapman (1983, Icarus 55, 455) and Wetherill (1988, Icarus 76, 1) by factors of 2 to 10. We have computed the collision rates and relative velocities of NEA's with each other, the main-belt asteroids, and the terrestrial planets, using the corrected method described by Bottke et. al. (1992, GRL, in press). We find that NEA's typically have shorter collisional lifetimes than do main-belt asteroids of the same size, due to their high eccentricities, which typically give them aphelia in the main belt. Consequently, they spend a great deal of time in the main belt, and are moving much slower than the bodies around them, making them 'sitting ducks' for impacts with other asteroids. They cross the paths of many objects, and their typical collision velocities are much higher (10-15 km/s) than the collision velocities (5 km/s) among objects within the main belt. These factors combine to give them substantially shorter lifetimes than had been previously estimated.

  4. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  5. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa.

    PubMed

    Jenkins, Andrew R; Reid, Tim; du Plessis, Johan; Colyn, Robin; Benn, Grant; Millikin, Rhonda

    2018-01-01

    Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16-29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development.

  6. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.

    2014-08-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less

  7. Particle behavior simulation in thermophoresis phenomena by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wada, Takao

    2014-07-01

    A particle motion considering thermophoretic force is simulated by using direct simulation Monte Carlo (DSMC) method. Thermophoresis phenomena, which occur for a particle size of 1 μm, are treated in this paper. The problem of thermophoresis simulation is computation time which is proportional to the collision frequency. Note that the time step interval becomes much small for the simulation considering the motion of large size particle. Thermophoretic forces calculated by DSMC method were reported, but the particle motion was not computed because of the small time step interval. In this paper, the molecule-particle collision model, which computes the collision between a particle and multi molecules in a collision event, is considered. The momentum transfer to the particle is computed with a collision weight factor, where the collision weight factor means the number of molecules colliding with a particle in a collision event. The large time step interval is adopted by considering the collision weight factor. Furthermore, the large time step interval is about million times longer than the conventional time step interval of the DSMC method when a particle size is 1 μm. Therefore, the computation time becomes about one-millionth. We simulate the graphite particle motion considering thermophoretic force by DSMC-Neutrals (Particle-PLUS neutral module) with above the collision weight factor, where DSMC-Neutrals is commercial software adopting DSMC method. The size and the shape of the particle are 1 μm and a sphere, respectively. The particle-particle collision is ignored. We compute the thermophoretic forces in Ar and H2 gases of a pressure range from 0.1 to 100 mTorr. The results agree well with Gallis' analytical results. Note that Gallis' analytical result for continuum limit is the same as Waldmann's result.

  8. Cargo Fire Hazards and Hazard Control for the Offshore Bulk Fuel Systems (OBFS).

    DTIC Science & Technology

    1980-06-01

    used to evaluate the probability of cargo fuel spills during different ship operational modes. An undesired hazardous event such as a spill of volume...occur. if a cargo release occurs due to either collision or hostile action the probability of ignition is very high . Ignition can be caused by the...Separate auxiliary burners independent from the ship propulsion system provide similar flue gas composition. However as noted previously, a low sulfur

  9. Migration of Dust Particles and Their Collisions with the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.

  10. Mixed Quantum/Classical Theory for Molecule-Molecule Inelastic Scattering: Derivations of Equations and Application to N2 + H2 System.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2015-12-17

    The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.

  11. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  12. Tracking colliding cells in vivo microscopy.

    PubMed

    Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C

    2011-08-01

    Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.

  13. Excitation Mechanisms in Moderate-Energy Li+-He Collisions

    NASA Astrophysics Data System (ADS)

    Kita, Shigetomo; Itaya, Jun; Sawatari, Yugo; Tabata, Tadanobu; Hayashi, Takeo; Shimakura, Noriyuki; Koseki, Shiro

    2018-02-01

    Excitation mechanisms in Li+-He collisions were studied at laboratory collision energies of 350 ≤ Elab ≤ 2000 eV by measuring double differential cross sections (DCSs) σ(Θ)k over a wide range of center-of-mass scattering angles, 2.5 ≤ Θ ≤ 175°. At Elab ≥ 500 eV, two-electron (2e) excitations were observed as well as one-electron (1e) excitations. At the higher collision energies, excitation probabilities P(Θ)k for the 1e and 2e excitations have characteristic angular dependences, i.e., at Elab = 1500 and 2000 eV, P(Θ)1e for the 1e excitations has double maxima around Θ = 20 and 120° and P(Θ)2e for the 2e excitations has a broad maximum around Θ = 60°. As a first analysis of the experimental data, P(Θ)k, σ(Θ)k, and the integral cross sections Sk(Elab) were calculated by assuming excitations from the 11Σ state into the 11Π and 11Δ states through rotational couplings using the model potentials and couplings. As the next step, ab initio potential energies for the ground and excited states were calculated by a multiconfiguration self-consistent field (MCSCF) method, and then the electronic transitions among the seven states through the radial and rotational couplings were calculated using the theoretical potentials and couplings. Autoionizations from the 2e-excited He**(2s2 and 2p2) atoms were also simulated at Elab = 750-1500 eV and small laboratory angles of θ ≤ 25° by using the MCSCF potentials. The excitation mechanisms were reasonably well understood through these analyses.

  14. Evaluation of motorcycle safety strategies using the severity of injuries.

    PubMed

    Jung, Soyoung; Xiao, Qin; Yoon, Yoonjin

    2013-10-01

    The growth of motorcycle fatalities in California has been especially prominent, specifically with regard to the 24 and under age group and those aged 45-54. This research quantitatively examined factors associated with motorcyclist fatalities and assessed strategies that could improve motorcyclist safety, specifically focusing on the two age groups mentioned above. Severity of injury was estimated separately for both age groups with multinomial logit models and pseudo-elasticity using motorcycle-related collision data that was collected between 2005 and 2009. The results were compared with motorcyclists aged 35-44, a group that shows a consistent trend of fatalities. This research found that lack or improper use of helmets, victim ejection, alcohol/drug effects, collisions (head-on, broadside, hit-object), and truck involvement were more likely to result in fatal injuries regardless of age group. Weekend and non-peak hour activity was found to have a strong effect in both the younger and older age groups. Two factors, movement of running off the road preceding a collision and multi-vehicle involvement, were found to be statistically significant factors in increasing older motorcyclist fatalities. Use of street lights in the dark was found to decrease the probability of severe injury for older motorcyclists. Driver type of victim, at-fault driver, local road, and speed violation were significant factors in increasing the fatalities of younger motorcyclists. Road conditions and collision location factors were not found to be statistically significant to motorcyclist fatalities. Based on the statistically significant factors identified in this research, the following safety strategies appear to be effective methods of reducing motorcyclist fatalities: public education of alcohol use, promoting helmet use, enforcing heavy vehicle and speed violations, improving roadway facilities, clearer roadway guidance and street lighting systems, and motorcyclist training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.

    PubMed

    Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke

    2015-11-01

    Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  16. Volvo Trucks field operational test : evaluation of advanced safety systems for heavy truck tractors

    DOT National Transportation Integrated Search

    2005-02-15

    The Intelligent Vehicle Initiative (IVI) was established by the United States Department of Transportation as an integral part of the Intelligent Transportation System (ITS) program. By reducing the probability of motor vehicle collisions, the IVI wa...

  17. Rise of planetary bodies.

    NASA Astrophysics Data System (ADS)

    Czechowski, Z.; Leliwa-Kopystyński, J.; Teisseyre, R.

    Contents: 1. On the probability of the formation of planetary systems. 2. Condensation triggered by supernova explosion and tidal capture theory. 3. Foundations of accretion theory. 4. The structure and evolution of the protoplanetary disk. 5. Coagulation of orbiting bodies. 6. Collision phenomena related to planetology: accretion, fragmentation, cratering. 7. Dynamics of planetesimals: Introduction, Safronov's approach, elements of the kinetic theory of gases, Nakagawa's approach, approaches considering inelastic collisions and gravitational encounters of planetesimals, Hämeen-Anttila approach, planetesimals with different masses. 8. Growth of the planetary embryo: Basic equations, model of growth of planetary embryos. 9. Origin of the Moon and the satellites.

  18. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  19. Background of the completed research; relevances to solar physics

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1973-01-01

    Research activities reported consider the atomic structures of highly stripped heavy ions and their modes of formation and destruction in collisions. The lifetime of the metastable 2 3p1 state of the two electron ion F-7(+) was determined by measuring the radiative decay of an excited helium-like fluorine beam, Metastable state quenching measurements were performed on a helium-like ion to obtain the 1 1S0 to 2 3p2 transition probability. Exponential exchange state dependence of X-ray production cross sections was studied in heavy target atoms during collisions with light charged particles.

  20. Trending in Pc Measurements via a Bayesian Zero-Inflated Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matthew; Stamey, James

    2015-01-01

    Two satellites predicted to come within close proximity of one another, usually a high-value satellite and a piece of space debris moving the active satellite is a means of reducing collision risk but reduces satellite lifetime, perturbs satellite mission, and introduces its own risks. So important to get a good statement of the risk of collision in order to determine whether a maneuver is truly necessary. Two aspects of this Calculation of the Probability of Collision (Pc) based on the most recent set of position velocity and uncertainty data for both satellites. Examination of the changes in the Pc value as the event develops. Events should follow a canonical development (Pc vs time to closest approach (TCA)). Helpful to be able to guess where the present data point fits in the canonical development in order to guide operational response.

  1. Collision Resolution Scheme with Offset for Improved Performance of Heterogeneous WLAN

    NASA Astrophysics Data System (ADS)

    Upadhyay, Raksha; Vyavahare, Prakash D.; Tokekar, Sanjiv

    2016-03-01

    CSMA/CA based DCF of 802.11 MAC layer employs best effort delivery model, in which all stations compete for channel access with same priority. Heterogeneous conditions result in unfairness among stations and degradation in throughput, therefore, providing different priorities to different applications for required quality of service in heterogeneous networks is challenging task. This paper proposes a collision resolution scheme with a novel concept of introducing offset, which is suitable for heterogeneous networks. Selection of random value by a station for its contention with offset results in reduced probability of collision. Expression for the optimum value of the offset is also derived. Results show that proposed scheme, when applied to heterogeneous networks, has improved throughput and fairness than conventional scheme. Results show that proposed scheme also exhibits higher throughput and fairness with reduced delay in homogeneous networks.

  2. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    Here, we argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, thatmore » is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.« less

  3. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    DOE PAGES

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-21

    Here, we argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, thatmore » is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.« less

  4. Simulating the universe(s) III: observables for the full bubble collision spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew C.; Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5; Wainwright, Carroll L.

    2016-07-14

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methodsmore » against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.« less

  5. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  6. Selectivity in the inelastic rotational scattering of D2 and HD molecules from graphite: Similarities and differences respect to the H2 case

    NASA Astrophysics Data System (ADS)

    Rutigliano, Maria; Pirani, Fernando

    2018-03-01

    The inelastic scattering of D2 and HD molecules impinging on a graphite surface in well-defined initial roto-vibrational states has been studied by using the computational setup recently developed to characterize important selectivities in the molecular dynamics occurring at the gas-surface interface. In order to make an immediate comparison of determined elastic and inelastic scattering probabilities, we considered for D2 and HD molecules the same initial states, as well as the same collision energy range, previously selected for the investigation of H2 behaviour. The analysis of the back-scattered molecules shows that, while low-lying initial vibrational states are preserved, the medium-high initial ones give rise to final states covering the complete ladder of vibrational levels, although with different probability for the various cases investigated. Moreover, propensities in the formation of the final rotational states are found to depend strongly on the initial ones, on the collision energy, and on the isotopologue species.

  7. Neutron transport analysis for nuclear reactor design

    DOEpatents

    Vujic, Jasmina L.

    1993-01-01

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.

  8. Neutron transport analysis for nuclear reactor design

    DOEpatents

    Vujic, J.L.

    1993-11-30

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.

  9. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  10. COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinhardt, Zoee M.; Stewart, Sarah T., E-mail: Zoe.Leinhardt@bristol.ac.uk, E-mail: sstewart@eps.harvard.edu

    2012-01-20

    Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate mapsmore » of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. Collision outcomes are described in terms of the impact conditions and the catastrophic disruption criteria, Q*{sub RD}-the specific energy required to disperse half the total colliding mass. All planet formation and collisional evolution studies have assumed that catastrophic disruption follows pure energy scaling; however, we find that catastrophic disruption follows nearly pure momentum scaling. As a result, Q*{sub RD} is strongly dependent on the impact velocity and projectile-to-target mass ratio in addition to the total mass and impact angle. To account for the impact angle, we derive the interacting mass fraction of the projectile; the outcome of a collision is dependent on the kinetic energy of the interacting mass rather than the kinetic energy of the total mass. We also introduce a new material parameter, c*, that defines the catastrophic disruption criteria between equal-mass bodies in units of the specific gravitational binding energy. For a diverse range of planetesimal compositions and internal structures, c* has a value of 5 {+-} 2; whereas for strengthless planets, we find c* = 1.9 {+-} 0.3. We refer to the catastrophic disruption criteria for equal-mass bodies as the principal disruption curve, which is used as the reference value in the calculation of Q*{sub RD} for any collision scenario. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution.« less

  11. The risk of pedestrian collisions with peripheral visual field loss.

    PubMed

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  12. The Schwinger Variational Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1995-01-01

    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. For collisional problems they can be grouped into two types: those based on the Schroedinger equation and those based on the Lippmann-Schwinger equation. The application of the Schwinger variational (SV) method to e-molecule collisions and photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions.

  13. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  14. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    NASA Astrophysics Data System (ADS)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  15. A rapid method of estimating the collision frequencies between the earth and the earth-crossing bodies

    NASA Technical Reports Server (NTRS)

    Su, Shin-Yi; Kessler, Donald J.

    1991-01-01

    The present study examines a very fast method of calculating the collision frequency between two low-eccentricity orbiting bodies for evaluating the evolution of earth-orbiting objects such as space debris. The results are very accurate and the required computer time is negligible. The method is now applied without modification to calculate the collision frequencies for moderately and highly eccentric orbits.

  16. Eternal inflation, bubble collisions, and the disintegration of the persistence of memory

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Kleban, Matthew; Nicolis, Alberto; Sigurdson, Kris

    2009-08-01

    We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ~ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.

  17. Classical Trajectory Study of Collision Energy Transfer between Ne and C2H2 on a Full Dimensional Accurate Potential Energy Surface.

    PubMed

    Liu, Yang; Huang, Yin; Ma, Jianyi; Li, Jun

    2018-02-15

    Collision energy transfer plays an important role in gas phase reaction kinetics and relaxation of excited molecules. However, empirical treatments are generally adopted for the collisional energy transfer in the master equation based approach. In this work, classical trajectory approach is employed to investigate the collision energy transfer dynamics in the C 2 H 2 -Ne system. The entire potential energy surface is described as the sum of the C 2 H 2 potential and interaction potential between C 2 H 2 and Ne. It is highlighted that both parts of the entire potential are highly accurate. In particular, the interaction potential is fit to ∼41 300 configurations determined at the level of CCSD(T)-F12a/cc-pCVTZ-F12 with the counterpoise correction. Collision energy transfer dynamics are then carried out on this benchmark potential and the widely used Lennard-Jones and Buckingham interaction potentials. Energy transfers and related probability densities at different collisional energies are reported and discussed.

  18. Study of inelastic processes in Li+-Ar, K+-Ar, and Na+-He collisions in the energy range 0.5-10 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael

    2017-11-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5-10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.

  19. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  20. Atomic Data on Inelastic Processes in Calcium–Hydrogen Collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, A. K.; Voronov, Y. V.; Yakovleva, S. A.; Mitrushchenkov, A.; Guitou, M.; Feautrier, N.

    2017-12-01

    Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H‑ collisions for all transitions between the 17 lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states, including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T = 1000–10,000 K. The calculations single out the partial processes with large and moderate rate coefficients. The largest rates correspond to the mutual neutralization into the {Ca}(4s5s{}3S), {Ca}(4s5p{}3P^\\circ ), {Ca}(4s5s{}1S), and {Ca}(4s5p{}{1}P^\\circ ) final states; at T = 6000 K the largest value is 5.50 × 10‑8 cm3 s‑1 for {Ca}(4s5s{}3S). Among the (de-)excitation processes, the largest rate coefficient corresponds to the {Ca}(4s5s{}1S)\\to {Ca}(4s5s{}3S) transition; at T = 6000 K, the largest rate has the value of 8.46 × 10‑9 cm3 s‑1.

  1. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    PubMed

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  2. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature

    PubMed Central

    Guyette, Richard; Stambaugh, Michael C.; Dey, Daniel

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature. PMID:28704457

  3. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  4. The Schwinger Variational Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1995-01-01

    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. The application of the Schwinger variational (SV) method to e-molecule collisions and molecular photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions. Since this is not a review of cross section data, cross sections are presented only to server as illustrative examples. In the SV method, the correct boundary condition is automatically incorporated through the use of Green's function. Thus SV calculations can employ basis functions with arbitrary boundary conditions. The iterative Schwinger method has been used extensively to study molecular photoionization. For e-molecule collisions, it is used at the static exchange level to study elastic scattering and coupled with the distorted wave approximation to study electronically inelastic scattering.

