Collisional diffusion in toroidal plasmas with elongation and triangularity
Martin, P.; Castro, E.; Haines, M. G.
2007-05-15
Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.
Linear tearing mode stability equations for a low collisionality toroidal plasma
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2009-01-01
Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake
Report for collisional and chaotic transport of energetic particles in toroidal plasma
Cary, J.R.; Shasharina, S.G.
1995-04-01
The authors have made progress in two general areas of confinement plasma physics. (1) We studies a new loss mechanism of the toroidally trapped particles related to the up-down asymmetry of ripple in a tokamak. (2) We estimated the bootstrap current of the particles making transitions between the toroidally and locally states in non-axisymmetric tori, stellarators and tokamaks.
Collisionality scaling of main-ion toroidal and poloidal rotation in low torque DIII-D plasmas
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Burrell, K. H.; Solomon, W. M.; Budny, R. V.; Candy, J.
2013-06-01
In tokamak plasmas with low levels of toroidal rotation, the radial electric field Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er, Dα emission from neutral beam heated tokamak discharges in DIII-D (Luxon 2002 Nucl. Fusion 42 614) has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking the radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal flow exceeds the neoclassical value in plasmas with collisionality \
Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas
B A Grierson, et al
2013-05-10
In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking the radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.
Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping
NASA Astrophysics Data System (ADS)
Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun
2016-03-01
With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.
Shaing, K. C.
2006-09-15
It is illustrated that plasma transport processes in the direction of the magnetic field are local in the vicinity of the magnetic island in the long mean-free-path regime where the collisionality parameter {nu}{sub *} is larger than 10{sup -2}, and the width of the island is about 3% of the minor radius or smaller. This is because the plasma temperature variation on the magnetic surface that results from the magnetic reconnection is gentle. Both the electron and the ion parallel transport fluxes including parallel heat flow in the banana regime where {nu}{sub *}<1 are calculated using a model Coulomb collision operator that conserves momentum.
Shaing, K. C.
2007-11-15
In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solving the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.
Martin, Pablo; Castro, Enrique; Puerta, Julio
2009-07-26
Non-linear plasma diffusion effects due to hole currents in tokamaks is analyzed in this work. Since the recent discovery of hole currents in tokamaks, this matter has become very important in confinement and instabilities in tokamaks plasmas. The analysis here presented includes non-linear flows as well as hole currents. In the case of low vorticity plasmas our treatment is performed using MHD equations, an it is more suitable for plasmas with very low levels of turbulence, as in the H-mode. The present treatment follows the lines of previous works, and some of the equations and results look like those obtained on these papers. However, the form of the family of the magnetic surfaces is very different to previous treatment, since the hole current modifies those families in a very important way. Elliptic plasmas with triangularity are considered. Pfirsch-Schlueter type currents are obtained for these generalized cases. Diffusion with and without holes are calculated and compared for several values of ellipticity and triangularity. Negative and positive triangularities are considered. In most of the calculations triangularity improves confinement, but the results are different for the positive than for the negative case.
Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-symmetric Stellarators
NASA Astrophysics Data System (ADS)
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2008-11-01
Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, previously calculated radial particle fluxes for the low-collisionality ``ν'' and ``1/ν'' regimes [1] are unified into a single particle flux (or toroidal viscous force). Provided pitch-angle scattering dominates over collisional energy exchange, the energy component of phase space can be decoupled into independent regions (E >Ec. for ν regime, E < Ec for 1/ν regime, with Ec determined by .νi(Ec) =ɛ,E) within which the perturbed distribution function can be calculated similar to [1]. Using a technique first employed in axisymmetric neoclassical theory [2], the smoothed particle flux is constructed by summing the partial contributions from ν and 1/ν banana drift effects respectively. The complete NTV force is expressed in terms of the equilibrium flows and a temperature-gradient-determined ``intrinsic'' flow. [1] K.C. Shaing, Phys. Plasmas, 10, 1443 (2003). [2] K.T. Tsang, and J.D. Callen, Phys. Fluids 19, 667 (1976).
Toroidal flow and radial particle flux in tokamak plasmas
NASA Astrophysics Data System (ADS)
Callen, J. D.; Cole, A. J.; Hegna, C. C.
2009-08-01
Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial plasma transport due to collisional processes and microturbulence-induced anomalous transport are usually considered. In addition, toroidal flow can be affected by nonaxisymmetric magnetic fields; resonant components cause localized electromagnetic toroidal torques near rational surfaces in flowing plasmas and nonresonant components induce "global" toroidal flow damping torque throughout the plasma. Also, poloidal magnetic field transients on the magnetic field diffusion time scale can influence plasma transport. Many of these processes can also produce momentum pinch and intrinsic flow effects. This paper presents a comprehensive and self-consistent description of all these effects within a fluid moment context. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfvén waves (Grad-Shafranov equilibrium and ion radial force balance), sound waves (pressure constant along a field line and incompressible flows within a flux surface), and ion collisions (damping of poloidal flow). Finally, plasma transport across magnetic flux surfaces is induced by the many second order (in the small gyroradius expansion) toroidal torque effects indicated above. Nonambipolar components of the induced particle transport fluxes produce radial plasma currents. Setting the flux surface average of the net radial current induced by all these effects to zero yields the transport-time-scale equation for evolution of the plasma toroidal flow. It includes a combination of global toroidal flow damping and resonant torques induced by nonaxisymmetric magnetic field components, poloidal magnetic field transients, and momentum source effects, as well as the usual collision- and microturbulence-induced transport. On the transport time scale, the plasma toroidal rotation determines the radial electric field for net ambipolar particle transport
Toroidal Flow in Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Callen, J. D.; Cole, A. J.; Hegna, C. C.
2007-11-01
Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial diffusion due to axisymmetric neoclassical, paleoclassical and anomalous transport are usually considered. In addition, the toroidal flow can be affected by field errors. Small, non-axisymmetric field errors arise from coil irregularities, active control coils and collective plasma magnetic distortions (e.g., NTMs, RWMs). Resonant field errors cause localized electromagnetic torques near rational surfaces in the plasma, which can lock the plasma to the wall leading to magnetic islands and reduced confinement or disruptions. Their penetration into the plasma is limited by flow-shielding effects; but they can be amplified by the plasma response at high beta. Non-resonant field errors cause magnetic pumping and radial banana drifts, and lead to toroidal flow damping over the entire plasma. Many of these processes can also produce momentum pinch and intrinsic flow effects. This poster will seek to present a coherent picture of all these effects and suggest ways they could be tested and distinguished experimentally.
Fixed boundary toroidal plasma equilibria with toroidal flows
NASA Astrophysics Data System (ADS)
Hu, Yanqiang; Hu, Yemin; Xiang, Nong
2016-04-01
The fixed boundary toroidal plasma equilibria with toroidal flows are investigated by solving the modified Grad-Shafranov equation numerically in the cylindrical coordinate system. For normal equilibrium configurations with geometry and profiles similar to usual tokamaks with no flow, it is found that the effect of flow is to lead to an outward shift of the magnetic flux surfaces, together with the profiles of pressure, and mass and current densities. The shifts could become significant when the toroidal flow Mach number exceeds 0.5. For non-conventional current profiles, even for the usual tokamak geometry, novel current reversal equilibrium configurations may result, sometimes with changed topology in the poloidal flux function. This change in the topology of plasma equilibrium can be attributed to the large toroidal flow. The computed results may correspond to situations of intense tangential injection during the low toroidal current phase in expected experimental situations.
Edge ambipolar potential in toroidal fusion plasmas
Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.
2014-05-15
A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Cutoff frequency of toroidal plasma waveguide
Zakeri-Khatir, H.; Aghamir, F. M.
2015-02-15
The cutoff frequencies of E and H-modes of empty and plasma filled toroidal waveguides are evaluated. The effects of space curvature and plasma density on cutoff frequencies for both modes are investigated. Using a suitable variable change, a scalar wave equation in the direction of propagation was obtained. The study indicates that the curvature in the direction of wave propagation in toroidal waveguide has an analogous effect as a straight waveguide filled with anisotropic media. The Rayleigh-Schrodinger perturbation method was employed to solve for cutoff frequencies in the first order of approximation. In the limit of small space curvature, the toroidal waveguide cutoff frequencies for both E and H-modes approach those of TM and TE modes of empty cylindrical waveguide with a radius equal to toroidal waveguide minor radius. The analysis shows that the curvature in the direction of propagation in toroidal waveguides leads to the removal of the degeneracy between E and H-modes.
Collisional current drive in two interpenetrating plasma jets
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.
2011-10-01
The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ``Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.
Collisional current drive in two interpenetrating plasma jets
Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.
2011-10-15
The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.
Collisional damping rates for plasma waves
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Fe XVII Emission from Hot, Collisional Plasmas
Beiersdorfer, P; Bitter, M; von Goeler, S; Hill, K W
2004-12-03
The ratios of the Fe XVII 3s {yields} 2p transitions to that of the dominant 3d {yields} 2p transition measured in high-temperature tokamak plasmas are compared to solar and astrophysical observations. Good agreement is found, indicating that the collisional line formation processes active in opacity-free, low-density, high-temperature laboratory plasmas are a good description of those found in astrophysical plasmas.
Quasisymmetric toroidal plasmas with large mean flows
Sugama, H.; Watanabe, T.-H.; Nunami, M.; Nishimura, S.
2011-08-15
Geometric conditions for quasisymmetric toroidal plasmas with large mean flows on the order of the ion thermal speed are investigated. Equilibrium momentum balance equations including the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetric plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be independent of the toroidal angle in the Boozer coordinates, and consequently these systems need to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do not exist and the toroidal flow velocity cannot take any value other than a very limited class of eigenvalues corresponding to very rapid rotation especially for low beta plasmas.
Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces
NASA Astrophysics Data System (ADS)
Belli, E. A.; Candy, J.
2015-05-01
The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010). Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch-Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. Finally, we compute the transport in the presence of ripple-type perturbations in a DIII-D-like H-mode edge plasma.
Computational Methods for Collisional Plasma Physics
Lasinski, B F; Larson, D J; Hewett, D W; Langdon, A B; Still, C H
2004-02-18
Modeling the high density, high temperature plasmas produced by intense laser or particle beams requires accurate simulation of a large range of plasma collisionality. Current simulation algorithms accurately and efficiently model collisionless and collision-dominated plasmas. The important parameter regime between these extremes, semi-collisional plasmas, has been inadequately addressed to date. LLNL efforts to understand and harness high energy-density physics phenomena for stockpile stewardship require accurate simulation of such plasmas. We have made significant progress towards our goal: building a new modeling capability to accurately simulate the full range of collisional plasma physics phenomena. Our project has developed a computer model using a two-pronged approach that involves a new adaptive-resolution, ''smart'' particle-in-cell algorithm: complex particle kinetics (CPK); and developing a robust 3D massively parallel plasma production code Z3 with collisional extensions. Our new CPK algorithms expand the function of point particles in traditional plasma PIC models by including finite size and internal dynamics. This project has enhanced LLNL's competency in computational plasma physics and contributed to LLNL's expertise and forefront position in plasma modeling. The computational models developed will be applied to plasma problems of interest to LLNL's stockpile stewardship mission. Such problems include semi-collisional behavior in hohlraums, high-energy-density physics experiments, and the physics of high altitude nuclear explosions (HANE). Over the course of this LDRD project, the world's largest fully electromagnetic PIC calculation was run, enabled by the adaptation of Z3 to the Advanced Simulation and Computing (ASCI) White system. This milestone calculation simulated an entire laser illumination speckle, brought new realism to laser-plasma interaction simulations, and was directly applicable to laser target physics. For the first time, magnetic
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Toroidal plasma equilibrium with gravity
Yoshikawa, S.
1980-09-01
Toroidal magnetic field configuration in a gravitational field is calculated both from a simple force-balance and from the calculation using magnetic surfaces. The configuration is found which is positionally stable in a star. The vibrational frequency near the equilibrium point is proportional to the hydrostatic frequency of a star multiplied by the ratio (W/sub B//W/sub M/)/sup 1/2/ where W/sub B/ is the magnetic field energy density, and W/sub M/ is the material pressure at the equilibrium point. It is proposed that this frequency may account for the observed solar spot cycles.
Long-wavelength microinstabilities in toroidal plasmas
Tang, W.W.; Rewoldt, G.
1993-01-01
Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,{theta}) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.
Long-wavelength microinstabilities in toroidal plasmas
Tang, W.W.; Rewoldt, G.
1993-01-01
Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,[theta]) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.
Heat flux viscosity in collisional magnetized plasmas
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-15
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Heat flux viscosity in collisional magnetized plasmas
NASA Astrophysics Data System (ADS)
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-01
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Fine velocity structures collisional dissipation in plasmas
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures
Pusztai, I.; Fueloep, T.; Candy, J.; Hastie, R. J.
2009-07-15
The stability of ion temperature gradient (ITG) modes and the quasilinear fluxes driven by them are analyzed in weakly collisional tokamak plasmas using a semianalytical model based on an approximate solution of the gyrokinetic equation, where collisions are modeled by a Lorentz operator. Although the frequencies and growth rates of ITG modes far from threshold are only very weakly sensitive to the collisionality, the a/L{sub Ti} threshold for stability is affected significantly by electron-ion collisions. The decrease in collisionality destabilizes the ITG mode driving an inward particle flux, which leads to the steepening of the density profile. Closed analytical expressions for the electron and ion density and temperature responses have been derived without expansion in the smallness of the magnetic drift frequencies. The results have been compared with gyrokinetic simulations with GYRO and illustrated by showing the scalings of the eigenvalues and quasilinear fluxes with collisionality, temperature scale length, and magnetic shear.
Generalized parallel heat transport equations in collisional to weakly collisional plasmas
NASA Astrophysics Data System (ADS)
Zawaideh, Emad; Kim, N. S.; Najmabadi, Farrokh
1988-11-01
A new set of two-fluid heat-transport equations for heat conduction in collisional to weakly collisional plasmas was derived on the basis of gyrokinetic equations in flux coordinates. In these equations, no restrictions on the anisotropy of the ion distribution function or the collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation of Spitzer and Haerm (1953), while in the weakly collisional limit, they describe a saturated heat flux. Numerical examples comparing these equations with conventional heat transport equations are presented.
Magnetohydrodynamic stability of structurally stable toroidal plasmas
NASA Astrophysics Data System (ADS)
Rock, F. C.
1981-11-01
The MHD stability of sharp boundary axisymmetric toroidal plasmas with the poloidal field and 'kidney bean' shape implied by the requirements of structural stability (immunity of the magnetic field topology to small perturbations) is investigated. High values of marginal beta (up to 36 percent for R/a = 2) are found. Results are presented for the four magnetic field topologies on the sharp boundary surface with this shape and as a function of elongation.
Neoclassical transport in enhanced confinement toroidal plasmas
Lin, Z.; Tang, W.M.; Lee, W.W.
1996-11-01
It has recently been reported that ion thermal transport levels in enhanced confinement tokamak plasmas have been observed to fall below the irreducible minimum level predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system.
Plasma-wall transition in weakly collisional plasmas
Manfredi, G.; Devaux, S.
2008-10-15
This paper reviews some theoretical and computational aspects of plasma-wall interactions, in particular the formation of sheaths. Some fundamental results are derived analytically using a simple fluid model, and are subsequently tested with kinetic simulations. The various regions composing the plasma-wall transition (Debye sheath, collisional and magnetic presheaths) are discussed in details.
Trapped ion mode in toroidally rotating plasmas
Artun, M.; Tang, W.M.; Rewoldt, G.
1995-04-01
The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented.
New regime of low ion collisionality in the neoclassical equilibrium of tokamak plasmas
Ramos, J. J.
2015-07-15
The neoclassical description of an axisymmetric toroidal plasma equilibrium is formulated for an unconventionally low ordering of the collisionality that suits realistic thermonuclear fusion conditions. This requires a drift-kinetic analysis to the second order of the ion Larmor radius, which yields a new contribution to the leading solution for the non-Maxwellian part of the ion distribution function if the equilibrium geometry is not up-down symmetric. An explicit geometrical factor weighs this second Larmor-radius order, low-collisionality effect that modifies the neoclassical ion parallel flow, and the ion contribution to the bootstrap current.
Toroidal plasma enhanced CVD of diamond films
Zvanya, John Cullen, Christopher Morris, Thomas Krchnavek, Robert R.; Holber, William Basnett, Andrew Basnett, Robert; Hettinger, Jeffrey
2014-09-01
An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp{sup 3} peak has a narrow spectral width (FWHM 12 ± 0.5 cm{sup −1}) and that negligible amounts of the sp{sup 2} band are present, indicating good-quality diamond films.
Plasma current resonance in asymmetric toroidal systems
Hazeltine, R. D.; Catto, Peter J.
2015-09-15
The well-known singularity in the magnetic differential equation for plasma current in an asymmetric toroidal confinement system is resolved by including in the pressure tensor corrections stemming from finite Larmor radius. The result provides an estimate of the amplitude of spikes in the parallel current that occur on rational magnetic surfaces. Resolution of the singularity is shown to depend on both the ambipolarity condition—the requirement of zero surface-averaged radial current—and the form of the magnetic differential equation near the rational surface.
Weak turbulence theory for collisional plasmas
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.
2016-03-01
Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Sabbagh, S. A.
2016-07-01
Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
NASA Astrophysics Data System (ADS)
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent
Toroidal band limiter for a plasma containment device
Kelley, George G.
1978-01-01
This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.
Collisional Ionization Equilibrium for Optically Thin Plasmas
NASA Technical Reports Server (NTRS)
Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.
2006-01-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.
High beta plasma operation in a toroidal plasma producing device
Clarke, John F.
1978-01-01
A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Lee, H.; Seol, J.; Aydemir, A. Y.
2015-08-01
Theory for neoclassical toroidal plasma viscosity in the low collisionality regime is extended to the vicinity of the magnetic axis in tokamaks with broken symmetry. The toroidal viscosity is induced by particles drifting off the perturbed magnetic surface under the influence of the symmetry breaking magnetic field. In the region away from the magnetic axis, the drift orbit dynamics is governed by the bounce averaged drift kinetic equation in the low collisionality regimes. In the vicinity of the magnetic axis, it is the drift kinetic equation, averaged over the trapped particle orbits, i.e., potato orbits, that governs the drift dynamics. The orbit averaged drift kinetic equation is derived when collision frequency is low enough for trapped particles to complete their potato trajectories. The resultant equation is solved in the 1 /ν regime to obtain transport fluxes and, thus, toroidal plasma viscosity through flux-force relation. Here, ν is the collision frequency. The viscosity does not vanish on the magnetic axis, and has the same scalings as that in the region away from magnetic axis, except that the fraction of bananas is replaced by the fraction of potatoes. It also has a weak radial dependence. Modeling of plasma flow velocity V for the case where the magnetic surfaces are broken is also discussed.
Modelling of collective Thomson scattering from collisional plasmas
NASA Astrophysics Data System (ADS)
Tierney, T. E., IV; Montgomery, D. S.; Benage, J. F., Jr.; Wysocki, F. J.; Murillo, M. S.
2003-06-01
Anomalous broadening of ion-acoustic modes has been observed using collective Thomson scattering from both the electron plasma and ion-acoustic waves in ion-collisional plasmas. Ion-acoustic waves may be broadened by Landau damping, plasma inhomogeneities and instrumental effects. A model was constructed to calculate the contribution of these effects based upon spatially and spectrally resolved measurements of collective Thomson scattering. Collisional broadening effects were then calculated using a modification of the Mermin formalism. The computational model was used to interpret experimental measurements of collisional damping rates in dense, moderately coupled, plasmas. Collisional broadening is weakly dependent of ion-acoustic frequency in nearly isothermal plasmas; and therefore collective Thomson scattering can be used as a measurement technique for collisional damping rates provided all additional broadening mechanisms are taken into account. This paper further demonstrates that modelling of collective Thomson scattering from ion-collisional ion-acoustic modes must account for inhomogeneities, Landau damping, and collisions in order to evaluate plasma parameters, such as temperature and average ionization.
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
NASA Astrophysics Data System (ADS)
Hegna, C. C.
2016-05-01
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi
2013-09-15
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.
Eulerian simulations of collisional effects on electrostatic plasma waves
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi
2013-09-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, James A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, J.A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.
Finite toroidal flow generated by unstable tearing mode in a toroidal plasma
Hao, G. Z. Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M.; Liu, Y. Q.; Sun, Y.; Cui, S. Y.
2014-12-15
The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.
Collisional Relaxation of Fine Velocity Structures in Plasmas.
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
The existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can locally increase due to velocity space deformations of the particle velocity distribution function. These results support the idea that high-resolution measurements of the particle velocity distribution function are crucial for an accurate description of weakly collisional systems, such as the solar wind, in order to answer relevant scientific questions, related, for example, to particle heating and energization. PMID:27104713
Collisional Relaxation of Fine Velocity Structures in Plasmas
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
The existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can locally increase due to velocity space deformations of the particle velocity distribution function. These results support the idea that high-resolution measurements of the particle velocity distribution function are crucial for an accurate description of weakly collisional systems, such as the solar wind, in order to answer relevant scientific questions, related, for example, to particle heating and energization.
Lankin, A. V.; Norman, G. E.
2010-12-15
A model capable of describing the kinetics of collisional recombination in nonideal plasmas by the methods of molecular dynamics is developed. The dependence of the collisional recombination rate on the coupling parameter is found to differ substantially from the extrapolation of the three-body recombination rate in nonideal plasmas. A sharp decrease in the recombination rate in strongly nonideal plasmas is revealed. As the coupling parameter decreases, collisional recombination transforms into three-body recombination.
Profiling compact toroid plasma density on CTIX with laser deflection
NASA Astrophysics Data System (ADS)
Brockington, Samuel Joseph Erwin
A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.
Generalized parallel heat transport equations in collisional to weakly collisional plasmas
Zawaideh, E.; Kim, N.S.; Najmabadi, F.
1988-11-01
A new set of two-fluid heat transport equations that is valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates, a set of moment equations describing plasma energy transport along the field lines of a space- and time-dependent magnetic field is derived. No restrictions on the anisotropy of the ion distribution function or collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation (e.g., Spitzer and Haerm or Braginskii), while in the weakly collisional limit, they describe a saturated heat flux (flux limited). Numerical examples comparing these equations with conventional heat transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the temperature gradient L/sub T/ approaches zero, there is no significant difference between the solutions of the new and conventional heat transport equations. As lambda/L/sub T/..-->..1, the conventional heat conduction equation contains a significantly larger error than (lambda/L/sub T/)/sup 2/. The error is found to be O(lambda/L)/sup 2/, where L is the smallest of the scale lengths of the gradient in the magnetic field, or the macroscopic plasma parameters (e.g., velocity scale length, temperature scale length, and density scale length). The accuracy of the flux-limited model depends significantly on the value of the flux limit parameter which, in general, is not known. The new set of equations shows that the flux-limited parameter is a function of the magnetic field and plasma parameter profiles.
Multiple toroidal Alfven eigenmodes with a single toroidal mode number in KSTAR plasmas
NASA Astrophysics Data System (ADS)
Rizvi, H.; Ryu, C. M.; Lin, Z.
2016-11-01
Simultaneous excitation of multiple discrete toroidal Alfven eigenmodes (TAEs) for a single toroidal mode number have been observed in KSTAR plasmas. Excitation and characteristics of these modes are studied by using a global gyrokinetic particle-in-cell simulation code. It is shown that compared to a single core-localized mode, excitation of two modes is difficult. The frequency difference between the double TAEs studied from simulation seems to agree well with the experimental value. Details of studies on the frequency, growth rate, mode structures, etc, using the GTC simulation are presented.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.
1985-05-31
This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.
Measuring Femtosecond Collisional Ionization Rates in Solid-Density Plasmas
NASA Astrophysics Data System (ADS)
Vinko, Sam; Ciricosta, Orlando; Hollebon, Patrick; Preston, Thomas; Wark, Justin; Burian, Tomas; Chalupsky, Jaromir; Vozda, Vojtech; Dakovski, Georgi; Minitti, Michael; Zastrau, Ulf
2015-11-01
The rate at which atoms and ions within a plasma are further ionized by collisions with free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collisional ionization rates are well known experimentally in a few dilute systems, similar measurements for non-ideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we illustrate a spectroscopic method capable of measuring rates of collisional ionization dynamics in solid-density plasmas by clocking them to Auger recombination processes. We have recently employed this technique on the LCLS X-ray free-electron laser at SLAC and will present the first experimental results for optically-thin, solid-density magnesium plasmas at peak temperatures exceeding 200 eV.
Impact of plasma poloidal rotation on resistive wall mode instability in toroidally rotating plasmas
Aiba, N.; Shiraishi, J.; Tokuda, S.
2011-02-15
Stability of resistive wall mode (RWM) is investigated in a cylindrical plasma and an axisymmetric toroidal plasma by taking into account not only toroidal rotation but also poloidal rotation. Since the Doppler shifted frequency is responsible for the RWM stability, the modification of this Doppler shifted frequency by poloidal rotation affects the rotation effect on RWM. When a poloidal rotation frequency is not so large, the effect of poloidal rotation on the RWM stability can be approximately treated with the modified toroidal rotation frequency. In a toroidal plasma, this modified frequency is determined by subtracting a toroidal component of the rotation parallel to the magnetic field from the toroidal rotation frequency. The poloidal rotation that counteracts the effect of the Doppler shift strongly reduces the stabilizing effect of toroidal rotation, but by changing the rotational direction, the poloidal rotation enhances this stabilizing effect. This trend is confirmed in not only a cylindrical plasma but also a toroidal plasma. This result indicates that poloidal rotation produces the dependence of the critical toroidal rotation frequency for stabilizing RWM on the rotational direction of toroidal rotation in the same magnetic configuration.
Stellarator approach to toroidal plasma confinement
Johnson, J.L.
1981-12-01
An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Antenna excitation of drift wave in a toroidal plasma
Diallo, A.; Ricci, P.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.; Skiff, F.
2007-10-15
In a magnetized toroidal plasma, an antenna tunable in vertical wave number is used to excite density perturbations. Coherent detection is performed by means of Langmuir probes to directly determine both the wave vector and the plasma response induced by the antenna. Comparison between the theoretical density response predicted by the generalized Hasegawa-Wakatani model, and the experimentally determined density response enables us the identification of one peak of the plasma response as a drift wave.