  5. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, Carlos, E-mail: clarriba@umn.edu; Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission ismore » largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas molecule collisions (gas molecules with altered trajectories by the potential interaction) without tracking grazing trajectories are further discussed. The presented calculation techniques should enable more accurate collision cross section predictions under experimentally relevant conditions than pre-existing approaches, and should enhance the ability of collision cross section measurement schemes to discern the structures of gas phase entities.« less

  6. Indications of suppression of excited Υ states in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Gil, E Cortina; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Brito, L; De Jesus Damiao, D; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Kamel, A Ellithi; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Heidemann, C; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Petrukhin, A; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Görner, M; Hermanns, T; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schröder, M; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Berger, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J; Singh, S P; Ahuja, S; Choudhary, B C; Gupta, P; Jain, S; Kumar, A; Kumar, A; Naimuddin, M; Ranjan, K; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, S; Khurana, R; Sarkar, S; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi, A; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; de Fatis, T Tabarelli; Buontempo, S; Montoya, C A Carrillo; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Meridiani, P; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Rovelli, C; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Pereira, A Vilela; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Pela, J; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Ershov, A; Gribushin, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Maestre, J Alcaraz; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Llatas, M Chamizo; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Cortezon, E Palencia; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bäni, L; Bortignon, P; Caminada, L; Casal, B; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Martinez Ruiz Del Arbol, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguilo, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, M Ivova; Mejias, B Millan; Otiougova, P; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hartley, D; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Basso, L; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Macevoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Liu, H; Henderson, C; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Henriksson, K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Saelim, M; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Rinkevicius, A; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Gaultney, V; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Gude, A; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Zennamo, J; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; De Mattia, M; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Sakumoto, W; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-07-29

    A comparison of the relative yields of Υ resonances in the μ(+)μ(-) decay channel in Pb-Pb and pp collisions at a center-of-mass energy per nucleon pair of 2.76 TeV is performed with data collected with the CMS detector at the LHC. Using muons of transverse momentum above 4  GeV/c and pseudorapidity below 2.4, the double ratio of the Υ(2S) and Υ(3S) excited states to the Υ(1S) ground state in Pb-Pb and pp collisions, [Υ(2S+3S)/Υ(1S)](Pb-Pb)/[Υ(2S+3S)/Υ(1S)](pp), is found to be 0.31(-0.15)(+0.19)(stat)±0.03(syst). The probability to obtain the measured value, or lower, if the true double ratio is unity, is calculated to be less than 1%.

  7. Semiclassical analysis of angular differential cross sections for single-electron capture in 250-eV H++H collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2015-05-01

    A classical model based on the resolution of Hamilton equations of motion is used to determine the angular distribution of H projectiles following single-electron capture in H++H collisions at an incident projectile energy of 250 eV. At such low energies, the experimental charge-exchange probability and angular differential cross sections exhibit oscillatory structures that are classically related to the number of swaps the electron experiences between the target and the projectile during the collision. These oscillations are well reproduced by models based on quantum mechanics. In the present paper, the angular distribution of H projectiles is determined classically, at angles varying from 0.1° up to 7°. The variation in intensity due to interferences caused by the indiscernibility between different trajectories is calculated, and the role of these interferences is discussed.

  8. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at $$\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = 5.02$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Event-by-event fluctuations in the elliptic-flow coefficientmore » $$v_2$$ are studied in PbPb collisions at $$\\sqrt{s_{_\\text{NN}}} = 5.02$$ TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions $${p}(v_2)$$ for charged particles with transverse momentum 0.3$$< p_\\mathrm{T} <$$3.0 GeV and pseudorapidity $$| \\eta | <$$ 1.0 are determined for different collision centrality classes. The moments of the $${p}(v_2)$$ distributions are used to calculate the $$v_{2}$$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the $${p}(v_2)$$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.« less

  9. Sleepiness/fatigue and distraction/inattention as factors for fatal versus nonfatal commercial motor vehicle driver injuries.

    PubMed

    Bunn, T L; Slavova, S; Struttmann, T W; Browning, S R

    2005-09-01

    A retrospective population-based case-control study was conducted to determine whether driver sleepiness/fatigue and inattention/distraction increase the likelihood that a commercial motor vehicle collision (CVC) will be fatal. Cases were identified as CVC drivers who died (fatal) and controls were drivers who survived (nonfatal) an injury collision using the Kentucky Collision Report Analysis for Safer Highways (CRASH) electronic database from 1998-2002. Cases and controls were matched on unit type and roadway type. Conditional logistic regression was performed. Driver sleepiness/fatigue, distraction/inattention, age of 51 years of age and older, and nonuse of safety belts increase the odds that a CVC will be fatal. Primary safety belt law enactment and enforcement for all states, commercial vehicle driver education addressing fatigue and distraction and other approaches including decreased hours-of-service, rest breaks and policy changes, etc. may decrease the probability that a CVC will be fatal.

  10. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  11. A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish

    PubMed Central

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314

  12. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  13. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    PubMed

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  14. Exploration of the aftermath of a large collision in an extreme debris disk

    NASA Astrophysics Data System (ADS)

    Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian

    2018-05-01

    Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.

  15. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  16. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  17. F + H2 collisions on two electronic potential energy surfaces - Quantum-mechanical study of the collinear reaction

    NASA Technical Reports Server (NTRS)

    Zimmerman, I. H.; Baer, M.; George, T. F.

    1979-01-01

    Collinear quantum calculations are carried out for reactive F + H2 collisions on two electronic potential energy surfaces. The resulting transmission and reflection probabilities exhibit much greater variation with energy than single-surface studies would lead us to anticipate. Transmission to low-lying product channels is increased by orders of magnitude by the presence of the second surface; however, branching ratios among product states are found to be independent of the initial electronic state of the reactants. These apparently contradictory aspects of the calculation are discussed and a tentative explanation put forward to resolve them.

  18. A General Simulation Method for Multiple Bodies in Proximate Flight

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    2003-01-01

    Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.

  19. Wave vector modification of the infinite order sudden approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, J.G.; Bowman, J.M.

    1980-10-15

    A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories ismore » run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1..-->..nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when ..delta..n=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.« less

  20. Wave vector modification of the infinite order sudden approximation

    NASA Astrophysics Data System (ADS)

    Sachs, Judith Grobe; Bowman, Joel M.

    1980-10-01

    A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.

  1. Antiproton Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greene, Senta Victoria

    The E814 collaboration has made a systematic study of antiproton production in collisions of ^ {28}Si ions at 14.6 GeV per nucleon with targets of Pb, Cu, and Al. This study was motivated by the expectation that antiprotons will be a useful probe of the system produced in relativistic heavy ion collisions. The large annihilation cross section for antiprotons makes the antiproton survival probability sensitive to the baryon density of the system in which they are created. It has also been suggested that a transition to the quark-gluon plasma phase may produce an enhancement of antibaryon production. The E814 spectrometer consists of three tracking chambers for momentum measurement, a scintillator hodoscope to measure charge and time of flight, and a sampling calorimeter. The spectrometer accepts all particles produced within a rectangular aperture centered on the beam axis, with delta theta_{x}=37.6mr and deltatheta_{y}=24.1mr. A trigger based on the flight time of particles through the spectrometer enhances the selection of events which produce negatively charged particles having a rapidity within 0.5 units of the center of mass rapidity. Measurements of the antiproton yield per interaction and the invariant cross section for production at zero degrees are presented and discussed. The time-of-flight trigger allows for an unbiased measurement of the probability to produce antiprotons as a function of the impact parameter of the collision. Several measures of collision centrality are used. The energy produced transverse to the beam direction is measured with the target calorimeter, an array of NaI crystals surrounding the target assembly with a pseudorapidity coverage of -0.5

  2. Safety diagnosis: are we doing a good job?

    PubMed

    Park, Peter Y; Sahaji, Rajib

    2013-03-01

    Collision diagnosis is the second step in the six-step road safety management process described in the AASHTO Highway Safety Manual (HSM). Diagnosis is designed to identify a dominant or abnormally high proportion of particular collision configurations (e.g., rear end, right angle, etc.) at a target location. The primary diagnosis method suggested in the HSM is descriptive data analysis. This type of analysis relies on, for example, pie charts, histograms, and/or collision diagrams. Using location specific collision data (e.g., collision frequency per collision configuration for a target location), safety engineers identify (the most) frequent collision configurations. Safety countermeasures are then likely to concentrate on preventing the selected collision configurations. Although its real-world application in engineering practice is limited, an additional collision diagnosis method, known as the beta-binomial (BB) test, is also presented as the secondary diagnosis tool in the HSM. The BB test compares the proportion of a particular collision configuration observed at one location with the proportion of the same collision configuration found at other reference locations which are similar to the target location in terms of selected traffic and roadway characteristics (e.g., traffic volume, traffic control, and number of lanes). This study compared the outcomes obtained from descriptive data analysis and the BB test, and investigates two questions: (1) Do descriptive data analysis and the BB tests produce the same results (i.e., do they select the same collision configurations at the same locations)? and (2) If the tests produce different results, which result should be adopted in engineering practice? This study's analysis was based on a sample of the most recent five years (2005-2009) of collision and roadway configuration data for 143 signalized intersections in the City of Saskatoon, Saskatchewan. The study results show that the BB test's role in diagnosing safety concerns in road safety engineering projects such as safety review projects for existing roadways may be just as important as the descriptive data analysis method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 49 CFR Appendix D to Part 222 - Determining Risk Levels

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... collision probability. There are three formulas, one for each warning device category: 1. automatic gates... risk for all public highway-rail grade crossings that are part of a quiet zone. The Prediction Formulas (a) The Prediction Formulas were developed by DOT as a guide for allocating scarce traffic safety...

  4. 49 CFR Appendix D to Part 222 - Determining Risk Levels

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... collision probability. There are three formulas, one for each warning device category: 1. automatic gates... risk for all public highway-rail grade crossings that are part of a quiet zone. The Prediction Formulas (a) The Prediction Formulas were developed by DOT as a guide for allocating scarce traffic safety...

  5. 49 CFR Appendix D to Part 222 - Determining Risk Levels

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... collision probability. There are three formulas, one for each warning device category: 1. automatic gates... risk for all public highway-rail grade crossings that are part of a quiet zone. The Prediction Formulas (a) The Prediction Formulas were developed by DOT as a guide for allocating scarce traffic safety...

  6. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates.

    PubMed

    Egorov, Vladimir V

    2017-05-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.

  7. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates

    PubMed Central

    2017-01-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984

  8. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates

    NASA Astrophysics Data System (ADS)

    Egorov, Vladimir V.

    2017-05-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.

  9. An insight into the performance of road barriers - redistribution of barrier-relevant crashes.

    PubMed

    Zou, Yaotian; Tarko, Andrew P

    2016-11-01

    Unlike most of traffic safety treatments that prevent crashes, road barriers reduce the severity of crash outcomes by replacing crashes with a high risk of severe injury and fatality (such as median crossover head-on collisions or collisions with high-hazard objects) with less risky events (such as collisions with barriers). This "crash conversion" is actually more complex than one-to-one replacement and it has not been studied yet. The published work estimated the reduction of selected types of crashes (typically, median crossover collisions) or the overall effect of barriers on crash severity. The objective of this study was to study the probabilities of various types of crash events possible under various road and barrier scenarios. The estimated probabilities are conditional given that at least one vehicle left the travelled way and the resulted crash had been recorded. The results are meant to deliver a useful insight onto the conversion of crashes by barriers from more to less risky to help better understand the mechanism of crash severity reduction. Such knowledge should allow engineers more accurate estimation of barriers' benefits and help researchers evaluate barriers' performance to improve the barrier's design. Seven barrier-relevant crash events possible after a vehicle departs the road could be identified based on the existing crash data and their probabilities estimated given the presence and location of three types of barriers: median concrete barriers, median and roadside W-beam steel guardrails, and high-tension median cable barriers. A multinomial logit model with variable outcomes was estimated based on 2049 barrier-relevant crashes occurred between 2003 and 2012 on 1258 unidirectional travelled ways in Indiana. The developed model allows calculating the changes in the probabilities of the barrier-relevant crash events. The results of this study indicated that road departures lead to less frequent crossings of unprotected (no barriers) medians 50-80ft. wide than for narrower medians 30-50ft wide. This benefit decreased with an increase in rollovers inside the median. Although our data indicated no median crossover events when a median barrier was present, the risk of crossovers, although low, is still present and could manifest itself if the sample were larger. The presence of barriers near a travelled way was associated with a higher risk of redirecting errant vehicles back to the roadway where they could collide with other vehicles continuing on the road. As expected, cable barriers installed on the far-side edge of a median were associated with a lower probability of being hit by errant vehicles and of redirecting vehicles into traffic than the nearside cable barriers. On the other hand, the probability of off-road non-barrier crashes was higher because vehicles penetrating the median from the unprotected side were exposed to median ditches and similar obstacles. The roadside guardrails were confirmed to reduce the percentage of hazardous off-road crashes. The results of this study facilitate a more transparent evaluation of the safety effect of road barriers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Collision detection and modeling of rigid and deformable objects in laparoscopic simulator

    NASA Astrophysics Data System (ADS)

    Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru

    2015-03-01

    Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.

  11. A fast conservative spectral solver for the nonlinear Boltzmann collision operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei

    2014-12-09

    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M{sup 2}N{sup 4}logN) from the O(N{supmore » 6}) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results.« less

  12. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields.

    PubMed

    Hongyi Xu; Barbic, Jernej

    2017-01-01

    We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics, and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-versus-distance field contact for the first time: continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.

  13. Safeguarding a Lunar Rover with Wald's Sequential Probability Ratio Test

    NASA Technical Reports Server (NTRS)

    Furlong, Michael; Dille, Michael; Wong, Uland; Nefian, Ara

    2016-01-01

    The virtual bumper is a safeguarding mechanism for autonomous and remotely operated robots. In this paper we take a new approach to the virtual bumper system by using an old statistical test. By using a modified version of Wald's sequential probability ratio test we demonstrate that we can reduce the number of false positive reported by the virtual bumper, thereby saving valuable mission time. We use the concept of sequential probability ratio to control vehicle speed in the presence of possible obstacles in order to increase certainty about whether or not obstacles are present. Our new algorithm reduces the chances of collision by approximately 98 relative to traditional virtual bumper safeguarding without speed control.

  14. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  15. An Emergency Packet Forwarding Scheme for V2V Communication Networks

    PubMed Central

    2014-01-01

    This paper proposes an effective warning message forwarding scheme for cooperative collision avoidance. In an emergency situation, an emergency-detecting vehicle warns the neighbor vehicles via an emergency warning message. Since the transmission range is limited, the warning message is broadcast in a multihop manner. Broadcast packets lead two challenges to forward the warning message in the vehicular network: redundancy of warning messages and competition with nonemergency transmissions. In this paper, we study and address the two major challenges to achieve low latency in delivery of the warning message. To reduce the intervehicle latency and end-to-end latency, which cause chain collisions, we propose a two-way intelligent broadcasting method with an adaptable distance-dependent backoff algorithm. Considering locations of vehicles, the proposed algorithm controls the broadcast of a warning message to reduce redundant EWM messages and adaptively chooses the contention window to compete with nonemergency transmission. Via simulations, we show that our proposed algorithm reduces the probability of rear-end crashes by 70% compared to previous algorithms by reducing the intervehicle delay. We also show that the end-to-end propagation delay of the warning message is reduced by 55%. PMID:25054181

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeliovich, B. Z.; Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, D-69120 Heidelberg; Potashnikova, I. K.

    Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upward, which leads to an increase of the gluon densitymore » at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider (LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/{Psi} suppression in heavy ion collisions at high energies.« less

  17. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution.

    PubMed

    Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr

    2012-01-01

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems

    NASA Astrophysics Data System (ADS)

    Huo, Peng; Gajdošová, Katarína; Jia, Jiangyong; Zhou, You

    2018-02-01

    Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC (n , m), in pp and p+Pb collisions, and interpreted the non-zero SC (n , m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges. We argue that the reanalysis of SC (n , m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.

  19. The global impact distribution of Near-Earth objects

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter M.

    2016-02-01

    Asteroids that could collide with the Earth are listed on the publicly available Near-Earth object (NEO) hazard web sites maintained by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The impact probability distribution of 69 potentially threatening NEOs from these lists that produce 261 dynamically distinct impact instances, or Virtual Impactors (VIs), were calculated using the Asteroid Risk Mitigation and Optimization Research (ARMOR) tool in conjunction with OrbFit. ARMOR projected the impact probability of each VI onto the surface of the Earth as a spatial probability distribution. The projection considers orbit solution accuracy and the global impact probability. The method of ARMOR is introduced and the tool is validated against two asteroid-Earth collision cases with objects 2008 TC3 and 2014 AA. In the analysis, the natural distribution of impact corridors is contrasted against the impact probability distribution to evaluate the distributions' conformity with the uniform impact distribution assumption. The distribution of impact corridors is based on the NEO population and orbital mechanics. The analysis shows that the distribution of impact corridors matches the common assumption of uniform impact distribution and the result extends the evidence base for the uniform assumption from qualitative analysis of historic impact events into the future in a quantitative way. This finding is confirmed in a parallel analysis of impact points belonging to a synthetic population of 10,006 VIs. Taking into account the impact probabilities introduced significant variation into the results and the impact probability distribution, consequently, deviates markedly from uniformity. The concept of impact probabilities is a product of the asteroid observation and orbit determination technique and, thus, represents a man-made component that is largely disconnected from natural processes. It is important to consider impact probabilities because such information represents the best estimate of where an impact might occur.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloni, A.; /MIT

    The authors report the observation of B{sub s}{sup 0} - {bar B}{sub s}{sup 0} oscillations using 1 fb{sup -1} of data from p{bar p} collisions with the CDF II detector at the Fermilab Tevatron. They measure the probability, as a function of proper decay time, that the B{sub s}{sup 0} decays with the same, or opposite, flavor as its flavor at production, which is determined using opposite-side and same-side flavor identification methods. They find a signal consistent with B{sub s}{sup 0} - {bar B}{sub s}{sup 0} oscillations, with a significance greater than 5{sigma}. They measure {Delta}m{sub s} = 17.77 {+-}more » 0.10(stat) {+-} 0.07(syst) ps{sup -1}.« less

  1. Estimating rear-end accident probabilities at signalized intersections: a comparison study of intersections with and without green signal countdown devices.

    PubMed

    Ni, Ying; Li, Keping

    2014-01-01

    Rear-end accidents are the most common accident type at signalized intersections, because the diversity of actions taken increases due to signal change. Green signal countdown devices (GSCDs), which have been widely installed in Asia, are thought to have the potential of improving capacity and reducing accidents, but some negative effects on intersection safety have been observed in practice; for example, an increase in rear-end accidents. A microscopic modeling approach was applied to estimate rear-end accident probability during the phase transition interval in the study. The rear-end accident probability is determined by the following probabilities: (1) a leading vehicle makes a "stop" decision, which was formulated by using a binary logistic model, and (2) the following vehicle fails to stop in the available stopping distance, which is closely related to the critical deceleration used by the leading vehicle. Based on the field observation carried out at 2 GSCD intersections and 2 NGSCD intersections (i.e., intersections without GSCD devices) along an arterial in Suzhou, the rear-end probabilities at GSCD and NGSCD intersections were calculated using Monte Carlo simulation. The results suggested that, on the one hand, GSCDs caused significantly negative safety effects during the flashing green interval, especially for vehicles in a zone ranging from 15 to 70 m; on the other hand, GSCD devices were helpful in reducing rear-end accidents during the yellow interval, especially in a zone from 0 to 50 m. GSCDs helped shorten indecision zones and reduce rear-end collisions near the stop line during the yellow interval, but they easily resulted in risky car following behavior and much higher rear-end collision probabilities at indecision zones during both flashing green and yellow intervals. GSCDs are recommended to be cautiously installed and education on safe driving behavior should be available.

  2. Tectonic evolution of part of the Southern Metamorphic Belt of the Armorican Massif including the Ile de Groix

    NASA Astrophysics Data System (ADS)

    Richards, Lawrence Edward

    The Southern Metamorphic Belt (SMB) of the Armorican Massifextends 400km along the south coast of Brittany and into Vendee. It is separated from the Central Armorican Domain by a major, late-Hercynian shear belt, known as the South Armorican Shear Zone. In the area studied, belts of metasedimentary and metavolcanic schist of uncertain age are separated by belts of granitic gneiss; areas of migmatite and Hercynian granite plutons cross-cut these belts. Three distinctive lithologic assemblages have been identified in the schist belts, characteristic of different depositional environments: the Le Pouldu Group, Kerleven and Gouesnach formations probably originated as abyssal black shales deposited on oceanic crust; the St. Laurent Formation and Melgven Schists probably formed as distal greywacke deposits on a deep continental shelf; the Nerly and Beg-Meil formations probably formed in a proximal marine or fluviatile environment. These disparate assemblages were tectonically juxtaposed by overthrusting (obduction) before an amphibolite facies metamorphism and deformation during the Cadomian Orogeny. The Moelan Gneiss, a Lower Ordovician alkali-granite intrusion, postdates M1/D1 and probably formed in a rifting environment at the onset of ocean-floor spreading along an axis south of the present Armorican Massif. The famous blueschists of the Ile de Groix probably formed in a subduction zone on the south side of the ocean and were obducted onto the passive southern margin of the Armorican Massif following closure of the ocean and continental collision. A second phase of regional deformation, producing a cataclastic foliation in the Moelan Gneiss, probably resulted from the collision. Large-scale overthrusting of the southern continent onto the Armorican Massif took place, causing metamorphism with partial melting at depth generating migmatites. A third phase of pervasive deformation may correlate with oroclinal bending of the Ibero-Armorican Arc during the Hercynian Orogeny.

  3. Chapter 1. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Kanagy, Leslie K.; Cree, Mark E.

    2006-01-01

    A new analytical method for the determination of elements in filtered aqueous matrices using inductively coupled plasma-mass spectrometry (ICP-MS) has been implemented at the U.S. Geological Survey National Water Quality Laboratory that uses collision/reaction cell technology to reduce molecular ion interferences. The updated method can be used to determine elements in filtered natural-water and other filtered aqueous matrices, including whole-water, biota, sediment, and soil digestates. Helium or hydrogen is used as the collision or reaction gas, respectively, to eliminate or substantially reduce interferences commonly resulting from sample-matrix composition. Helium is used for molecular ion interferences associated with the determination of As, Co, Cr, Cu, K, Mg, Na, Ni, V, W and Zn, whereas hydrogen is used for Ca, Fe, Se, and Si. Other elements that are not affected by molecular ion interference also can be determined simply by not introducing a collision/reaction gas into the cell. Analysis time is increased by about a factor of 2 over the previous method because of the additional data acquisition time in the hydrogen and helium modes. Method detection limits for As, Ca, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Se, Si (as SiO2), V, W, and Zn, all of which use a collision/reaction gas, are 0.06 microgram per liter (?g/L) As, 0.04 milligram per liter (mg/L) Ca, 0.02 ?g/L Co, 0.02 ?g/L Cr, 0.04 ?g/L Cu, 1 ?g/L Fe, 0.007 mg/L K, 0.009 mg/L Mg, 0.09 mg/L Na, 0.05 ?g/L Ni, 0.04 ?g/L Se, 0.03 mg/L SiO2, 0.05 ?g/L V, 0.03 ?g/L W, and 0.04 ?g/L Zn. Most method detection limits are lower or relatively unchanged compared to earlier methods except for Co, K, Mg, Ni, SiO2, and Tl, which are less than a factor of 2 higher. Percentage bias for samples spiked at about one-third and two-thirds of the concentration of the highest calibration standard ranged from -8.1 to 7.9 percent for reagent water, -14 to 21 percent for surface water, and -16 to 16 percent for ground water. The percentage bias for reagent water spiked at trace-element concentrations of 0.5 to 3 ?g/L averaged 4.4 percent with a range of -6 to 16 percent, whereas the average percentage bias for Ca, K, Mg, Na, and SiO2 was 1.4 percent with a range of -4 to 10 percent for spikes of 0.5 to 3 mg/L. Elemental results for aqueous standard reference materials compared closely to the certified concentrations; all elements were within 1.5 F-pseudosigma of the most probable concentration. In addition, results from 25 filtered natural-water samples and 25 unfiltered natural-water digestates were compared with results from previously used methods using linear regression analysis. Slopes from the regression analyses averaged 0.98 and ranged from 0.87 to 1.29 for filtered natural-water samples; for unfiltered natural-water digestates, the average slope was 1.0 and ranged from 0.83 to 1.22. Tests showed that accurate measurements can be made for samples having specific conductance less than 7,500 microsiemens per centimeter (?S/cm) without dilution; earlier ICP-MS methods required dilution for samples with specific conductance greater than 2,500 ?S/cm.

  4. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N I

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2006-03-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N I lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strengths over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s22p3 4So, 2Do, 2Po, 2s2p4 4P, 2s22p23s 4P, and 2P terms and from these levels to the levels of the 2s22p23p 2So, 4Do, 4Po, 4So, 2Do, 2Po, 2s22p23s 2D, 2s22p24s 4P, 2P, 2s22p23d 2P, 4F, 2F, 4P, 4D, and 2D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  5. Evolution of the Debris Cloud Generated by the Fengyun-1C Fragmentation Event

    NASA Technical Reports Server (NTRS)

    Pardini, Carmen; Anselmo, Luciano

    2007-01-01

    The cloud of cataloged debris produced in low earth orbit by the fragmentation of the Fengyun-1C spacecraft was propagated for 15 years, taking into account all relevant perturbations. Unfortunately, the cloud resulted to be very stable, not suffering substantial debris decay during the time span considered. The only significant short term evolution was the differential spreading of the orbital planes of the fragments, leading to the formation of a debris shell around the earth approximately 7-8 months after the breakup, and the perigee precession of the elliptical orbits. Both effects will render the shell more "isotropic" in the coming years. The immediate consequence of the Chinese anti-satellite test, carried out in an orbital regime populated by many important operational satellites, was to increase significantly the probability of collision with man-made debris. For the two Italian spacecraft launched in the first half of 2007, the collision probability with cataloged objects increased by 12% for AGILE, in equatorial orbit, and by 38% for COSMO-SkyMed 1, in sun-synchronous orbit.

  6. Strong evidence for ZZ production in pp[over] collisions at sqrt[s]=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S; Group, R C

    2008-05-23

    We report the first evidence of Z boson pair production at a hadron collider with a significance exceeding 4 standard deviations. This result is based on a data sample corresponding to 1.9 fb(-1) of integrated luminosity from pp[over] collisions at sqrt[s]=1.96 TeV collected with the Collider Detector at Fermilab II detector. In the lll'l' channel, we observe three ZZ candidates with an expected background of 0.096(-0.063)+0.092 events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of lll'l' and llnunu channels, we observe an excess of events with a probability of 5.1 x 10(-6) to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(pp[over]-->ZZ)=1.4(-0.6)+0.7(stat+syst) pb, consistent with the standard model expectation.

  7. Modeling take-over performance in level 3 conditionally automated vehicles.

    PubMed

    Gold, Christian; Happee, Riender; Bengler, Klaus

    2018-07-01

    Taking over vehicle control from a Level 3 conditionally automated vehicle can be a demanding task for a driver. The take-over determines the controllability of automated vehicle functions and thereby also traffic safety. This paper presents models predicting the main take-over performance variables take-over time, minimum time-to-collision, brake application and crash probability. These variables are considered in relation to the situational and driver-related factors time-budget, traffic density, non-driving-related task, repetition, the current lane and driver's age. Regression models were developed using 753 take-over situations recorded in a series of driving simulator experiments. The models were validated with data from five other driving simulator experiments of mostly unrelated authors with another 729 take-over situations. The models accurately captured take-over time, time-to-collision and crash probability, and moderately predicted the brake application. Especially the time-budget, traffic density and the repetition strongly influenced the take-over performance, while the non-driving-related tasks, the lane and drivers' age explained a minor portion of the variance in the take-over performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Lueptow, Richard M.

    2005-01-01

    In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model to small variations in the Lennard-Jones parameters-collision diameter (σ) and potential depth (ɛ)-is investigated for nitrogen-water-methane mixtures. For a N2(98.97%)-H2O(338 ppm)-CH4(1%) test mixture, the transition probabilities and acoustic absorption curves are much more sensitive to σ than they are to ɛ. Additionally, when the 1% methane is replaced by nitrogen, the resulting mixture [N2(99.97%)-H2O(338 ppm)] becomes considerably more sensitive to changes of σwater. The current model minimizes the underprediction of the acoustic absorption peak magnitudes reported by S. G. Ejakov et al. [J. Acoust. Soc. Am. 113, 1871 (2003)]. .

  9. Quantum dynamics of the C(1D)+HD and C(1D)+n-D2 reactions on the ã 1A' and b 1A" surfaces.

    PubMed

    Defazio, Paolo; Gamallo, Pablo; González, Miguel; Akpinar, Sinan; Bussery-Honvault, Béatrice; Honvault, Pascal; Petrongolo, Carlo

    2010-03-14

    We present the Born-Oppenheimer, quantum dynamics of the reactions C((1)D)+HD and C((1)D)+n-D(2) on the uncoupled potential energy surfaces ã (1)A' and b (1)A", considering the Coriolis interactions and the nuclear-spin statistics. Using the real wavepacket method, we obtain initial-state-resolved probabilities, cross sections, isotopic branching ratios, and rate constants. Similarly to the C+n-H(2) reaction, the probabilities present many ã (1)A' or few b (1)A" sharp resonances, and the cross sections are very large at small collision energies and decrease at higher energies. At any initial condition, the C+HD reaction gives preferentially the CD+H products. Thermal cross sections, isotopic branching ratios, and rate constant k vary slightly with temperature and agree very well with the experimental values. At 300 K, we obtain for the various products k(CH+H)=(2.45+/-0.08) x 10(-10), k(CD+H)=(1.19+/-0.04) x 10(-10), k(CH+D)=(0.71+/-0.02) x 10(-10), k(CD+D)=(1.59+/-0.05) x 10(-10) cm(3) s(-1), and k(CD+H)/k(CH+D)=1.68+/-0.01. The b (1)A" contribution to cross sections and rate constants is always large, up to a maximum value of 62% for a rotationally resolved C+D(2) rate constant. The upper b (1)A" state is thus quite important in the C((1)D) collision with H(2) and its deuterated isotopes, as the agreement between theory and experiment shows.

  10. Renner-Teller quantum dynamics of NH(a(1)Delta) + H reactions on the NH(2) A(2)A(1) and X(2)B(1) coupled surfaces.

    PubMed

    Defazio, P; Gamallo, P; González, M; Petrongolo, C

    2010-09-16

    Four reactions NH(a1Delta) + H′(2S) are investigated by the quantum mechanical real wavepacket method, taking into account nonadiabatic Renner-Teller (RT) and rovibronic Coriolis couplings between the involved states. We consider depletion (d) to N(2D) + H2(X1Sigmag+), exchange (e) to NH′(a1Delta) + H(2S), quenching (q) to NH(X3Sigma-) + H′(2S), and exchange-quenching (eq) to NH′(X3Sigma-) + H(2S). We extend our RT theory to a general AB + C collision using a geometry-dependent but very simple and empirical RT matrix element. Reaction probabilities, cross sections, and rate constants are presented, and RT results are compared with Born-Oppenheimer (BO), experimental, and semiclassical data. The nonadiabatic couplings open two new channels, (q) and (eq), and increase the (d) and (e) reactivity with respect to the BO one, when NH(a1Delta) is rotationally excited. In this case, the quantum cross sections are larger than the semiclassical ones at low collision energies. The calculated rate constants at 300 K are k(d) = 3.06, k(e) = 3.32, k(q) = 1.44, and k(eq) = 1.70 in 10(-11) cm3 s(-1) compared with the measured values k(d) = (3.2 =/- 1.7), k(q + eq) = (1.7 +/- 0.3), and k(total) = (4.8 +/- 1.7). The theoretical depletion rate is thus in good agreement with the experimental value, but the quenching and total rates are overestimated, because the present RT couplings are too large. This discrepancy is probably due to our simple and empirical RT matrix element.

  11. Comet and Asteroid Hazard to the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    We made computer simulations of orbital evolution for intervals of at least 5-10 Myr of N=2000 Jupiter-crossing objects (JCOs) with initial orbits close to those of real comets with period P less than 10 yr, 500 objects with orbits close to that of Comet 10P, and the asteroids initially located at the 3:1 and 5:2 resonances with Jupiter at initial eccentricity e(sub 0)=0.15 and initial inclination i(sub 0)=10(sup 0). The gravitational influence of all planets, except for Mercury and Pluto, was taken into account (without dissipative factors). We calculated the probabilities of collisions of bodies with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all bodies, obtaining, the total probability Psigma of collisions with a planet and the total time interval Tsigma during which perihelion distance q of bodies was less than a semimajor axis of the planet. The values of p(sub r) =10(exp 6)Psigma/N and T(sub r)=T/1000 yr (where T=Tsigma/N) are presented in a table together with the ratio r of the total time interval when orbits were of Apollo type (at a greater than 1 AU, q less than 1.017 AU, e less than 0.999) to that of Amor type (1.017 less than q less than 1.33 AU), r(sub 2) is the same as r but for Apollo objects with e less than 0.9. For asteroids we present only results obtained by direct integration, as a symplectic method can give large errors for these resonances.

  12. Accurate study on the quantum dynamics of the He + HeH(+) (X1Σ+) reaction on a new ab initio potential energy surface for the lowest 1(1)A' electronic singlet state.

    PubMed

    Xu, Wenwu; Zhang, Peiyu

    2013-02-21

    A time-dependent quantum wave packet method is used to investigate the dynamics of the He + HeH(+)(X(1)Σ(+)) reaction based on a new potential energy surface [Liang et al., J. Chem. Phys.2012, 136, 094307]. The coupled channel (CC) and centrifugal-sudden (CS) reaction probabilities as well as the total integral cross sections are calculated. A comparison of the results with and without Coriolis coupling revealed that the number of K states N(K) (K is the projection of the total angular momentum J on the body-fixed z axis) significantly influences the reaction threshold. The effective potential energy profiles of each N(K) for the He + HeH(+) reaction in a collinear geometry indicate that the barrier height gradually decreased with increased N(K). The calculated time evolution of CC and CS probability density distribution over the collision energy of 0.27-0.36 eV at total angular momentum J = 50 clearly suggests a lower reaction threshold of CC probabilities. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can effectively promote the He + HeH(+) reaction.

  13. Application of radar for automotive collision avoidance. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.

  14. Jet asymmetry and momentum imbalance from 2 →2 and 2 →3 partonic processes in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena

    2015-10-01

    We study momentum imbalance as a function of jet asymmetry in high-energy heavy-ion collisions. To implement parton production during the collision, we include all leading order (LO) 2 →2 and 2 →3 parton processes in pQCD. The produced partons lose energy within the quark gluon plasma and hadronize collinearly when they leave it. The energy and momentum deposited into the plasma is described using linear viscous hydrodynamics with a constant energy loss per unit length and a total energy loss given by a Gaussian probability centered around a mean value E ¯ and a half-width Δ E . We argue that the shape of the asymmetry observed by the CERN-CMS Collaboration can indeed be attributed to parton energy loss in the medium and that a good description of data is achieved when one includes a slight enhancement coming from the contribution of 2 →3 parton processes that modifies the asymmetry distribution of the dijet events. We compare our results to CMS data for the most central collisions and study different values for E ¯ and Δ E .