Control of impurities in toroidal plasma devices
Ohkawa, Tihiro
1980-01-01
A method and apparatus for plasma impurity control in closed flux plasma systems such as Tokamak reactors is disclosed. Local axisymmetrical injection of hydrogen gas is employed to reverse the normally inward flow of impurities into the plasma.
Kinetic model for the collisionless sheath of a collisional plasma
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; Guo, Zehua
2016-08-01
Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. These predictions are contrasted here with direct kinetic simulations, showing good agreement.
Collisional Radiative Models for non-Maxwellian plasmas
NASA Astrophysics Data System (ADS)
Hartgers, Bart; van Dijk, Jan; van der Mullen, Joost
1999-10-01
Collisional Radiative models are a useful tool for studying plasmas. In their simplest form, they are used to calculate an atomic state distribution function (ASDF) from given electron and neutral densities and an electron temperature. Additionally, global ionization and recombination coefficients can be calculated as a function of electron density and temperature. In turn, these coefficients are used as input for the general plasma model
Anomalous toroidal field penetration in Tormac V
Feinberg, B.; Vaucher, B.G.; Shaw, R.S.; Vella, M.C.
1981-07-01
Magnetic field penetration into a cool, collisional, magnetized plasma has been investigated in Tormac V. Magnetic probe and laser interferometer studies reveal anomalous penetration of the applied toroidal field into a plasma with an initial parallel bias toroidal field. The applied poloidal field, however, formed a well-defined magnetic front which was effective at sweeping up particles. Strong shear in the vacuum magnetic field does not inhibit the apparent decoupling of the applied toroidal field from the applied poloidal field.
Anomalous toroidal field penetration in Tormac V
Feinberg, B.; Vaucher, B. G.; Shaw, R. S.; Vella, M. C.
1981-07-01
We investigate magnetic field penetration into a cool, collisional, magnetized plasma in Tormac V. Magnetic probe and laser interferometer studies reveal anomalous penetration of the applied toroidal field into a plasma with an initial parallel bias toroidal field. The applied poloidal field, however, formed a well-defined magnetic front which was effective at sweeping up particles. Lastly, strong shear in the vacuum magnetic field does not inhibit the apparent decoupling of the applied toroidal field from the applied poloidal field.
Modeling combined collisional/collisionless plasma interpenetration
Thomas, V.A.
1997-04-01
This paper describes one technique by which multifluid modeling capability can be achieved within the context of a Lagrangean single-fluid model. This technique is applied to the interpenetration of laser-produced, substantially collisionless plasmas. A single-fluid model by itself cannot simulate the interpenetration of a collisionless plasma correctly, but must be augmented with some other tool. One tool that can calculate collisionless plasma interpenetration correctly is ISIS, a particle code for plasma simulations which includes appropriate collision models. However, ISIS does not have the necessary physics to do the laser deposition, the atomic physics, the radiation transport, and does not possess a realistic electron temperature model. With appropriate integration of the single-fluid code and ISIS, a new capability is achieved which allows simulation of the colliding plasma problem, a problem that neither code can properly simulate individually.
Finite beta plasma equilibrium in toroidally linked mirrors
Ilgisonis, V.I.; Berk, H.L.; Pastukhov, V.P.
1993-07-01
The problem of finite pressure plasma equilibrium in a system with closed magnetic field lines consisting of quadrupole mirrors linked by simple toroidal cells with elliptical cross-sections is analyzed. An appropriate analytical procedure is developed, that uses conformal mapping techniques, which enables one to obtain the magnetic field structure for the free boundary equilibrium problem. This method has general applicability for finding analytic solutions of the two-dimensional Dirichlet problem outside of an arbitrary closed contour. Using this method, the deformations of the plasma equilibrium configuration due to finite plasma pressure in the toroidal cell are calculated analytically to the second order in {lambda}-expansion, where {lambda} {approximately} {beta}/{epsilon}E, {beta} is the ratio of plasma pressure to the magnetic field pressure, {epsilon} is the inverse aspect ratio and E is the ellipticity of the plasma cross-section. The outer displacement of the plasma column is shown to depend nonlinearly on the increase of plasma pressure, and does not prevent the achievement of substantial {beta} {approximately} 10% in the toroidal cells.
Reevaluation of the Braginskii viscous force for toroidal plasma
NASA Astrophysics Data System (ADS)
Johnson, Robert W.
2011-12-01
The model by Braginskii [1] (Braginskii, S. I. 1965 Transport processes in plasma. In: Review of Plasma Physics, Vol. 1 (ed. M.A. Leontovich). New York, NY: Consultants Bureau, pp. 205-311) for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation, which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force, which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium, which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.
The limits of the Bohm criterion in collisional plasmas
Valentini, H.-B.; Kaiser, D.
2015-05-15
The sheath formation within a low-pressure collisional plasma is analysed by means of a two-fluid model. The Bohm criterion takes into account the effects of the electric field and the inertia of the ions. Numerical results yield that these effects contribute to the space charge formation, only, if the collisionality is lower than a relatively small threshold. It follows that a lower and an upper limit of the drift speed of the ions exist where the effects treated by Bohm can form a sheath. This interval becomes narrower as the collisionality increases and vanishes at the mentioned threshold. Above the threshold, the sheath is mainly created by collisions and the ionisation. Under these conditions, the sheath formation cannot be described by means of Bohm like criteria. In a few references, a so-called upper limit of the Bohm criterion is stated for collisional plasmas where the momentum equation of the ions is taken into account, only. However, the present paper shows that this limit results in an unrealistically steep increase of the space charge density towards the wall, and, therefore, it yields no useful limit of the Bohm velocity.
Collisional Effects in Complex (Dusty) Plasmas
Khrapak, S. A.
2008-09-07
This is a short overview of recent results demonstrating the importance of ion-neutral collisions for different processes naturally occurring in complex (dusty) plasmas. Most important developments are briefly discussed and relevant references are provided.
Collisional and Radiative Processes in Optically Thin Plasmas
NASA Astrophysics Data System (ADS)
Bradshaw, Stephen J.; Raymond, John
2013-10-01
Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.
Collisional and Radiative Processes in Optically Thin Plasmas
NASA Astrophysics Data System (ADS)
Bradshaw, Stephen J.; Raymond, John
Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.
Electrostatic modes in collisional complex plasmas under microgravity conditions.
Yaroshenko, V V; Annaratone, B M; Khrapak, S A; Thomas, H M; Morfill, G E; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F; Ivanov, A I; Turin, M V
2004-06-01
A linear dispersion relation in a highly collisional complex plasma, including ion drift, was derived in the light of recent PKE-Nefedov wave experiment performed under microgravity conditions onboard the International Space Station. Two modifications of dust density waves with wave frequencies larger than the dust-neutral collision frequency were obtained. The relevance to the space observations was analyzed and a comparison of theory and observations was made for two different complex plasma domains formed by small and large microparticles. Good qualitative agreement is found between the measurements and the theoretical dispersion relations. This allows a determination of the basic complex plasma parameters.
Topology of tokamak plasma equilibria with toroidal current reversal
Rodrigues, Paulo; Bizarro, Joao P. S.
2012-01-15
Some general principles about scalar functions with critical points are used to rigorously ascertain that magnetic equilibria with both toroidal current reversal and nested magnetic surfaces are atypical solutions and highly unstable to arbitrary perturbations of boundary conditions and other parameters. The cause for such is shown to lie in the condition of nested magnetic surfaces and not in the possibility of current reversal and consequent vanishing of the poloidal field inside the plasma. Rather than supporting the claim that instability against experimentally driven perturbations forbids configurations with toroidal current reversal, it is argued that these can be attained if an axisymmetric island system is allowed for in order to break the condition of nested magnetic surfaces. A number of results previously reported in the literature are discussed and reinterpreted under the proposed framework, providing some physical insight on the nature of equilibria with toroidal current reversal.
Toroidal Rotation in RF Heated JET Plasmas
Eriksson, L.-G.; Nave, F.; Zastrow, K.-D.
2007-09-28
Experiments have been carried out on JET aimed at studying rotation in RF heated plasmas with low external momentum input. Both plasmas with Ion Cyclotron Resonance Frequency (ICRF) heating and Lower Hybrid Current Drive (LHCD) have been investigated. The rotation profiles are measured by Charge Exchange recombination spectroscopy, using short diagnostic Neutral Beam Injection (NBI) pulses. Moreover, the temporal evolution of the central rotation could in some cases be deduced from MHD activity. While most of the measurements were focussed on ICRF heating, the profiles measured in plasmas with LHCD are interesting since they are the first reported from JET in such plasmas. In particular, they allowed for studies of rotation in RF heated plasmas with q>1. The experimental results are presented together with an analysis of the torque from ICRF heated fast ions.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Current relaxation time scales in toroidal plasmas
Mikkelsen, D.R.
1987-02-01
An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given.
NASA Astrophysics Data System (ADS)
Nishimura, S.; Sugama, H.; Maaßberg, H.; Beidler, C. D.; Murakami, S.; Nakamura, Y.; Hirooka, S.
2010-08-01
The dependence of neoclassical parallel flow calculations on the maximum order of Laguerre polynomial expansions is investigated in a magnetic configuration of the Large Helical Device [S. Murakami, A. Wakasa, H. Maaßberg, et al., Nucl. Fusion 42, L19 (2002)] using the monoenergetic coefficient database obtained by an international collaboration. On the basis of a previous generalization (the so-called Sugama-Nishimura method [H. Sugama and S. Nishimura, Phys. Plasmas 15, 042502 (2008)]) to an arbitrary order of the expansion, the 13 M, 21 M, and 29 M approximations are compared. In a previous comparison, only the ion distribution function in the banana collisionality regime of single-ion-species plasmas in tokamak configurations was investigated. In this paper, the dependence of the problems including electrons and impurities in the general collisionality regime in an actual nonsymmetric toroidal configuration is reported. In particular, qualities of approximations for the electron distribution function are investigated in detail.
Nishimura, S.; Sugama, H.; Maassberg, H.; Beidler, C. D.; Murakami, S.; Nakamura, Y.; Hirooka, S.
2010-08-15
The dependence of neoclassical parallel flow calculations on the maximum order of Laguerre polynomial expansions is investigated in a magnetic configuration of the Large Helical Device [S. Murakami, A. Wakasa, H. Maassberg, et al., Nucl. Fusion 42, L19 (2002)] using the monoenergetic coefficient database obtained by an international collaboration. On the basis of a previous generalization (the so-called Sugama-Nishimura method [H. Sugama and S. Nishimura, Phys. Plasmas 15, 042502 (2008)]) to an arbitrary order of the expansion, the 13 M, 21 M, and 29 M approximations are compared. In a previous comparison, only the ion distribution function in the banana collisionality regime of single-ion-species plasmas in tokamak configurations was investigated. In this paper, the dependence of the problems including electrons and impurities in the general collisionality regime in an actual nonsymmetric toroidal configuration is reported. In particular, qualities of approximations for the electron distribution function are investigated in detail.
Signal Propagation in Collisional Plasma with Negative Ions
I. Kaganovich; S.V. Berezhnoi; C.B. Shin
2000-12-18
The transport of charged species in collisional currentless plasmas is traditionally thought of as a diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, containing electrons and positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, rather described by nonlinear convection. As a particular example, plasmas with the presence of negative ions have been studied. The velocity of a small perturbation of negative ions was found analytically and validated by numerical simulation. As a result of nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized plasma. The structure of the fronts has been found analytically and numerically.
Neoclassical electron and ion transport in toroidally rotating plasmas
Sugama, H.; Horton, W.
1997-06-01
Neoclassical transport processes of electrons and ions are investigated in detail for toroidally rotating axisymmetric plasmas with large flow velocities on the order of the ion thermal speed. The Onsager relations for the flow-dependent neoclassical transport coefficients are derived from the symmetry properties of the drift kinetic equation with the self-adjoint collision operator. The complete neoclassical transport matrix with the Onsager symmetry is obtained for the rotating plasma consisting of electrons and single-species ions in the Pfirsch{endash}Schl{umlt u}ter and banana regimes. It is found that the inward banana fluxes of particles and toroidal momentum are driven by the parallel electric field, which are phenomena coupled through the Onsager symmetric off-diagonal coefficients to the parallel currents caused by the radial thermodynamic forces conjugate to the inward fluxes, respectively. {copyright} {ital 1997 American Institute of Physics.}
Effects of toroidal field ripple on suprathermal ions in tokamak plasmas
Goldston, R.J.; Towner, H.H.
1980-02-01
Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, beam ions become trapped in local magnetic wells near their banana tips due to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, near-perpendicular untrapped ions are captured (again near a banana tip) due to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced variable lingering period near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity ..cap alpha..* identical with epsilon/sin theta/Nqdelta is of order unity or smaller.
Kluy, N.; Angioni, C.; Camenen, Y.; Peeters, A. G.
2009-12-15
The toroidal momentum transport in the presence of trapped electron mode microinstabilities in tokamak plasmas is studied by means of quasilinear gyrokinetic calculations. In particular, the role of the Coriolis drift in producing an inward convection of toroidal momentum is investigated. The Coriolis drift term has been implemented in the gyrokinetic code GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] specifically for the completion of this work. A benchmark between the GS2 implementation of the Coriolis drift and the implementations included in two other gyrokinetic codes is presented. The numerical calculations show that in the presence of trapped electron modes, despite of a weaker symmetry breaking of the eigenfunctions with respect to the case of ion temperature gradient modes, a pinch of toroidal momentum is produced in most conditions. The toroidal momentum viscosity is also computed, and found to be small as compared with the electron heat conductivity, but significantly larger than the ion heat conductivity. In addition, interesting differences are found in the dependence of the toroidal momentum pinch as a function of collisionality between trapped electron modes and ion temperature gradient modes. The results identify also parameter domains in which the pinch is predicted to be small, which are also of interest for comparisons with the experiments.
Toroidal dust motion in magnetized plasmas
Reichstein, Torben; Pilch, Iris; Piel, Alexander
2010-09-15
In a magnetized anodic plasma, dust particles can be confined in a torus-shaped cloud with a distinct dust-free region (void) in its center. The formation of these clouds and their dynamical behavior are experimentally studied with a new observation geometry. The particles rotate about the major axis of the torus. A refined model for the description of the particle dynamics is presented that accounts for inertia and many-body effects.
The acoustic instabilities in magnetized collisional dusty plasmas
Pandey, B. P.; Vladimirov, S. V.; Dwivedi, C. B.
2014-09-15
The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.
Collisional-radiative modelling of an Ar helicon plasma discharge
NASA Astrophysics Data System (ADS)
Loch, Stuart
2005-10-01
We report on recent modelling results of emission observed from a helicon plasma, comparing theoretical and observed line intensities and line ratios of Ar, Ar^+ and Ar^2+. Our Helicon plasma is from the ASTRAL device at Auburn University, with spectral measurements from 275 nm through to 1015 nm. We concentrate on the Ar^+ ion stage, and present the results of a collisional-radiative model using various qualities of atomic data. In particular, we compare the modelling results using Plane-Wave Born, Distorted-Wave and R-matrix electron impact excitation data with those observed from the plasma. As part of the modelling work, we investigate the potential use of various lines as plasma diagnostic tools.
On steady poloidal and toroidal flows in tokamak plasmas
McClements, K. G.
2010-08-15
The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B{sub {theta}/}B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B{sub {theta}/}B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.
Theory and application of maximum magnetic energy in toroidal plasmas
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}`s.
Theory and application of maximum magnetic energy in toroidal plasmas
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}'s.
Radial Localization of Toroidal Alfven Eigenmode in Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhixuan; Lin, Zhihong; Heidbrink, William; Tobias, Benjamin; van Zeeland, Michael
2013-10-01
Toroidal Alfven eigenmode (TAE) with radially extended structures can be driven unstable by pressure gradients of energetic particles (EP). These unstable Alfveneigenmodes (AE) have been routinely observed in fusion experiments to induce a large EP transport, whichcould degrade overall plasma confinement and damagefusion devices.In the well-accepted paradigm, the growth rate of the AEs can be calculated from a perturbative EP contribution to a fixedmode structure and real frequency given by magnetohydrodynamic (MHD) properties of thermal plasmas. However, linear and nonlinear kinetic effects of both EP and thermal plasmasare important and should be treated on the same footing. The gyrokinetic simulation has thus emerged as anecessary and powerful tool for studying the linear andnonlinear dynamics of AEs. In the current work, the gyrokinetic toroidal code(GTC) linear simulation of the tokamakexperiment finds a radial localization of the TAE dueto the non-perturbative EP contribution. The EP-drivenTAE has a radial mode width much smaller than thatpredicted by the MHD theory. The TAE radial positionpeaks at and moves with the location of the strongest EPpressure gradients. Experimental data confirms that the eigenfunction drifts quicklyoutward radially. The non-perturbativeEP contribution also breaks the radial symmetry of the mode structure and induces a TAE frequency dependence on the toroidal mode number, in excellent agreement with the experimental measurements.
Linear Instability Analysis for Toroidal Plasma Flow Equilibria
NASA Astrophysics Data System (ADS)
Varadarajan, V.; Miley, G. H.
1996-02-01
The non-self-adjoint Frieman-Rotenberg equation for the linear ideal magnetohydrodynamic modes in flow equilibria is numerically solved in shaped finite-aspect ratio axisymmetric tokamak geometry. A quadratic form is derived from this equation, and, in particular, the self-adjoint force operator with finite toroidal rotation is cast into a manifestly self-adjoint form. The toroidal rotational velocities in the subsonic regime are considered. The quadratic form is discretized by a mixed finite-element procedure in the radial direction and by Fourier modes in the periodic directions. The mode frequency of the unstable mode is located by root searching, and the final root refinement is obtained by a rapid inverse iteration procedure for complex roots. The real part of then= 1 internal kink mode scales linearly with the plasma rotation, and the imaginary part of the unstable mode is at least an order of magnitude higher in the presence of high plasma rotation velocities. The kink mode is also found to be unstable at high rotation velocities, even when the axis safety factor is above unity. The instability characterized by these features is termed here as the "centrifugal" instability. The centrifugal kink instability would have finite real parts, as shown by the plasma rotation observed in plasma devices such as tokamaks. To explain the features of this mode, the plasma rotation should be taken into account. Therein lies the usefulness of the computational analysis presented here.
MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas
NASA Astrophysics Data System (ADS)
Aiba, N.; Tokuda, S.; Furukawa, M.; Snyder, P. B.; Chu, M. S.
2009-08-01
A new linear MHD stability code MINERVA is developed for investigating a toroidal rotation effect on the stability of ideal MHD modes in tokamak plasmas. This code solves the Frieman-Rotenberg equation as not only the generalized eigenvalue problem but also the initial value problem. The parallel computing method used in this code realizes the stability analysis of both long and short wavelength MHD modes in short time. The results of some benchmarking tests show the validity of this MINERVA code. The numerical study with MINERVA about the toroidal rotation effect on the edge MHD stability shows that the rotation shear destabilizes the intermediate wavelength modes but stabilizes the short wavelength edge localized MHD modes, though the rotation frequency destabilizes both the long and the short wavelength MHD modes.
Magnetosonic shock wave in collisional pair-ion plasma
NASA Astrophysics Data System (ADS)
Adak, Ashish; Sikdar, Arnab; Ghosh, Samiran; Khan, Manoranjan
2016-06-01
Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Peeters, A. G.; Angioni, C.; Strintzi, D.
2007-06-29
In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.
Peeters, A G; Angioni, C; Strintzi, D
2007-06-29
In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.
Turbulent particle transport as a function of toroidal rotation in DIII-D H-mode plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Mordijck, S.; Zeng, L.; Schmitz, L.; Rhodes, T. L.; Doyle, E. J.; Groebner, R.; Meneghini, O.; Staebler, G. M.; Smith, S. P.
2016-04-01
In this paper we show how changes in toroidal rotation, by controlling the injected torque, affect particle transport and confinement. The toroidal rotation is altered using the co- and counter neutral beam injection (NBI) in low collisionality H-mode plasmas on DIII-D (Luxon 2002 Nucl. Fusion 42 614) with dominant electron cyclotron heating (ECH). We find that there is no correlation between the toroidal rotation shear and the inverse density gradient, which is observed on AUG when {{T}\\text{e}}/{{T}\\text{i}} is varied using ECH (Angioni et al 2011 Phys. Rev. Lett. 107 215003). In DIII-D, we find that in a discharge with balanced torque injection, the E× B shear is smaller than the linear gyrokinetic growth rate for small {{k}θ}{ρs} for ρ =0.6 -0.85. This results in lower particle confinement. In the co- and counter- injected discharges the E× B shear is larger or close to the linear growth rate at the plasma edge and both configurations have higher particle confinement. In order to measure particle transport, we use a small periodic perturbative gas puff. This gas puff perturbs the density profiles and allows us to extract the perturbed diffusion and inward pinch coefficients. We observe a strong increase in the inward particle pinch in the counter-torque injected plasma. Finally, the calculated quasi-linear particle flux, nor the linear growth rates using TGLF (Staebler et al 2005 Phys. Plasmas 12 102508) agree with experimental observations.
Nonlinear transport processes in tokamak plasmas. I. The collisional regimes
Sonnino, Giorgio; Peeters, Philippe
2008-06-15
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Transport scaling in interchange-driven toroidal plasmas
Ricci, Paolo; Rogers, B. N.
2009-06-15
Two-dimensional fluid simulations of a simple magnetized torus are presented, in which the vertical and toroidal components of the magnetic field create helicoidal field lines that terminate on the upper and lower walls of the plasma chamber. The simulations self-consistently evolve the full radial profiles of the electric potential, density, and electron temperature in the presence of three competing effects: the cross-field turbulent transport driven by the interchange instability, parallel losses to the upper and lower walls, and the input of particles and heat by external plasma sources. Considering parameter regimes in which equilibrium ExB shear flow effects are weak, we study the dependence of the plasma profiles--in particular the pressure profile scale length--on the parameters of the system. Analytical scalings are obtained that show remarkable agreement with the simulations.
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
NASA Astrophysics Data System (ADS)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot
2015-09-01
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
Model for a transformer-coupled toroidal plasma source
NASA Astrophysics Data System (ADS)
Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken
2012-01-01
A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.
On the toroidal plasma rotations induced by lower hybrid waves
NASA Astrophysics Data System (ADS)
Guan, Xiaoyin; Qin, Hong; Liu, Jian; Fisch, Nathaniel J.
2013-02-01
A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves.
On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves
Guan, Xiaoyin; Qin, Hong; Liu, Jian; Fisch, Nathaniel J.
2012-11-14
A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________
Parameter space region in the collisional magnetized electronegative plasma
Yasserian, Kiomars; Aslaninejad, Morteza
2010-02-15
The influence of the elastic collisions on the structure of a magnetized electronegative discharge is investigated. For a constant magnetic field, the profiles of the velocities of positive ions, the density of species, and electric potential are obtained. Furthermore, the positive ion flux is obtained as a function of magnetic field strength for different values of the collision frequency. The results show that in the absence of collision in a constant magnetic field, the discharge structure is uniform while by taking the collision into account, the structure becomes multilayer stratified. By increasing the collision frequency the discharge leaves the multilayer structure, and related oscillations in the plasma potential and space charge vanish. The parameter space region is obtained for collisionless and collisional cases. In this paper it is shown that a combined effect of collision and magnetic field determines the presheath-sheath structure.
Self-focusing of electromagnetic pulsed beams in collisional plasmas
Faisal, Mohammad; Verma, M. P.; Sodha, Mahendra Singh
2008-10-15
In this paper, the self-focusing of an electromagnetic pulsed beam in a collisional plasma has been investigated in the paraxial approximation, following the formalism developed by Akhmanov. The energy balance equation for electrons, the equation expressing the equality of pressure gradient (of electrons and ions) to the force due to space charge field, and the equation for the beam width parameter f (obtained by following Akhmanov's approach) have been simultaneously solved for given initial (z=0) time profile of the pulse to obtain f as a function of {xi} (cz/{omega}r{sub 0}{sup 2}) and t{sup '}=t-z/V{sub g}, where V{sub g} is the group velocity. Both Gaussian and sine time profiles of the pulse have been investigated.
Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas
Cheng, C.Z.
1989-04-01
A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab.
Non-Neutral Ion Plasma in a Toroidal Magnetic Field
NASA Astrophysics Data System (ADS)
Boyd, D. A.
1997-11-01
We propose to trap and study the equilibria of a non-neutral ion plasma in a toroidal magnetic field. Such equilibria have been described by O'Neil and Smith(T. M. O'Neil, R. A. Smith, Phys. Plasmas 1, 2430 (1994)). An electron plasma has been studied by Zaveri et al.(Puravi Zaveri, P. I. John, K. Avinash, and P. K. Kaw, Phys. Rev. Lett. 68, 3295 (1992)). Although single ions are not confined in such a trap, for plasmas there exists a large parameter space with radically different regimes for the trapped ions. This is a novel form of ion trap in which to study orbit dynamics, equilibria, and different thermodynamic states by cooling and manipulation of the ion distribution. Barium and Calcium ions produced by photo-ionization would be injected into the trap from a transient magnetic divertor with positively charged target plates. Ions permit a detailed study of their distribution function with non-perturbative techniques. Laser Induced Fluorescence and ion tagging techniques would be used to study the microscopic dynamics of the ions. Image charge probes would be used to study density fluctuations. In the longer term lasers would be used to cool the ions and the distribution altered by externally launched waves coupled to the plasma. A basic description and classification of the stable equilibria will be given as well as the parameters and design of a low cost, experimental trap.
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas
Rax, J. M.; Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2015-09-15
The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.
Rotation shear induced fluctuation decorrelation in a toroidal plasma
Hahm, T.S.