  15. Dangerous dining: surface foraging of North Atlantic right whales increases risk of vessel collisions.

    PubMed

    Parks, Susan E; Warren, Joseph D; Stamieszkin, Karen; Mayo, Charles A; Wiley, David

    2012-02-23

    North Atlantic right whales are critically endangered and, despite international protection from whaling, significant numbers die from collisions with ships. Large groups of right whales migrate to the coastal waters of New England during the late winter and early spring to feed in an area with large numbers of vessels. North Atlantic right whales have the largest per capita record of vessel strikes of any large whale population in the world. Right whale feeding behaviour in Cape Cod Bay (CCB) probably contributes to risk of collisions with ships. In this study, feeding right whales tagged with archival suction cup tags spent the majority of their time just below the water's surface where they cannot be seen but are shallow enough to be vulnerable to ship strike. Habitat surveys show that large patches of right whale prey are common in the upper 5 m of the water column in CCB during spring. These results indicate that the typical spring-time foraging ecology of right whales may contribute to their high level of mortality from vessel collisions. The results of this study suggest that remote acoustic detection of prey aggregations may be a useful supplement to the management and conservation of right whales.

  16. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  17. Stochastic growth of cloud droplets by collisions during settling

    NASA Astrophysics Data System (ADS)

    Madival, Deepak G.

    2018-04-01

    In the last stage of droplet growth in clouds which leads to drizzle formation, larger droplets begin to settle under gravity and collide and coalesce with smaller droplets in their path. In this article, we shall deal with the simplified problem of a large drop settling amidst a population of identical smaller droplets. We present an expression for the probability that a given large drop suffers a given number of collisions, for a general statistically homogeneous distribution of droplets. We hope that our approach will serve as a valuable tool in dealing with droplet distribution in real clouds, which has been found to deviate from the idealized Poisson distribution due to mechanisms such as inertial clustering.

  18. Factors Influencing Ball-Player Impact Probability in Youth Baseball

    PubMed Central

    Matta, Philip A.; Myers, Joseph B.; Sawicki, Gregory S.

    2015-01-01

    Background: Altering the weight of baseballs for youth play has been studied out of concern for player safety. Research has shown that decreasing the weight of baseballs may limit the severity of both chronic arm and collision injuries. Unfortunately, reducing the weight of the ball also increases its exit velocity, leaving pitchers and nonpitchers with less time to defend themselves. The purpose of this study was to examine impact probability for pitchers and nonpitchers. Hypothesis: Reducing the available time to respond by 10% (expected from reducing ball weight from 142 g to 113 g) would increase impact probability for pitchers and nonpitchers, and players’ mean simple response time would be a primary predictor of impact probability for all participants. Study Design: Nineteen subjects between the ages of 9 and 13 years performed 3 experiments in a controlled laboratory setting: a simple response time test, an avoidance response time test, and a pitching response time test. Methods: Each subject performed these tests in order. The simple reaction time test tested the subjects’ mean simple response time, the avoidance reaction time test tested the subjects’ ability to avoid a simulated batted ball as a fielder, and the pitching reaction time test tested the subjects’ ability to avoid a simulated batted ball as a pitcher. Results: Reducing the weight of a standard baseball from 142 g to 113 g led to a less than 5% increase in impact probability for nonpitchers. However, the results indicate that the impact probability for pitchers could increase by more than 25%. Conclusion: Pitching may greatly increase the amount of time needed to react and defend oneself from a batted ball. Clinical Relevance: Impact injuries to youth baseball players may increase if a 113-g ball is used. PMID:25984261

  19. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  20. A comparison of methods for evaluating structure during ship collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, D.J.; Daidola, J.C.

    1996-10-01

    A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less

  1. The injury epidemiology of cyclists based on a road trauma registry

    PubMed Central

    2011-01-01

    Background Bicycle use has increased in some of France's major cities, mainly as a means of transport. Bicycle crashes need to be studied, preferably by type of cycling. Here we conduct a descriptive analysis. Method A road trauma registry has been in use in France since 1996, in a large county around Lyon (the Rhône, population 1.6 million). It covers outpatients, inpatients and fatalities. All injuries are coded using the Abbreviated Injury Scale (AIS). Proxies were used to identify three types of cycling: learning = children (0-10 years old); sports cycling = teenagers and adults injured outside towns; cycling as means of transport = teenagers and adults injured in towns. The study is based on 13,684 cyclist casualties (1996-2008). Results The percentage of cyclists injured in a collision with a motor vehicle was 8% among children, 17% among teenagers and adults injured outside towns, and 31% among those injured in towns. The percentage of serious casualties (MAIS 3+) was 4.5% among children, 10.9% among adults injured outside towns and 7.2% among those injured in towns. Collisions with motor-vehicles lead to more internal injuries than bicycle-only crashes. Conclusion The description indicates that cyclist type is associated with different crash and injury patterns. In particular, cyclists injured in towns (where cycling is increasing) are generally less severely injured than those injured outside towns for both types of crash (bicycle-only crashes and collisions with a motor vehicle). This is probably due to lower speeds in towns, for both cyclists and motor vehicles. PMID:21849071

  2. Simulation of unsteady flows by the DSMC macroscopic chemistry method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat

    2009-03-01

    In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.

  3. Variable Weight Fractional Collisions for Multiple Species Mixtures

    DTIC Science & Technology

    2017-08-28

    DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in

  4. Effects of Arabia-Eurasia Collision on Strike-slip Faults in Central Anatolia?

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Lefebvre, C.; Thomson, S. N.; Idleman, L.; Cosca, M. A.; Kaymakci, N.; Teyssier, C. P.; Umhoefer, P. J.

    2013-12-01

    The North and East Anatolian faults accommodate much of the tectonic escape of Anatolia in response to Arabia-Eurasia collision and building of the Turkish-Iranian plateau, but these structures formed <10 m.y. ago, at least 25 m.y. after the onset of collision at ~35 Ma. Some of the major strike-slip fault zones located between the North and East Anatolian faults have had long and complex histories of displacement. These faults have deformed, and in some cases exhumed, metamorphic massifs located between fault strands. One example is the Nigde Massif, which was initially exhumed in the Late Cretaceous, then reburied and reheated, along with its overlying sedimentary basin, to a depth of ~10 km at 30 × 5 Ma. Final exhumation and cooling occurred by ~15-17 Ma (massif margin) to ~12 Ma (structurally deepest levels). This depth-temperature-time-deformation history is tracked by a combination of thermobarometric methods, structural and stratigraphic analysis, and geo/thermochronometry (U-Pb zircon, monazite; 40Ar/39Ar hornblende, muscovite, biotite, K-feldspar; zircon and apatite fission-track in metamorphic rocks and basin deposits; and apatite (U-Th)/He). Recent mapping shows the presence of at least two oblique-thrust slices; the structurally higher one accounts for the resetting of detrital apatite fission track and AHe ages in the basin rocks as well as metamorphic apatite near the margin of the massif. The structurally deeper one cuts through the metamorphic basement and explains why mineral lineations and metamorphic assemblages are different along the eastern margin relative to those in the core of the massif. Although the timing of displacement has not been dated directly, low-T thermochronology age and modeling results document a perturbation at ~30 Ma, consistent with the idea that the Ecemis Fault of the Central Anatolian Fault Zone, and probably other pre-existing strike-slip faults in central Anatolia, experienced Late Eocene-Oligocene displacement in response to Arabia-Eurasia collision to the south and SE.

  5. Multiple electron processes of He and Ne by proton impact

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  6. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  7. Study on Collision of Ship Side Structure by Simplified Plastic Analysis Method

    NASA Astrophysics Data System (ADS)

    Sun, C. J.; Zhou, J. H.; Wu, W.

    2017-10-01

    During its lifetime, a ship may encounter collision or grounding and sustain permanent damage after these types of accidents. Crashworthiness has been based on two kinds of main methods: simplified plastic analysis and numerical simulation. A simplified plastic analysis method is presented in this paper. Numerical methods using the non-linear finite-element software LS-DYNA are conducted to validate the method. The results show that, as for the accuracy of calculation results, the simplified plasticity analysis are in good agreement with the finite element simulation, which reveals that the simplified plasticity analysis method can quickly and accurately estimate the crashworthiness of the side structure during the collision process and can be used as a reliable risk assessment method.

  8. Parameterization of In-Cloud Aerosol Scavenging Due To Atmospheric Ionization: 2. Effects of Varying Particle Density

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Tinsley, Brian A.

    2018-03-01

    Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.

  9. Gyrokinetics with Advanced Collision Operators

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2014-10-01

    For gyrokinetic studies in the pedestal region, collisions are expected to play a more critical role than in the core and there is concern that more advanced collision operators, as well as numerical methods optimized for the strong collisionality regime, are needed. For this purpose, a new gyrokinetic solver CGYRO has been developed for precise studies of high collisionality regimes. Building on GYRO and NEO, CGYRO uses the NEO pitch angle and energy velocity-space coordinate system to optimize the accuracy of the collision dynamics, particularly for multi-species collisions and including energy diffusion. With implementation of the reduced Hirshman-Sigmar collision operator with full cross-species coupling, CGYRO recovers linear ITG growth rates and the collisional GAM test at moderate collision frequency. Methods to improve the behavior in the collisionless regime, particularly for the trapped/passing particle boundary physics for kinetic electrons, are studied. Extensions to advanced model operators with finite-k⊥ corrections, e.g., the Sugama operator, and the impact of high collisionality on linear gyrokinetic stability in the edge are explored. Work supported by the US DOE under DE-FG02-95ER54309.

  10. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  11. Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems

    DOE PAGES

    Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong; ...

    2017-12-18

    Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less

  12. Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Peng; Gajdosova, Katarina; Jia, Jiangyong

    Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n, m), in pp and p+Pb collisions, and interpreted the non-zero SC(n, m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges.more » As a result, we argue that the reanalysis of SC(n, m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaglioni, S.; Beck, B. R.

    The Monte Carlo All Particle Method generator and collision physics library features two models for allowing a particle to either up- or down-scatter due to collisions with material at finite temperature. The two models are presented and compared. Neutron interaction with matter through elastic collisions is used as testing case.

  14. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  15. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics

    NASA Astrophysics Data System (ADS)

    Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.

    2012-05-01

    Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility that the early Yanshanian (Early Jurassic) granitoids in southern China represent a landward arc contemporaneous with the later, outboard Tananao accretionary event.

  16. Aftermath of early Hit-and-Run collisions in the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Sarid, Gal; Stewart, Sarah T.; Leinhardt, zoe M.

    2015-08-01

    Planet formation epoch, in the terrestrial planet region and the asteroid belt, was characterized by a vigorous dynamical environment that was conducive to giant impacts among planetary embryos and asteroidal parent bodies, leading to diverse outcomes. Among these the greatest potential for producing diverse end-members lies is the erosive Hit-and-Run regime (small mass ratios, off-axis oblique impacts and non-negligible ejected mass), which is also more probable in terms of the early dynamical encounter configuration in the inner solar system. This collision regime has been invoked to explain outstanding issues, such as planetary volatile loss records, origin of the Moon and mantle stripping from Mercury and some of the larger asteroids (Vesta, Psyche).We performed and analyzed a set of simulations of Hit-and-Run events, covering a large range of mass ratios (1-20), impact parameters (0.25-0.96, for near head-on to barely grazing) and impact velocities (~1.5-5 times the mutual escape velocity, as dependent on the mass ratio). We used an SPH code with tabulated EOS and a nominal simlated time >1 day, to track the collisional shock processing and the provenance of material components. of collision debris. Prior to impact runs, all bodies were allowed to initially settle to negligible particle velocities in isolation, within ~20 simulated hrs. The total number of particles involved in each of our collision simulations was between (1-3 x 105). Resulting configurations include stripped mantles, melting/vaporization of rock and/or iron cores and strong variations of asteroid parent bodies fromcanonical chondritic composition.In the context of large planetary formation simulations, velocity and impact angle distributions are necessary to asses impact probabilities. The mass distribution and interaction within planetary embryo and asteroid swarms depends both on gravitational dynamics and the applied fragmentation mechanism. We will present results pertaining to general projectile remnant scaling relations, constitution of ejected unbound material and the composition of variedcollision remnants, which become available to seed the asteroid belt.

  17. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  18. Experimental evaluation of the Continuous Risk Profile (CRP) approach to the current Caltrans methodology for high collision concentration location identification

    DOT National Transportation Integrated Search

    2012-03-31

    This report evaluates the performance of Continuous Risk Profile (CRP) compared with the : Sliding Window Method (SWM) and Peak Searching (PS) methods. These three network : screening methods all require the same inputs: traffic collision data and Sa...

  19. Experimental evaluation of the Continuous Risk Profile (CRP) approach to the current Caltrans methodology for high collision concentration location identification.

    DOT National Transportation Integrated Search

    2012-03-01

    This report evaluates the performance of Continuous Risk Profile (CRP) compared with the : Sliding Window Method (SWM) and Peak Searching (PS) methods. These three network : screening methods all require the same inputs: traffic collision data and Sa...

  20. Orbital evolution of space debris due to aerodynamic forces

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    1993-08-01

    The concepts used in the AUDIT (Assessment Using Debris Impact Theory) debris modelling suite are introduced. A sensitivity analysis is carried out to determine the dominant parameters in the modelling process. A test case simulating the explosion of a satellite suggest that at the parent altitude there is a greater probability of collision with more massive fragments.

  1. Radio Observations of Sgr B2

    NASA Astrophysics Data System (ADS)

    Mao, Xin-Jie; Su, Jiang-Tao

    2001-10-01

    The 13CO (J=1-0) map of the molecular cloud Sgr B2 reveals that the mass center of the molecular cloud nucleus does not coincide with that of compact HII regions which are likely to be the outcome of a shock on the cloud. We find evidence of cloud contraction probably resulting from cloud-cloud collision at subsonic speed.

  2. Studying Thermodynamics in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-01-01

    We discuss the possibility of measuring entropy of the system created in heavy ion collisions using the Ma coincidence method. The same method can also be used to test whether the system in question is in a state of equilibrium.

  3. Formation flight and collision avoidance for multiple UAVs based on modified tentacle algorithm in unstructured environments

    PubMed Central

    2017-01-01

    This paper presents a method for formation flight and collision avoidance of multiple UAVs. Due to the shortcomings such as collision avoidance caused by UAV’s high-speed and unstructured environments, this paper proposes a modified tentacle algorithm to ensure the high performance of collision avoidance. Different from the conventional tentacle algorithm which uses inverse derivation, the modified tentacle algorithm rapidly matches the radius of each tentacle and the steering command, ensuring that the data calculation problem in the conventional tentacle algorithm is solved. Meanwhile, both the speed sets and tentacles in one speed set are reduced and reconstructed so as to be applied to multiple UAVs. Instead of path iterative optimization, the paper selects the best tentacle to obtain the UAV collision avoidance path quickly. The simulation results show that the method presented in the paper effectively enhances the performance of flight formation and collision avoidance for multiple high-speed UAVs in unstructured environments. PMID:28763498

  4. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  5. Upper and middle crustal deformation of an arc arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments

    NASA Astrophysics Data System (ADS)

    Iwasaki, Takaya; Adachi, Keiji; Moriya, Takeo; Miyamachi, Hiroki; Matsushima, Takeshi; Miyashita, Kaoru; Takeda, Testsuya; Taira, Takaaki; Yamada, Tomoaki; Ohtake, Kazuo

    2004-09-01

    The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc-arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The "Hokkaido Transect" project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E-W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4-4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10-25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25-27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5-8 km) sedimentary package with a velocity of 2.5-4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3-4 mm/year, which corresponds to 40-50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.

  6. An Easy Way to One-Dimensional Elastic Collisions

    ERIC Educational Resources Information Center

    Sztrajman, Jorge; Sztrajman, Alejandro

    2017-01-01

    The aim of this paper is to propose a method for solving head-on elastic collisions, without algebraic complications, to emphasize the use of the fundamental conservations laws. Head-on elastic collisions are treated in many physics textbooks as examples of conservation of momentum and kinetic energy.

  7. The computer coordination method and research of inland river traffic based on ship database

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Li, Gen

    2018-04-01

    A computer coordinated management method for inland river ship traffic is proposed in this paper, Get the inland ship's position, speed and other navigation information by VTS, building ship's statics and dynamic data bases, writing a program of computer coordinated management of inland river traffic by VB software, Automatic simulation and calculation of the meeting states of ships, Providing ship's long-distance collision avoidance information. The long-distance collision avoidance of ships will be realized. The results show that, Ships avoid or reduce meetings, this method can effectively control the macro collision avoidance of ships.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelman, Jahred A.

    A measurement of the top quark mass in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t$$\\bar{t}$$ system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb -1 of data, the top quark mass is measured to be 171.8$$+1.9\\atop{-1.9}$$(stat.) ± 1.0(syst.)GeV/c 2.« less

  9. Theoretical calculation of the cratering on Ida, Mathilde, Eros and Gaspra

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Asher, D. J.

    2003-07-01

    The main influences on crater size distributions are investigated by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY numerical integrator. An efficient, Öpik-type, collision code enables the distribution of impact velocities and the overall impact probability to be found. When combined with a crater scaling law and an impactor size distribution, using a Monte Carlo method, this yields a crater size distribution. The cratering time-scale is longer for Ida than either Gaspra or Mathilde, though it is harder to constrain for Eros due to the chaotic variation of its orbital elements. The slopes of the crater size distribution are in accord with observations.

  10. Theoretical and material studies of thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.

    1989-01-01

    Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.

  11. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGES

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε –2) or (ε –2(lnε) 2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε –3) for direct simulation Monte Carlomore » or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10 –5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  12. Search for exclusive gammagamma production in Hadron-Hadron collisions.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Caron, B; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-12-14

    We have searched for exclusive gammagamma production in proton-antiproton collisions at sqrt[s]=1.96 TeV, using 532 pb(-1) of integrated luminosity taken by the run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E(T)>5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gammagamma, pi(0)pi(0), or eta eta production. The probability that other processes fluctuate to >or=3 events is 1.7x10(-4). An upper limit on the cross section of pp-->p + gammagamma + p production is set at 410 fb with 95% confidence level.