1994-06-01
The enhanced decorrelation of fluctuations by the combined effects of the E {times} B flow (V{sub E}) shear, the parallel flow (V{sub {parallel}}) shear, and the magnetic shear is studied in toroidal geometry. A two-point nonlinear analysis previously utilized in a cylindrical model shows that the reduction of the radial correlation length below its ambient turbulence value ({Delta}r{sub 0}) is characterized by the ratio between the shearing rate {omega}{sub s} and the ambient turbulence scattering rate {Delta}{omega}{sub T}. The derived shearing rate is given by {omega}{sub s}{sup 2} = ({Delta}r{sub 0}){sup 2}[1/{Delta}{phi}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(qV{sub E}/r){r_brace}{sup 2} + 1/{Delta}{eta}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(V{parallel}/qR){r_brace}{sup 2}], where {Delta}{phi} and {Delta}{eta} are the correlation angles of the ambient turbulence along the toroidal and parallel directions. This result deviates significantly from the cylindrical result for high magnetic shear or for ballooning-like fluctuations. For suppression of flute-like fluctuations, only the radial shear of qV{sub E}/r contributes, and the radial shear of V{parallel}/qR is irrelevant regardless of the plasma rotation direction.
Yuan Chengxun; Zhou Zhongxiang; Sun Hongguo; Pu Shaozhi; Xiang Xiaoli
2010-11-15
The terahertz characteristics of a dense-magnetized-collisional-bounded plasma under normal incident are analyzed in this study, which is of practical significance in plasma diagnostics with electromagnetic waves. We theoretically calculate the reflection, absorption, and transmission coefficients for right- and left-handed polarized terahertz waves through a uniform, magnetized, and collisional plasma slab bounded by lossless transparent walls. The power absorption spectra in the frequency range of 0.1-2 THz are given with strong external magnetic fields and different plasma parameters such as plasma density and collisional frequency. Our numerical result is consistent with Jamison's experimental result. It is found that plasma absorption is mainly caused by the collisional absorption and electron cyclotron resonance. Furthermore, the absorption heavily depends on the polarization mode of the terahertz waves when the external magnetic field B is high enough that the election gyrofrequency is near the incident wave frequency. The relationships between the corresponding parameters of the problem are studied numerically.
Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST
NASA Astrophysics Data System (ADS)
Xiong, Z.
2005-10-01
TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.
NASA Astrophysics Data System (ADS)
Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.
2015-11-01
Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.
Ion temperature and toroidal rotation in JET's low torque plasmas
NASA Astrophysics Data System (ADS)
Bernardo, J.; Nave, M. F. F.; Giroud, C.; Reyes Cortes, S.; Bizarro, João P. S.
2016-11-01
This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature Ti and the toroidal velocity vϕ from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and vϕ particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
Equilibrium and Stability of Partial Toroidal Plasma Discharges
Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R.; Xie, J.
2011-01-04
The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).
Potential around a dust grain in collisional plasma
Moulick, R. Goswami, K. S.
2015-04-15
The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.
On negative ion-drag force for dust in collisional plasmas
Patacchini, Leonardo; Hutchinson, Ian H.
2008-09-07
The ion-drag force on a dust particle in collisional plasmas is self-consistently calculated using the Particle In Cell code SCEPTIC in the entire range of charge-exchange collisionlality. It is shown that the ion-drag only reverses in the strongly collisional regime, where other forces are of much stronger magnitude than the ion-drag itself.
Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas
NASA Astrophysics Data System (ADS)
Yoon, Peter H.
2016-07-01
In the literature, collisional processes are customarily discussed within the context of the Boltzmann-Balescu-Lenard-Landau type of collision integral, but such an equation is strictly valid for unmagnetized plasmas. For plasmas immersed in the ambient magnetic field, the foundational equation that describes binary collisions must be generalized to include the effects of magnetic field. The present paper makes use of such an equation in order to describe the collisional relaxation of temperatures under the assumption of bi-Maxwellian velocity distribution function. The formalism derived in the present paper may be useful for studying the effects of binary collisions on the isotropization of temperatures in the solar wind plasma, among possible applications.
Toroidal curvature induced screening of external fields by a resistive plasma response
NASA Astrophysics Data System (ADS)
Liu, Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.
2012-07-01
Within the single fluid theory for a toroidal, resistive plasma, the favorable average curvature effect [Glasser et al., Phys. Fluids 18, 875 (1975)], which is responsible for the strong stabilization of the classical tearing mode at finite pressure, can also introduce a strong screening effect to the externally applied resonant magnetic field. Contrary to conventional understanding, this screening, occurring at slow plasma rotation, is enhanced when decreasing the plasma flow speed. The plasma rotation frequency, below which this screening effect is observed, depends on the plasma pressure and resistivity. For the simple toroidal case considered here, the toroidal rotation frequency has to be below ˜10-5ωA, with ωA being the Alfvén frequency. In addition, the same curvature effect leads to enhanced toroidal coupling of poloidal Fourier harmonics inside the resistive layer, as well as reversing the sign of the electromagnetic torque at slow plasma flow.
Transport, Equilibrium, and Stability of a Toroidal Edge Plasma
NASA Astrophysics Data System (ADS)
McCarthy, Daniel Raymund
The stability and transport of the drift resistive ballooning mode (DRBM) and its impact on the dynamics of a toroidal edge plasma is studied. The linear stability of the DRBM is calculated analytically and numerically, and is found to be unstable over a broad range of mode numbers. The nonlinear dynamics of the mode were studied using a fully nonlinear, three dimensional finite difference code. It was found that the saturated turbulent transport was anomalously large and exhibited a large ballooning -like poloidal asymmetry. The growth and saturation of this mode occurred on the time scale t_ {B} = (c_{s}/sqrt{RL _{n}})^{-1}.. Nonlinear two dimensional axisymmetric toroidal simulations of a tokamak edge and scrape off layer were performed to study the effect of this transport on the edge dynamics. Large parallel flows of order the local sound speed c_{s} were generated on the longer time scale t_{s } = (c_{s}/qR)^ {-1}. The stability of this 'equilibrium' depends upon the parameter alpha equiv rho_{s}qR/aL_{r}. For alpha << 1, the edge was unstable to the Stringer spin up instability. For weak magnetic pumping (H-mode), a poloidal rotation of order the poloidal sound speed ac_{s }/qR was generated in the electron diamagnetic drift direction. For strong pumping (L-mode), the rotation opposed the ion diamagnetic drift. The impact of particle sources at various poloidal locations was also studied. For alpha > 1 the edge was unstable to the parallel velocity shear instability. The turbulence gave order unity fluctuation levels and was localized inside the last closed flux surface and on the inner side of the torus.
Nonextensive statistics and the sheath criterion in collisional plasmas
Hatami, M. M.
2015-01-15
The Bohm criterion in an electropositive plasma containing nonextensively distributed electrons and warm ions is investigated by using a steady state two-fluid model. Taking into account the ion-neutral collisions and finite temperature of ions, a modified Bohm criterion is derived which limits both maximum and minimum allowable velocity of ions at the sheath edge (u{sub 0i}). It is found that the degree of nonextensivity of electrons (q) and temperature of positive ions (T{sub i}) affect only the lower limit of the entrance velocity of ions into the sheath while the degree of ion collisionality (α) influences both lower and upper limits of the ion velocities at the sheath edge. In addition, depending on the value of q, it is shown that the minimum velocity of positive ions at the sheath edge can be greater or smaller than its Maxwellian counterpart. Moreover, it is shown that, depending on the values of α and T{sub i}, the positive ions with subsonic velocity may enter the sheath for either q > 1 or −1 < q < 1. Finally, as a practical application, the density distribution of charged particles in the sheath region is studied for different values of u{sub 0i}, and it is shown that monotonical reduction of the positive ion density distribution occurs only when the velocity of positive ions at the sheath edge lies between two above mentioned limits.
On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas
Hellsten, T.; Johnson, T.
2008-11-01
A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.
First Test of Long-Range Collisional Drag via Plasma Wave Damping
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2016-10-01
This paper presents the first experimental confirmation of a new theory predicting enhanced drag due to long-range collisions in a magnetized plasma. The experiments measure damping of Langmuir waves in a multispecies pure ion plasma, which is dominated by interspecies collisional drag in certain regimes. The measured damping rates in these regimes exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agree with the new theory.
The effect of collisionality and diamagnetism on the plasma dynamo
Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1995-04-28
Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Toroidal Plasma Rotation Induced by the Dynamic Ergodic Divertor in the TEXTOR Tokamak
NASA Astrophysics Data System (ADS)
Finken, K. H.; Abdullaev, S. S.; de Bock, M. F.; von Hellermann, M.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Krämer-Flecken, A.; Lehnen, M.; Liang, Y.; Nicolai, A.; Wolf, R. C.; Zimmermann, O.; de Baar, M.; Bertschinger, G.; Biel, W.; Brezinsek, S.; Busch, C.; Donné, A. J.; Esser, H. G.; Farshi, E.; Gerhauser, H.; Giesen, B.; Harting, D.; Hoekzema, J. A.; Hogeweij, G. M.; Hüttemann, P. W.; Jachmich, S.; Jakubowska, K.; Kalupin, D.; Kelly, F.; Kikuchi, Y.; Kirschner, A.; Koch, R.; Korten, M.; Kreter, A.; Krom, J.; Kruezi, U.; Lazaros, A.; Litnovsky, A.; Loozen, X.; Lopes Cardozo, N. J.; Lyssoivan, A.; Marchuk, O.; Matsunaga, G.; Mertens, Ph.; Messiaen, A.; Neubauer, O.; Noda, N.; Philipps, V.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Rogister, A. L.; Sakamoto, M.; Savtchkov, A.; Samm, U.; Schmitz, O.; Schorn, R. P.; Schweer, B.; Schüller, F. C.; Sergienko, G.; Spatschek, K. H.; Telesca, G.; Tokar, M.; Uhlemann, R.; Unterberg, B.; van Oost, G.; van Rompuy, T.; van Wassenhove, G.; Westerhof, E.; Weynants, R.; Wiesen, S.; Xu, Y. H.
2005-01-01
The first results of the Dynamic Ergodic Divertor in TEXTOR, when operating in the m/n=3/1 mode configuration, are presented. The deeply penetrating external magnetic field perturbation of this configuration increases the toroidal plasma rotation. Staying below the excitation threshold for the m/n=2/1 tearing mode, this toroidal rotation is always in the direction of the plasma current, even if the toroidal projection of the rotating magnetic field perturbation is in the opposite direction. The observed toroidal rotation direction is consistent with a radial electric field, generated by an enhanced electron transport in the ergodic layers near the resonances of the perturbation. This is an effect different from theoretical predictions, which assume a direct coupling between rotating perturbation and plasma to be the dominant effect of momentum transfer.
Degenerate four-wave mixing and phase conjugation in a collisional plasma
Federici, J.F.; Mansfield, D.K.
1986-06-01
Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10..mu..m. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed.
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-09-07
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
Vlasov simulations of plasma-wall interactions in a magnetized and weakly collisional plasma
Devaux, S.; Manfredi, G.
2006-08-15
A Vlasov code is used to model the transition region between an equilibrium plasma and an absorbing wall in the presence of a tilted magnetic field, for the case of a weakly collisional plasma ({lambda}{sub mfp}>>{rho}{sub i}, where {lambda}{sub mfp} is the ion-neutral mean-free path and {rho}{sub i} is the ion Larmor radius). The phase space structure of the plasma-wall transition is analyzed in detail and theoretical estimates of the magnetic presheath width are tested numerically. It is shown that the distribution near the wall is far from Maxwellian, so that temperature measurements should be interpreted with care. Particular attention is devoted to the angular distribution of ions impinging on the wall, which is an important parameter to determine the level of wall erosion and sputtering.
Ion drag force on a dust grain in a weakly ionized collisional plasma
Semenov, I. L.; Krivtsun, I. V.; Zagorodny, A. G.
2013-01-15
The problem of calculating the ion drag force acting on a dust grain immersed in a weakly ionized collisional plasma is studied using an approach based on the direct numerical solution of the Vlasov-Bhatnagar-Gross-Krook kinetic equations. A uniform subthermal flow of argon plasma past a spherical dust grain is considered. The numerical computations are performed for a wide range of plasma pressures. On the basis of the obtained results, the effect of ion-neutral collisions on the ion drag force is analyzed in a wide range of ion collisionality. In the collisionless limit, our results are shown to be in good agreement with the results obtained by the binary collision approach. As the ion collisionality increases, the ion drag force is found to decrease sharply and even become negative, i.e., directed oppositely to the plasma flow. A qualitative explanation of this effect is presented and a comparison of our results with those obtained using the drift diffusion approach is discussed. The velocity dependence of the ion drag force in the highly collisional regime is examined. The relationship between the ion and the neutral drag forces in the highly collisional limit is analyzed and the possibility of a superfluid-like behavior of dust grains is discussed.
Method to integrate full particle orbit in toroidal plasmas
NASA Astrophysics Data System (ADS)
Wei, X. S.; Xiao, Y.; Kuley, A.; Lin, Z.
2015-09-01
It is important to integrate full particle orbit accurately when studying charged particle dynamics in electromagnetic waves with frequency higher than cyclotron frequency. We have derived a form of the Boris scheme using magnetic coordinates, which can be used effectively to integrate the cyclotron orbit in toroidal geometry over a long period of time. The new method has been verified by a full particle orbit simulation in toroidal geometry without high frequency waves. The full particle orbit calculation recovers guiding center banana orbit. This method has better numeric properties than the conventional Runge-Kutta method for conserving particle energy and magnetic moment. The toroidal precession frequency is found to match that from guiding center simulation. Many other important phenomena in the presence of an electric field, such as E × B drift, Ware pinch effect and neoclassical polarization drift are also verified by the full orbit simulation.
Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption
NASA Astrophysics Data System (ADS)
Wani, Manzoor Ahmad; Kant, Niti
2016-09-01
This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II
A multi-species 13-moment model for moderately collisional plasmas
NASA Astrophysics Data System (ADS)
Miller, S. T.; Shumlak, U.
2016-08-01
Fluid-based models of collisional transport in multi-species plasmas have typically been applied to parameter regimes where a local thermal equilibrium is assumed. While this parameter regime is valid for low temperature and/or high density applications, it begins to fail as plasmas enter the collisionless regime and kinetic effects dominate the physics. A plasma model is presented that lays the foundation for extending the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the pressure tensor and heat flux vector along with the density and flow velocity to capture dynamics usually restricted to kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collisional interactions.
Air core poloidal magnetic field system for a toroidal plasma producing device
Marcus, Frederick B.
1978-01-01
A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
Toroidal rotation of multiple species of ions in tokamak plasma driven by lower-hybrid-waves
NASA Astrophysics Data System (ADS)
Zuo, Yang; Wang, Shaojie; Pan, Chengkang
2012-10-01
A numerical simulation is carried out to investigate the toroidal rotation of multiple species of ions and the radial electric field in a tokamak plasma driven by the lower-hybrid-wave (LHW). The theoretical model is based on the neoclassical transport theory associated with the anomalous transport model. Three species of ions (primary ion and two species of impurity ions) are taken into consideration. The predicted toroidal velocity of the trace impurities during the LHW injection agrees reasonably well with the experimental observation. It is shown that the toroidal rotation velocities of the trace impurity ions and the primary ions are close, therefore the trace impurity ions are representative of the primary ions in the toroidal rotation driven by the LHW.
Toroidal rotation of multiple species of ions in tokamak plasma driven by lower-hybrid-waves
Zuo Yang; Wang Shaojie; Pan Chengkang
2012-10-15
A numerical simulation is carried out to investigate the toroidal rotation of multiple species of ions and the radial electric field in a tokamak plasma driven by the lower-hybrid-wave (LHW). The theoretical model is based on the neoclassical transport theory associated with the anomalous transport model. Three species of ions (primary ion and two species of impurity ions) are taken into consideration. The predicted toroidal velocity of the trace impurities during the LHW injection agrees reasonably well with the experimental observation. It is shown that the toroidal rotation velocities of the trace impurity ions and the primary ions are close, therefore the trace impurity ions are representative of the primary ions in the toroidal rotation driven by the LHW.
Dawson, John M.; Furth, Harold P.; Tenney, Fred H.
1988-12-06
Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Yushkanov, A. A.
2016-09-01
From the Vlasov-Boltzmann kinetic equation for a collisional degenerate plasma, the electron distribution function is constructed in the quadratic approximation in the electric field strength. A formula for calculating the electric current is derived. It is shown that nonlinearity leads to the rise of a longitudinal electric current directed along the wave vector. The longitudinal current is orthogonal to the known transverse classical current obtained in the linear analysis. When the collision frequency tends to zero, all results obtained for a collisional plasma pass into the corresponding results for a collisionless plasma. The case of small wavenumbers is considered. It is shown that, when the collision frequency tends to zero, the expression for the current passes into the corresponding expression for the current in a collisionless plasma. Graphic analysis of the real and imaginary parts of the current density is performed. The dependence of the electromagnetic field oscillation frequency and electron-plasma-particle collision frequency on the wavenumber is studied.
Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas
NASA Astrophysics Data System (ADS)
Shi, Tonghui; Zheng, L. J.; Wan, B. N.; Sun, Y.; Shen, B.; Qian, J. P.
2016-08-01
Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.
Rodrigues, Paulo; Bizarro, Joao P. S.
2007-09-21
For the first time, tokamak equilibria with negative toroidal current flowing in the plasma core are computed consistently with available measurements from typical current-hole discharges. The equilibrium reconstruction, which leads to non-nested configurations where a system of axisymmetric magnetic islands unfolds, yields an overall good agreement between the computed and experimental plasma-pressure profiles, together with an excellent fit to motional-Stark-effect data. Therefore, considering the accuracy limits of present-day experimental results, care must be exercised when ruling out the existence of tokamak equilibria with central toroidal-current reversal, particularly if relying on reconstruction tools that cannot cope with non-nested configurations.
Stoerk, H.B.; Winter, J.; Ihde, J.; Esser, H.G.; Reimer, H.; Freisinger, M
2001-01-15
The TOroidal MAgnetized System (TOMAS) is a simple magnetized torus dedicated to the investigation of wall conditioning methods by microwave-induced plasmas. In the TOMAS facility, an electron cyclotron resonance plasma is produced by microwaves at a frequency of 2.45 GHz and the corresponding resonant magnetic field of 87.6 mT. The facility and the first operational experience of film deposition by means of methane plasmas are described.
Hong, Woo-Pyo; Jung, Young-Dae
2014-08-01
The influence of nonthermal shielding on the optically allowed and forbidden anti-screening channels for ion-ion collisional excitations is investigated in astrophysical Lorentzian plasmas. The semiclassical trajectory method and effective interaction Hamiltonian are employed to obtain the transition amplitudes, differential cross-sections, and momentum transfer-dependent effective projectile charges for the optically allowed and forbidden excitation channels as functions of the impact parameter, collision energy, Debye radius, and spectral index of nonthermal astrophysical plasmas. It is found that the nonthermal effect suppresses the ion-ion collisional excitation probability in astrophysical Lorentzian plasmas. Additionally, the influence of nonthermal shielding on the optically allowed transition is found to be more significant than that on the optically forbidden transition. The variations of the nonthermal shielding effects on the optically allowed and forbidden anti-screening channels in astrophysical nonthermal plasmas are also discussed.
Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak
NASA Astrophysics Data System (ADS)
Zhao, N.; Yan, N.; Xu, G. S.; Wang, Z. X.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.
2016-06-01
Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.
Chaudhuri, Manis; Khrapak, Sergei A.; Morfill, Gregor E.
2008-09-07
The ion drag force acting on a small absorbing spherical grain has been calculated analytically in highly collisional plasma with slowly drifting ions taking into account plasma production and loss mechanisms in the vicinity of the grain. It is shown that both the magnitude and direction of the ion drag force are strongly influenced by the plasma production and loss mechanisms. The parameter regimes for the 'positive' and 'negative' ion drag forces acting on an absorbing grain have been identified.
Relaxed state for the coaxial helicity injection current drive in toroidal plasmas
Zhang, C.; Zhu, S.; Shen, L.
1998-01-01
The plasma relaxed state for the coaxial helicity injection current drive in toroidal configuration is investigated by applying the principle of minimum rate of energy dissipation. The comparison between theory and helicity injection current drive experiment on HIT (the Helicity Injected Tokamak) [T. R. Jarboe, Fusion Technol. {bold 15}, 7 (1989)] is presented. The calculation results indicate that the key features such as total toroidal driven current, current in closed field, current density profile, magnetic configuration, and j{sub t}/B{sub t} profile agree quite well with experiment. Analysis shows that plasma relaxes to a noncomplete relaxation state, and the toroidal current is effectively driven in this state. {copyright} {ital 1998 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Hong, Suk-Ho; Kim, Kyung-Rae; Ko, Won-Ha; Nam, YongUn
2015-08-01
In-vessel dust velocity and its distribution have been evaluated by using dedicated software developed at KSTAR. The dust velocities are well described by log-normal distribution function in a range from ∼10 m/s up to ∼460 m/s. The peak velocity of the distribution increases through three campaigns from 2010 to 2012, mainly due to the increase of the input energy level. From the force balance, it is expected that the dust velocity is strongly correlated with the toroidal plasma flow due to the ion drag force acting on dusts. To confirm this, toroidal rotation velocity is measured by using charge exchange spectroscopy (CES) as a function of normalized stored energy (W/Ip), which is similar with Rice scaling. As a consequence, it is found that the dust velocity is linearly proportional to W/Ip, thus to the toroidal rotation velocity of the plasmas.
Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma
NASA Astrophysics Data System (ADS)
Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.
2005-04-01
High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.
NASA Astrophysics Data System (ADS)
Al-Ammar, Assad S.; Barnes, Ramon M.
1999-07-01
Inelastic collisional deactivation of the analyte excited state is demonstrated as a dominant cause for non-spectroscopic matrix interference in inductively coupled plasma atomic emission spectrometry (ICP-AES) for commonly used plasma operating conditions in routine analysis. A mathematical simulation of the inelastic collisional model was examined. Comparison between the theoretical model and experimental results using atomic and ionic lines of the analytes Zn, Ba, Mg, Mn and Sr validates the inelastic collisional deactivation model as a dominant cause for non-spectroscopic matrix effect. Matrices evaluated were NH 4Cl, NH 4SCN, (NH 4) 2SO 4, and H 2SO 4 to represent difficult-to-ionize matrices (DIE) and NaCl and CaCl 2 to represent easy-to-ionize element matrices (EIE).
Collisionality scaling of turbulence and transport in advanced inductive plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Yan, Z.; McKee, G. R.; Petty, C.; Luce, T.; Chen, X.; Holland, C.; Rhodes, T.; Schmitz, L.; Wang, G.; Zeng, L.; Marinoni, A.; Solomon, W.; DIII-D Team
2015-11-01
The collisionality scaling of multiscale turbulence properties and thermal transport characteristics in high-beta, high confinement Advanced Inductive (AI) plasmas was determined via systematic dimensionless scaling experiments on DIII-D. Preliminary estimate indicates a weak collisionality dependence of energy confinement as v* varied by a factor of ~2. Electron density and scaled (~Bt2) temperature profiles are well matched in the scan. Interestingly, low-k density fluctuation amplitudes are observed to decrease at lower v* near ρ ~ 0 . 75 . Ion and electron thermal transport values, computed with ONETWO using experimentally measured profiles and sources, will be presented, along with multi-scale turbulence measurements obtained with various fluctuation diagnostics. Altering collisionality should change the relative contribution of different modes to transport.
Formation and evolution of vortices in a collisional strongly coupled dusty plasma
NASA Astrophysics Data System (ADS)
Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil
2016-07-01
Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge-Kutta-Gill time integrator.
Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Angioni, C.; Strintzi, D.
2009-01-15
Recent developments in the gyrokinetic theory have shown that, in a toroidal device, the Coriolis drift associated with the background plasma rotation significantly affects the small scale instabilities [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. The later study, which focuses on the effect of the Coriolis drift on toroidal momentum transport is extended in the present paper to heat and particle transport. It is shown numerically using the gyrokinetic flux-tube code GKW[A. G. Peeters and D. Strintzi, Phys. Plasmas 11, 3748 (2004)], and supported analytically, that the Coriolis drift and the parallel dynamics play a similar role in the coupling of density, temperature, and velocity perturbations. The effect on particle and heat fluxes increases with the toroidal rotation (directly) and with the toroidal rotation gradient (through the parallel mode structure), depends on the direction of propagation of the perturbation, increases with the impurity charge number and with the impurity mass to charge number ratio. The case of very high toroidal rotation, relevant to spherical tokamaks, is investigated by including the effect of the centrifugal force in a fluid model. The main effect of the centrifugal force is to decrease the local density gradient at the low field side midplane and to add an extra contribution to the fluxes. The conditions for which the inertial terms significantly affect the heat and particle fluxes are evidenced.
“Anomalous” collisionality in low-pressure plasmas
Lafleur, T.; Chabert, P.; Booth, J. P.; Turner, M. M.
2013-12-15
Based on a theoretical argument from fundamental kinetic theory, by way of simple worked examples, and through the use of particle-in-cell simulations of capacitively coupled plasmas, we demonstrate that conventional methods for calculating the momentum transfer collision frequency in low-pressure plasmas can be seriously erroneous. This potentially plays an important and previously unconsidered role in many low-pressure discharges, and at least in part provides a possible explanation for anomalous behaviour often encountered in these plasmas.
Terahertz generation by two cross focused laser beams in collisional plasmas
Sharma, R. P. Singh, Ram Kishor
2014-07-15
The role of two cross-focused spatial-Gaussian laser beams has been studied for the high power and efficient terahertz (THz) radiation generation in the collisional plasma. The nonlinear current at THz frequency arises on account of temperature dependent collision frequency of electrons with ions in the plasma and the presence of a static electric field (applied externally in the plasma) and density ripple. Optimisation of laser-plasma parameters gives the radiated THz power of the order of 0.23 MW.
Dipolar vortices and collisional instability in rotating electron-positron-ion plasmas
Haque, Q.
2011-11-15
Linear dispersion relation of electrostatic waves is derived for rotating electron-positron-ion (e-p-i) plasmas. The role of the rotational plasma frequency on drift wave through Coriolis force in the pulsar magnetosphere is discussed. This wave can couple with acoustic mode. In the nonlinear regime, stationary solution in the form of dipolar vortices is obtained. At the end we have also found the collisional instability in the presence of neutral-ion collisions for this rotating e-p-i plasma. The importance of the study with respect to astrophysical plasmas is also pointed out.
NASA Astrophysics Data System (ADS)
Niknam, A. R.; Banjafar, M. R.; Jahangiri, F.; Barzegar, S.; Massudi, R.
2016-05-01
Terahertz (THz) radiation generation by the interaction of two co-propagating high intensity laser beams with a warm collisional inhomogeneous plasma is analytically investigated. By presenting the dielectric permittivity of plasma and taking into account the ponderomotive force, the nonlinear current at THz frequency is obtained. A secondary resonant enhancement of THz radiation is observed, in addition to that occurs at the plasma frequency, which can be tuned by plasma density and temperature. Moreover, we show that for each beat frequency, there exists an optimum temperature at which THz radiation is maximized. It is also shown that the power and efficiency of THz radiation decrease by increasing the collision frequency.
Computer Simulation of the Toroidal Equilibrium and Stability of a Plasma in Three Dimensions
Betancourt, Octavio; Garabedian, Paul
1975-01-01
A computer program has been written to solve the equations for sharp boundary magnetohydrodynamic equilibrium of a toroidal plasma in three dimensions without restriction to axial symmetry. The numerical method is based on a variational principle that indicates whether the equilibria obtained are stable. Applications have been made to Tokamak, Stellarator, and Scyllac configurations. PMID:16592233
Effects of Collisional Zonal Flow Damping on Turbulent Transport
P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin
1999-10-01
Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.
The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity
Zhou, Deng
2014-08-15
Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.
Double layer field shaping systems for toroidal plasmas
Ohyabu, Nobuyoshi
1982-01-01
Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.
Effects of Magnetic Shear on Toroidal Rotation in Tokamak Plasmas with Lower Hybrid Current Drive
NASA Astrophysics Data System (ADS)
Rice, J. E.; Podpaly, Y. A.; Reinke, M. L.; Mumgaard, R.; Scott, S. D.; Shiraiwa, S.; Wallace, G. M.; Chouli, B.; Fenzi-Bonizec, C.; Nave, M. F. F.; Diamond, P. H.; Gao, C.; Granetz, R. S.; Hughes, J. W.; Parker, R. R.; Bonoli, P. T.; Delgado-Aparicio, L.; Eriksson, L.-G.; Giroud, C.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Irby, J. H.; Kirov, K.; Mailloux, J.; Marmar, E. S.; Wolfe, S. M.
2013-09-01
Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q0<1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q0 above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear.
Flux tube train model for local turbulence simulation of toroidal plasmas
Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.
2015-02-15
A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.
NASA Astrophysics Data System (ADS)
Hedin, G.; Brzozowski, J. H.; Hörling, P.; Mazur, S.; Nordlund, P.; Drake, J. R.
1996-05-01
The effects of plasma collisionality on power balance and magnetic fluctuations have been studied on the Extrap T1 reversed-field pinch. A characteristic minimum in loop voltage is observed as the plasma collisionality decreases. The minimum is caused by an increase in the anomalous input power and coincides with a change of scaling of the magnetic fluctuations and a rapid increase of the electron mean free path. However, the increase of anomalous input power in the low collisional regime appears to have little influence on the total amount of energy stored in the plasma.
NASA Astrophysics Data System (ADS)
Wahlberg, C.
2009-08-01
This paper analyses low-frequency magnetohydrodynamic (MHD) modes, especially the geodesic acoustic modes (GAMs), in toroidal plasmas with large aspect ratio and circular cross section, including the effects of toroidal plasma rotation. A system of equations describing MHD modes with frequency of the order of the sound frequency in such plasmas is derived from the Frieman-Rotenberg equation, using a technique where the plasma perturbation ξ and the perturbed magnetic field Q are expanded separately in the inverse aspect ratio ɛ = r/R, where r and R denote the minor and major radii of the plasma torus, respectively. The large-scale, ideal MHD properties of the GAM induced by toroidal rotation (Wahlberg 2008 Phys. Rev. Lett. 101 115003) are thereafter analysed in more detail employing this system of equations. It is shown that both the axisymmetric GAMs existing in rotating plasmas are localized on a specific magnetic surface only to leading order in ɛ, and that a 'halo' consisting of finite components of both ξ and Q with dominant poloidal mode numbers m = ±2 appears outside this magnetic surface to higher orders in ɛ.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-15
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-01
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Turbulence and bias-induced flows in simple magnetized toroidal plasmas
Li, B.; Rogers, B. N.; Ricci, P.; Gentle, K. W.; Bhattacharjee, A.
2011-05-15
Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three-dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows.These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures,and thereby lower the radial plasma transport on the low field side.
Ion acoustic shock wave in collisional equal mass plasma
Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil
2015-10-15
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Ion acoustic shock wave in collisional equal mass plasma
NASA Astrophysics Data System (ADS)
Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil
2015-10-01
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Dual-function magnetic structure for toroidal plasma devices
Brown, Robert L.
1978-01-01
This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.
Theory of runaway collisional transport
Tessarotto, M. ); White, R.B. )
1993-11-01
The purpose of this paper is to formulate the transport problem for a multispecies rotating toroidal magnetoplasma in the so-called runaway regime, which is defined by an appropriate ordering of relevant characteristic frequencies, in particular, the Larmor frequency, the characteristic acceleration frequency due to the applied electric field and the effective collision frequency, all evaluated at some characteristic speed [ital v][sub 0]. A suitable form of the gyrokinetic equation is obtained to describe the time-dependent, multispecies plasma response to an applied electric field, in toroidal geometry and for a strongly rotating, quiescent, and collisional plasma. Its moment equations are proven to imply the reduction of the energy equation to Joule's law, as well as consequences on the form of Ohm's law and of the Grad--Shafranov equation. To construct an approximate solution of the gyrokinetic equation and to evaluate all relevant fluxes, appearing in the moment equations, a general variational solution method is developed.
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
NASA Astrophysics Data System (ADS)
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-01
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Mach Probe Wakes are Important in Weakly Magnetized, Collisional Plasmas
NASA Astrophysics Data System (ADS)
Gosselin, Jordan James; Thakur, Saikat; Sears, Stephanie; McKee, John; Scime, Earl; Tynan, George
2015-11-01
Mach probes are often used as the diagnostic for flow in the scrape off layer (SOL) of tokamaks and in linear devices because of their low cost and ease of construction. However, proper interpretation of the Mach number has been debated, and interpretation methods use different calibration factors for different plasma parameters. The Controlled Shear Decorrelation eXperiment (CSDX) operates in an intermediate magnetization regime. To validate theories in this regime, measurements of the parallel ion velocity were made with Mach probes and laser induced fluorescence (LIF) at magnetic fields from 400 to 1600 gauss. We find that Mach probe measurements indicate higher velocities than LIF at fields above 400 gauss. Reduced downstream plasma density due to probe shadowing is a strong candidate for the cause of the discrepancy. An advective-diffusive model for the geometric shadowing and downstream plasma density is presented. When the model for the density drop is included, the Mach probe results agree with the LIF data. This result should be included by groups using Mach probes to measure parallel velocities in plasmas where the ion-neutral mean free path is shorter than the probe shadow length, Lps = a2Cs /Dperp in linear devices, the SOL, or divertor region of tokamaks. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Awards Number DE-FG02-07ER54912.
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-15
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.
2009-06-15
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Niknam, A. R.; Taheri Boroujeni, S.; Khorashadizadeh, S. M.
2013-12-15
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Moghaddasi, M.
2016-07-01
Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.
Efficient evaluation of collisional energy transfer terms for plasma particle simulations
NASA Astrophysics Data System (ADS)
Turrell, A. E.; Sherlock, M.; Rose, S. J.
2016-02-01
Particle-based simulations, such as in particle-in-cell (PIC) codes, are widely used in plasma physics research. The analysis of particle energy transfers, as described by the second moment of the Boltzmann equation, is often necessary within these simulations. We present computationally efficient, analytically derived equations for evaluating collisional energy transfer terms from simulations using discrete particles. The equations are expressed as a sum over the properties of the discrete particles.
The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.
Regimes of expansion of a collisional plasma into a vacuum
NASA Astrophysics Data System (ADS)
Thaury, C.; Mora, P.; Adam, J. C.; Héron, A.
2009-09-01
The effect of elastic Coulomb collisions on the one-dimensional expansion of a plasma slab is studied in the classical limit, using an electrostatic particle-in-cell code. Two regimes of interest are identified. For a collision rate of few hundreds of the inverse of the expansion characteristic time τe, the electron distribution function remains isotropic and Maxwellian with a homogeneous temperature, during all the expansion. In this case, the expansion can be approached by a three-dimensional version of the hybrid model developed by Mora [P. Mora, Phys. Rev. E 72, 056401 (2005)]. When the collision rate becomes somewhat greater than 104τe-1, the plasma is divided in two parts: an inner part which expands adiabatically as an ideal gas and an outer part which undergoes an isothermal expansion.
Dielectric function of a collisional plasma for arbitrary ionic charge.
Nersisyan, H B; Veysman, M E; Andreev, N E; Matevosyan, H H
2014-03-01
A simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge that is valid for long-wavelength high-frequency perturbations is derived using an approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions to the dielectric function is treated phenomenologically, introducing some parameter ϰ that is chosen in such a way as to get a well-known expression for stationary electric conductivity in the low-frequency region and fulfill the requirement of a vanishing contribution of electron-electron collisions in the high-frequency region. This procedure ensures the applicability of our model in a wide range of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike the interpolation formula proposed earlier by Brantov et al. [Brantov et al., JETP 106, 983 (2008)], our model fulfills the Kramers-Kronig relations and permits a generalization for the cases of degenerate and strongly coupled plasmas. With this in mind, a generalization of the well-known Lee-More model [Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984)] for stationary conductivity and its extension to dynamical conductivity [O. F. Kostenko and N. E. Andreev, GSI Annual Report No. GSI-2008-2, 2008 (unpublished), p. 44] is proposed for the case of plasmas with arbitrary ionic charge.
Dielectric function of a collisional plasma for arbitrary ionic charge.
Nersisyan, H B; Veysman, M E; Andreev, N E; Matevosyan, H H
2014-03-01
A simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge that is valid for long-wavelength high-frequency perturbations is derived using an approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions to the dielectric function is treated phenomenologically, introducing some parameter ϰ that is chosen in such a way as to get a well-known expression for stationary electric conductivity in the low-frequency region and fulfill the requirement of a vanishing contribution of electron-electron collisions in the high-frequency region. This procedure ensures the applicability of our model in a wide range of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike the interpolation formula proposed earlier by Brantov et al. [Brantov et al., JETP 106, 983 (2008)], our model fulfills the Kramers-Kronig relations and permits a generalization for the cases of degenerate and strongly coupled plasmas. With this in mind, a generalization of the well-known Lee-More model [Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984)] for stationary conductivity and its extension to dynamical conductivity [O. F. Kostenko and N. E. Andreev, GSI Annual Report No. GSI-2008-2, 2008 (unpublished), p. 44] is proposed for the case of plasmas with arbitrary ionic charge. PMID:24730951
NASA Astrophysics Data System (ADS)
Pierre, Th.; Caron, X.; Gravier, E.; Antar, G.
2012-10-01
In the laboratory toroidal device MISTOR, a poloidal field is created by a current (1200 A) flowing along a central toroidal conductor. A security factor q=1 is obtained at radial position r = 5 cm. Helium plasma is produced by electric discharge using a tungsten filament. When Bpol= 0, the whole plasma is turbulent that is a standard in a Simple Magnetized Torus. As Bpol is increased, the turbulence level decreases and a stable plasma is obtained. This is correlated with the decrease of the radial electric field. The confinement time is estimated in the afterglow decaying plasma. It increases from 50 microsec. without poloidal field to 0.5 millisec. when q=1 at mid-radius. The trapping of the particles inside the mirror-traps inherent in this topology (banana orbits) is studied. The precession of the banana orbits seems to be the dominant mechanism. The measurement of the toroidal current using a probe indicates that the electrons experience an oriented toroidal drift along the field lines. Detailed measurements of the EEDF are compared with theory. The influence of detrapping is investigated in order to estimate the bootstrap current induced in this device.
Design of a toroidal plasma confinement device with a levitated super-conducting internal coil
Ogawa, Y.; Morikawa, J.; Himura, H.; Kondoh, S.; Yoshida, Z.; Mito, T.; Yanagi, N.; Iwakuma, N.
1999-12-10
A toroidal device has been constructed and nonneutral plasma experiments have been intensively promoted, where an internal ring coil with a copper conductor has been employed. We are now designing a toroidal plasma trapping device with a levitated superconducting internal coil, so as to avoid plasma loss through current-lead and support structures of the internal coil. Typical machine parameters are as follows; the major radius of the internal ring coil is 40 cm and the coil current is 500 kA. Concerning to the levitated coil, the high-temperature (high-Tc) super-conducting coil is preferable for plasma experiments, because long pulse and/or high power heating experiments might be available due to the good property for the thermal stability and large heat capacity of the high-Tc super-conducting coil. Our primary candidate is Bi-2223 super-conducting cable. Since the maximum magnetic field strength is around 2 T in our device, the deterioration of the critical current is not so severe up to 40 K. We are now promoting a detailed design of the toroidal device with a high-Tc super-conducting internal coil.
Design of a Toroidal Plasma Confinement Device with a Levitated Super-Conducting Internal Coil
Y. Ogawa; H. Himura; S. Kondoh; J. Morikawa; Z. Yoshida
1999-12-31
A toroidal device has been constructed and nonneutral plasma experiments have been intensively promoted, where an internal ring coil with a copper conductor has been employed. We are now designing a toroidal plasma trapping device with a levitated superconducting internal coil, so as to avoid plasma loss through current-lead and support structures of the internal coil. Typical machine parameters are as follows; the major radius of the internal ring coil is 40 cm and the coil current is 500 kA. Concerning to the levitated coil, the high-temperature (high-Tc) super-conducting coil is preferable for plasma experiments, because long pulse and/or high power heating experiments might be available due to the good property for the thermal stability and large heat capacity of the high-Tc super-conducting coil. Our primary candidate is Bi-2223 super-conducting cable. Since the maximum magnetic field strength is around 2 T in our device, the deterioration of the critical current is not so severe up to 40 K. We are now promoting a detailed design of the toroidal device with a high-Tc super-conducting internal coil.
Sheath energy transmission in a collisional plasma with collisionless sheath
Tang, Xian-Zhu Guo, Zehua
2015-10-15
Sheath energy transmission governs the plasma energy exhaust onto a material surface. The ion channel is dominated by convection, but the electron channel has a significant thermal conduction component, which is dominated by the Knudsen layer effect in the presence of an absorbing wall. First-principle kinetic simulations reveal a robustly supersonic sheath entry flow. The ion sheath energy transmission and the sheath potential are accurately predicted by a sheath model of truncated bi-Maxwellian electron distribution. The electron energy transmission is further enhanced by a parallel heat flux of the perpendicular degrees of freedom.
Nonlinear wave propagation in a strongly coupled collisional dusty plasma
Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis
2011-06-15
The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched.
Nonlinear wave propagation in a strongly coupled collisional dusty plasma.
Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis
2011-06-01
The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched. PMID:21797497
MHD Instabilities and Toroidal Field Effects on Plasma Column Behavior in Tokamak
Khorshid, Pejman; Wang, L.; Ghoranneviss, M.; Arvin, R.; Dorranian, D.; Talebitaher, A.; Salem, M. K.; Abhari, A.
2006-12-04
In the edge plasma of the CT-6B and IRAN-T1 tokamaks the shape of plasma column based on MHD behavior has been studied. The bulk of plasma behavior during plasma column rotation as non-rigid body plasma has been investigated. We found that mode number and rotation frequency of plasma column are different in angle position, so that the mode number detected from Mirnov coils array located in poloidal angle on the inner side of chamber is more than outer side which it can be because of toroidal magnetic field effects. The results of IR-T1 and CT-6B tokamaks compared with each other, so that in the CT-6B because of its coils number must be less, but because of its Iron core the effect of toroidal magnetic field became more effective with respect to IR-T1. In addition, it is shown that the plasma column behaves as non-Rigid body plasma so that the poloidal rotation velocity variation in CT-6B is more than IR-T1. A relative correction for island rotation frequency has been suggested in connection with IRAN-T1 and CT-6B tokamak results, which can be considered for optical measurement purposes and also for future advanced tokamak control design.
Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma
NASA Astrophysics Data System (ADS)
Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.
2007-11-01
The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.
Landau-fluid closure and drift-wave dispersion relations for arbitrary collisional plasmas
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Umansky, M. V.; Angus, J. R.; Dorf, M. A.; Cohen, R. H.; Dorr, M. R.; Krasheninnikov, S. I.
2015-11-01
The Landau fluid model has been revisited to describe drift-wave instabilities in edge plasmas where the plasma parameters can vary by an order of magnitude or more. Usually, simple fluid models without Landau-fluid closure have been used to describe edge plasma dynamics. However, the collisionality conditions for the simple fluid descriptions are only marginally satisfied in present-day tokamaks and the validity conditions for such models will not be satisfied for future devices. As a result, the simple fluid models without Landau closure cannot properly describe the electron kinetic effects (e.g. the wave-electron resonances) in weakly collisional plasmas. We compare the analytical growth rates of drift-wave instabilities from the electromagnetic Landau-fluid model and the electromagnetic drift-kinetic model by conducting linear analysis on both models in various plasma parameters. Consequently, we demonstrate that both the electromagnetic Landau-fluid model and the electromagnetic drift-kinetic model, which yield similar linear growth rates, can be used to describe drift wave turbulence in a wide range of plasma parameters. We also present comparative simulations of drift wave instability using BOUT++ and COGENT(M. Dorf, invited talk, this meeting). Work performed for USDOE, at UCSD under Grants DE-FG02-04ER54739 and DE-SC0010413, and at LLNL under contract DE-AC52-07NA27344.
Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma.
Vinko, S M; Ciricosta, O; Preston, T R; Rackstraw, D S; Brown, C R D; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Engelhorn, K; Falcone, R W; Fiokovinini, R; Hájková, V; Heimann, P A; Juha, L; Lee, H J; Lee, R W; Messerschmidt, M; Nagler, B; Schlotter, W; Turner, J J; Vysin, L; Zastrau, U; Wark, J S
2015-01-01
The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.
Numerical study on the stability of weakly collisional plasma in E×B fields
Horký, M.
2015-02-15
Plasma stability in weakly collisional plasmas in the presence of E×B fields is studied with numerical simulations. Different types of ion-neutral collisions are considered in a fully magnetized regime. We study the influence of ion-neutral collisions and the role of collision types on the stability of plasma. It is found that the stability of plasma depends on the type of ion-neutral collisions, with the plasma being unstable for charge exchange collisions, and stable for the elastic scattering. The analysis focuses on the temporal evolution of the velocity phase space, RMS values of the potential fluctuations, and coherent structures in potential densities. For the unstable case, we observe growth and propagation of electrostatic waves. Simulations are performed with a three-dimensional electrostatic particle in cell code.
A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
NASA Astrophysics Data System (ADS)
Candy, J.; Belli, E. A.; Bravenec, R. V.
2016-11-01
We describe a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker-Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k⊥ → 0. To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.
Maitra, Sarit; Banerjee, Gadadhar
2014-11-15
The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.
Rodrigues, Paulo; Bizarro, João P S
2007-09-21
For the first time, tokamak equilibria with negative toroidal current flowing in the plasma core are computed consistently with available measurements from typical current-hole discharges. The equilibrium reconstruction, which leads to non-nested configurations where a system of axisymmetric magnetic islands unfolds, yields an overall good agreement between the computed and experimental plasma-pressure profiles, together with an excellent fit to motional-Stark-effect data. Therefore, considering the accuracy limits of present-day experimental results, care must be exercised when ruling out the existence of tokamak equilibria with central toroidal-current reversal, particularly if relying on reconstruction tools that cannot cope with non-nested configurations. PMID:17930511
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2016-04-01
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.
A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas
NASA Astrophysics Data System (ADS)
Peysson, Y.; Decker, J.; Morini, L.
2012-04-01
A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a Runge-Kutta-Fehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves.
RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities
NASA Astrophysics Data System (ADS)
Evans, T. E.; Fenstermacher, M. E.; Moyer, R. A.; Osborne, T. H.; Watkins, J. G.; Gohil, P.; Joseph, I.; Schaffer, M. J.; Baylor, L. R.; Bécoulet, M.; Boedo, J. A.; Burrell, K. H.; de Grassie, J. S.; Finken, K. H.; Jernigan, T.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Lonnroth, J.; Nardon, E.; Parail, V.; Schmitz, O.; Unterberg, B.; West, W. P.
2008-02-01
Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, \\bar {\\delta }=0.26 , plasmas and in ITER similar shaped (ISS) plasmas, \\bar {\\delta }=0.53 , with ITER relevant collisionalities v_e^\\ast \\le 0.2 . Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Ferro, F; Quarati, P
2005-02-01
We show that in stellar core plasmas, the one-body momentum distribution function is strongly dependent, at least in the high velocity regime, on the microscopic dynamics of ion elastic collisions and therefore on the effective collisional cross sections if a random force field is present. We take into account two cross sections describing ion-dipole and ion-ion screened interactions. Furthermore, we introduce a third unusual cross section to link statistical distributions and a quantum effect originated by the energy-momentum uncertainty owing to many-body collisions. We also propose a possible physical interpretation in terms of a tidal-like force. We show that each collisional cross section gives rise to a slight peculiar correction on the Maxwellian momentum distribution function in a well defined velocity interval. We also find a possible link between microscopic dynamics of ions and statistical mechanics in interpreting our results in the framework of nonextensive statistical mechanics.
Measurements of beat wave accelerated electrons in a toroidal plasma
Rogers, J.H. . Plasma Physics Lab.); Hwang, D.W. . Dept. of Applied Science Lawrence Livermore National Lab., CA )
1992-06-01
Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v{sub e} < v{sub ph} < 7v{sub e} (v{sub ph} was varied 2v{sub e} < v{sub ph} < 10v{sub e}), where v{sub e} is the electron thermal velocity, (kT{sub e}/m{sub e}){sup {1/2}}. As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted.
NASA Astrophysics Data System (ADS)
Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.
2016-01-01
The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.
Paknezhad, Alireza
2013-01-15
Nonlinear Raman forward scattering (NRFS) of an intense short laser pulse with a duration shorter than the plasma period through a homogenous collisional transversely magnetized plasma is investigated theoretically when ponderomotive, relativistic and collioninal nonlinearities are taken into account. The plasma is embedded in a uniform magnetic field perpendicular to both, the direction of propagation and electric vector of the radiation field. Nonlinear wave equation is set up and Fourier transformation method is used to solve the coupled equations describing NRFS instability. Finally, the growth rate of this instability is obtained. Thermal effects of plasma electrons and effect of the electron-ion collisions are examined. It is found that the growth rate of Raman forward scattering first decreases on increasing electron thermal velocity, minimizes at an optimum value, and then increases. Our results also show that the growth rate increases by increasing the electron-ion collisions.
Helander, P.; Hazeltine, R.D.; Catto, P.J.
1996-12-31
The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of N_{e} ~10^{17} cm^{-3}. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less
Collisional damping of helicon waves in a high density hydrogen linear plasma device
NASA Astrophysics Data System (ADS)
Caneses, Juan F.; Blackwell, Boyd D.
2016-10-01
In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}∼ 1–2 × 1019 m‑3, {{T}\\text{e}}∼ 1–6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50–200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4–8 G and {λz}∼ 10–15 cm) propagating away from the antenna region which become collisionally absorbed within 40–50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.
NASA Astrophysics Data System (ADS)
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield, J. E., II; Wiens, R. C.; Clegg, S. M.
2014-11-01
Electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree-Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ˜ 1 eV and electron densities of Ne ˜ 1017 cm-3. We evaluate the D K-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D K-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D K-inspired model.
Rosenberg, M. J.; Li, C. K.; Fox, W.; Zylstra, A. B.; Stoeckl, C.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.
2015-05-20
An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. Themore » absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less
Rosenberg, M. J.; Li, C. K.; Fox, W.; Zylstra, A. B.; Stoeckl, C.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.
2015-05-20
An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}~ 20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.
Acceleration of compact toroid plasma rings for fusion applications
NASA Astrophysics Data System (ADS)
Hartman, C. W.; Barr, W. L.; Eddleman, J. L.; Gee, M.; Hammer, J. H.; Ho, S. K.; Logan, B. G.; Meeker, D. J.; Mirin, A. A.; Nevins, W. M.
1988-08-01
We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to 30 percent efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to X-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed.
Internal Kink Quasi-Mode in Magnetically Confined Toroidal Plasmas
NASA Astrophysics Data System (ADS)
Porcelli, F.; Candy, J.; Breizman, B.; Berk, H.
1997-11-01
A well-known instability of magnetically confined plasmas, the internal kink mode, is thought to be responsible for sawtooth relaxations and fishbone oscillations in tokamak discharges. The mode structure is dominated by the (n,m)=(1,1) Fourier harmonic, with a radial structure characterized by a rigid displacement of the plasma core region (where the safety factor is below unity). In standard linear magnetohydrodynamic (MHD) theory, an eigenmode can be obtained only under unstable conditions (dwmhd < 0). When dwmhd > 0, the solution in the q=1 layer cannot by asymptotically matched to the outer region, and so an eigenmode does not exist. In the more general case where energetic particles modify the energy functional via an additive term, dw = dwmhd + dwhot, the standard theory still fails to provide a well-behaved mode structure when Re dw > 0. In this work, we show how to obtain a mode structure that is valid in both stable and unstable conditions by solving a real-time initial value problem. This extension of the standard linear theory of internal kinks is especially desirable with regard to the development of nonlinear models of the fishbone instability, which attempt to simulate a full fishbone burst. We refer to the internal kink profile that is obtained under stable conditions as a quasi-mode, in view of the fact that the space and time dependences cannot be separated.
NASA Astrophysics Data System (ADS)
Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.
2016-09-01
Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.
Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method
NASA Astrophysics Data System (ADS)
Rasouli, C.; Abbasi Davani, F.; Rokrok, B.
2016-08-01
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.
Chrystal, C.; Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Grierson, B. A.
2012-10-15
To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.