  13. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomensky, E. A.; Fomin, A. K.; Krasnoshchekova, I. A.; Vassiljev, A. V.; Prudnikov, D. M.; Shoka, I. V.; Chechkin, A. V.; Chaikovskiy, M. E.; Varlamov, V. E.; Ivanov, S. N.; Pirozhkov, A. N.; Geltenbort, P.; Zimmer, O.; Jenke, T.; Van der Grinten, M.; Tucker, M.

    2018-05-01

    Neutron lifetime is one of the most important physical constants: it determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9σ discrepancy between measurements of this lifetime using neutrons in beams and those with stored ultracold neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earth's gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces; this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating over multiple thermal cycles between 80 and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of β decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is τn=881.5 ±0 .7stat ±0 .6syst s which is consistent with the conventional value of 880.2 ± 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K, which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently available data on various measurements of the neutron lifetime.

  14. Characterization of the catalog Fengyun-1C fragments and their long-term effect on the LEO environment

    NASA Astrophysics Data System (ADS)

    Liou, J.-C.

    The intentional breakup of Fengyun-1C on 11 January 2007 created the most severe orbital debris cloud in history. More than 2500 large fragments were identified and tracked by the U.S. Space Surveillance Network by the end of the year. The altitude where the event occurred was probably the worst location for a major breakup in the low Earth orbit (LEO) region, since it was already highly populated with operational satellites and debris generated from previous breakups. The addition of so many fragments not only poses a realistic threat to operational satellites in the region, but also increases the instability (i.e., collision cascade effect) of the debris population there. Preliminary analysis of the large Fengyun-1C fragments indicates that their size and area-tomass ratio (A/M) distributions are very different from those of other known events. About half of the fragments appear to be composed of light-weight materials and more than 100 of them have A/M values exceeding 1 m2 /kg, consistent with thermal blanket pieces. In addition, the orbital elements of the fragments suggest non-trivial velocity gain by the fragment cloud during the impact. These important characteristics were incorporated into a numerical simulation to assess the long-term impact of the Fengyun-1C fragments to the LEO debris environment. The main objectives of the simulation were to evaluate (1) the collision probabilities between the Fengyun-1C fragments and the rest of the catalog population and (2) the collision activities and population growth in the region in the next 100 years.

  15. ASC Weekly News Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womble, David E.

    Unified collision operator demonstrated for both radiation transport and PIC-DSMC. A side-by-side comparison between the DSMC method and the radiation transport method was conducted for photon attenuation in the atmosphere over 2 kilometers in physical distance with a reduction of photon density of six orders of magnitude. Both DSMC and traditional radiation transport agreed with theory to two digits. This indicates that PIC-DSMC operators can be unified with the radiation transport collision operators into a single code base and that physics kernels can remain unique to the actual collision pairs. This simulation example provides an initial validation of the unifiedmore » collision theory approach that will later be implemented into EMPIRE.« less

  16. High energy primary knock-on process in metal deuterium systems initiated by bombardment with noble gas ions

    NASA Astrophysics Data System (ADS)

    Gann, V. V.; Tolstolutskaya, G. D.

    2008-08-01

    An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.

  17. Particle simulation of Coulomb collisions: Comparing the methods of Takizuka and Abe and Nanbu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chiaming; Lin, Tungyou; Caflisch, Russel

    2008-04-20

    The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.

  18. Why does continental convergence stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, A.

    1985-01-01

    Convergence between India and Asia slowed at 45 Ma when they collided, but continues today. This requires that substantial proportions of the Indian and/or Asian lithospheric mantle are still being subducted. The resulting slab-pull is probably comparable with that from complete lithospheric slabs and may promote continued continental convergence even after collision. Since descending lithospheric slabs are present at all collision zones at the time of collision such continued convergence may be general after continental collisions. It may cease only when there is a major (global) plate reorganization which results in new forces on the convergent continents that may counteractmore » the slab-pull. These inferences may be tested on the late Paleozoic collision between Gondwanaland and Laurasia. This is generally considered to have been complete by mid-Permian time (250 Ma). However, this may be only the time of docking of Gondwanaland with North America, not that of the cessation of convergence. Paleomagnetic polar-wander paths for the Gondwanide continents exhibit consistently greater latitudinal shifts from 250 Ma to 200 Ma than those of Laurasia when corrected for post-Triassic drift, suggesting that convergence continued through late Permian well into the Triassic. It may have been accommodated by crustal thickening under what is now the US Coastal Plain, or by strike-slip faulting. Convergence may have ceased only when Pangea began to fragment again, in which case the cause for its cessation may be related to the cause of continental fragmentation.« less

  19. Implementation of an open-scenario, long-term space debris simulation approach

    NASA Astrophysics Data System (ADS)

    Stupl, J.; Nelson, B.; Faber, N.; Perez, A.; Carlino, R.; Yang, F.; Henze, C.; Karacalioglu, A.; O'Toole, C.; Swenson, J.

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance scheme. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps in the order of several (5-15) days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions, space object parameters and orbital parameters of the conjunctions and take place in much smaller timeframes than 5-15 days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in LEO, propagates all objects with high precision, and advances with variable-sized time-steps as small as one second. It allows the assessment of the (potential) impact of changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves ten thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach in developing scenarios and examples of first test runs.

  20. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    NASA Technical Reports Server (NTRS)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves tens of thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach to developing scenarios and examples of first test runs.

  1. Measurement of the top-quark mass with dilepton events selected using neuroevolution at CDF.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shekhar, R; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Whiteson, S; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-04-17

    We report a measurement of the top-quark mass M_{t} in the dilepton decay channel tt[over ] --> bl;{'+} nu_{l};{'}b[over ]l;{-}nu[over ]_{l}. Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb;{-1} of pp[over ] collisions collected with the CDF II detector, yielding a measurement of M_{t} = 171.2 +/- 2.7(stat) +/- 2.9(syst) GeV / c;{2}.

  2. General Path-Integral Successive-Collision Solution of the Bounded Dynamic Multi-Swarm Problem.

    DTIC Science & Technology

    1983-09-23

    coefficients (i.e., moments of the distribution functions), and/or (il) fnding the distribution functions themselves. The present work is concerned with the...collisions since their first appearance in the system. By definition, a swarm particle sufers a *generalized collision" either when it collides with a...studies6-rand the present work have contributed to- wards making the path-integral successive-collision method a practicable tool of transport theory

  3. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.

    PubMed

    Chen Hsu, Hsu; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-08-07

    Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).

  4. The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1976-01-01

    Data obtained by OGO 5 are used to confirm IMP 6 observations of an inverse dependence of the helium-to-hydrogen temperature ratio in the solar wind on the ratio of solar-wind expansion time to the Coulomb-collision equipartition time. The analysis is then extended to determine the relation of the difference between the hydrogen and helium bulk velocities (the differential flow vector) with the ratio between the solar-wind expansion time and the time required for Coulomb collisions to slow down a beam of ions passing through a plasma. It is found that the magnitude of the differential flow vector varies inversely with the time ratio when the latter is small and approaches zero when it is large. These results are shown to suggest a model of continuous preferential heating and acceleration of helium (or cooling and deceleration of hydrogen), which is cancelled or limited by Coulomb collisions by the time the plasma has reached 1 AU. Since the average dependence of the differential flow vector on the time ratio cannot explain all the systematic variations of the vector observed in corotating high-velocity streams, it is concluded that additional helium acceleration probably occurs on the leading edge of such streams.

  5. Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel

    NASA Astrophysics Data System (ADS)

    Bordás, Róbert; Hagemeier, Thomas; Wunderlich, Bernd; Thévenin, Dominique

    2011-08-01

    Experiments in wind tunnels concerning meteorological issues are not very frequent in the literature. However, such experiments might be essential, for instance for a careful investigation of droplet-droplet interactions in turbulent flows. This issue is crucial for many configurations, in particular to understand warm rain initiation. It is clearly impossible to completely reproduce cloud turbulence within a wind tunnel due to the enormous length scales involved. Nevertheless, it is not necessary to recover the whole spectrum in order to quantify droplet interactions. It is sufficient for this purpose to account correctly for the relevant properties only. In the present paper, these properties and a methodology for setting those in a two-phase wind tunnel are first described. In particular, droplet size and number density, velocities, turbulent kinetic energy, k, and its dissipation rate, ɛ, are suitably reproduced, as demonstrated by non-intrusive measurement techniques. A complete experimental characterization of the air and droplet properties is freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem. Finally, quantifications of droplet collision rates and comparisons with theoretical predictions are presented, showing that measured collision rates are higher, typically by a factor of 2 to 5. These results demonstrate that model modifications are needed to estimate correctly droplet collision probabilities in turbulent flows

  6. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  7. Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2014-06-01

    The Cyprus Arc in the Eastern Mediterranean represents the active collision front between the African and Eurasian (Anatolian) Plates. Along the Cyprus Arc, the Eratosthenes Seamount is believed to have been blocking the northward motion of the African Plate since the Late Pliocene-Early Pleistocene. Based on a dense grid of 2D reflection seismic profiles covering the Eratosthenes Seamount and western Levant Basin offshore Cyprus, new observations regarding the Cyprus Arc collision front at the triple transition zone Eratosthenes Seamount-Levant Basin-Hecataeus Rise are presented. The data show that the Levant Basin is filled with ~ 10 km of sediments of Early Mesozoic (probably Jurassic) to Plio-Quaternary age with only a localized deformation affecting the Miocene-Oligocene rock units. The sediments onlap directly against the steep eastern flank of the Eratosthenes Seamount to the west and the southern flank of the Hecataeus Rise to the north. The sediments show no deformation that could be associated with collision and are undeformed even very close to the two prominent structures. Pinching out of the Base Miocene reflector in the Levant Basin due to onlapping of the Middle Miocene reflector indicates uplift of the Eratosthenes Seamount and the Hecataeus Rise. In contrast to the Messinian Evaporites north of the Eratosthenes Seamount, the salt in the Levant Basin, even close to the Hecataeus Rise, is tectonically undeformed. It is proposed that the Eratosthenes Seamount, the western Levant Basin and the Hecataeus Rise act as one tectonic unit. This implies that the collision front is located north of this unit and that the Hecataeus Rise shields the sediments south of it from deformation associated with collision of the African and Anatolian Plates.

  8. Simulating the universe(s): from cosmic bubble collisions to cosmological observables with numerical relativity

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.; Johnson, Matthew C.; Peiris, Hiranya V.; Aguirre, Anthony; Lehner, Luis; Liebling, Steven L.

    2014-03-01

    The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. We develop and implement an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. We first simulate the collision spacetime by solving Einstein's equations, starting from nucleation and ending at reheating. Taking advantage of the collision's hyperbolic symmetry, the simulations are performed with a 1+1-dimensional fully relativistic code that uses adaptive mesh refinement. We then calculate the comoving curvature perturbation in an open Friedmann-Robertson-Walker universe, which is used to determine the temperature anisotropies of the cosmic microwave background radiation. For a fiducial Lagrangian, the anisotropies are well described by a power law in the cosine of the angular distance from the center of the collision signature. For a given form of the Lagrangian, the resulting observational predictions are inherently statistical due to stochastic elements of the bubble nucleation process. Further uncertainties arise due to our imperfect knowledge about inflationary and pre-recombination physics. We characterize observational predictions by computing the probability distributions over four phenomenological parameters which capture these intrinsic and model uncertainties. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, yielding significant differences from previous non-relativistic approximations. Thus, our results provide a basis for a rigorous confrontation of these theories with cosmological data.

  9. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  10. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures regulating air traffic management methods and industry standards governing performance requirements for avionics designed to support trajectory based operations.

  11. Dynamical and collisional evolution of Halley-type comets

    NASA Astrophysics Data System (ADS)

    van der Helm, E.; Jeffers, S. V.

    2012-03-01

    The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.

  12. Orbital Evolution of Jupiter-Family Comets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.

  13. Migration of Trans-Neptunian Objects to a Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Our estimates of the migration of trans-Neptunian objects (TNOs) to a near-Earth space are based on the results of investigations of orbital evolution of TNOs and Jupiter-crossing objects (JCOs). The orbital evolution of TNOs was considered in many papers. Recently we investigated the evolution for intervals of at least 5-10 Myr of 2500 JCOs under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period P(sub alpha)less than 10 yr, and in the second series we took N=500 orbits close to the orbit of Comet 10P Tempel 2 (alpha=3.1 AU, e=0.53, i=12 deg). We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance q of bodies was less than a semimajor axis of the planet.

  14. Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions

    NASA Astrophysics Data System (ADS)

    Castle, James R.

    The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.

  15. Prospect balancing theory: Bounded rationality of drivers' speed choice.

    PubMed

    Schmidt-Daffy, Martin

    2014-02-01

    This paper introduces a new approach to model the psychological determinants of drivers' speed choice: prospect-balancing theory. The theory transfers psychological insight into the bounded rationality of human decision-making to the field of driving behaviour. Speed choice is conceptualized as a trade-off between two options for action: the option to drive slower and the option to drive faster. Each option is weighted according to a subjective value and a subjectively weighted probability attributed to the achievement of the associated action goal; e.g. to avoid an accident by driving more slowly. The theory proposes that the subjective values and weightings of probability differ systematically from the objective conditions and thereby usually favour a cautious speed choice. A driving simulation study with 24 male participants supports this assumption. In a conflict between a monetary gain in case of fast arrival and a monetary loss in case of a collision with a deer, participants chose a velocity lower than that which would maximize their pay-out. Participants' subjective certainty of arriving in time and of avoiding a deer collision assessed at different driving speeds diverged from the respective objective probabilities in accordance with the observed bias in choice of speed. Results suggest that the bounded rationality of drivers' speed choice might be used to support attempts to improve road safety. Thus, understanding the motivational and perceptual determinants of this intuitive mode of decision-making might be a worthwhile focus of future research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi; Sakagami, Masa-aki; Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j

    2009-12-20

    Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dustmore » aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform acceleration (e.g., gravity) and their collision is induced by the difference in their terminal velocities. We point out an important implication of this discovery for dust growth in protoplanetary disks.« less

  17. Distributed-Lagrange-Multiplier-based computational method for particulate flow with collisions

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Rangel, Roger

    2006-11-01

    A Distributed-Lagrange-Multiplier-based computational method is developed for colliding particles in a solid-fluid system. A numerical simulation is conducted in two dimensions using the finite volume method. The entire domain is treated as a fluid but the fluid in the particle domains satisfies a rigidity constraint. We present an efficient method for predicting the collision between particles. In earlier methods, a repulsive force was applied to the particles when their distance was less than a critical value. In this method, an impulsive force is computed. During the frictionless collision process between two particles, linear momentum is conserved while the tangential forces are zero. Thus, instead of satisfying a condition of rigid body motion for each particle separately, as done when particles are not in contact, both particles are rigidified together along their line of centers. Particles separate from each other when the impulsive force is less than zero and after this time, a rigidity constraint is satisfied for each particle separately. Grid independency is implemented to ensure the accuracy of the numerical simulation. A comparison between this method and previous collision strategies is presented and discussed.

  18. PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.

    2006-11-01

    This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.

  19. Analysis of variances of quasirapidities in collisions of gold nuclei with track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2012-08-15

    A new method of an analysis of variances was developed for studying n-particle correlations of quasirapidities in nucleus-nucleus collisions for a large constant number n of particles. Formulas that generalize the results of the respective analysis to various values of n were derived. Calculations on the basis of simple models indicate that the method is applicable, at least for n {>=} 100. Quasirapidity correlations statistically significant at a level of 36 standard deviations were discovered in collisions between gold nuclei and track-emulsion nuclei at an energy of 10.6 GeV per nucleon. The experimental data obtained in our present study aremore » contrasted against the theory of nucleus-nucleus collisions.« less

  20. Car accidents induced by a bottleneck

    NASA Astrophysics Data System (ADS)

    Marzoug, Rachid; Echab, Hicham; Ez-Zahraouy, Hamid

    2017-12-01

    Based on the Nagel-Schreckenberg model (NS) we study the probability of car accidents to occur (Pac) at the entrance of the merging part of two roads (i.e. junction). The simulation results show that the existence of non-cooperative drivers plays a chief role, where it increases the risk of collisions in the intermediate and high densities. Moreover, the impact of speed limit in the bottleneck (Vb) on the probability Pac is also studied. This impact depends strongly on the density, where, the increasing of Vb enhances Pac in the low densities. Meanwhile, it increases the road safety in the high densities. The phase diagram of the system is also constructed.

  1. Environmental Characteristics Associated With Pedestrian–Motor Vehicle Collisions in Denver, Colorado

    PubMed Central

    Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan

    2009-01-01

    Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966

  2. Obstacle Detection and Avoidance System Based on Monocular Camera and Size Expansion Algorithm for UAVs

    PubMed Central

    Al-Kaff, Abdulla; García, Fernando; Martín, David; De La Escalera, Arturo; Armingol, José María

    2017-01-01

    One of the most challenging problems in the domain of autonomous aerial vehicles is the designing of a robust real-time obstacle detection and avoidance system. This problem is complex, especially for the micro and small aerial vehicles, that is due to the Size, Weight and Power (SWaP) constraints. Therefore, using lightweight sensors (i.e., Digital camera) can be the best choice comparing with other sensors; such as laser or radar.For real-time applications, different works are based on stereo cameras in order to obtain a 3D model of the obstacles, or to estimate their depth. Instead, in this paper, a method that mimics the human behavior of detecting the collision state of the approaching obstacles using monocular camera is proposed. The key of the proposed algorithm is to analyze the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. During the Aerial Vehicle (UAV) motion, the detection algorithm estimates the changes in the size of the area of the approaching obstacles. First, the method detects the feature points of the obstacles, then extracts the obstacles that have the probability of getting close toward the UAV. Secondly, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, by estimating the obstacle 2D position in the image and combining with the tracked waypoints, the UAV performs the avoidance maneuver. The proposed algorithm was evaluated by performing real indoor and outdoor flights, and the obtained results show the accuracy of the proposed algorithm compared with other related works. PMID:28481277

  3. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  4. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE PAGES

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    2017-10-12

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  5. Particle Simulation of Coulomb Collisions: Comparing the Methods of Takizuka & Abe and Nanbu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C; Lin, T; Caflisch, R

    2007-05-22

    The interactions of charged particles in a plasma are in a plasma is governed by the long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and stochastic error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.

  6. Methods for identifying high collision concentration locations (HCCL) for potential safety improvements : phase II, Evaluation of alternative methods for identifying HCCL.

    DOT National Transportation Integrated Search

    2011-01-01

    The objective of network screening should ideally be to not only identify sites for safety : investigation but also to prioritize those sites efficiently. Using roadway, intersection, and : collision data from California, this study compared the perf...

  7. Accurate Determination of Comet and Asteroid Orbits Leading to Collision With Earth

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Kay-Bunnell, Linda; Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Hausman, Matthew A.

    2005-01-01

    Movements of the celestial bodies in our solar system inspired Isaac Newton to work out his profound laws of gravitation and motion; with one or two notable exceptions, all of those objects move as Newton said they would. But normally harmonious orbital motion is accompanied by the risk of collision, which can be cataclysmic. The Earth s moon is thought to have been produced by such an event, and we recently witnessed magnificent bombardments of Jupiter by several pieces of what was once Comet Shoemaker-Levy 9. Other comets or asteroids may have met the Earth with such violence that dinosaurs and other forms of life became extinct; it is this possibility that causes us to ask how the human species might avoid a similar catastrophe, and the answer requires a thorough understanding of orbital motion. The two red square flags with black square centers displayed are internationally recognized as a warning of an impending hurricane. Mariners and coastal residents who know the meaning of this symbol and the signs evident in the sky and ocean can act in advance to try to protect lives and property; someone who is unfamiliar with the warning signs or chooses to ignore them is in much greater jeopardy. Although collisions between Earth and large comets or asteroids occur much less frequently than landfall of a hurricane, it is imperative that we learn to identify the harbingers of such collisions by careful examination of an object s path. An accurate determination of the orbit of a comet or asteroid is necessary in order to know if, when, and where on the Earth s surface a collision will occur. Generally speaking, the longer the warning time, the better the chance of being able to plan and execute action to prevent a collision. The more accurate the determination of an orbit, the less likely such action will be wasted effort or, what is worse, an effort that increases rather than decreases the probability of a collision. Conditions necessary for a collision to occur are discussed, and warning times for long-period comets and near-Earth asteroids are presented.

  8. Simulation of Collision of Arbitrary Shape Particles with Wall in a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Udaykumar, H. S.

    2016-11-01

    Collision of finite size arbitrary shape particles with wall in a viscous flow is modeled using immersed boundary method. A potential function indicating the distance from the interface is introduced for the particles and the wall. The potential can be defined by using either an analytical expression or level set method. The collision starts when the indicator potentials of the particle and wall are overlapping based on a minimum cut off. A simplified mass spring model is used in order to apply the collision forces. Instead of using a dashpot in order to damp the energy, the spring stiffness is adjusted during the bounce. The results for the case of collision of a falling sphere with the bottom wall agrees well with the experiments. Moreover, it is shown that the results are independent from the minimum collision cut off distance value. Finally, when the particle's shape is ellipsoidal, the rotation of the particle after the collision becomes important and noticeable: At low Stokes number values, the particle almost adheres to the wall in one side and rotates until it reaches the minimum gravitational potential. At high Stokes numbers, the particle bounces and loses the energy until it reaches a situation with low Stokes number.

  9. Theory and modeling of atmospheric turbulence, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.

  10. Extended time-to-collision measures for road traffic safety assessment.

    PubMed

    Minderhoud, M M; Bovy, P H

    2001-01-01

    This article describes two new safety indicators based on the time-to-collision notion suitable for comparative road traffic safety analyses. Such safety indicators can be applied in the comparison of a do-nothing case with an adapted situation, e.g. the introduction of intelligent driver support systems. In contrast to the classical time-to-collision value, measured at a cross section, the improved safety indicators use vehicle trajectories collected over a specific time horizon for a certain roadway segment to calculate the overall safety indicator value. Vehicle-specific indicator values as well as safety-critical probabilities can easily be determined from the developed safety measures. Application of the derived safety indicators is demonstrated for the assessment of the potential safety impacts of driver support systems from which it appears that some Autonomous Intelligent Cruise Control (AICC) designs are more safety-critical than the reference case without these systems. It is suggested that the indicator threshold value to be applied in the safety assessment has to be adapted when advanced AICC-systems with safe characteristics are introduced.

  11. Impact of End-of-Life manoeuvres on the collision risk in protected regions

    NASA Astrophysics Data System (ADS)

    Frey, Stefan; Lemmens, Stijn; Bastida Virgili, Benjamin; Flohrer, Tim; Gass, Volker

    2017-09-01

    The Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, issued in 2002 and revised in 2007, address the post mission disposal of objects in orbit. After their mission, objects crossing the Low Earth Orbit (LEO) should have a remaining lifetime in orbit not exceeding 25 years. Objects near the Geostationary Orbit (GEO) region should be placed in an orbit that remains outside of the GEO protected region. In this paper, the impact of satellites and rocket bodies performing End-of-Life (EOL) orbital manoeuvres on the collision risk in the LEO and GEO protected regions is investigated. The cases of full or partial compliance with the IADC post mission disposal guideline are studied. ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model is used to compare the space debris flux rate of the object during the remaining lifetime estimated for the pre-EOL-manoeuvre and for the post-EOL-manoeuvre orbit. The study shows that, on average, the probability of collision can be significantly decreased by performing an EOL-manoeuver.

  12. A Propagator Expansion Method for Solving Linearized Plasma Kinetic Equations with Collisions.

    DTIC Science & Technology

    1984-06-25

    of the collision frequency. For the linearized Balescu -Lenard collision * operator and for the zero-order distribution function Maxwellian, we obtain...Rev. 94:511. 3. Lenard, A. , and Bernstein, 1. 13. (1958) Phys. Rev. 112:1456. 4. Dougherty, J. P. (1964) Phys. Fluids 7:1788. 5. Balescu , R. (1960...long wavelength limit for the linearized Balescu - Lenard collision operator and for f0 Maxwellian. We obLain the total L damping rate 1 jry which is

  13. Data Collision Prevention with Overflow Hashing Technique in Closed Hash Searching Process

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Nurjamiyah; Rafika Dewi, Arie

    2017-12-01

    Hash search is a method that can be used for various search processes such as search engines, sorting, machine learning, neural network and so on, in the search process the possibility of collision data can happen and to prevent the occurrence of collision can be done in several ways one of them is to use Overflow technique, the use of this technique perform with varying length of data and this technique can prevent the occurrence of data collisions.

  14. Velocity distributions among colliding asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Nolan, Michael C.; Greenberg, Richard; Kolvoord, Robert A.

    1994-01-01

    The probability distribution for impact velocities between two given asteroids is wide, non-Gaussian, and often contains spikes according to our new method of analysis in which each possible orbital geometry for collision is weighted according to its probability. An average value would give a good representation only if the distribution were smooth and narrow. Therefore, the complete velocity distribution we obtain for various asteroid populations differs significantly from published histograms of average velocities. For all pairs among the 682 asteroids in the main-belt with D greater than 50 km, we find that our computed velocity distribution is much wider than previously computed histograms of average velocities. In this case, the most probable impact velocity is approximately 4.4 km/sec, compared with the mean impact velocity of 5.3 km/sec. For cases of a single asteroid (e.g., Gaspra or Ida) relative to an impacting population, the distribution we find yields lower velocities than previously reported by others. The width of these velocity distributions implies that mean impact velocities must be used with caution when calculating asteroid collisional lifetimes or crater-size distributions. Since the most probable impact velocities are lower than the mean, disruption events may occur less frequently than previously estimated. However, this disruption rate may be balanced somewhat by an apparent increase in the frequency of high-velocity impacts between asteroids. These results have implications for issues such as asteroidal disruption rates, the amount/type of impact ejecta available for meteoritical delivery to the Earth, and the geology and evolution of specific asteroids like Gaspra.

  15. Volatiles Inventory to the Inner Planets Due to Small Bodies Migration

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Ipatov, S. I.

    2003-01-01

    The concurrent processes of endogeneous and exogeneous origin are assumed to be responsible for the volatile reserves in the terrestrial planets. Volatiles inventory through collisions is rooted in orbital dynamics of small bodies including near-Earth objects (NEOs), short and long-period comets, and trans-Neptunian objects (TNOs), the latter probably supplying a large amount of Jupiter crossing objects (JCOs). Our model testifies that even a relatively small portion (approx. 0.001) of JCOs which transit to orbits with aphelia inside Jupiter's orbit (Q<4.7 AU) and reside such orbits during more than 1 Myr may contribute significantly in collisions with the terrestrial planets. The total mass of volatiles delivered to the Earth from the feeding zone of the giant planets could be greater than the mass of the Earth's oceans.

  16. Charge Exchange in Slow Collisions of O+ with He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  17. Coalescence and Collisions of Gold Nanoparticles

    PubMed Central

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-01

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra. PMID:28879995

  18. Coalescence and Collisions of Gold Nanoparticles.

    PubMed

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-28

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

  19. Analysis of energy relaxation kinetics for control of the electron energy distributions in capacitively coupled RF discharges

    NASA Astrophysics Data System (ADS)

    Lee, Jung Yeol; Verboncoeur, John P.; Lee, Hae June

    2018-04-01

    The transition of electron energy probability functions (EEPFs) through the change of heating mode is an important issue in plasma science. A well-known example is that the increase of gas pressure, which was analyzed in terms of the ratio of the energy relaxation mean free path to the electrode gap distance, changes the EEPF from bi-Maxwellian to Maxwellian or Druyvesteyn. In this study, a new aspect of the temporal decay of kinetic energy during the energy relaxation time is theoretically analyzed and compared with a particle-in-cell Monte Carlo collision simulation of capacitively coupled plasmas. A fully kinetic description of electron transport and collisions shows drastic changes of EEPFs with the variation of the driving frequency due to the heating mode transition.

  20. Observation of a diffractive contribution to dijet production in proton-proton collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bansal, M.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Proskuryakov, A.; Sarycheva, L.; Savrin, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-01-01

    The cross section for dijet production in proton-proton collisions at s=7TeV is presented as a function of ξ˜, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7nb-1 collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-ξ˜ data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.

  1. A Comparative Study of Two Types of Ball-on-Ball Collision

    ERIC Educational Resources Information Center

    White, Colin

    2017-01-01

    This paper describes three methods of measuring the coefficient of restitution (CoR) for two different types of ball-on-ball collision. The first collision type (for which two different CoR measurement procedures are described) is a static, hanging steel ball forming part of a Newton's cradle arrangement, which is then hit by its adjacent…

  2. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less

  3. Reliability of programs specified with equational specifications

    NASA Astrophysics Data System (ADS)

    Nikolik, Borislav

    Ultrareliability is desirable (and sometimes a demand of regulatory authorities) for safety-critical applications, such as commercial flight-control programs, medical applications, nuclear reactor control programs, etc. A method is proposed, called the Term Redundancy Method (TRM), for obtaining ultrareliable programs through specification-based testing. Current specification-based testing schemes need a prohibitively large number of testcases for estimating ultrareliability. They assume availability of an accurate program-usage distribution prior to testing, and they assume the availability of a test oracle. It is shown how to obtain ultrareliable programs (probability of failure near zero) with a practical number of testcases, without accurate usage distribution, and without a test oracle. TRM applies to the class of decision Abstract Data Type (ADT) programs specified with unconditional equational specifications. TRM is restricted to programs that do not exceed certain efficiency constraints in generating testcases. The effectiveness of TRM in failure detection and recovery is demonstrated on formulas from the aircraft collision avoidance system TCAS.

  4. An atomic and molecular fluid model for efficient edge-plasma transport simulations at high densities

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas; Rensink, Marvin

    2016-10-01

    Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  5. Dark matter as a cancer hazard

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper ;Dark matter collisions with the human body; by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  6. Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes

    DTIC Science & Technology

    2012-06-10

    Operations (1995-2011) ........................................... 2 Table 2 DeVault Top 15 Relative Hazard Score...dedicated bird radar (Dokter, et al. 2011). The WRS-88D is used in the Avian Hazard Advisory System which is described later in this paper. Advisory...Avian Hazard Advisory System (AHAS) is an online, near real-time, geographic information system (GIS) used for bird strike risk flight planning across

  7. Removal targets' classification: How time considerations modify the definition of the index

    NASA Astrophysics Data System (ADS)

    Zemoura, Mélissa; Hanada, Toshiya; Kawamoto, Satomi

    2017-09-01

    The growth of the near-Earth debris population since the beginning of human space activities is now a fact commonly admitted by space agencies worldwide. Numerous entities have warned about the danger that debris may have over time. Presently mitigation methods such as imposing post-mission disposal time after launch will no longer be sufficient; remediation processes seem necessary to limit the increase. In particular, this phenomenon is attributed to the generation of fragments due to more and more on-orbit collisions. Therefore, investigations on indexes to select potential removal targets were recently conducted, considering solely objects implicated in a collision course. This study also looks at the multiple fragmentation factors, including time through the altitude at time of impact (due to the behaviour of debris re-entering with time). The focal point is here to compare different criteria to select removal targets that enable scenarios in best adequacy with the future in question (long term, mid term or short term). Aware of the uncertainty of evolutionary models, this study also incorporates the simulation method as an impactful factor and tries to overcome the potential randomness of the results. Therefore, this paper presents a way to establish a selection criterion the most adequate for the time period focused on. In order to solve this issue, a ;double-check; method is proposed. First, an analytical evolutionary model simulates the environment over 100 years, through 100 Monte-Carlo runs. Then, among the initial population of year 2009, the objects supposed to be at the origin of the debris detected at a given time are tracked back in time into the simulations, using a collision-detecting program. The ;given period; above mentioned for the presence of debris is based on a future as such that 2029 be considered a short-term scenario, 2059 a midterm scenario and 2109 a long-term scenario. This step produces three lists of targets for removal (one for each future), and simulations are run once again, through different scenarios involving the removal of particular listed targets in order to verify the appropriateness of the proposed scenarios. The analysis of the results is based both on the mean of the simulations and on the recurrence considering each run. Three studies were conducted one for each term, and a fourth one completed the work by establishing comparison between short, mid and long-term periods. As a result, three main criteria could be established: the altitude of the objects, the number of targets necessary to remove, and the phenomenon of chain collisions. According to the future that was investigated, the most adequate criterion appeared to be different, consisting in the number of objects in the long-term analysis or the ranking position at short term (linked to the close-time consideration). As a main conclusion and further perspectives, it should be more efficient to consider the collision-probability and mass product together with the time-depending generation of fragments. This would help increasing the precision in the prediction of collision impacts. Rather than pinpointing specified targets to be removed, the aim of this study is simply to understand the mechanisms at the origin of the population increase around the Earth. Also to demonstrate that a careful definition of selection criteria would enable to adopt a suitable removal process in the period of action or for the goal to be reached.

  8. Extension of local front reconstruction method with controlled coalescence model

    NASA Astrophysics Data System (ADS)

    Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.

    2018-02-01

    The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.

  9. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution

    NASA Astrophysics Data System (ADS)

    Madon, Mazlan; Kim, Cheng Ly; Wong, Robert

    2013-10-01

    The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin ('flysch') phase during late Eocene-Oligocene times, followed by post-Oligocene ('molasse') phase of shallow marine shelf progradation to present day. Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene-Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ˜19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500-2600 m of missing section, equivalent to a time gap of 8-10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah. Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene-Miocene Sarawak foreland basin.

  10. The Probability of Muon Sticking and X-Ray Yields in the Muon Catalyzed Fusion Cycle in a Deuterium and Tritium Mixture

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Motevalli, S. M.

    2008-03-01

    The muon catalyzed fusion cycle in mixtures of deuterium and tritium is of particular interest due to the observation of high fusion yields. In the D-T mixture, the most serious limitation to the efficiency of the fusion chain is the probability of muon sticking to the alpha -particle produced in the nuclear reaction. An accurate kinetic treatment has been applied to the muonic helium atoms formed by a muon sticking to the alpha -particles. In this work accurate rates for collisions of alpha mu + ions with hydrogen atoms have been used for calculation of muon stripping probability and the intensities of X-ray transitions by solving a set of coupled differential equations numerically. Our calculated results are in good agreement with experimental data available in literature.

  11. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    PubMed

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  12. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    PubMed

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  13. Characterization of the Catalog Fengyun-1C Fragments and Their Long-term Effect on the LEO Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.

    2008-01-01

    The intentional breakup of Fengyun-1C on 11 January 2007 created the most severe orbital debris cloud in history. More than 2500 large fragments were identified and tracked by the U.S. Space Surveillance Network by the end of the year. The altitude where the event occurred was probably the worst location for a major breakup in the low Earth orbit (LEO) region, since it was already highly populated with operational satellites and debris generated from previous breakups. The addition of so many fragments not only poses a realistic threat to operational satellites in the region, but also increases the instability (i.e., collision cascade effect) of the debris population there. Preliminary analysis of the large Fengyun-1C fragments indicates that their size and area-to-mass ratio (A/M) distributions are very different from those of other known events. About half of the fragments appear to be composed of light-weight materials and more than 100 of them have A/M values exceeding 1 square meter per kilogram, consistent with thermal blanket pieces. In addition, the orbital elements of the fragments suggest nontrivial velocity gain by the fragment cloud during the impact. These important characteristics were incorporated into a numerical simulation to assess the long-term impact of the Fengyun-1C fragments to the LEO debris environment. The main objectives of the simulation were to evaluate (1) the collision probabilities between the Fengyun-1C fragments and the rest of the catalog population and (2) the collision activities and population growth in the region in the next 100 years.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, Andrew N.