Nonlinear Excitation of Subcritical Instabilities in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Lesur, M.; Itoh, K.; Ido, T.; Osakabe, M.; Ogawa, K.; Shimizu, A.; Sasaki, M.; Ida, K.; Inagaki, S.; Itoh, S.-I.; LHD Experiment Group
2016-01-01
In a collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase space. However, nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave-wave coupling can provide a seed, which is significantly below the threshold, but can still grow by (and only by) the collaboration of fluid and kinetic nonlinearities. By modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave-wave coupling equations, it is shown that this new kind of subcritical instability can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. The model is applied to the bursty onset of geodesic acoustic modes in a LHD experiment. The model recovers several key features such as relative amplitude, time scales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, driven by this mechanism of combined fluid and kinetic nonlinearities.
Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-01
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
NASA Astrophysics Data System (ADS)
Moser, Auna L.; Hsu, Scott C.
2015-05-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.
Moser, Auna L. Hsu, Scott C.
2015-05-15
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.
Merritt, Elizabeth C. Adams, Colin S.; Moser, Auna L.; Hsu, Scott C. Dunn, John P.; Miguel Holgado, A.; Gilmore, Mark A.
2014-05-15
We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
M.C. Campanell, A. Khrabrov and I Kaganovich
2012-05-11
A condition for sheath instability due to secondary electron emission (SEE) is derived for low collisionality plasmas. When the SEE coefficient of the electrons bordering the depleted loss cone in energy space exceeds unity, the sheath potential is unstable to a negative perturbation. This result explains three different instability phenomena observed in Hall thruster simulations including a newly found state with spontaneous ~20MHz oscillations. When instabilities occur, the SEE propagating between the walls becomes the dominant contribution to the particle flux, energy loss and axial transport.
The electromagnetic interchange mode in a partly-ionized collisional plasma. [in F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1975-01-01
A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift, and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange mode is noted: coupling to the intermediate Alfven mode is strongly stabilizing for finite perturbations of the magnetic field. Both ion-viscous and ion-neutral stabilization are included; and it is found that collisions destroy the FLR (finite Larmor radius) cutoff at short perpendicular wavelengths.
Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma
Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.
2014-06-15
The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.
Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet
NASA Astrophysics Data System (ADS)
Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.
2015-12-01
A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.
Graf, A; May, M; Beiersdorfer, P; Magee, E; Lawrence, M; Terry, J; Rice, J
2004-04-29
We present a high throughput (f/3) visible (3500 - 7000 Angstrom) Doppler spectrometer for toroidal rotation velocity measurements of the Alcator C-Mod tokamak plasma. The spectrometer has a temporal response of 1 ms and a rotation velocity sensitivity of {approx}10{sup 5} cm/s. This diagnostic will have a tangential view and map out the plasma rotation at several locations along the outer half of the minor radius (r/a > 0.5). The plasma rotation will be determined from the Doppler shifted wavelengths of D{sub alpha} and magnetic and electric dipole transitions of highly ionized impurities in the plasma. The fast time resolution and high spectral resolving power are possible due to a 6' diameter circular transmission grating that is capable of {lambda}/{Delta}{lambda} {approx} 15500 at 5769 Angstrom in conjunction with a 50 {micro}m slit.
Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)
Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.
1995-12-31
The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.
The direct criterion of Newcomb for the ideal MHD stability of an axisymmetric toroidal plasma
NASA Astrophysics Data System (ADS)
Glasser, A. H.
2016-07-01
A method is presented for determining the ideal magnetohydrodynamic stability of an axisymmetric toroidal plasma, based on a toroidal generalization of the method developed by Newcomb for fixed-boundary modes in a cylindrical plasma. For toroidal mode number n ≠ 0 , the stability problem is reduced to the numerical integration of a high-order complex system of ordinary differential equations, the Euler-Lagrange equation for extremizing the potential energy, for the coupled amplitudes of poloidal harmonics m as a function of the radial coordinate ψ in a straight-fieldline flux coordinate system. Unlike the cylindrical case, different poloidal harmonics couple to each other, which introduces coupling between adjacent singular intervals. A boundary condition is used at each singular surface, where m = nq and q ( ψ ) is the safety factor, to cross the singular surface and continue the solutions beyond it. Fixed-boundary instability is indicated by the vanishing of a real determinant of a Hermitian complex matrix constructed from the fundamental matrix of solutions, the generalization of Newcomb's crossing criterion. In the absence of fixed-boundary instabilities, an M × M plasma response matrix W P , with M the number of poloidal harmonics used, is constructed from the Euler-Lagrange solutions at the plasma-vacuum boundary. This is added to a vacuum response matrix W V to form a total response matrix W T . The existence of negative eigenvalues of W T indicates the presence of free-boundary instabilities. The method is implemented in the fast and accurate DCON code.
Effects of the q profile on toroidal rotation in Alcator C-Mod LHCD plasmas
Rice, J. E.; Gao, C.; Mumgaard, R.; Parker, R. R.; Scott, S. D.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Delgado-Aparicio, L.; Fenzi, C.; et al
2016-02-09
Changes in the core toroidal rotation profiles following injection of lower hybrid (LH) waves have been documented in Alcator C-Mod plasmas. Shot by shot scans of LH input power have been performed at fixed magnetic field and electron density for several plasma currents. For sawtoothing target plasmas, if the input power is low enough that the central safety factor q0 remains below 1, the change in the core rotation is in the counter-current direction, consistent in sign, magnitude and LH power scaling with direct momentum input from the LH waves. If the power level is high enough that there aremore » significant changes to the q profile, including the termination of sawtooth oscillations, the change in the toroidal rotation is in the co-current direction, consistent with changes in the momentum flux through its dependence on the current density profile. Furthermore, the direction of the rotation changes depends on whether q0 is below or above unity, and seemingly not on the magnetic shear, nor the Ohmic confinement regime of the target plasma.« less
Toroidal Alfvén Eigenmodes in TFTR Deuterium-Tritium Plasmas
G.Y. Fu; H. Berk; R. Nazikian; S.H. Batha; Z. Chang; et al
1998-01-01
Purely alpha-particle-driven Toroidal Alfvén Eigenmodes (TAEs) with toroidal mode numbers n=1-6 have been observed in Deuterium-Tritium (D-T) plasmas on the Tokamak Fusion Test Reactor [D.J. Grove and D.M. Meade, Nucl. Fusion 25, 1167 (1985)]. The appearance of mode activity following termination of neutral beam injection in plasmas with q(0)>1 is generally consistent with theoretical predictions of TAE stability [G.Y. Fu et al., Phys. Plasmas 3, 4036 (1996]. Internal reflectometer measurements of TAE activity is compared with theoretical calculations of the radial mode structure. Core localization of the modes to the region of reduced central magnetic shear is confirmed, however the mode structure can deviate significantly from theoretical estimates. The peak measured TAE amplitude of delta n/n~10(superscript -4) at r/a~0.3-0.4 corresponds to delta B/B~10-5, while dB/B~10(superscript -8) is measured at the plasma edge. Enhanced alpha particle loss associated with TAE activity has not been observed.
Effects of the q profile on toroidal rotation in Alcator C-Mod LHCD plasmas
Rice, J. E.; Mumgaard, R.; Parker, R.; Scott, S.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Delgado-Aparicio, L.; Fenzi, C.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J.; Lee, J. P.; Marmar, E. S.; Wolfe, S. M.
2016-01-01
Changes in the core toroidal rotation profiles following injection of lower hybrid (LH) waves have been documented in Alcator C-Mod plasmas. Shot by shot scans of LH input power have been performed at fixed magnetic field and electron density for several plasma currents. For sawtoothing target plasmas, if the input power is low enough that the central safety factor q0 remains below 1, the change in the core rotation is in the counter-current direction, consistent in sign, magnitude and LH power scaling with direct momentum input from the LH waves. If the power level is high enough that there are significant changes to the q profile, including the termination of sawtooth oscillations, the change in the toroidal rotation is in the co-current direction, consistent with changes in the momentum flux through its dependence on the current density profile. The direction of the rotation changes depends on whether q0 is below or above unity, and seemingly not on the magnetic shear, nor the Ohmic confinement regime of the target plasma.
Liang, G. Y.; Li, F.; Wang, F. L.; Zhong, J. Y.; Zhao, G.; Wu, Y.
2014-03-10
Several laboratory facilities were used to benchmark theoretical spectral models that are extensively used by astronomical communities. However, there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory plasmas to make a bridge between them, and we investigate the effects from non-thermal electrons and the contributions from a metastable level population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e., electron beam ion trap plasma) and astrophysical observation (i.e., Comet, Cygnus X-3) are presented. A time evolution of the charge stage and level population are also explored for collisional and photoionized plasmas.
Grach, V. S. Garasev, M. A.
2015-07-15
We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of the stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.
Fully kinetic simulations of magnetic reconnction in semi-collisional plasmas
Daughton, William S; Roytershteyn, Vadim S; Albright, Brian J; Yin, Lin; Bowers, Kevin J; Karimabadi, Homa
2009-01-01
The influence of Coulomb collisions on the dynamics of magnetic reconnection is examined using fully kinetic simulations with a Monte-Carlo treatment of the Fokker-Planck collision operator. This powerful first-principles approach offers a bridge between kinetic and fluid regimes, which may prove useful for understanding the applicability of various fluid models. In order to lay the necessary groundwork, the collision algorithm is first carefully bench marked for a homogeneous plasma against theoretical predictions for beam-plasma interactions and electrical resistivity. Next, the collisional decay of a current layer is examined as a function of guide field, allowing direct comparisons with transport theory for the parallel and perpendicular resistivity as well as the thermoelectric force. Finally, the transition between collisional and collision less reconnection is examined in neutral sheet geometry. For modest Lundquist numbers S {approx}< 1000, a distinct transition is observed when the thickness of the Sweet-Parker layers falls below the ion inertia length {delta}{sub sp} {approx}< d,. At higher Lundquist number, deviations from the Sweet-Parker scaling are observed due to the growth of plasmoids (secondary-islands) within the elongated resistive layer. In certain cases, this instability leads to the onset of fast reconnection sooner than expected from {delta}{sub sp} {approx} d, condition. After the transition to fast reconnection, elongated electron current layers are formed which are unstable to the formation of new plasmoids. The structure and time-dependence of the electron diffusion region in these semi-collisional regimes is profoundly different than reported in two-fluid simulations.
New picture of the 1/1 internal kink and sawtooth in compressible toroidal plasmas
NASA Astrophysics Data System (ADS)
Sugiyama, Linda
2013-10-01
The m = 1 , n = 1 internal kink mode and the sawtooth crash have been analyzed extensively in magnetically confined toroidal plasmas. Nevertheless, many questions remain. A new analysis, with the aid of numerical simulation, shows that small parameter expansions such as large aspect ratio break down in general for the MHD compressible toroidal 1/1 instability with realistically small growth rates. The perpendicular momentum rate of change ρ ∂v⊥ / ∂ t must be very small compared to the individual terms in - ρ (v . ∇) v |⊥ + J × B |⊥ -∇⊥ p . The lowest order mode still has the standard 1/1 internal kink form, but the v⊥ magnitude and growth rate are determined by the higher order terms. Terms containing B~ϕ , nominally associated with the compressional Alfvén wave are important. One corollary is that reduced MHD (RMHD) fails completely and Sweet-Parker-type reconnection never develops. At a critical nonlinear amplitude, associated with the growth of the higher toroidal harmonics, a fast, explosive crash begins with rapidly accelerating velocity growth that matches observations. Other transverse MHD instabilities experience analogous effects. Work supported by the U.S. Department of Energy.
Pahari, Sambaran; Lachhvani, Lavkesh; Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P K
2015-08-01
A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset "hold" time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the "non-neutrality" of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.
Pahari, Sambaran; Lachhvani, Lavkesh Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P. K.
2015-08-15
A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset “hold” time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the “non-neutrality” of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.
NASA Astrophysics Data System (ADS)
Stults, Joshua
This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent
Nonlinear coherent structures of Alfvén wave in a collisional plasma
NASA Astrophysics Data System (ADS)
Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil
2016-07-01
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2015-01-01
Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the corresponding (anomalous) transport coefficients dominate over the collisional ones and their properties are similar to those in collisionless plasmas.
Optical Plasma Diagnostics for Magnetic Reconnection Studies in the Versatile Toroidal Facility
NASA Astrophysics Data System (ADS)
Tarkowski, David; Fasoli, Ambrogio; Egedal, Jan
2000-10-01
Magnetic reconnection studies in a collisionless regime are performed on the MIT Versatile Toroidal Facility (VTF) with emphasis on particle dynamics around the magnetic null point. Plasmas are produced in the VTF by electron cyclotron resonance heating and are confined in a magnetic cusp field. Magnetic reconnection is driven by the ExB drift generated by the combination of the cusp field and the toroidal electric field, which is created by electromagnetic induction using an ohmic transformer. The plasmas are composed primarily of singly ionized argon with typical densities and electron temperatures on the order of 10^17 m-3 and 10 eV. The number of available optical lines and the optical thinness of the plasma suggest that optical diagnostics can play a key role on VTF. Passive spectroscopic measurements yield ion temperature and density and electron temperature as a function of time both before and after the reconnection event. The active measurement is a three level laser induced fluorescence (LIF) scheme. A 10 ns pulsed dye laser is used to pump the 611 nm Argon II line. LIF yields the ion distribution function at a single point in time and can be used to study ion evolution during the reconnection event. Measurement techniques and an analysis of first results will be presented.
Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas
Heidbrink, W. W.
2008-05-15
Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety
Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas
G.Y. Fu; J. Breslau; E. Fredrickson; W. Park; H.R. Strauss
2004-12-14
Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly.
Study of micro-instabilities in toroidal plasmas with negative magnetic shear
Dong, J.Q.; Zhang, Y.Z.; Mahajan, S.M.; Guzdar, P.N.
1996-03-01
The micro-instabilities driven by a parallel velocity shear, and a temperature gradient of ions are studied in toroidal plasmas with negative magnetic shear. Both the fluid and the gyro-kinetic formulations are investigated. It is found that for a broad range of parameters, the linear growth rates of the modes are lower, and the threshold temperature gradient {eta}{sub icr} is higher for plasmas with negative magnetic shear compared to plasmas with positive magnetic shear of equal magnitude. The reduction in the growth rate (with negative shear), although not insignificant, does not seem to be enough to account for the dramatic improvement in the confinement observed experimentally. Other possible physical mechanisms for the improved confinement are discussed.
The Finite Beta Effects on the Toroidal Field Ripple in a Tokamak Plasma
NASA Astrophysics Data System (ADS)
Bunno, M.; Nakamura, Y.; Suzuki, Y.; Shinohara, K.; Matsunaga, G.; Tani, K.
2013-02-01
The efficiency of energetic ion confinement is reduced in a tokamak plasma by the non-axisymmetric field, namely the ripple field. The ripple field is produced by a finite number of toroidal field coils. It is affected by the non-axisymmetric finite beta effect. The three-dimensional MHD equilibrium calculation code VMEC is used to analyze the non-axisymmetric finite beta effect in a ripple tokamak. In the VMEC code, the flux coordinates are used, so the calculation region is limited to the area of plasma. To calculate the orbit outside the plasma, we develop a field calculation code, which is based on the Biot-Savart law. The details of the method and results are described in this paper.
Wall thickness effect on the resistive wall mode stability in toroidal plasmas
Zheng, L.-J.; Kotschenreuther, M.T.
2005-07-15
The effect of finite wall thickness on the stability of n=1 resistive wall modes in toroidal plasmas is investigated. A fusion reactor-relevant configuration is examined. The investigation employs a novel ideal-magnetohydrodynamics adaptive shooting code for axisymmetric plasmas, extended to take into account the wall thickness. Although finite wall thickness generally reduces the growth rate of the resistive wall modes, no contribution to stabilization is found to be made by the portion of the wall that is located beyond the critical position for perfectly conducting wall stabilization. Thus, when the inner side of the wall lies near the critical wall position, the scaling of the growth rate versus wall thickness in the realistic thick-wall calculation is significantly different from that of the usual thin-wall theory. The thin-wall estimate is relevant only when the wall is brought very close to the plasma and is not too thick.
Development of electrostatic turbulence from drift-interchange instabilities in a toroidal plasma
Poli, F. M.; Podesta, M.; Fasoli, A.
2007-05-15
Electrostatic instabilities develop on TORPEX (TORoidal Plasma EXperiment) [A. Fasoli et al., Phys. of Plasmas, 13, 55902 (2006)] in the bad curvature region and propagate consistently with the drift wave dispersion relation. The wave number and frequency spectra are coherent at the location where the instabilities are generated, then broaden along the ExB convection. The phase coupling between spectral components at different frequencies, measured at different locations over the plasma cross section, indicates that the transition from a coherent to a turbulent spectrum is mainly due to three-wave interaction processes. Nonlinear interactions are measured between the linearly unstable mode and fluctuations with larger frequency, with transfer of energy away from the linearly unstable mode. The results are consistent with a nonlinearity induced by the convection of density fluctuations by the ExB fluctuating velocity.
Rotation of weakly collisional plasmas in tokamaks, operated with Alfv{acute e}n waves
Tsypin, V.S.; Elfimov, A.G.; de Azevedo, C.A.; de Assis, A.S.
1996-12-01
The effect of the kinetic Alfv{acute e}n waves on weakly collisional plasma rotation in tokamaks has been studied for the plateau and banana regimes. The quasistationary rotation velocities and radial electric field have been found. The estimation of these quantities for the Phaedrus-T tokamak [S. Wukitch {ital et} {ital al}., Phys. Rev. Lett. {bold 77}, 294 (1996)] and for the Joint European Torus (JET) [A. Fasoli {ital et} {ital al}., Nucl. Fusion, {bold 36}, 258 (1996)] has been presented. It is shown that the kinetic Alfv{acute e}n waves, which are needed for current drive, change weakly the quasistationary rotation velocities and radial electric field, as found from the experimental data of these tokamaks. In conditions with increased rf power, the plasma rotation and radial electric field can essentially grow up. {copyright} {ital 1996 American Institute of Physics.}
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-30
Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan
2014-06-01
The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.
Sharma, Suresh C.; Sharma, Kavita; Gahlot, Ajay
2013-05-15
Current-driven electrostatic ion-cyclotron (EIC) instability is studied in a collisional magnetized dusty plasma. The growth rate and unstable mode frequencies were evaluated based on existing physical parameters relevant to ion cyclotron waves in dusty plasmas. It is found that the unstable mode frequency and growth rate of current-driven EIC instability increase with δ (ion-to-electron density ratio). Moreover, the increase in electron neutral collisional frequency (ν{sub e}) has no effect on the unstable mode frequency while the normalized growth rate has linear dependence on ν{sub e}.
Experimental investigation of plasma flows in open trap with toroidal diverter under ECR discharge
Berezkin, A. V. Bragin, E. Yu. Zhil’tsov, V. A. Kulygin, V. M. Yanchenkov, S. V.
2015-12-15
The results of experimental investigations of plasma flows from an open trap with a toroidal diverter are presented. Cold plasma is generated when introducing microwave power under conditions of electron cyclotron resonance (ECR). The radiation is introduced by a waveguide through a vacuum-tight ceramic window across the axis of the device. By means of the Langmuir probes, the spatial distributions of plasma parameters are measured. The highest density is limited to a critical value n{sub c} (∼10{sup 12} cm{sup –3}) for the generator frequency under use. It is found that the temperature and density of the plasma in the trap and in escaping flows are almost independent of the radius when the ECR zone is located near the open-trap confinement region and the density is close to n{sub c}. At the density n < n{sub c}, ring plasma structures, which collapse under the action of a low-frequency instability, are observed near the separatrix. The possible mechanisms of the occurrence of plasma structures and the nature of the plasma streams are discussed.
On the space-charge formation in a collisional magnetized electronegative plasma
Yasserian, Kiomars; Aslaninejad, Morteza
2012-07-15
The plasma sheath formation in the vicinity of a surrounding wall of magnetized plasma is studied in the presence of the electronegative ions and the positive ion-neutral background collisions. Fluid equations are used to treat the plasma particles species. By using the Sagdeev potential, the influence of the collisions and the magnetic field on the Bohm criterion are investigated. The space-charge profiles are obtained in the presence of a magnetic field in different collision frequencies as well as electronegative ions concentration. It is shown that the collision and the magnetic field raise a space-charge peak, while the presence of the electronegative ions results in damping the peaks. Moreover, it is observed that in the case of high magnetic field, some fluctuations emerge in the space-charge profiles. The influences of the magnetic field and electronegative ion concentration as well as negative ion temperature on the positive ion kinetic energy reaching the plasma surrounding wall and positive ion velocity perpendicular to the sheath axis are investigated. Finally, the net current through the sheath region is obtained for different collisionality and magnetic field values in both electropositive and electronegative plasmas.
Entropy production and Onsager symmetry in neoclassical transport processes of toroidal plasmas
Sugama, H.; Horton, W.
1996-01-01
Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems, including nonaxisymmetric configurations. It is found that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch-Schlueter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. It is proved from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. The full transport coefficients for the banana-plateau and nonaxisymmetric parts are separately derived, and their symmetry properties are investigated. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch{endash}Schlueter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. {copyright} {ital 1996 American Institute of Physics.}
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas.
Ji, X Q; Xu, Y; Hidalgo, C; Diamond, P H; Liu, Yi; Pan, O; Shi, Z B; Yu, D L
2016-01-01
This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas. PMID:27595773
On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas
NASA Astrophysics Data System (ADS)
Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.
2016-09-01
This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas.
On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas
Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.
2016-01-01
This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas. PMID:27595773
Effect of toroidal magnetic field on n = 1 mode stability in rotamak plasmas
Yang, X.; Goss, J.; Kalaria, D.; Huang, T. S.
2011-08-15
To study the effect of toroidal magnetic field on n = 1 mode stability, a series of experiments with linearly ramping the axial current I{sub z}, which makes field-reversed configuration (FRC) to spherical tokamak (ST) transition, have been conducted in rotamak. Results clearly demonstrate that the tilt mode can be completely suppressed by small I{sub z} around 0.4 kA (in comparison with 2.0 kA plasma current). An unknown new mode with larger magnetic perturbations is triggered when I{sub z} reaches 0.5 kA. This instability mode keeps saturation while plasma current is boosted when I{sub z} is in the range of 0.6-1.4 kA. When I{sub z} exceeds 1.6 kA, the new mode suddenly disappears and discharge is free from instability modes.
Liu, Wei; Hsu, Scott; Li, Hui
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Xie, J.
2011-07-19
The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).
Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes
Bagheri, Mehran; Abdikian, Alireza
2014-04-15
We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined.
Transition from collisional drift-wave to multi-instability turbulence in a helicon plasma device
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, S.; Ashourvan, A.; Cui, L.; Diamond, P.; Holland, C.; Hong, R.; Tynan, G.; Vaezi, P.; McKee, J.; Scime, E.; Sears, S.
2015-11-01
Recent studies in the Controlled Shear Decorrelation eXperiment reported a sharp non-monotonic global transition in the plasma dynamics during the transition to broadband turbulence. Using a combination of probes, high speed imaging and laser induced fluorescence, we find that below a threshold magnetic field, the plasma is dominated by density gradient driven resistive drift waves. Above this threshold a new global equilibrium occurs, characterized by steepened density and ion temperature gradients and both azimuthal and parallel velocity shear layers, along with multiple plasma instabilities. At the center, high azimuthal mode number fluctuations are observed rotating in the ion diamagnetic drift direction, while in the density gradient region, drift waves propagate in the electron diamagnetic direction. Outside of this zone, velocity shear-driven fluctuations are observed. Simultaneously a very bright helicon blue core forms, and appears to be associated with a radial particle transport barrier. This new regime shows very rich plasma dynamics including intermittency, blobs, radial transport barrier, inward particle flux against density gradients etc. Above the threshold conditions, linear stability analysis show co-existence of the ion temperature gradient (ITG) instability and velocity shear instability together with collisional electron drift waves. Supported by CMTFO # DE-SC0008378, US DoE # DE-FG02-04ER54738 and NSF # PHY-1360278.
NASA Astrophysics Data System (ADS)
Nave, M. F. F.; Eriksson, L.-G.; Giroud, C.; Johnson, T. J.; Kirov, K.; Mayoral, M.-L.; Noterdaeme, J.-M.; Ongena, J.; Saibene, G.; Sartori, R.; Rimini, F.; Tala, T.; de Vries, P.; Zastrow, K.-D.; Contributors, JET-EFDA
2012-07-01
Understanding the origin of rotation in ion cyclotron resonance frequency (ICRF) heated plasmas is important for predictions for burning plasmas sustained by alpha particles, being characterized by a large population of fast ions and no external momentum input. The angular velocity of the plasma column has been measured in JET H-mode plasmas with pure ICRF heating both for the standard low toroidal magnetic ripple configuration, of about ˜0.08% and, for increased ripple values up to 1.5% (Nave et al 2010 Phys. Rev. Lett. 105 105005). These new JET rotation data were compared with the multi-machine scaling of Rice et al (2007 Nucl. Fusion 47 1618) for the Alfvén-Mach number and with the scaling for the velocity change from L-mode into H-mode. The JET data do not fit well any of these scalings that were derived for plasmas that are co-rotating with respect to the plasma current. With the standard low ripple configuration, JET plasmas with large ICRF heating power and normalized beta, βN ≈ 1.3, have a very small co-current rotation, with Alfvén-Mach numbers significantly below those given by the rotation scaling of Rice et al (2007 Nucl. Fusion 47 1618). In some cases the plasmas are actually counter-rotating. No significant difference between the H-mode and L-mode rotation is observed. Typically the H-mode velocities near the edge are lower than those in L-modes. With ripple values larger than the standard JET value, between 1% and 1.5%, H-mode plasmas were obtained where both the edge and the core counter-rotated.
Ion-acoustic and Buneman instabilities in collisional plasmas with q-nonextensive distribution
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2016-10-01
The ion-acoustic and Buneman instabilities are studied in a current carrying plasma by taking into account the collisional effects and q-nonextensive distribution function. Using the kinetic theory and Bhatnagar-Gross-Krook collision model, a generalized dielectric permittivity function in the presence of moving electrons and electron and ion-neutral collision frequency is derived. The longitudinal dispersion relation in the Buneman and ion-acoustic instability limit is obtained. The results of the Buneman instability shows that the collision frequency, the q-parameter and electron drift velocity affect the growth rate of the instability. Finally, the profile of the ion-acoustic growth rate indicates that by increasing the ion to electron temperature ratio the instability growth rate decreases.