    The authors describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II Detector from pmore » $$\\bar{p}$$ collisions with √s = 1.96 TeV at the Fermilab Tevatron. The posterior probability distribution of the top quark pole mass is calculated using the differential cross-section for the t$$\\bar{t}$$ production and decay expressed with respect to observed leptons and jets momenta. The presence of background events in the collected sample is modeled using calculations of the differential cross-sections for major background processes. This measurement represents the first application of this method to events with two charged leptons. In a data sample with integrated luminosity of 340 pb -1, they observe 33 candidate events and measure M top = 165.2 ± 61. stat ± 3.4 syst GeV/c 2.« less

  15. Electron- and positron-impact atomic scattering calculations using propagating exterior complex scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.

    2007-11-01

    Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.

  16. Collision Based Blood Cell Distribution of the Blood Flow

    NASA Astrophysics Data System (ADS)

    Cinar, Yildirim

    2003-11-01

    Introduction: The goal of the study is the determination of the energy transferring process between colliding masses and the application of the results to the distribution of the cell, velocity and kinetic energy in arterial blood flow. Methods: Mathematical methods and models were used to explain the collision between two moving systems, and the distribution of linear momentum, rectilinear velocity, and kinetic energy in a collision. Results: According to decrease of mass of the second system, the velocity and momentum of constant mass of the first system are decreased, and linearly decreasing mass of the second system captures a larger amount of the kinetic energy and the rectilinear velocity of the collision system on a logarithmic scale. Discussion: The cause of concentration of blood cells at the center of blood flow an artery is not explained by Bernoulli principle alone but the kinetic energy and velocity distribution due to collision between the big mass of the arterial wall and the small mass of blood cells must be considered as well.

  17. Cooling of trapped ions by resonant charge exchange

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2018-04-01

    The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.

  18. The Development of the CMS Zero Degree Calorimeters to Derive the Centrality of AA Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Jeffrey Scott

    The centrality of РЬРЬ collisions is derived using correlations from the zero degree calorimeter (ZDC) signal and pixel multiplicity at the Compact Muon Solenoid (CMS) Experiment using data from the heavy ion run in 2010. The method to derive the centrality takes the two-dimensional correlation between the ZDC and pixels and linearizes it for sorting events. The initial method for deriving the centrality at CMS uses the energy deposit in the HF detector, and it is compared to the centrality derived Ьу the correlations in ZDC and pixel multiplicity. This comparison highlights the similarities between the results of both methodsmore » in central collisions, as expected, and deviations in the results in peripheral collisions. The ZDC signals in peripheral collisions are selected Ьу low pixel multiplicity to oЬtain а ZDC neutron spectrum, which is used to effectively gain match both sides of the ZDC« less

  19. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    NASA Astrophysics Data System (ADS)

    Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.

  20. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    PubMed Central

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O’Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2017-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce’s utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer. PMID:29302129

  1. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective.

    PubMed

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.

  2. Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

    NASA Astrophysics Data System (ADS)

    Beijerinck, H. C. W.

    2000-12-01

    Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to E1/2eff. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum system-He, Ne, or Ar-with the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200 μK<=Eeff<=400 μK, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeff

  3. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  4. Consideration of Collision "Consequence" in Satellite Conjunction Assessment and Risk Analysis

    NASA Technical Reports Server (NTRS)

    Hejduk, M.; Laporte, F.; Moury, M.; Newman, L.; Shepperd, R.

    2017-01-01

    Classic risk management theory requires the assessment of both likelihood and consequence of deleterious events. Satellite conjunction risk assessment has produced a highly-developed theory for assessing collision likelihood but holds a completely static solution for collision consequence, treating all potential collisions as essentially equally worrisome. This may be true for the survival of the protected asset, but the amount of debris produced by the potential collision, and therefore the degree to which the orbital corridor may be compromised, can vary greatly among satellite conjunctions. This study leverages present work on satellite collision modeling to develop a method by which it can be estimated, to a particular confidence level, whether a particular collision is likely to produce a relatively large or relatively small amount of resultant debris and how this datum might alter conjunction remediation decisions. The more general question of orbital corridor protection is also addressed, and a preliminary framework presented by which both collision likelihood and consequence can be jointly considered in the risk assessment process.

  5. Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roohi, Ehsan; Stefanov, Stefan

    2016-10-01

    The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.

  6. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  7. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  8. Computational Metabolomics: A Framework for the Million Metabolome

    PubMed Central

    Uppal, Karan; Walker, Douglas I.; Liu, Ken; Li, Shuzhao; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    “Sola dosis facit venenum.” These words of Paracelsus, “the dose makes the poison”, can lead to a cavalier attitude concerning potential toxicities of the vast array of low abundance environmental chemicals to which humans are exposed. Exposome research teaches that 80–85% of human disease is linked to environmental exposures. The human exposome is estimated to include >400,000 environmental chemicals, most of which are uncharacterized with regard to human health. In fact, mass spectrometry measures >200,000 m/z features (ions) in microliter volumes derived from human samples; most are unidentified. This crystallizes a grand challenge for chemical research in toxicology: to develop reliable and affordable analytical methods to understand health impacts of the extensive human chemical experience. To this end, there appears to be no choice but to abandon the limitations of measuring one chemical at a time. The present review looks at progress in computational metabolomics to provide probability based annotation linking ions to known chemicals and serve as a foundation for unambiguous designation of unidentified ions for toxicologic study. We review methods to characterize ions in terms of accurate mass m/z, chromatographic retention time, correlation of adduct, isotopic and fragment forms, association with metabolic pathways and measurement of collision-induced dissociation products, collision cross section, and chirality. Such information can support a largely unambiguous system for documenting unidentified ions in environmental surveillance and human biomonitoring. Assembly of this data would provide a resource to characterize and understand health risks of the array of low-abundance chemicals to which humans are exposed. PMID:27629808

  9. Stereodynamics of the reactions: F + H2/HD/HT→FH + H/D/T

    NASA Astrophysics Data System (ADS)

    Chi, Xiao-Lin; Zhao, Jin-Feng; Zhang, Yong-Jia; Ma, Feng-Cai; Li, Yong-Qing

    2015-05-01

    Among many kinds of ways to study the properties of atom and molecule collision, the quasi-classical trajectory (QCT) method is an effective one to investigate the molecular reaction dynamics. QCT calculations have been carried out to investigate the stereodynamics of the reactions F + H2/HD/HT→FH + H/D/T, which proceed on the lowest-lying electronic states of the FH2 system based on the potential energy surface (PES) of the 12A’ FH2 ground state. Although the QCT method cannot describe all quantum effects in the process of the reaction, it has unique advantages when facing a three-atoms system or complicated polyatomic systems. Differential cross sections (DCSs) and three angle distribution functions P(θr), P(ϕr), P(θr, ϕr) on the PES at the collision of 2.74 kcal/mol have been investigated. The isotope effect becomes more obvious with the reagent molecule H2 turning into HD and HT. P(θr, ϕr), as the joint probability density function of both polar angles θr and ϕr, can reflect the properties of three-dimensional dynamic more intuitively. Project supported by the National Natural Science Foundation of China (Grant No. 11474141), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Grant No. 2014-1685), the Scientific Research Foundation for the Doctor of Liaoning University, the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil, and the China Postdoctoral Science Foundation (Grant No. 2014M550158).

  10. A comprehensive assessment of collision likelihood in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oltrogge, D. L.; Alfano, S.; Law, C.; Cacioni, A.; Kelso, T. S.

    2018-06-01

    Knowing the likelihood of collision for satellites operating in Geosynchronous Earth Orbit (GEO) is of extreme importance and interest to the global community and the operators of GEO spacecraft. Yet for all of its importance, a comprehensive assessment of GEO collision likelihood is difficult to do and has never been done. In this paper, we employ six independent and diverse assessment methods to estimate GEO collision likelihood. Taken in aggregate, this comprehensive assessment offer new insights into GEO collision likelihood that are within a factor of 3.5 of each other. These results are then compared to four collision and seven encounter rate estimates previously published. Collectively, these new findings indicate that collision likelihood in GEO is as much as four orders of magnitude higher than previously published by other researchers. Results indicate that a collision is likely to occur every 4 years for one satellite out of the entire GEO active satellite population against a 1 cm RSO catalogue, and every 50 years against a 20 cm RSO catalogue. Further, previous assertions that collision relative velocities are low (i.e., <1 km/s) in GEO are disproven, with some GEO relative velocities as high as 4 km/s identified. These new findings indicate that unless operators successfully mitigate this collision risk, the GEO orbital arc is and will remain at high risk of collision, with the potential for serious follow-on collision threats from post-collision debris when a substantial GEO collision occurs.

  11. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    Active margin processes including subduction, accretion, arc magmatism and back-arc extension play a key role in the diachronous, and still incomplete closure of the S Neotethys. The S Neotethys rifted along the present-day Africa-Eurasia continental margin during the Late Triassic and, after sea-floor spreading, began to close related to northward subduction during the Late Cretaceous. The northern, active continental margin of the S Neotethys was bordered by several of the originally rifted continental fragments (e.g. Taurides). The present-day convergent lineament ranges from subaqueous (e.g. Mediterranean Ridge), to subaerial (e.g. SE Turkey). The active margin development is partially obscured by microcontinent-continent collision and post-collisional strike-slip deformation (e.g. Tauride-Arabian suture). However, the Kyrenia Range, N Cyprus provides an outstanding record of convergent margin to early stage collisional processes. It owes its existence to strong localised uplift during the Pleistocene, which probably resulted from the collision of a continental promontory of N Africa (Eratosthenes Seamount) with the long-lived S Neotethyan active margin to the north. A multi-stage convergence history is revealed, mainly from a combination of field structural, sedimentological and igneous geochemical studies. Initial Late Cretaceous convergence resulted in greenschist facies burial metamorphism that is likely to have been related to the collision, then rapid exhumation, of a continental fragment (stage 1). During the latest Cretaceous-Palaeogene, the Kyrenia lineament was characterised by subduction-influenced magmatism and syn-tectonic sediment deposition. Early to Mid-Eocene, S-directed thrusting and folding (stage 2) is likely to have been influenced by the suturing of the Izmir-Ankara-Erzincan ocean to the north ('N Neotethys'). Convergence continued during the Neogene, dominated by deep-water terrigenous gravity-flow accumulation in a foredeep setting. Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.

  12. Car-to-pedestrian collision reconstruction with injury as an evaluation index.

    PubMed

    Weng, Yiliu; Jin, Xianlong; Zhao, Zhijie; Zhang, Xiaoyun

    2010-07-01

    Reconstruction of accidents is currently considered as a useful means in the analysis of accidents. By multi-body dynamics and numerical methods, and by adopting vehicle and pedestrian models, the scenario of the crash can often be simulated. When reconstructing the collisions, questions often arise regarding the criteria for the evaluation of simulation results. This paper proposes a reconstruction method for car-to-pedestrian collisions based on injuries of the pedestrians. In this method, pedestrian injury becomes a critical index in judging the correctness of the reconstruction result and guiding the simulation process. Application of this method to a real accident case is also presented in this paper. The study showed a good agreement between injuries obtained by numerical simulation and that by forensic identification. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Effects of heterogeneous traffic with speed limit zone on the car accidents

    NASA Astrophysics Data System (ADS)

    Marzoug, R.; Lakouari, N.; Bentaleb, K.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-06-01

    Using the extended Nagel-Schreckenberg (NS) model, we numerically study the impact of the heterogeneity of traffic with speed limit zone (SLZ) on the probability of occurrence of car accidents (Pac). SLZ in the heterogeneous traffic has an important effect, typically in the mixture velocities case. In the deterministic case, SLZ leads to the appearance of car accidents even in the low densities, in this region Pac increases with increasing of fraction of fast vehicles (Ff). In the nondeterministic case, SLZ decreases the effect of braking probability Pb in the low densities. Furthermore, the impact of multi-SLZ on the probability Pac is also studied. In contrast with the homogeneous case [X. Li, H. Kuang, Y. Fan and G. Zhang, Int. J. Mod. Phys. C 25 (2014) 1450036], it is found that in the low densities the probability Pac without SLZ (n = 0) is low than Pac with multi-SLZ (n > 0). However, the existence of multi-SLZ in the road decreases the risk of collision in the congestion phase.

  14. Contributory fault and level of personal injury to drivers involved in head-on collisions: Application of copula-based bivariate ordinal models.

    PubMed

    Wali, Behram; Khattak, Asad J; Xu, Jingjing

    2018-01-01

    The main objective of this study is to simultaneously investigate the degree of injury severity sustained by drivers involved in head-on collisions with respect to fault status designation. This is complicated to answer due to many issues, one of which is the potential presence of correlation between injury outcomes of drivers involved in the same head-on collision. To address this concern, we present seemingly unrelated bivariate ordered response models by analyzing the joint injury severity probability distribution of at-fault and not-at-fault drivers. Moreover, the assumption of bivariate normality of residuals and the linear form of stochastic dependence implied by such models may be unduly restrictive. To test this, Archimedean copula structures and normal mixture marginals are integrated into the joint estimation framework, which can characterize complex forms of stochastic dependencies and non-normality in residual terms. The models are estimated using 2013 Virginia police reported two-vehicle head-on collision data, where exactly one driver is at-fault. The results suggest that both at-fault and not-at-fault drivers sustained serious/fatal injuries in 8% of crashes, whereas, in 4% of the cases, the not-at-fault driver sustained a serious/fatal injury with no injury to the at-fault driver at all. Furthermore, if the at-fault driver is fatigued, apparently asleep, or has been drinking the not-at-fault driver is more likely to sustain a severe/fatal injury, controlling for other factors and potential correlations between the injury outcomes. While not-at-fault vehicle speed affects injury severity of at-fault driver, the effect is smaller than the effect of at-fault vehicle speed on at-fault injury outcome. Contrarily, and importantly, the effect of at-fault vehicle speed on injury severity of not-at-fault driver is almost equal to the effect of not-at-fault vehicle speed on injury outcome of not-at-fault driver. Compared to traditional ordered probability models, the study provides evidence that copula based bivariate models can provide more reliable estimates and richer insights. Practical implications of the results are discussed. Published by Elsevier Ltd.

  15. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this energy being distributed over a larger number of states and to higher excitations with increasing numbers of transferred nucleons. Multinucleon transfer is thus a mechanism by which energy can be dissipated from the relative motion before reaching the fusion barrier radius.

  16. Heat conduction in a chain of colliding particles with a stiff repulsive potential

    NASA Astrophysics Data System (ADS)

    Gendelman, Oleg V.; Savin, Alexander V.

    2016-11-01

    One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example of a completely integrable system. Billiards with different particle masses is generically not integrable, but it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of the model leads to a profound physical consequence—the probability of multiple (in particular triple) -particle collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic description of heat transport. This approach allows us to predict both the temperature and density dependencies for the HCC limit values. The latter dependence is quite counterintuitive—the HCC is inversely proportional to the particle density in the chain. Both predictions are confirmed by direct numerical simulations.

  17. Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2010-07-15

    A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.

  18. Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2013-10-01

    We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.

  19. Response Matrix Monte Carlo for electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.

    1990-11-01

    A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Bogue, J; Parsai, E

    Purpose: Potential collisions between the gantry head and the patient or table assembly are difficult to detect in most treatment planning systems. We have developed and implemented a novel software package for the representation of potential gantry collisions with the couch assembly at the time of treatment planning. Methods: Physical dimensions of the Varian Edge linear accelerator treatment head were measured and reproduced using the Visual Python display package. A script was developed for the Pinnacle treatment planning system to generate a file with the relevant couch, gantry, and isocenter positions for each beam in a planning trial. A pythonmore » program was developed to parse the information from the TPS and produce a representative model of the couch/gantry system. Using the model and the Visual Python libraries, a rendering window is generated for each beam that allows the planner to evaluate the possibility of a collision. Results: Comparison against heuristic methods and direct verification on the machine validated the collision model generated by the software. Encounters of <1 cm between the gantry treatment head and table were visualized as collisions in our virtual model. Visual windows were created depicting the angle of collision for each beam, including the anticipated table coordinates. Visual rendering of a 6 arc trial with multiple couch positions was completed in under 1 minute, with network bandwidth being the primary bottleneck. Conclusion: The developed software allows for quick examination of possible collisions during the treatment planning process and helps to prevent major collisions prior to plan approval. The software can easily be implemented on future planning systems due to the versatility and platform independence of the Python programming language. Further integration of the software with the treatment planning system will allow the possibility of patient-gantry collision detection for a range of treatment machines.« less

  1. Dissociation and Internal Excitation of Molecular Nitrogen Due to N + N2 Collisions Using Direct Molecular Simulation

    NASA Technical Reports Server (NTRS)

    Grover, Maninder S.; Schwartzentruber, Thomas E.; Jaffe, Richard L.

    2017-01-01

    In this work we present a molecular level study of N2+N collisions, focusing on excitation of internal energy modes and non-equilibrium dissociation. The computation technique used here is the direct molecular simulation (DMS) method and the molecular interactions have been modeled using an ab-initio potential energy surface (PES) developed at NASA's Ames Research Center. We carried out vibrational excitation calculations between 5000K and 30000K and found that the characteristic vibrational excitation time for the N + N2 process was an order of magnitude lower than that predicted by the Millikan and White correlation. It is observed that during vibrational excitation the high energy tail of the vibrational energy distribution gets over populated first and the lower energy levels get populated as the system evolves. It is found that the non-equilibrium dissociation rate coefficients for the N + N2 process are larger than those for the N2 + N2 process. This is attributed to the non-equilibrium vibrational energy distributions for the N + N2 process being less depleted than that for the N2 +N2 process. For an isothermal simulation we find that the probability of dissociation goes as 1/T(sub tr) for molecules with internal energy (epsilon(sub int)) less than approximately 9.9eV, while for molecules with epsilon (sub int) greater than 9.9eV the dissociation probability was weakly dependent on translational temperature of the system. We compared non-equilibrium dissociation rate coefficients and characteristic vibrational excitation times obtained by using the ab-initio PES developed at NASA's Ames Research Center to those obtained by using an ab-initio PES developed at the University of Minnesota. Good agreement was found between the macroscopic properties and molecular level description of the system obtained by using the two PESs.