Khorashadizadeh, S. M. Taheri Boroujeni, S.; Niknam, A. R.
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas
Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten
2009-03-15
We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.
Application of a hybrid collisional radiative model to recombining argon plasmas
NASA Astrophysics Data System (ADS)
Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.
1993-02-01
A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.
Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.
2015-06-15
This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.
THE STABILITY OF WEAKLY COLLISIONAL PLASMAS WITH THERMAL AND COMPOSITION GRADIENTS
Pessah, Martin E.; Chakraborty, Sagar E-mail: sagarc@iitk.ac.in
2013-02-10
Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant improvement of our understanding of the processes that determine the physical evolution and observational properties of the intracluster medium (ICM) permeating galaxy clusters. These studies have been carried out under the assumption that the ICM is a homogeneous medium. This, however, might not be a good approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular
Experimental characterization of drift-interchange instabilities in a simple toroidal plasma
NASA Astrophysics Data System (ADS)
Poli, F. M.; Brunner, S.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Müller, S. H.; Plyushchev, G.; Podestà, M.
2006-10-01
Low frequency electrostatic instabilities are investigated on TORPEX [Fasoli, Labit, McGrath, Müller, Podestà, and Poli, Bull. Am. Phys. Soc. 48, 119 (2003)], a toroidal device for basic plasma physics experiments with a toroidal magnetic field 100mT and a small vertical magnetic field (⩽4mT). A two-dimensional (2D) profile of the frequency and amplitude of density and potential fluctuations is reconstructed using electrostatic probes with high space and time resolution. The measured phase velocity, corrected for the Doppler shift induced by the E×B drift, is consistent with the electron diamagnetic drift velocity. The local dispersion relation, measured along and across the magnetic field, is in agreement with the predictions of a linear kinetic slab model for drift waves. Unstable modes are generated in regions of unfavorable curvature, where the pressure gradient is colinear with the magnetic field gradient. It is demonstrated that the curvature of the magnetic field lines is essential for driving the observed instabilities, which are therefore identified as drift-interchange modes.
Experimental characterization of drift-interchange instabilities in a simple toroidal plasma
Poli, F. M.; Brunner, S.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Plyushchev, G.; Podesta, M.
2006-10-15
Low frequency electrostatic instabilities are investigated on TORPEX [Fasoli, Labit, McGrath, Mueller, Podesta, and Poli, Bull. Am. Phys. Soc. 48, 119 (2003)], a toroidal device for basic plasma physics experiments with a toroidal magnetic field 100 mT and a small vertical magnetic field ({<=}4 mT). A two-dimensional (2D) profile of the frequency and amplitude of density and potential fluctuations is reconstructed using electrostatic probes with high space and time resolution. The measured phase velocity, corrected for the Doppler shift induced by the ExB drift, is consistent with the electron diamagnetic drift velocity. The local dispersion relation, measured along and across the magnetic field, is in agreement with the predictions of a linear kinetic slab model for drift waves. Unstable modes are generated in regions of unfavorable curvature, where the pressure gradient is colinear with the magnetic field gradient. It is demonstrated that the curvature of the magnetic field lines is essential for driving the observed instabilities, which are therefore identified as drift-interchange modes.
NASA Astrophysics Data System (ADS)
Lee, Gyung Su.
This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The effects of impurity gradients on saturated ion-temperature-gradient-driven turbulence are discussed and a related explanation of density profile steepening during Z-mode operation is proposed. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current-carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high-temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence. Modifications to the MHD dynamo theory and anomalous thermal transport and confinement scaling predictions are examined.
Collisional relaxation of a strongly magnetized two-species pure ion plasma
Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H.
2014-04-15
The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two
Evolution of plasma loops in a semi-toroidal pinch experiment
Mackel, F. Ridder, S.; Tenfelde, J.; Tacke, T.; Soltwisch, H.
2015-04-15
The FlareLab experiment is a pulsed-power discharge generating magnetized plasma loops similar to a pinch experiment in a semi-toroidal configuration. After gas breakdown along a circular magnetic guide field, the structure expands in its major radius as the plasma becomes highly conductive and the discharge current rises. Photographs, current and electron density measurements reveal a significant broadening in the lateral direction leading to an increasing departure from radial symmetry of plasma parameters in the cross section. It is shown that the luminosity is related to both high electron density and high current density. Simultaneous measurements of current density and electric field reveal a high parallel resistivity of the plasma leading to fast diffusion across the magnetic field. Indications for anomalous resistivity are found by comparison with the Spitzer formula. As the experiment differs from a z-pinch experiment only by the semi-circular shape of the current path, the observed evolution is unexpected and might be of more fundamental significance.
Self-consistent Equilibrium Model of Low-aspect-ratio Toroidal Plasma with Energetic Beam Ions
E.V. Belova; N.N. Gorelenkov; C.Z. Cheng
2003-04-09
A theoretical model is developed which allows the self-consistent inclusion of the effects of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A two-component plasma is considered, where the energetic ions are treated using a kinetic Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent the thermal plasma. The model allows for an anisotropic distribution function and a large Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with an anisotropic fast-ion distribution have been calculated for NSTX. It is shown for typical experimental parameters that the contribution of the energetic neutral-beam ions to the total current can be comparable to that of the background plasma, and that the kinetic modifications of the equilibrium can be significant. The range of validity of the finite-Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX is discussed. The calculated kinetic equilibria can be used for self-consistent numerical studies of beam-ion-driven instabilities in NSTX.
NASA Astrophysics Data System (ADS)
Goforth, M. M.; Loch, S. D.; Maurer, D. A.; Pearce, A. J.; Traverso, P. J.
2014-10-01
A Thomson scattering system is in development for the Compact Toroidal Hybrid (CTH) experiment to provide localized, internal electron temperature and density measurements. Thomson scattering yields accurate information on the internal plasma electron pressure profile, which will aid in the equilibrium reconstruction of CTH plasmas using the V3FIT code. The expected Thomson scattered signal is approximately 1015 times less than the incident laser light, and can be overwhelmed by stray laser light, background plasma emission, and intrinsic detector noise. Background plasma emission measurements in the visible spectral region near the planned laser wavelength of 532 nm are underway using a Holospec f/1.8 spectrometer and an And or iStar image intensified CCD camera to quantify line and continuum background levels. In addition, impurity line identification and plans for a separate line-of-sight averaged impurity temperature and density measurement capability employing the Thomson spectrometer are in progress. This work is supported by US DOE Grant DE-FG-02-00ER54610 and by the Auburn University Undergraduate Research Fellowship.
Magnetic topology and current channels in plasmas with toroidal current density inversions
NASA Astrophysics Data System (ADS)
Ciro, D.; Caldas, I. L.
2013-10-01
The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is considered. Previous works have shown that internal regions with negative current density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive a general expression relating the positive and negative currents inside the non-nested surfaces. This is done in terms of an anisotropy parameter that is model-independent and is based in very general properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands screen the negative one in the plasma center by reaching about twice its magnitude. Further, we illustrate these results by developing a family of analytical local solutions for the poloidal magnetic field in a region of interest that contains the inverted current. These local solutions exhibit non-nested magnetic surfaces with a combined current of at least twice the magnitude of the negative one, as prescribed from the topological arguments, and allow to study topological transitions driven by geometrical changes in the current profile. To conclude, we discuss the signatures of internal current density inversions in a confinement device and show that magnetic pitch measurements may be inappropriate to differentiate current reversals and small current holes in plasmas.
Elements of Neoclassical Theory and Plasma Rotation in a Tokamak
NASA Astrophysics Data System (ADS)
Smolyakov, A.
2015-12-01
The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References
Collisional bulk ion transport and poloidal rotation driven by neutral beam injection
Newton, Sarah L.; Helander, Per; Catto, Peter J.
2007-06-15
Neutral beam injection (NBI) is known to significantly affect radial transport in a tokamak plasma. Furthermore, recent observations have shown poloidal velocities, in the presence of NBI, significantly in excess of the standard neoclassical value. Motivated by this, the additional collisional radial bulk ion fluxes of particles, heat and toroidal angular momentum, and the poloidal velocity, driven by fast ions from NBI have been evaluated for a low-collisionality, pure plasma, with strong toroidal rotation and arbitrary aspect ratio. Higher order velocity space structure of the fast ion distribution function can be significant, whilst the effects of toroidal acceleration caused by strong NBI dominate at large aspect ratio. The driven poloidal velocity depends strongly on system parameters, becoming larger at higher beam density and lower beam energy.
Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment
Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)
2016-08-05
This public data set contains openly-documented, machine readable digital research data accompanying 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment' by K.E. Thome et al., accepted for publication in Nuclear Fusion.
Gyrokinetic study of electromagnetic effects on toroidal momentum transport in tokamak plasmas
Hein, T.; Angioni, C.; Fable, E.; Candy, J.; Peeters, A. G.
2011-07-15
The effect of a finite {beta}{sub e} = 8{pi}n{sub e}T{sub e}/B{sup 2} on the turbulent transport of toroidal momentum in tokamak plasmas is discussed. From an analytical gyrokinetic model as well as local linear gyrokinetic simulations, it is shown that the modification of the parallel mode structure due to the nonadiabatic response of passing electrons, which changes the parallel wave vector k{sub ||} with increasing {beta}{sub e}, leads to a decrease in size of both the diagonal momentum transport as well as the Coriolis pinch under ion temperature gradient turbulence conditions, while for trapped electron modes, practically no modification is found. The decrease is particularly strong close to the onset of the kinetic ballooning modes. There, the Coriolis pinch even reverses its direction.
Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
Ida, K.; Kobayashi, T.; Evans, T. E.; Inagaki, S.; Austin, M. E.; Shafer, M. W.; Ohdachi, S.; Suzuki, Y.; Itoh, S. -I.; Itoh, K.
2015-11-04
The coupling between the transport and magnetic topology is an important issue because the structure of magnetic islands, embedded in a toroidal equilibrium field, depends on the nature of the transport at the edge of the islands. Measurements of modulated heat pulse propagation in the DIII-D tokamak have revealed the existence of self-regulated oscillations in the radial energy transport into magnetic islands that are indicative of bifurcations in the island structure and transport near the q = 2 surface. Large amplitude heat pulses are seen in one state followed by small amplitude pulses later in the discharge resulting in amore » repeating cycle of island states. These two states are interpreted as a bifurcation of magnetic island with high and low heat pulse accessibility. In conclusion, this report describes the discovery of a bifurcation in the coupled dynamics between the transport and topology of magnetic islands in tokamak plasmas.« less
Simulation study of hysteresis in the gradient-flux relation in toroidal plasma turbulence
NASA Astrophysics Data System (ADS)
Kasuya, N.; Sugita, S.; Inagaki, S.; Itoh, K.; Yagi, M.; Itoh, S.-I.
2015-04-01
Global nonlinear simulations with heat modulation are carried out to understand the turbulent transport mechanism in toroidal plasmas. Rapid propagation of the heat modulation and a hysteresis in the gradient-flux relation are found in the turbulent simulation of drift-interchange modes. A global mode is excited nonlinearly, and the nonlinear couplings with Reynolds stress take a finite temporal duration for self-consistent redistribution of the energy. The mode also has a seesaw effect: increase of the amplitude of the global mode at one position affects the turbulence at the other radial position not by inducing the radial flux by itself, but by absorbing the energy from microscopic modes. Successive excitations of microscopic modes cause the accelerated propagation of the flux change like turbulence spreading after the onset of modulation. Owing to these non-diffusive processes, the hysteresis appears in the gradient-flux relation, which is compared with experiments.
Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
Ida, K.; Kobayashi, T.; Evans, T. E.; Inagaki, S.; Austin, M. E.; Shafer, M. W.; Ohdachi, S.; Suzuki, Y.; Itoh, S.-I.; Itoh, K.
2015-01-01
The coupling between the transport and magnetic topology is an important issue because the structure of magnetic islands, embedded in a toroidal equilibrium field, depends on the nature of the transport at the edge of the islands. Measurements of modulated heat pulse propagation in the DIII-D tokamak have revealed the existence of self-regulated oscillations in the radial energy transport into magnetic islands that are indicative of bifurcations in the island structure and transport near the q = 2 surface. Large amplitude heat pulses are seen in one state followed by small amplitude pulses later in the discharge resulting in a repeating cycle of island states. These two states are interpreted as a bifurcation of magnetic island with high and low heat pulse accessibility. This report describes the discovery of a bifurcation in the coupled dynamics between the transport and topology of magnetic islands in tokamak plasmas. PMID:26530273
Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
Ida, K.; Kobayashi, T.; Evans, T. E.; Inagaki, S.; Austin, M. E.; Shafer, M. W.; Ohdachi, S.; Suzuki, Y.; Itoh, S. -I.; Itoh, K.
2015-11-04
The coupling between the transport and magnetic topology is an important issue because the structure of magnetic islands, embedded in a toroidal equilibrium field, depends on the nature of the transport at the edge of the islands. Measurements of modulated heat pulse propagation in the DIII-D tokamak have revealed the existence of self-regulated oscillations in the radial energy transport into magnetic islands that are indicative of bifurcations in the island structure and transport near the q = 2 surface. Large amplitude heat pulses are seen in one state followed by small amplitude pulses later in the discharge resulting in a repeating cycle of island states. These two states are interpreted as a bifurcation of magnetic island with high and low heat pulse accessibility. In conclusion, this report describes the discovery of a bifurcation in the coupled dynamics between the transport and topology of magnetic islands in tokamak plasmas.
Moser, Auna L.; Hsu, Scott C.
2015-05-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less
Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.
2008-05-15
A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.
Closure and transport theory for high-collisionality electron-ion plasmas
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.
2013-04-01
Systems of algebraic equations for a high-collisionality electron-ion plasma are constructed from the general moment equations with linearized collision operators [J.-Y. Ji and E. D. Held, Phys. Plasmas 13, 102103 (2006) and J.-Y. Ji and E. D. Held, Phys. Plasmas 15, 102101 (2008)]. A systematic geometric method is invented and applied to solve the system of equations to find closure and transport relations. It is known that some closure coefficients of Braginskii [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1] are in error up to 65% for some finite values of x (cyclotron frequency × electron-ion collision time) and have significant error in the large-x limit [E. M. Epperlein and M. G. Haines, Phys. Fluids 29, 1029 (1986)]. In this work, fitting formulas for electron coefficients are obtained from the 160 moment (Laguerre polynomial) solution, which converges with increasing moments for x ≤100 and from the asymptotic solution for large x-values. The new fitting formulas are practically exact (less than 1% error) for arbitrary x and Z (the ion charge number, checked up to Z = 100). The ion coefficients for equal electron and ion temperatures are moderately modified by including the ion-electron collision operator. When the ion temperature is higher than the electron temperature, the ion-electron collision and the temperature change terms in the moment equations must be kept. The ion coefficient formulas from 3 moment (Laguerre polynomial) calculations, precise to less than 0.4% error from the convergent values, are explicitly written.
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
NASA Astrophysics Data System (ADS)
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in
Sheared velocity flows as a source of pressure anisotropy in low collisionality plasmas
NASA Astrophysics Data System (ADS)
Del Sarto, Daniele; Pegoraro, Francesco; Cerri, Silvio Sergio; Califano, Francesco; Tenerani, Anna
2015-04-01
Non-Maxwellian metaequilibrium states may exist in low-collisionality plasmas as evidenced by direct (particle distributions) and indirect (e.g., instabilities driven by pressure anisotropy) satellite and laboratory measurements. These are directly observed in the solar wind (e.g. [1]), in magnetospheric reconnection events [2], in magnetically confined plasmas [3] or in simulations of Vlasov turbulence [4]. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic. We discuss how the propagation of "magneto-elastic" waves can affect the pressure tensor anisotropization and the small scale formation that arise from the interplay between the gyrotropic terms due to the magnetic field and flow vorticity, and the non-gyropropic effect of the flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution. This anisotropization mechanism might provide a good candidate for the understanding of the observed correlation between the presence of a sheared velocity flow and the signature of pressure anisotropies which are not yet explained within the standard models based e.g. on the CGL paradigm (see also [5]). Examples of these signatures are provided by the threshold lowering of ion-Weibel instabilities in the geomagnetic tail, observed in concomitance to the presence of a velocity shear in the near-earth plasma profile [6], or by the relatively stronger anisotropization measured for core protons in the fast solar wind [4,7] or in "space simulation" laboratory plasma experiments [3]. 1] E. Marsch et al., Journ. Geophys. Res. 109, A04120 (2004); Yu. V. Khotyainstev at el., Phys. Rev. Lett. 106, 165001 (2011). [2] N. Aunai et al., Ann. Geophys. 29, 1571 (2011); N. Aunai et al., Journ. Geophys. Res. 116, A09232 (2011). [3] E.E. Scime et al., Phys. Plasmas 7, 2157
Rodrigues, Paulo; Bizarro, Joao P. S.
2013-04-15
The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.
Full-wave calculations in flux coordinates for toroidal geometry
Carreras, B.A.; Lynch, V.E.; Jaeger, E.F.; Batchelor, D.B.
1988-01-01
A new 2-D full-wave code, HYPERION, employing a poloidal and toroidal mode expansion and including the toroidal terms arising in the wave equation has been developed. It is based on the existing modules developed for the MHD stability codes and uses as input the tokamak equilibria calculated with the RSTEQ code. At present the plasma response is described by the collisionally broadened cold plasma conductivity. However, the code is written in straight field line coordinates, this permits the accurate representation of k /sub /parallel// and as a consequence allows the incorporation of the plasma Z functions. This code also retains the E/sub /parallel// component of the electric field which will allow the study of the low density region of the plasma. We have done detailed benchmarking of the HYPERION code in the cold plasma limit with the existing finite difference ORION full-wave code. The agreement is very good.
Anomalous collisional absorption of laser pulses in underdense plasma at low temperature
NASA Astrophysics Data System (ADS)
Kundu, M.
2015-04-01
In a previous paper [M. Kundu, Phys. Plasmas 21, 013302 (2014), 10.1063/1.4862038], fractional collisional absorption (α ) of laser light in underdense plasma was studied by using a classical scattering model of electron-ion collision frequency νei, where total velocity v =√{vth2+v02 } (with vth and v0 as the thermal and the ponderomotive velocity of an electron) dependent Coulomb logarithm lnΛ (v ) was shown to be responsible for the anomalous (unconventional) increase of νei and α (∝νei ) with the laser intensity I0 up to a maximum value about an intensity Ic in the low temperature (Te<15 eV ) regime and a conventional ≈I0-3 /2 decrease when I0≫Ic . One may object that the anomalous increase in νei and α were partly due to the artifact introduced in lnΛ through the maximum cutoff distance bmax∝v . In this work, we show similar anomalous increase in νei and α versus I0 (in the low temperature and underdense density regime) with more accurate quantum and classical kinetic models of νei without using lnΛ , but with a proper choice of the total velocity dependent inverse cutoff length kmax∝v2 (classical) or kmax∝v (quantum). For a given I0<5 ×1014Wcm -2 , νei versus Te also exhibits so far unnoticed identical anomalous increase as νei versus I0, even if the conventional kmax∝vth2 or kmax∝vth (without v0) is chosen. The total velocity dependent kmax in the kinetic models, as proposed here, is found to explain the anomalous increase of α with I0 measured in some earlier laser-plasma experiments.
Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.
2013-12-15
Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.
Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.
2009-07-03
The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.
Diem, S J; Taylor, G; Caughman, J B; Efthimion, P C; Kugel, H; LeBlanc, B P; Phillips, C K; Preinhaelter, J; Sabbagh, S A; Urban, J
2009-07-01
The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.
Sheared velocity flows as a source of pressure anisotropy in low collisionality plasmas
NASA Astrophysics Data System (ADS)
Del Sarto, D.; Pegoraro, F.; Califano, F.
2014-12-01
Non-Maxwellian metaequilibrium states may exist in low-collisionality plasmas as evidenced by direct (particle distributions) and indirect (e.g., instabilities driven by pressure anisotropy) satellite and laboratory measurements. These are directly observed in the solar wind (e.g. [1]), in magnetospheric reconnection events [2], in magnetically confined plasmas [3] or in simulations of Vlasov turbulence [4]. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic. We discuss how the propagation of magneto-elastic waves can affect the pressure tensor anisotropization and the small scale formation that arise from the interplay between the gyrotropic terms due to the magnetic field and the flow vorticity and the non-gyropropic effect of the flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution. This anisotropization mechanism might provide a good candidate for the understanding of the observed correlation between the presence of a sheared velocity flow and the signature of pressure anisotropies which are not yet explained within the standard models based e.g. on the CGL paradigm. Examples of these signatures are provided e.g. by the threshold lowering of ion-Weibel instabilities in the geomagnetic tail, observed in concomitance to the presence of a velocity shear in the near-earth plasma profile [5], or by the relatively stronger anisotropization measured for core protons in the fast solar wind [4,6] or in "space simulation" laboratory plasma experiments [3]. [1] E. Marsch et al., Journ. Geophys. Res. 109, A04120 (2004); Yu. V. Khotyainstev at el., Phys. Rev. Lett. 106, 165001 (2011). [2] N. Aunai et al., Ann. Geophys. 29, 1571 (2011); N. Aunai et al., Journ. Geophys. Res. 116, A09232 (2011). [3] E.E. Scime et al., Phys. Plasmas 7, 2157 (2000). [4
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.
2010-09-24
The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.
NASA Astrophysics Data System (ADS)
Chen, Yang
2000-10-01
The physics of kinetic electrons and electromagnetic fluctuations are key challenges in microturbulence simulation research. Recently, we have made progress in this area by developing a drift-kinetic electron model using both the ``split-weight scheme"(I. Manuilskiy and W. W. Lee, Phys. Plasmas 7 1381 (2000)) and the canonical parallel momemtum formulation of gyrokinetics(T. S. Hahm, W. W. Lee and A. Brizard, Phys. Fluids 31(1988) 1940) in a fully nonlinear three-dimensional toroidal field-line-following simulation. This model includes magnetic field perturbations perpendicular to the equilibrium magnetic field. Numerical issues arising from the resolution of the magnetic skin depth(J. Cummings, Ph.D. Thesis, Princeton Univ. (1994)) currently limit these simulations to small <≈ β, β m_i/me <≈ O(1) and progress in this area will be reported. A complementary hybrid simulation with fully gyrokinetic ions and a zero-inertia electron fluid has been developed as well. The electron fluid equations are derived from moments of the drift kinetic equation and a predictor-corrector scheme for the fluid-hybrid model has been implemented in three-dimensional toroidal field-line-following geometry. This is a much simpler electron model and works well at high β. We are currently using both models to study the effects of electron dynamics on turbulence, including particle transport (which is zero in simulations using adiabatic response), kinetic Alfvén modes and modification to zonal flows due to kinetic electrons and the generation of zonal fields through including A_allel(A. Das and P. H. Diamond, "Kinetic theory of the zonal flow instability in electromagnetic drift-wave turbulence", to appear in Phys. Plasmas). Both hybrid and the fully kinetic simulations have been carefully benchmarked with linear theory in the slab limit. Simulation results for turbulence with both trapped-electron drive and ion-temperature-gradient drive will be presented. We will report results
Ramos, J. J.
2010-08-15
A closed theoretical model to describe slow, macroscopic plasma processes in a fusion-relevant collisionality regime is set forward. This formulation is a hybrid one, with fluid conservation equations for particle number, momentum and energy, and drift-kinetic closures. Intended for realistic application to the core of a high-temperature tokamak plasma, the proposed approach is unconventional in that the ion collisionality is ordered lower than in the ion banana regime of neoclassical theory. The present first part of a two-article series concerns the electron system, which is still equivalent to one based on neoclassical electron banana orderings. This system is derived such that it ensures the precise compatibility among the complementary fluid and drift-kinetic equations, and the rigorous treatment of the electric field and the Fokker-Planck-Landau collision operators. As an illustrative application, the special limit of an axisymmetric equilibrium is worked out in detail.
Collisional thermalization of hydrogen and helium in solar-wind plasma.
Maruca, B A; Bale, S D; Sorriso-Valvo, L; Kasper, J C; Stevens, M L
2013-12-13
In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0 AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1 AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0 AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.
Kontar, Eduard P.; Jeffrey, Natasha L. S.; Bian, N. H.; Emslie, A. Gordon
2015-08-10
Extending previous studies of nonthermal electron transport in solar flares, which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an ad hoc low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather, the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.
NASA Astrophysics Data System (ADS)
Iordanova, Snejana; Paunska, Tsvetelina
2016-02-01
A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H+, H2+, and H3+. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the Hα to Hβ line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.
Landreman, M.; Smith, H. M.; Helander, P.; Mollén, A.
2014-04-15
In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-E × B-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible E × B-drift approximation is quite accurate in this regime. However, near the electric field resonance, the models yield substantially different results. We also compare results for various collision operators, including the full linearized Fokker-Planck operator. At low collisionality, the radial transport driven by radial gradients is nearly identical for the different operators; while in other cases, it is found to be important that collisions conserve momentum.
Formation of collisional sheath in electronegative plasma with two species of positive ions
Moulick, R. Goswami, K. S.
2015-03-15
Sheath formation is investigated for electronegative plasma in presence of two species of positive ions in collisional environment. The gas under consideration is a mixture of oxygen and argon. Argon is the considered as having fixed volume and impact of collision is studied with increasing pressure of oxygen. Fluid equations are solved for three species namely, the two positive ions and a negative ion. Electrons are considered to follow Boltzmann distribution. Collision is modeled by constant mean free path model and has been used as a parameter. It has been found that collision enhances the sheath formation. The negative ion core is nearly unaffected by the presence of collision and is governed by the electric potential. The negative flux field is, however, affected by the presence of collision and shows a steady behavior in front of the wall. The two positive ions are heavily affected by the presence of collision and the modeling is such that their equilibrium densities can be estimated by solving simultaneous cubic equations.
Tokamak with liquid metal toroidal field coil
Ohkawa, Tihiro; Schaffer, Michael J.
1981-01-01
Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.
SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.
2000-06-07
A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.
Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
NASA Astrophysics Data System (ADS)
Evans, T. E.
2015-12-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δ b\\bot\\text{ext}≈ {{10}-4}\\to {{10}-3}~\\text{T} ). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes (ELMs). At the same time, theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design (Loarte et al 2014 Nucl. Fusion 54 033007). This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.
Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism
D.A. Gates; R.B. White
2004-01-28
Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.
Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence
Sugama, H.; Horton, W.
1995-08-01
Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Trapped Electron Stabilization of Ballooning Modes in Low Aspect Ratio Toroidal Plasmas
C.Z. Cheng and N.N. Gorelenkov
2004-03-18
The kinetic effects of trapped electron dynamics and finite gyroradii and magnetic drift motion of ions are shown to give rise to a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension for ballooning modes in low aspect ratio toroidal plasmas. For large aspect ratio the stabilizing effect increases (reduces) the {beta}(= 2P/B{sup 2}) threshold for the first (second) stability of the kinetic ballooning mode (KBM) from the MHD {beta} threshold value by a factor proportional to the trapped electron density fraction. For small aspect ratio the stabilizing effect can greatly increase the {beta} threshold of the first stability of KBMs from the MHD {beta} threshold by S{sub c} {approx_equal} 1 + (n{sub e}/n{sub eu}){delta}, where n{sub e}/n{sub eu} is the ratio of the total electron density to the untrapped electron density, and {delta} depends on the trapped electron dynamics and finite gyroradii and magnetic drift motion of ions. If n{sub e}/n{sub eu} >> 1 as in the National Spherical Torus Experiment (NSTX) with an aspect ratio approximately equal to 1.4, the KBM should be stable for {beta} {le} 1 for finite magnetic shear. Therefore, unstable KBMs are expected only in the weak shear region near the radial location of the minimum of the safety factor in NSTX reverse shear discharges.
NASA Astrophysics Data System (ADS)
Bokshi, A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.
2016-07-01
We consider a time-dependent linear global electrostatic toroidal fluid ion-temperature gradient (ITG) model to study the evolution of toroidal drift modes in tokamak plasmas as the equilibrium flow-shear varies with time. While we consider the ITG mode as a specific example, the results are expected to be valid for most other toroidal microinstabilities. A key result is that when there is a position in the plasma with a maximum in the instability drive (e.g. ITG), there is a transient burst of stronger growth as the flow-shear evolves through a critical value. This transient burst is expected to drive a filamentary plasma eruption, reminiscent of small-ELMs. The amplitude of the dominant linear mode is initially peaked above or below the outboard midplane, and rotates through it poloidally as the flow-shear passes through the critical value. This theoretical prediction could provide an experimental test of whether this mechanism underlies some classes of small-ELMs.
Self-organization of Reconnecting Plasmas to Marginal Collisionality in the Solar Corona
NASA Astrophysics Data System (ADS)
Imada, S.; Zweibel, E. G.
2012-08-01
We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates are different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.
SELF-ORGANIZATION OF RECONNECTING PLASMAS TO MARGINAL COLLISIONALITY IN THE SOLAR CORONA
Imada, S.; Zweibel, E. G.
2012-08-20
We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates are different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.
NASA Astrophysics Data System (ADS)
Nersisyan, Hrachya; Deutsch, Claude; Das, A. K.; PlasMag1 Collaboration
2011-10-01
The results of a theoretical investigation on the low-velocity stopping power of the ions moving in a magnetized and collisional plasma are discussed. The stopping power for an ion is calculated through linear response theory (LRT) with a dielectric function approach. Collisions, leading to a damping of the plasma excitations are taken into account with a number-conserving relaxation time approximation within LRT. In order to highlight the combined effects of collisions and magnetization, we compare analytical and numerical results derived for a nonzero damping and magnetic field to those with none. It is thus demonstrated that collisions remove the anomalous friction obtained previously for collisionless magnetized plasmas at low ion velocities. One of our main goals is to contrast present theoretical results with those derived from a novel diffusion formulation based on the one-component plasma hydromodes respectively framed on target ions and electrons.
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B. Ghorbanalilu, M.
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of the electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.
Héron, A.; Adam, J. C.
2015-07-15
We present a set of 2D collisional particle-in-cell simulations of the interaction of ultra-intense laser pulses with over-dense cold collisional plasmas. The size of these simulations is about 100 times as large as those previously published. This allows studying the transport of energetic particles on time scale of the order of 400 fs without perturbations due to the influence of boundary effects and performing a very detailed analysis of the physics of the transport. We confirm the existence of a threshold in intensity close to the relativistic threshold above which the beam of energetic particles diverges when it penetrates the cold plasma. We also study the applicability of Ohm's law to compute the electric field, which is the method commonly used in hybrid codes. The heating of the cold plasma is then studied and we show that half of the heating is anomalous, i.e., not given by standard Joule effect. We discuss the previously published results in the light of these new simulations.
NASA Astrophysics Data System (ADS)
Héron, A.; Adam, J. C.
2015-07-01
We present a set of 2D collisional particle-in-cell simulations of the interaction of ultra-intense laser pulses with over-dense cold collisional plasmas. The size of these simulations is about 100 times as large as those previously published. This allows studying the transport of energetic particles on time scale of the order of 400 fs without perturbations due to the influence of boundary effects and performing a very detailed analysis of the physics of the transport. We confirm the existence of a threshold in intensity close to the relativistic threshold above which the beam of energetic particles diverges when it penetrates the cold plasma. We also study the applicability of Ohm's law to compute the electric field, which is the method commonly used in hybrid codes. The heating of the cold plasma is then studied and we show that half of the heating is anomalous, i.e., not given by standard Joule effect. We discuss the previously published results in the light of these new simulations.
Abedi, Samira; Dorranian, Davoud; Abari, Mehdi Etehadi; Shokri, Babak
2011-09-15
In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.
NASA Astrophysics Data System (ADS)
Xinyi, Wang; Shali, Xiao; jian, Lu; Yufen, Wu; Jun, Shi; Jiayu, Qian; Shenye, Liu; Minxi, Wei; Bolun, Chen
2016-04-01
Based on the Bragg law and imaging principle of bent crystal, the imaging properties of the monochromic backlighting system with a toroidally bent crystal were studied via ray-tracing simulations and experiments. Comparison experiments with both toroidally and spherically bent crystals using a Cr line as the backlighter were performed, showing that using toroidally bent crystal, a 2D image with the same magnifications in meridional and sagittal directions can be obtained with higher spatial resolution. Experiments with laser-produced plasmas using Mica crystal were carried out on the Shenguang II laser facility. Five laser beams were focused onto a Ti planar target producing a line at 4.75 keV as the backlighter and an image of a metal grid with size of 200 μm × 200 μm was recorded with an x-ray image plate. A spatial resolution of 40 μm was demonstrated with a magnification of 3 due to the restriction of the target chamber size. 10 μm spatial resolution might be possible if the detector can be located outside the chamber to enlarge the magnification.
Plasma pressure effect on the multiple low-shear toroidal Alfven eigenmodes
Marchenko, V. S.
2009-04-15
It is shown that there is a critical thermal pressure gradient at which the polarizations of the multiple low-shear toroidal Alfven eigenmodes (TAEs) are reversed. Below the critical value, the TAE spectrum consists of two bands of the even (odd) modes located in the upper (lower) part of the toroidal Alfven gap, which is consistent with the zero-pressure limit [J. Candy, B. N. Breizman, J. W. Van Dam, and T. Ozeki, Phys. Lett. A 215, 299 (1996)]. Above the critical pressure, the odd (even) TAEs appear in the upper (lower) part of the gap.
Integration of Full Particle Orbit in Toroidal Plasmas Using Boris Scheme
NASA Astrophysics Data System (ADS)
Wei, Xishuo; Xiao, Yong
2014-10-01
When studying particle dynamics in high frequency electromagnetic waves, such as low hybrid wave heating, it is important to integrate full particle orbit accurately to very long time in tokamaks. Here we derived a formulation under magnetic coordinate based on the Boris Scheme, which can be used effectively to push particles in long time scale. After several hundred gyro-periods, the banana orbit can be observed and the toroidal precession frequency can be measured. The toroidal precession frequency is found to match that from the guiding center simulation. This new method shows superior numeric properties than the traditional Runge-Kutta method in terms of conserving particle energy and magnetic moment.
Qiu, Hui-Bin; Song, Hai-Ying; Liu, Shi-Bing
2015-09-15
Nonlinear Raman forward scattering of an intense short laser pulse with a duration shorter than the plasma period propagating through a homogenous collisional nonextensive distributed plasma in the presence of a uniform magnetic field perpendicular to both the direction of propagation and electric vector of the radiation field is investigated theoretically when ponderomotive, relativistic, and collisional nonlinearities are taken into account. The governing equations for nonlinear wave in the context of nonextensive statistics are given, the nonextensive coupled equations describing the nonlinear Raman forward scattering instability are solved by the Fourier transformation method, and the growth rate of the nonlinear Raman forward scattering instability is obtained. The results in the case q → 1 are consistent with those in the framework of the Maxwellian distribution. It is found that the instability growth rate first decreases on increasing electron thermal velocity, minimizes at a critical thermal velocity, and then increases steeply; the critical temperature dependents on the nonextensive parameter, and the greater nonextensive parameter, correspond to the greater critical temperature; when the thermal velocity of electron is less than the critical speed, the instability growth rate is found to be enhanced as the nonextensive parameter increases; but when the thermal velocity is greater than the critical speed, the instability growth rate decreases on increasing the nonextensive parameter.
NASA Astrophysics Data System (ADS)
Tribeche, Mouloud; Mayout, Saliha
2016-07-01
The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
NASA Astrophysics Data System (ADS)
Theiler, C.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podestà, M.; Poli, F. M.; Ricci, P.
2008-04-01
Intermittent cross-field particle transport events (ITEs) are studied in the basic toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], with focus on the role of the density gradient. ITEs are due to the intermittent radial elongation of an interchange mode. The elongating positive wave crests can break apart and form blobs. This is not necessary, however, for plasma particles to be convected a considerable distance across the magnetic field lines. Conditionally sampled data reveal two different scenarios leading to ITEs. In the first case, the interchange mode grows radially from a slab-like density profile and leads to the ITE. A novel analysis technique reveals a monotonic dependence between the vertically averaged inverse radial density scale length and the probability for a subsequent ITE. In the second case, the mode is already observed before the start of the ITE. It does not elongate radially in a first stage, but at a later time. It is shown that this elongation is preceded by a steepening of the density profile as well.
Rej, D.J.
1984-08-01
The engineering design and construction details for the compact toroid plasma translation experiment FRX-C/T are reviewed. A translation region consisting of a 0.4-m-i.d., up to 6-m-long metallic vacuum chamber has been added onto one end of the field-reversed theta-pinch device FRX-C. A 2.5-MW, dc-powered, water-cooled solenoid magnet produces an axial magnetic field of up to 10 kG in this region. A complete directory of all related engineering drawings is also included.
McKenna, K.F.
1980-09-01
The generation and/or sustaining of a Compact Toroid (CT) configuration using the RMF technique is a relatively new and unknown concept. In this report the basic principles, historical development, and current theoretical understanding of this concept are reviewed. Significant experimental and theoretical results, potential problem areas, and recommendations for the direction of future work are discussed. An illustrative analysis of the application of the RMF technique to a CT reactor is presented. The results of a recent experiment, the Rotamak, in which a Spheromak-like CT plasma was produced using the RMF technique, are presented.
Matsuyama, A.; Isaev, M. Yu.; Watanabe, K. Y.; Suzuki, Y.; Nakajima, N.; Hanatani, K.; Cooper, W. A.; Tran, T. M.
2009-05-15
To evaluate the bootstrap current in nonaxisymmetric toroidal plasmas quantitatively, a {delta}f Monte Carlo method is incorporated into the moment approach. From the drift-kinetic equation with the pitch-angle scattering collision operator, the bootstrap current and neoclassical conductivity coefficients are calculated. The neoclassical viscosity is evaluated from these two monoenergetic transport coefficients. Numerical results obtained by the {delta}f Monte Carlo method for a model heliotron are in reasonable agreement with asymptotic formulae and with the results obtained by the variational principle.
Federspiel, L.; Labit, B.; Ricci, P.; Fasoli, A.; Furno, I.; Theiler, C.
2009-09-15
The existence of a critical pressure gradient needed to drive the interchange instability is experimentally demonstrated in the simple magnetized torus TORoidal Plasma EXperiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. This gradient is reached during a scan in the neutral gas pressure p{sub n}. Around a critical value for p{sub n}, depending on the magnetic configuration and on the injected rf power, a small increase in the neutral gas pressure triggers a transition in the plasma behavior. The pressure profile is locally flattened, stabilizing the interchange mode observed at lower neutral gas densities. The measured value for the critical gradient is close to the linear theory estimate.
Cameron, S.M.
1993-10-01
The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.
A Stringent Limit on the Amplitude of Alfvénic Perturbations in High-beta Low-collisionality Plasmas
NASA Astrophysics Data System (ADS)
Squire, J.; Quataert, E.; Schekochihin, A. A.
2016-10-01
It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfvén fluctuations above a critical amplitude δ {B}\\perp /{B}0∼ {β }-1/2, where β is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfvén-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-β conditions prevalent in many astrophysical plasmas, as well as for the solar wind at ∼1 au where β ≳ 1.
NASA Astrophysics Data System (ADS)
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
Toroidal equilibria in spherical coordinates
Tsui, K. H.
2008-11-15
The standard Grad-Shafranov equation for axisymmetric toroidal plasma equilibrium is customary expressed in cylindrical coordinates with toroidal contours, and through which benchmark equilibria are solved. An alternative approach to cast the Grad-Shafranov equation in spherical coordinates is presented. This equation, in spherical coordinates, is examined for toroidal solutions to describe low {beta} Solovev and high {beta} plasma equilibria in terms of elementary functions.
Tracy, M.D.
1993-01-08
Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach n{sub c}/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 {le} k{sub ia}{lambda}{sub ii} {le} {infinity}) and ZT{sub e}/T{sub i}, where k{sub ia} is the ion- acoustic wave number, {lambda}{sub ii} is the ion-ion mean free path, Z is the ionization state of the plasma, and T{sub e}, T{sub i} are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (k{sub ia}{lambda}{sub ei}, k{sub ia}{lambda}{sub ee} {ge} 1), and quasineutrality holds, ({alpha} {much_gt}1), where {alpha} = 1/k{lambda}{sub DE} and {lambda}{sub DE} is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.
NASA Astrophysics Data System (ADS)
Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Xie, J.
2011-10-01
The stability properties of partial-toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).
Plyushchev, G.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.; Boehmer, H.; Heidbrink, W. W.; Zhang, Y.
2006-10-15
A specific experimental apparatus consisting of an ion source and a detector for the investigation of the interaction between suprathermal ions and drift-wave turbulence is developed on the toroidal plasma experiment. Due to the low plasma temperature ({approx}5 eV), a spatially localized, small-size ion source ({approx}4 cm) mounted inside the vacuum vessel with relatively low ion energy ({approx}100 eV-1 keV) can be used. The source consists of an aluminosilicate Li-6 ion emitter (6 mm diameter, 10-30 {mu}A current) installed on a two-dimensional (2D) poloidally moving system. The location, energy, and current density profile of the ion beam will be measured using a 2D movable gridded energy analyzer.
Properties of toroidal Alfvén eigenmode in DIII-D plasma
Wang, Zhixuan; Lin, Zhihong Holod, Ihor; Heidbrink, W. W.; Deng, Wenjun; Xiao, Y.; Zhang, H.; Zhang, W.; Van Zeeland, M.
2015-02-15
Linear properties of the toroidal Alfvén eigenmode (TAE) excited by energetic particles (EP) in a DIII-D tokamak experiment have been studied in global gyrokinetic particle simulations treating self-consistently kinetic effects of EP, thermal ions, and electrons. Simulation results of the TAE frequency and mode structure agree very well with the experimental measurements. The non-perturbative EP contribution induces a radial localization of the TAE mode structure, a break-down of mode radial symmetry, as well as a frequency dependence on the toroidal mode number. The simulations further demonstrate the dependence of the growth rate and mode structure on EP pressure gradients. The in-out asymmetry of the mode structure and the experimental identification of the poloidal harmonics have also been clarified.
Properties of toroidal Alfvén eigenmode in DIII-D plasma
NASA Astrophysics Data System (ADS)
Wang, Zhixuan; Lin, Zhihong; Deng, Wenjun; Holod, Ihor; Heidbrink, W. W.; Xiao, Y.; Zhang, H.; Zhang, W.; Van Zeeland, M.
2015-02-01
Linear properties of the toroidal Alfvén eigenmode (TAE) excited by energetic particles (EP) in a DIII-D tokamak experiment have been studied in global gyrokinetic particle simulations treating self-consistently kinetic effects of EP, thermal ions, and electrons. Simulation results of the TAE frequency and mode structure agree very well with the experimental measurements. The non-perturbative EP contribution induces a radial localization of the TAE mode structure, a break-down of mode radial symmetry, as well as a frequency dependence on the toroidal mode number. The simulations further demonstrate the dependence of the growth rate and mode structure on EP pressure gradients. The in-out asymmetry of the mode structure and the experimental identification of the poloidal harmonics have also been clarified.
Nersisyan, Hrachya B; Deutsch, Claude; Das, Amal K
2011-03-01
The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons. PMID:21517600
Gupta, Naveen Singh, Arvinder; Singh, Navpreet
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.
Nersisyan, Hrachya B.; Deutsch, Claude; Das, Amal K.
2011-03-15
The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.
NASA Astrophysics Data System (ADS)
Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi
2016-02-01
In toroidal electron cyclotron resonance (ECR) plasmas under a weak external vertical field {{B}\\text{V}} a part of the pressure driven vertical charge separation current returns along the helical field lines, generating a toroidal current. The rest circulates via the conducting vacuum vessel. Only the toroidal current contributes to the production of a closed flux surface. Both the toroidal and vertical currents are an equilibrium current that provides a radial force by the interaction with the vertical field and the toroidal field, respectively, to counter-balance the outward pressure ballooning force. We have done experiments using 2.45 GHz microwaves in the low aspect ratio torus experiment (LATE) device to investigate in what way and how much the toroidal current is generated towards the initiation of a closed flux surface. In steady discharges by {{P}\\text{inj}}=1.5 kW under various {{B}\\text{V}} both the pressure and the toroidal current become large with {{B}\\text{V}} . When {{B}\\text{V}}=6.8 G, a toroidal current of 290 A is generated and the vertical field is reduced to 1.2 G inside the current channel, being close to the initiation of a closed flux surface. In this plasma the return current does not obey Ohm’s law. Instead, the return current flows so that the electric force on the electron fluid is balanced with the pressure gradient along the field lines. Near the top and bottom boundaries superthermal electrons flow beyond the potential barrier onto the walls along the field lines. In another discharge by the low power of {{P}\\text{inj}}=1.0 kW under {{B}\\text{V}}=8.3 G, both the toroidal current and the pressure steadily increase for an initial duration of 1.1 s and then abruptly jump, generating an initial closed flux surface. While the counter force from the vertical current is initially dominant, that from the toroidal current gradually increases and becomes four times larger than that from the vertical current just before the initiation
Wakefields generated by collisional neutrinos in neutral-electron-positron plasma
Tinakiche, Nouara
2013-02-15
A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in this plasma.
NASA Astrophysics Data System (ADS)
Ko, S. H.; Kwon, J. M.; Ko, W. H.; Kim, S. S.; Jhang, H.; Terzolo, L.
2016-06-01
Steep pedestal profiles of ion temperature (Ti) and toroidal rotation ( V ϕ ) are routinely observed in neutral beam injection (NBI)-heated KSTAR H-mode plasmas [W. H. Ko et al., Nucl. Fusion 55, 083013 (2015)]. In this work, we report a result of detailed analysis of pedestal characteristics. By analyzing a set of data with different experimental conditions, we show that Ti and V ϕ pedestals are coupled to each other and correlation between them becomes stronger when NBI-torque is lower. This suggests the existence of intrinsic toroidal torque in the pedestal. Based on a 1D transport analysis, we find that the prevalence of residual micro-turbulences is necessary to explain momentum transport in the pedestal. The estimated strength of intrinsic torque is shown to be comparable to that from a 2.7 MW NBI source. Finally, we show that non-diffusive momentum flux is indispensable to explain momentum transport in the pedestal, and a residual stress model fits the observed momentum flux reasonably.
Current density and poloidal magnetic field for toroidal elliptic plasmas with triangularity
Martin, P.; Haines, M.G.; Castro, E.
2005-08-15
Changes in the poloidal magnetic field around a tokamak magnetic surface due to different values of triangularity and ellipticity are analyzed in this paper. The treatment here presented allows the determination of the poloidal magnetic field from knowledge of the toroidal current density. Different profiles of these currents are studied. Improvements in the analytic forms of the magnetic surfaces have also been found. The treatment has been performed using a recent published system of coordinates. Suitable analytic equations have been used for the elliptic magnetic surfaces with triangularity and Shafranov shift.
NASA Astrophysics Data System (ADS)
Alvarez Laguna, A.; Lani, A.; Deconinck, H.; Mansour, N. N.; Poedts, S.
2016-08-01
We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided.
Beckers, J.; Stoffels, W. W.; Dijk, J. van; Kroesen, G. M. W.; Ockenga, T.; Wolter, M.; Kersten, H.
2011-03-18
We used microparticles under hypergravity conditions, induced by a centrifuge, in order to measure nonintrusively and spatially resolved the electric field strength as well as the particle charge in the collisional rf plasma sheath. The measured electric field strengths demonstrate good agreement with the literature, while the particle charge shows decreasing values towards the electrode. We demonstrate that it is indeed possible to measure these important quantities without changing or disturbing the plasma.
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
NASA Astrophysics Data System (ADS)
Ghosh, Sabuj; Shaw, Pankaj Kumar; Saha, Debajyoti; Janaki, M. S.; Sekar Iyengar, A. N.
2016-09-01
Floating potential fluctuations associated with an anode fireball in a glow discharge plasma in the toroidal vacuum vessel of the SINP tokamak are found to exhibit different kinds of oscillations under the action of vertical magnetic field of different strengths. While increasing the vertical magnetic field, the fluctuations have shown transitions as: chaotic oscillation → inverse homoclinic transition → intermittency → chaotic oscillation. However, on decreasing the magnetic field, the fluctuations are seen to follow: chaotic oscillations → homoclinic transition → chaotic oscillation; that is the intermittent feature is not observed. Fireball dynamics is found to be closely related to the magnetic field applied; results of visual inspection with a high speed camera are in close agreement with the fluctuations, and the fireball dynamics is found to be closely related to the transitions. The statistical properties like skewness, kurtosis, and entropy of the fluctuations are also found to exhibit this hysteresis behaviour.
Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma
Tinakiche, Nouara
2015-12-15
A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
NASA Astrophysics Data System (ADS)
Jia, Jieshu; Yuan, Chengxun; Liu, Sha; Yue, Feng; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui
2016-04-01
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Superfluid-like Motion of a Small Absorbing Body in a Collisional Plasma
Khrapak, S. A.; Chaudhuri, M.; Morfill, G. E.; Vladimirov, S. V.
2008-09-07
It is shown that the total frictional (drag) force acting on a slowly moving absorbing grain in a stationary weakly ionized high pressure plasma can be directed along its motion, causing the grain acceleration. At some velocity the forces associated with different plasma components balance each other, allowing free undamped superfluid motion of the grain.
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae
2015-03-15
The electron-neutral collision effects on the Compton scattering process are investigated in warm collisional plasmas. The Compton scattering cross section in warm collisional plasmas is obtained by the Salpeter structure factor with the fluctuation-dissipation theorem and the plasma dielectric function as a function of the electron-neutral collision frequency, Debye length, and wave number. It is shown that the influence of electron-neutral collision strongly suppresses the Compton scattering cross section in warm collisional plasmas. It is also found that the electron-neutral collision effect on the differential Compton scattering cross section is more significant in forward scattering directions. We show that the differential Compton scattering cross section has a maximum at the scattering angle φ=π/2. In addition, we find that the electron-neutral collision effect on the total Compton scattering cross section increases with increasing Debye length and wave number. The variation of the Compton scattering cross section due to the change of collision frequency and plasma parameters is also discussed.
Moser, Auna L.; Hsu, Scott C.
2015-05-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.
Electromagnetic Torque in Tokamaks with Toroidal Asymmetries
NASA Astrophysics Data System (ADS)
Logan, Nikolas Christopher
Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric
Futatani, Shimpei; Bos, Wouter J. T.; Morales, Jorge A.
2015-05-15
It can be shown that in the presence of a toroidal magnetic field induced by poloidal coils, combined with the electromagnetic field induced by a central solenoid, no static equilibrium is possible within the MHD description, as soon as non-zero resistivity is assumed. The resulting dynamic equilibrium was previously discussed for the case of spatially homogeneous resisitivity. In the present work, it is shown how a spatial inhomogeneity of the viscosity and resisitivity coefficients influences this equilibrium. Parameters in both the stable, tokamak-like regime and unstable, reversed field pinch-like regime are considered. It is shown that, whereas the magnitudes of the velocity and magnetic field fluctuations are strongly modified by the spatial variation of the transport coefficients, the qualitative flow behaviour remains largely unaffected.
Transport equations in tokamak plasmas
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2010-05-15
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The
Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.
Sherrill, M E; Mancini, R C; Bailey, J; Filuk, A; Clark, B; Lake, P; Abdallah, J
2007-11-01
Plasma plumes produced by laser ablation are an established method for manufacturing the high quality stoichiometrically complex thin films used for a variety of optical, photoelectric, and superconducting applications. The state and reproducibility of the plasma close to the surface of the irradiated target plays a critical role in producing high quality thin films. Unfortunately, this dense plasma has historically eluded quantifiable characterization. The difficulty in modeling the plume formation arises in the accounting for the small amount of energy deposited into the target when physical properties of these exotic target materials are not known. In this work we obtain the high density state of the plasma plume through the use of an experimental spectroscopic technique and a custom spectroscopic model. In addition to obtaining detailed temperature and density profiles, issues regarding line broadening and opacity for spectroscopic characterization will be addressed for this unique environment.