  2. Conservative bin-to-bin fractional collisions

    NASA Astrophysics Data System (ADS)

    Martin, Robert

    2016-11-01

    Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the collision integral when compared to the standard DSMC method. However, it is found that the more frequent phase space reconstructions can cause added numerical thermalization with low particle per cell counts due to the coarseness of the octree used. However, the methods are expected to be of much greater utility in transient expansion flows and chemical reactions in the future.

  3. Migration of Small Bodies and Dust to Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distance Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). The fraction of asteroids migrated from the 3:1 resonance with Jupiter that collided with the Earth was greater by a factor of several than that for the 5:2 resonance. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).

  4. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  5. Energy behavior on side structure in event of ship collision subjected to external parameters.

    PubMed

    Prabowo, Aditya Rio; Bae, Dong Myung; Sohn, Jung Min; Cao, Bo

    2016-11-01

    The safety of ships in regards to collisions and groundings, as well as the navigational and structural aspects of ships, has been improved and developed up to this day by technical, administrative and nautical parties. The damage resulting from collisions could be reduced through several techniques such as designing appropriate hull structures, ensuring tightness of cargo tanks as well as observation and review on structural behaviors, whilst accounting for all involved parameters. The position during a collision can be influenced by the collisions' location and angle as these parts are included in the external dynamics of ship collisions. In this paper, the results of several collision analyses using the finite element method were used and reviewed regarding the effect of location and angle on energy characteristic. Firstly, the capabilities of the structure and its ability to resist destruction in a collision process were presented and comparisons were made to other collision cases. Three types of collisions were identified based on the relative location of contact points to each other. From the results, it was found that the estimation of internal energy by the damaged ships differed in range from 12%-24%. In the second stage, the results showed that a collision between 30 to 60 degrees produced higher level energy than a collision in the perpendicular position. Furthermore, it was concluded that striking and struck objects in collision contributed to energy and damage shape.

  6. Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane

    NASA Astrophysics Data System (ADS)

    Leung, Anthony C. K.; Kirchner, Tom

    2017-04-01

    Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.

  7. Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2008-01-01

    Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.

  8. Conservative discretization of the Landau collision integral

    DOE PAGES

    Hirvijoki, E.; Adams, M. F.

    2017-03-28

    Here we describe a density, momentum-, and energy-conserving discretization of the nonlinear Landau collision integral. The method is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem using a finite-element implementation.

  9. News on Collectivity in PbPb Collisions at CMS

    NASA Astrophysics Data System (ADS)

    Moon, Dong Ho

    2017-04-01

    The flow anisotropies with the Fourier coefficients (n = 2, 3) for the charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector. In order to extract the Fourier coefficients, several methods were used, such as the scalar product method or multi-particle cumulant method. The results cover both of the low-pT region (1 < pT < 3 GeV/c) associated with hydrodynamic flow phenomena and the high-pT region where anisotropic azimuthal distributions may reflect the path-length dependence of the parton energy loss in the created medium for the seven bins of collision centrality, spanning the rang of 0-60% most-central events.

  10. Trajectories of saltating sand particles behind a porous fence

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  11. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    DTIC Science & Technology

    2013-09-01

    processor. 1 . INTRODUCTION The Joint Space Operations Center (JSpOC) currently tracks more than 22,000 satellites and space debris orbiting the Earth... 1 , 2]. With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed

  12. Multinational Experiment 7. Space: Dependencies, Vulnerabilities and Threats

    DTIC Science & Technology

    2012-01-01

    service, a simple traffic light system is used to indicate the level of dependency that exists on space within the overall process of successful service...debris release during operations; minimise the potential for spacecraft and rocket body break-up; limit the probability of accidental collision on orbit...Strong winds  Flooding  Accidents at industrial installations e.g. nuclear power stations  Volcanic activity  Chemical spills (sea/on land

  13. Semi-Markov Approach to the Shipping Safety Modelling

    NASA Astrophysics Data System (ADS)

    Guze, Sambor; Smolarek, Leszek

    2012-02-01

    In the paper the navigational safety model of a ship on the open area has been studied under conditions of incomplete information. Moreover the structure of semi-Markov processes is used to analyse the stochastic ship safety according to the subjective acceptance of risk by the navigator. In addition, the navigator’s behaviour can be analysed by using the numerical simulation to estimate the probability of collision in the safety model.

  14. Numerical simulation of rarefied gas flow through a slit

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong

    1990-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.

  15. Predicting the stochastic guiding of kinesin-driven microtubules in microfabricated tracks: a statistical-mechanics-based modeling approach.

    PubMed

    Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo

    2010-01-01

    Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.

  16. Positronium collisions with molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Wilde, R. S.; Fabrikant, I. I.

    2018-05-01

    For many atomic and molecular targets positronium (Ps) scattering looks very similar to electron scattering if total scattering cross sections are plotted as functions of the projectile velocity. Recently this similarity was observed for the resonant scattering by the N2 molecule. For correct treatment of Ps-molecule scattering incorporation of the exchange interaction and short-range correlations is of paramount importance. In the present work we have used a free-electron-gas model to describe these interactions in collisions of Ps with the N2 molecule. The results agree reasonably well with the experiment, but the position of the resonance is somewhat shifted towards lower energies, probably due to the fixed-nuclei approximation employed in the calculations. The partial-wave analysis of the resonant peak shows that its composition is more complex than in the case of e -N2 scattering.

  17. Search for high-mass e+e- resonances in pp collisions at sqrt[s]=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, C; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-23

    A search for high-mass resonances in the e+e- final state is presented based on 2.5 fb(-1) of sqrt[s]=1.96 TeV pp collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an e+e- invariant mass of 240 GeV/c2. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150-1000 GeV/c2 is 0.6% (equivalent to 2.5sigma). We exclude the standard model coupling Z' and the Randall-Sundrum graviton for k/MPl=0.1 with masses below 963 and 848 GeV/c2 at the 95% credibility level, respectively.

  18. Measurement of the velocity of neutral fragments by the "correlated ion and neutral time of flight" method combined with "velocity-map imaging"

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2017-08-01

    In the challenging field of imaging molecular dynamics, a novel method has been developed and implemented that allows the measurement of the velocity of neutral fragments produced in collision induced dissociation experiments on an event-by-event basis. This has been made possible by combining a correlated ion and neutral time of flight method with a velocity map imaging technique. This new method relies on a multiparametric correlated detection of the neutral and charged fragments from collision induced dissociation on one single detector. Its implementation on the DIAM device (Device for irradiation of biomolecular clusters) (Dispositif d'Irradiation d'Agrégats bioMoléculaires) allowed us to measure the velocity distribution of water molecules evaporated from collision induced dissociation of mass- and energy-selected protonated water clusters.

  19. Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán

    2016-10-01

    We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.

  20. Finite element simulation of lower limb injuries to the driver in minibus frontal collisions.

    PubMed

    Shi, Liang-Liang; Lei, Chen; Li, Kui; Fu, Shuo-Zhen; Wu, Zheng-Wei; Yin, Zhi-Yong

    2016-06-01

    This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.

  1. Growth properties of protoplanetary dust in a long-term microgravity experiment

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Kothe, Stefan; Weidling, Rene; Heisselmann, Daniel; Blum, Juergen

    2014-11-01

    In the very first steps of the formation of a new planetary system, dust agglomerates and grows inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. As part of a series of microgravity experiments aiming at the investigation of the transitions between sticking, bouncing and fragmentation of colliding dust aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was designed, built and operated both at the drop tower in Bremen (August 2011) and on the REXUS 12 suborbital rocket (March 2012). The SPACE experiment allowed for the observation of collisions between aggregates of sizes of a few 100 µm that were composed of SiO2, a commonly used protoplanetary dust analog material. At velocities below 10 cm/s, clusters composed of a high number of aggregates (more than 10^4) formed and grew to sizes of up to 5 mm. The analysis of these collisions delivered valuable input to a current dust collision model, which maps the outcome of collisions depending on the aggregate sizes and their relative velocities. The sticking probability of sub-mm-sized dust aggregates could directly be measured during the suborbital rocket flight, over a velocity range covering the transition between the sticking and bouncing regimes. In addition, the evolution of clusters formed from sub-mm-sized aggregates during the different experiments could be observed and some of their intrinsic properties derived. The measured characteristics were the cluster fractal dimensions, the tensile strength of their outer aggregate layer and the effective surface energy of their constituents. Threshold energies for cluster restructuring and fragmentation could also be determined. All these cluster properties are important input parameters for molecular dynamics or numerical simulations investigating the behavior of macroscopic clusters (>1 mm in size) in protoplanetary disks.

  2. Oceanic microplate formation records the onset of India-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Dietmar Müller, R.; Sandwell, David T.

    2016-01-01

    Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (∼47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.

  3. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors

    PubMed Central

    Kämmerle, Jim-Lino; Kröschel, Max; Hagen, Robert; Storch, Ilse; Suchant, Rudi

    2017-01-01

    Every year, there are millions of documented vehicle collisions involving cervids across Europe and North America. While temporal patterns in collision occurrence are relatively well described, few studies have targeted deer behaviour as a critical component of collision prevention. In this study, we investigated weekly and daily patterns in road crossing behaviour in roe deer. Using road crossing events and movement data obtained from GPS telemetry, we employed mixed-effect models to explain frequency and timing of crossings at five road segments by a number of predictors including traffic volume, deer movement activity and the presence of wildlife warning reflectors. We analysed 13,689 road crossing events by 32 study animals. Individual variation in crossing frequency was high but daily patterns in crossing events were highly consistent among animals. Variation in the intensity of movement activity on a daily and seasonal scale was the main driver of road crossing behaviour. The seasonal variation in crossing frequency reflected differences in movement activity throughout the reproductive cycle, while daily variation in the probability to cross exhibited a clear nocturnal emphasis and reflected crepuscular activity peaks. The frequency of road crossings increased as a function of road density in the home-range, while traffic volume only exerted marginal effects. Movement activity of roe deer in our study coincided with commuter traffic mainly in the early morning and late afternoon during winter and during periods of high spatial activity such as the rut. Both timing and frequency of crossing events remained unchanged in the presence of reflectors. Our results emphasise the importance of behavioural studies for understanding roe deer vehicle-collision patterns and thus provide important information for collision prevention. We suggest that mitigation of collision risk should focus on strategic seasonal measures and animal warning systems targeting drivers. PMID:28953951

  4. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  5. Measurements of the dielectron continuum in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Vázquez Doce, O.; Alice Collaboration

    2017-11-01

    Dielectrons produced in ultra-relativistic heavy-ion collisions provide a unique probe of the whole system evolution as they are unperturbed by final-state interactions. The dielectron continuum is extremely rich in physics sources: thermal radiation is of particular interest as it carries information about the temperature of the hot and dense system created in such collisions. The dielectron invariant mass distribution is sensitive to medium modifications of the spectral function of vector mesons that are linked to the potential restoration of chiral symmetry. Correlated electron pairs from semi-leptonic charm and beauty decays provide information about the heavy-quark energy loss. A summary of the LHC Run-1 preliminary results in all three collisions systems (pp, p-Pb and Pb-Pb) is presented. Furthermore, the status of the ongoing Run-2 analyses is discussed with a focus on pp collisions collected with a high charged-particle multiplicity trigger, on new analysis methods to separate prompt from non-prompt sources, and on the usage of machine learning methods for background rejection.

  6. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  7. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-02-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  8. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-05-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  9. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N1

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  10. Predicting severe injury using vehicle telemetry data.

    PubMed

    Ayoung-Chee, Patricia; Mack, Christopher D; Kaufman, Robert; Bulger, Eileen

    2013-01-01

    In 2010, the National Highway Traffic Safety Administration standardized collision data collected by event data recorders, which may help determine appropriate emergency medical service (EMS) response. Previous models (e.g., General Motors ) predict severe injury (Injury Severity Score [ISS] > 15) using occupant demographics and collision data. Occupant information is not automatically available, and 12% of calls from advanced automatic collision notification providers are unanswered. To better inform EMS triage, our goal was to create a predictive model only using vehicle collision data. Using the National Automotive Sampling System Crashworthiness Data System data set, we included front-seat occupants in late-model vehicles (2000 and later) in nonrollover and rollover crashes in years 2000 to 2010. Telematic (change in velocity, direction of force, seat belt use, vehicle type and curb weight, as well as multiple impact) and nontelematic variables (maximum intrusion, narrow impact, and passenger ejection) were included. Missing data were multiply imputed. The University of Washington model was tested to predict severe injury before application of guidelines (Step 0) and for occupants who did not meet Steps 1 and 2 criteria (Step 3) of the Centers for Disease Control and Prevention Field Triage Guidelines. A probability threshold of 20% was chosen in accordance with Centers for Disease Control and Prevention recommendations. There were 28,633 crashes, involving 33,956 vehicles and 52,033 occupants, of whom 9.9% had severe injury. At Step 0, the University of Washington model sensitivity was 40.0% and positive predictive value (PPV) was 20.7%. At Step 3, the sensitivity was 32.3 % and PPV was 10.1%. Model analysis excluding nontelematic variables decreased sensitivity and PPV. The sensitivity of the re-created General Motors model was 38.5% at Step 0 and 28.1% at Step 3. We designed a model using only vehicle collision data that was predictive of severe injury at collision notification and in the field and was comparable with an existing model. These models demonstrate the potential use of advanced automatic collision notification in planning EMS response. Prognostic study, level II.

  11. EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system

    NASA Astrophysics Data System (ADS)

    Zhang, YuJing; Cui, Yinghua

    2017-05-01

    In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.

  12. Studies of higher-order flow harmonics in PbPb collisions at 2.76 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Tuo, Shengquan

    2013-05-01

    High-order Fourier harmonics (vn, n>2) in the azimuthal distributions of charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy s=2.76TeV are presented. The vn coefficients are studied using the event-plane method and a Fourier decomposition analysis of the two particle correlations in various collision centrality, pT and η ranges. A unique measurement of vn in the ultra-central collisions (UCC) is performed using the long-range component of the two particle correlations. These data provide strong constraints on the theoretical models of the initial condition in heavy ion collisions and the transport properties of the produced medium.

  13. Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations

    NASA Astrophysics Data System (ADS)

    Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.

  14. Reactive collisions of electrons with H2+ , HD+, BeH+, BeD+ and SH+

    NASA Astrophysics Data System (ADS)

    Pop, Nicolina; Iacob, Felix; Mezei, János Zsolt; Motapon, Ousmanou; Niyonzima, Sebastien; Kashinski, David O.; Talbi, Dahbia; Hickman, Albert Peet; Schneider, Ioan F.

    2017-12-01

    In numerous cold ionized gases the dissociative recombination (DR), the elastic collisions (EC), the vibrational excitation (VE) (inelastic collisions) and the vibrational de-excitation (VdE) (super-elastic collisions) of molecular cations with electrons are major elementary processes. Using a stepwise method based on the Multichannel Quantum Defect Theory (MQDT), cross sections and rate coefficients have been obtained for reactions induced on HD+, H2+, BeH+, BeD+ and SH+. Moreover, the relative importance of the different reaction mechanisms, direct vs. indirect and rotational vs. non-rotational, have been studied for these molecular systems.

  15. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less

  16. Computer simulations and experimental study on crash box of automobile in low speed collision

    NASA Astrophysics Data System (ADS)

    Liu, Yanjie; Ding, Lin; Yan, Shengyuan; Yang, Yongsheng

    2008-11-01

    Based on the problems of energy-absorbing components in the automobile low speed collision process, according to crash box frontal crash test in low speed as the example, the simulation analysis of crash box impact process was carried out by Hyper Mesh and LS-DYNA. Each parameter on the influence modeling was analyzed by mathematics analytical solution and test comparison, which guaranteed that the model was accurate. Combination of experiment and simulation result had determined the weakness part of crash box structure crashworthiness aspect, and improvement method of crash box crashworthiness was discussed. Through numerical simulation of the impact process of automobile crash box, the obtained analysis result was used to optimize the design of crash box. It was helpful to improve the vehicles structure and decrease the collision accident loss at most. And it was also provided a useful method for the further research on the automobile collision.

  17. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  18. Collisions with ice-volatile objects: Geological implications

    NASA Technical Reports Server (NTRS)

    Wilde, P.; Quinby-Hunt, M. S.; Berry, W. B. N.

    1988-01-01

    The collision of the Earth with extra-terrestrial ice-volatile bodies is proposed as a mechanism to produce rapid changes in the geologic record. These bodies would be analogs of the ice satellites found for the Jovian planets and suspected for comets and certain low density bodies in the Asteroid belt. Five generic end-members are postulated: (1) water ice; (2) dry ice: carbon-carbon dioxide rich, (3) oceanic (chloride) ice; (4) sulfur-rich ice; (5) ammonia hydrate-rich ice; and (6) clathrate: methane-rich ice. Due to the volatile nature of these bodies, evidence for their impact with the Earth would be subtle and probably best reflected geochemically or in the fossil record. Actual boloids impacting the Earth may have a variable composition, generally some admixture with water ice. However for discussion purposes, only the effects of a dominant component will be treated. The general geological effects of such collisions, as a function of the dominant component would be: (1) rapid sea level rise unrelated to deglaciation, (2) decreased oceanic pH and rapid climatic warming or deglaciation; (3) increased paleosalinities; (4) increased acid rain; (5) increased oceanic pH and rapid carbonate deposition; and (6) rapid climatic warming or deglaciation.

  19. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    NASA Astrophysics Data System (ADS)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  20. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-06-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16-28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.

Top