Toroidal rotation studies in KSTAR
NASA Astrophysics Data System (ADS)
Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team
2014-10-01
Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.
On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions
Timofeev, A. V.
2015-11-15
During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Greenwald, M.; Waltz, R.; Candy, J.
2009-11-01
Experimental results from Alcator C-Mod have confirmed earlier AUG and JET findings that spontaneous peaking of the density profile in H-mode plasmas depends on collisionality. Previously reported nonlinear, 'full-radius' GYRO simulations [1] of low-collisionality, peaked-density H-mode plasmas in C-Mod generated a particle pinch that was produced exclusively by higher-k modes. Nonlinear simulations of AUG have a similar character [2], and recent detailed linear analyses [2,3] suggest that density peaking may be common in low collisionality plasmas. Here we increase the number of ion species in the simulations to determine whether impurity pinches are also expected, and whether the degree of density peaking is predicted to differ for the three hydrogen isotopes. These simulations include experimentally relevant levels of several impurities, and a range of H/D and D/T mixes.[4pt] [1] D.R. Mikkelsen, et al., Bull. Am. Phys. Soc. 52, (2007) No. 16, 221, NP8.71 [0pt] [2] C. Angioni, et al., Phys. Plasmas 16 (2009) 060702 [0pt] [3] M. Maslov, et al., Nucl. Fusion 49 (2009) 075037
Dust particle charge and screening in the collisional RF plasma sheath
NASA Astrophysics Data System (ADS)
Beckers, Job; Trienekens, Dirk; Kroesen, Gerrit
2012-10-01
Once immersed in plasma, a dust particle gathers a highly negative charge due to the net collection of free electrons. In most plasma's on earth and with particle sizes is in the micrometer range, the gravitational force is dominant and consequently the particle ends up within the plasma sheath region where it is confined due to balancing gravitational and electrical forces. In the plasma sheath region, the Orbital Motion Limited theory predicts charge values that significantly deviate from reality. This is due electron depletion and due the large directed drift velocity of ions, complexifying the prediction of the particle's charge dramatically. We have developed a novel method to measure the charge of a microparticle (10 μm in diameter and confined in a flat potential well above an RF powered electrode) by studying the horizontal interaction with another particle (equally in size) when the angle of the flat part of the potential well is varied with respect to the earth's horizontal plane. Measured particle charges are within the error bars of earlier measurements of the charge of the same particles and comparable plasma conditions during experiments under hyper-gravity conditions in a centrifuge.
May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C
2008-07-02
M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.
May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C
2008-02-20
M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the Omega laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be {approx} 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.; Berkery, J. W.; Park, Y. S.; Bell, R. E.; Gates, D. A.; Gerhardt, S. P.; Goumiri, I.; Evans, T. E.; Ferraro, N.; Jeon, Y. M.; Ko, W.; Shaing, K. C.; Sun, Y.
2014-10-01
Three-dimensional magnetic fields producing non-resonant magnetic braking allow control of the plasma rotation profile, ωφ, in tokamaks. Experimental angular momentum alteration created by 3D field configurations with dominant n = 2 and n = 3 components in NSTX is compared to theoretical neoclassical toroidal viscosity (NTV) torque density profiles, TNTV. Large radial variations of TNTV are typically found when flux surface displacements are computed using ideal MHD assumptions. In contrast, experimentally measured TNTV does not show strong torque localization. This may be explained by ion banana width orbit-averaging effects. A favorable characteristic for ωφ control clearly illustrated by KSTAR experiments is the lack of hysteresis of ωφ when altered by non-resonant NTV. Results from a model-based rotation controller designed using NBI and NTV from the applied 3D field as actuators are shown. The dependence of TNTV on δB2 significantly constrains the allowable field amplification in plasma response models when compared to experiment. Initial analysis shows that the single fluid model in the M3D-C1 resistive MHD code produces a flux surface-averaged δB consistent with the experimentally measured TNTV. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
Ion Acoustic Wave Broadening Observations in Moderately Coupled, Moderately Collisional Plasmas
NASA Astrophysics Data System (ADS)
Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Johnson, R. P.
2002-11-01
Weakly coupled scattering theory breaks down as the ratio of Coulomb interaction energy to thermal kinetic energy, Γ _ii =(Ze)^2/a _iikT, approaches unity and/or as collisions become more frequent. Accurate modeling is required in order to fit collective Thomson scattering features from ion acoustic waves and determine plasma parameters Z, Te and Ti. The Trident Laser was used to produce Al, CH, CH2 laser-plasmas, where ne ˜ 10^20 cm-3, T_e ˜ 75-150 eV, Γ _ii ˜ 0.1-0.75 and N _D ˜ 100-500. A separate 351-nm beam was used as a low intensity probe for Thomson scattering. The scattered light was recorded by an imaging spectrograph to provide temporally and spatially -resolved spectral profiles of thermal ion acoustic waves and Langmuir waves. Ion acoustic waves are observed to be broadened to near the frequency shift, dω _ia/ω _ia ˜ 0.75-1.25. Using a collisionless model, we show that plasma inhomogeneities and instruments produce only ˜50% of the broadening. We conclude that collisions and/or coupling cannot be ignored in modeling of collective modes in warm dense plasmas.
Ohkawa, Tihiro; Baker, Charles C.
1981-01-01
In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Astrophysics Data System (ADS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron
2000-10-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characterisitcs of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characteristics of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Terahertz generation by mixing of two super-Gaussian laser beams in collisional plasma
NASA Astrophysics Data System (ADS)
Singh, Divya; Malik, Hitendra K.
2014-08-01
Considering a realistic situation, where electron-neutral collisions persist in plasma, analytical calculations are carried out for the Terahertz (THz) radiation generation by beating of two Super-Gaussian (SG) lasers of index p. The competency of these lasers over Gaussian lasers is discussed in detail with respect to the effects of collision and beam width on the THz field amplitude and efficiency of the mechanism. A critical transverse distance of the peak of the THz field is defined that shows a dependence on the index of SG lasers. Although electron-neutral collisions and larger beam width lead to the drastic reduction in the THz field when the SG lasers are used in the plasma, the efficiency of the mechanism remains much larger than the case of Gaussian lasers. Moreover, the higher index SG lasers produce stronger and focused THz radiation.
The collisional drift mode in a partially ionized plasma. [in the F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.
Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.
2015-07-15
The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.
Terahertz generation by mixing of two super-Gaussian laser beams in collisional plasma
Singh, Divya; Malik, Hitendra K. E-mail: hkmalik@physics.iitd.ac.in
2014-08-15
Considering a realistic situation, where electron-neutral collisions persist in plasma, analytical calculations are carried out for the Terahertz (THz) radiation generation by beating of two Super-Gaussian (SG) lasers of index p. The competency of these lasers over Gaussian lasers is discussed in detail with respect to the effects of collision and beam width on the THz field amplitude and efficiency of the mechanism. A critical transverse distance of the peak of the THz field is defined that shows a dependence on the index of SG lasers. Although electron-neutral collisions and larger beam width lead to the drastic reduction in the THz field when the SG lasers are used in the plasma, the efficiency of the mechanism remains much larger than the case of Gaussian lasers. Moreover, the higher index SG lasers produce stronger and focused THz radiation.
Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications
NASA Technical Reports Server (NTRS)
Urrutia, J. M.; Stenzel, R. L.
1991-01-01
A strong electromagnetic impulse (about 0.2 microsec) with central frequency in the whistler-wave regime is applied to a large laboratory plasma dominated by Coulomb collisions. Local electron heating at the antenna and transport along B0 create a channel of high conductivity along which the whistler pulse penetrates with little damping. Because of its rapid temporal evolution, this new form of modulational instability does not involve ducting by density gradients which require ion time scales to develop.
Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma
Niknam, A. R.; Haghtalab, T.; Khorashadizadeh, S. M.
2011-11-15
A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.
NASA Astrophysics Data System (ADS)
Chung, Sang-Young; Kwon, Deuk-Chul; Song, Mi-Young; Yoon, Jung-Sik
2014-10-01
For reliable plasma simulation an accurate full-set data of collision cross sections between each species participated in the plasma is required. However, the full-set of the reaction data is hard to achieve and estimated data have been used for the missing. To achieve reliable reaction data researchers have tuned the estimated reaction data so that the simulation results with the data agree with experimental results. However, as the number of data to be tuned is increased it becomes very hard work for researchers. In this study, we developed a code to optimize the data numerically based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and adopted with a 0-dimensional global simulator for semiconductor processing plasma. BFGS algorithm is a type of a quasi-Newton method. The second derivatives are used for a next estimation like Newton method but are calculated by iterations from first derivatives and previous second derivatives. So the function is called (i.e. the simulator is executed) much smaller times than Newton method. Parallel algorithm was applied to the code to save time. In the serial code the calculation time for each iteration were proportional to the number of unknown variables but it became independent of the number of the variables in the parallel code.
NASA Astrophysics Data System (ADS)
Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kasilov, Sergei V.; Kernbichler, Winfried; Martitsch, Andreas F.
2016-08-01
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.
Kumar, Haribalan; Roy, Subrata
2005-09-15
A numerical model for two-species plasma involving electrons and ions at pressure of 0.1 torr is presented here. The plasma-wall problem is modeled using one- and two-dimensional hydrodynamic equations coupled with Poisson equation. The model utilizes a finite-element algorithm to overcome the stiffness of the resulting plasma-wall equations. The one-dimensional result gives insight into the discharge characteristics including net charge density, electric field, and temporal space-charge sheath evolution. In two dimensions, the plasma formation over a flat plate is investigated for three different cases. The numerical algorithm is first benchmarked with published literature for plasma formed between symmetric electrodes in nitrogen gas. The characteristics of plasma are then analyzed for an infinitesimally thin electrode under dc and rf potentials in the presence of applied magnetic field using argon as a working gas. The magnetic field distorts the streamwise distribution because of a large y-momentum VxB coupling. Finally, the shape effects of the insulator-conductor edge for an electrode with finite thickness have been compared using a 90 degree sign shoulder and a 45 deg. chamfer. The 90 deg. chamfer displays a stronger body force created due to plasma in the downward and forward directions.
Shinozaki, Keisuke; Hoshino, Akio; Ishisaki, Yoshitaka; Morita, Umeyo; Ohashi, Takaya; Mihara, Tatehiro; Mitsuda, Kazuhisa; Tanaka, Keiichi; Yagi, Yasuyuki; Koguchi, Haruhisa; Hirano, Yoichi; Sakakita, Hajime
2006-04-15
A superconductive transition edge sensor (TES) calorimeter is for the first time applied for the diagnostics of the reversed field pinch plasma produced in the toroidal pinch experiment RX (TPE-RX), and the instrumental system is fully described. The first result from the soft x-ray spectroscopy in 0.2-3 keV with an energy resolution {approx}50 eV are also presented. The TES calorimeter is made of a thin bilayer film of titanium and gold with a transition temperature of 151 mK and its best energy resolution at our laboratory is 6.4 eV, while it was significantly degraded by about a factor of eight during the plasma operation. The TES microcalorimeter was installed in a portable adiabatic demagnetization refrigerator (ADR), which is originally designed for a rocket experiment. The detector box is carefully designed to shield the strong magnetic field produced by the ADR and TPE-RX. The ADR was directly connected to TPE-RX with a vacuum duct in the sideway configuration, and cooled down to 125 mK stabilized with an accuracy of 10 {mu}K rms using an improved proportional, integral, and derivative (PID) control method. Thin aluminized Toray Lumirror or Parylene-N films were used for the IR to UV blocking filters of the incident x-ray window to allow soft x-rays coming into the detector with good efficiency. TPE-RX was operated with the plasma current of I{sub p}=220 kA, and the wave forms of the TES output for every plasma shot lasting {approx}80 ms were obtained with a digital oscilloscope. The wave forms were analyzed with the optimal filtering method, and x-ray signals were extracted. A total of 3472 counts of x-ray signals were detected for 210 plasma shots during the flat-top phase of t=35-70 ms. Combined with the data measured with a lithium drifted silicon detector in the 1.3-8 keV range, spectral features are investigated using a spectral fitting package XSPEC. The obtained spectrum is well explained by thermal plasma emission, although an impurity iron-L line
Electron-ion collisional effect on Weibel instability in a Kappa distributed unmagnetized plasma
Kumar Kuri, Deep Das, Nilakshi
2014-04-15
Weibel instability has been investigated in the presence of electron-ion collisions by using standard Vlasov-Maxwell equations. The presence of suprathermal electrons has been included here by using Kappa distribution for the particles. The growth rate γ of Weibel instability has been calculated for different values of spectral index κ, collision frequency ν{sub ei}, and temperature anisotropy parameter β. A comparative study between plasma obeying Kappa distribution and that obeying Maxwellian distribution shows that the growth of instability is higher for the Maxwellian particles. However, in the presence of collisions, the suprathermal particles result in lower damping of Weibel mode.
Fedila, D. Ali; Djebli, M.
2010-10-15
The effect of collision on small amplitude dust-acoustic waves is investigated for a plasma with positively charged dust grains. Taking into account the presence of different electron populations in thermal equilibrium, a modified Korteweg-de Vries equation is established. The existence conditions and nature of the waves, i.e., rarefactive or compressive, are found to be mainly dependent on the temperature and the density of the cold electrons. The present model is used to understand the salient features of the fully nonlinear dust-acoustic waves in the lower region of the Earth's ionosphere, at an altitude of {approx}85 km with the presence of an external heating source.
Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas
NASA Astrophysics Data System (ADS)
Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.
2014-09-01
A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.
Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas
Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J. Hanson, J. D.; Maurer, D. A.
2014-09-15
A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.
Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas.
Stevenson, B A; Knowlton, S F; Hartwell, G J; Hanson, J D; Maurer, D A
2014-09-01
A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.
Diem, S J; Caughman, J B; Efthimion, P C; Kugel, H; LeBlanc, B P; Phillips, C K; Preinhaelter, J; Sabbagh, S A; Urban, J; Wilgen, J B
2010-02-03
High-β spherical tokamak (ST) plasma conditions cut off propagation of electron cyclotron (EC) waves used for heating and current drive in conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) has no density cutoff and is strongly absorbed and emitted at the EC harmonics, allowing EBWs to be used for heating and current drive in STs. However, this application requires efficient EBW coupling in the high-β, H-mode ST plasma regime. EBW emission (EBE) diagnostics and modelling have been employed on the National Spherical Torus Experiment (NSTX) to study oblique EBW to O-mode (B–X–O) coupling and propagation in H-mode plasmas. Efficient EBW coupling was measured before the L–H transition, but rapidly decayed thereafter. EBE simulations show that EBW collisional damping prior to mode conversion (MC) in the plasma scrape off reduces the coupling efficiency during the H-mode phase when the electron temperature is less than 30 eV inside the MC layer. Lithium evaporation during H-mode plasmas was successfully used to reduce this EBW collisional damping by reducing the electron density and increase the electron temperature in the plasma scrape off. Lithium conditioning increased the measured B–X–O coupling efficiency from less than 10% to 60%, consistent with EBE simulations.
Grad-Shafranov Equilibria with Negative Core Toroidal Current in Tokamak Plasmas
Rodrigues, Paulo; Bizarro, Joao P.S.
2005-07-01
Numerical Grad-Shafranov (GS) equilibria with negative current density in the plasma core are computed which do not impose any particularly chosen models for the pressure and current-density profiles. This flexibility allows the profiles to be tailored so that an island unfolds in the low-field side, even for elongated plasmas, thus sustaining the negative-current core against outward forces. Among other topological results, reversed GS equilibria are also shown to be necessarily non-nested, except for the cylindrical and other very special degenerate, hence structurally unstable cases.
Grad-Shafranov equilibria with negative core toroidal current in Tokamak plasmas.
Rodrigues, Paulo; Bizarro, João P S
2005-07-01
Numerical Grad-Shafranov (GS) equilibria with negative current density in the plasma core are computed which do not impose any particularly chosen models for the pressure and current-density profiles. This flexibility allows the profiles to be tailored so that an island unfolds in the low-field side, even for elongated plasmas, thus sustaining the negative-current core against outward forces. Among other topological results, reversed GS equilibria are also shown to be necessarily non-nested, except for the cylindrical and other very special degenerate, hence structurally unstable cases. PMID:16090623
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.
2016-08-01
In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.; Gürcan, Ö. D.
2016-02-01
The relationship between the physics of turbulent transport of particles and azimuthal momentum in a linear plasma device is investigated using a simple model with a background density gradient and zonal flows driven by turbulent stresses. Pure shear flow driven Kelvin-Helmholtz instabilities (k∥=0 ) relax the flow and drive an outward (down gradient) flux of particles. However, instabilities at finite k∥ with flow enhanced pumping can locally drive an inward particle pinch. The turbulent vorticity flux consists of a turbulent viscosity term, which acts to reduce the global vorticity gradient and the residual vorticity flux term, accelerating the zonal flows from rest. Moreover, we use the positivity of the production of fluctuation potential enstrophy to obtain a constraint relation, which tightly links the vorticity transport to the particle transport. This relation can be useful in explaining the experimentally observed correlation between the presence of E ×B flow shear and the measured inward particle flux in various magnetically confined plasma devices.
Connection formula for banana-drift neoclassical toroidal viscosity
NASA Astrophysics Data System (ADS)
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2010-11-01
Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, a previously calculated WKB-type solution smoothly connecting the low-collisionality ``1/ν'' and ``ν-√ν'' regimes is extended to include the superbanana plateau [sbp] regime [1]. The sbp effect occurs for particles whose toroidal ExB precessional drift vanishes. In this case, the relevant drift kinetic equation exhibits a ``turning point'' and the WKB method fails. We employ the connection formula method of Langer [2] which continuously varies between the previous WKB result and the superbanana regime without difficultly at the turning point. The resultant smoothed NTV is presented in terms of flows along flux surfaces. [4pt] [1] K. C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51, 035009 (2009), and refs. cited therein. [0pt] [2] R. E. Langer, Phys. Rev. 51, 669 (1937).
Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B. ); Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K. . Fusion Research Center)
1990-01-01
Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n{sub e} and temperature T{sub e} and fluctuations in density ({tilde n}{sub e}) and plasma floating potential ({tilde {phi}}{sub f}) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/{bar a} {approximately}1), T{sub e} {approx} 20--40 eV and n{sub e} {approx} 10{sup 12} cm{sup {minus}3} for a line-averaged electron density {bar n}{sub e} = (3--6) {times} 10{sup 12} cm{sup {minus}3}. Relative fluctuation levels, as the FRLP is moved into core plasma where T{sub e} > 20 eV, are {tilde n}{sub e}/n{sub e} {approx} 5%, and e {tilde {phi}}{sub f}/T{sub e} {approx} 2{tilde n}{sub e}/n{sub e} about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with {bar k}{rho}{sub s} {le} 0.1, where {bar k} is the wavenumber of the fluctuations and {rho}{sub s} is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/{bar a} < 1. The phase velocity and the electron drift velocity are comparable (v{sub ph} {approximately} v{sub de}). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H{sub {alpha}} spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Sands, Brian L.; Siefert, Nicholas S.; Ganguly, Biswa N.
2007-11-01
The hairpin resonator probe has been developed in recent years into a sophisticated diagnostic technique capable of measuring spatially resolved electron number densities in sub-Torr discharges. In this paper, we extend the use of this technique to discharges at pressures greater than 1 Torr. In this regime, the effects of electron-neutral collisions become significant and a suitable correction is applied in conjunction with the sheath correction. We also describe elements of hairpin design and coupling that need to be more carefully controlled in order to maximize the range of electron densities that can be detected at higher pressures. Finally, we discuss limitations to the transmission-line model used routinely to interpret hairpin data as they apply to measurements in a nonuniform plasma.
Current collection by a cylindrical probe in a partly ionized, collisional plasma
Pletnev, V.; Laframboise, J. G.
2006-07-15
A numerical calculation of ion and electron current collection by a cylindrical Langmuir probe in a partly ionized plasma has been done. The effect of electron and ion collisions with neutrals on the current collected by the probe has been investigated. The validity of the collisionless theory of Laframboise [J. G. Laframboise, University of Toronto, Institute for Aerospace Studies, UTIAS Report No. 100 (1966)] has been studied. The iterative scheme of Laframboise has been combined with Monte Carlo solution of the Boltzmann equation to provide self-consistent steady-state electron and ion density and electric potential distributions as functions of radius. Our model includes elastic ion-neutral and electron-neutral collisions, ionization of neutrals by electron impact, energy loss of electrons due to excitation and ionization of neutrals, and charge-exchange collisions. Our model has been demonstrated by calculating the current collection by a probe in a nitrogen plasma, but it can be applied in other cases because we avoided adjustable parameters. Our results confirm published experimental data which indicate that Laframboise's theory can be applied when the attracted particles are electrons and ionization processes do not play an important part. When the attracted particles are ions, it is found that charge-exchange collisions in the sheath produce by far the largest contribution to the increase in their collection current. For this situation, collisionless theory can be applied only when the mean distance traveled by ions inside the sheath is much less than the mean free path. The condition that the sheath size is much smaller than the mean free path does not guarantee a collisionless sheath near a cylindrical probe. This condition is in good agreement with experimental results in the literature.
Spontaneous healing and growth of locked magnetic island chains in toroidal plasmas
Fitzpatrick, R.; Waelbroeck, F. L.
2012-11-15
Recent experiments have demonstrated that locked magnetic island chains in stellarator plasmas spontaneously heal under certain conditions, and spontaneously grow under others. A formalism initially developed to study magnetic island dynamics in tokamak plasmas is employed to investigate this phenomenon. It is found that island healing/growth transitions can be caused either by a breakdown in torque balance in the vicinity of the island chain, or by an imbalance between the various terms in the island width evolution equation. The scaling of the healing/growth thresholds with the standard dimensionless plasma parameters {beta}, {nu}{sub *}, and {rho}{sub *} is determined. In accordance with the experimental data, it is found that island healing generally occurs at high {beta} and low {nu}{sub *}, and island growth at low {beta} and high {nu}{sub *}. In further agreement, it is found that island healing is accompanied an ion poloidal velocity shift in the electron diamagnetic direction, and island growth by a velocity shift in the ion diamagnetic direction. Finally, it is found that there is considerable hysteresis in the healing/growth cycle, as is also seen experimentally.
Extended MHD Studies of Flow-Driven and Reconnecting Instabilities in Toroidal Plasmas
Ebrahimi, Fatima
2014-04-30
For steady-state reactor scenarios, inductive ohmic current drive alone is not sufficient. If helicity (a topological property which quantifies the knottedness of the magnetic field lines) is created and injected into a plasma configuration, the additional linkage of the magnetic fluxes can sustain the configuration indefinitely against resistive decay. Injection of magnetic helicity into the plasma is closely related to current drive. Various techniques such as DC and AC helicity injection can be used for steady-state current drive, which both rely on relaxation process for core current penetration. However, helicity injection has also been used for edge current drive and non-inductive startup current drive. A solenoid-free plasma startup method called coaxial helicity injection (CHI) has been investigated in the NSTX, and has shown to generate a closedflux equilibrium and produce a CHI-driven current well-coupled to the induction. We propose to perform nonlinear CHI simulations in NSTX, which will provide further insight into the viability of CHI as a startup current drive technique and its role in ultimate steady-state operation of fusion reactors. The goals of our proposed simulations are to understand the physics of current relaxation by CHI in relation to transport and mode dynamics, and to perform long term simulations when CHI is coupled to the induction.
Formation of high-{beta} plasma and stable confinement of toroidal electron plasma in Ring Trap 1
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.
2011-05-15
Formation of high-{beta} electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local {beta} value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].
NASA Astrophysics Data System (ADS)
Affolter, Matthew
Cyclotron modes are studied on rigid rotor, multi-species ion plasmas confined in a Penning-Malmberg trap. Collective effects and radial electric fields shift the cyclotron mode frequencies away from the ''bare'' cyclotron frequencies for each species s. These frequency shifts are measured on the distinct cyclotron modes (m = 0, 1, and 2) with sinusoidal azimuthal dependence. We find that the frequency shifts corroborate a simple theory expression in which collective effects enter only through the ExB rotation frequency and the species fraction, when the plasma is radially uniform. At ultra-low temperatures, these plasmas exhibit centrifugal separation by mass, and additional frequency shifts are observed in agreement with a more general theory. Additionally, quantitative measurements of the plasma heating from short resonant cyclotron bursts are found to be proportional to the species fraction. These cyclotron modes are used as a diagnostic tool to estimate the plasma composition, in order to investigate the damping of Langmuir waves due to inter-species collisions. Experiments and theory of this collisional inter-species drag damping are presented. This also provides the first experimental confirmation of recent theory predicting enhanced collisional slowing due to long-range collisions. Drag damping theory, proportional to the collisional slowing rate, is in quantitative agreement with the experimental results only when these long-range collisions are included, exceeding classical collision calculations by as much as an order of magnitude. At large wave amplitudes, Langmuir waves exhibit harmonic generation, non-linear frequency shifts, and a parametric decay instability, which are experimentally investigated. The parametric wave-wave coupling rates are in agreement with three-wave instability theory in the dispersion dominated oscillatory coupling regime, and in the phase-locked exponential decay regime. However, significant variations are observed near the
A new hybrid scheme for simulations of highly collisional RF-driven plasmas
NASA Astrophysics Data System (ADS)
Eremin, Denis; Hemke, Torben; Mussenbrock, Thomas
2016-02-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using particle-in-cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a ‘full’ fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the γ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma densities and incorrect profiles provided by the drift-diffusion models. Therefore, the hybrid code version featuring the full ion fluid model should be favored against the more popular drift-diffusion model, noting that the suggested numerical scheme for the former model implies only a small additional computational cost.
Tokamak with mechanical compression of toroidal magnetic field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.
AEGIS-K code for linear kinetic analysis of toroidally axisymmetric plasma stability
NASA Astrophysics Data System (ADS)
Zheng, L. J.; Kotschenreuther, M. T.; Van Dam, J. W.
2010-05-01
A linear kinetic stability code for tokamak plasmas: AEGIS-K (Adaptive EiGenfunction Independent Solutions-Kinetic), is described. The AEGIS-K code is based on the newly developed gyrokinetic theory [L.J. Zheng, M.T. Kotschenreuther, J.W. Van Dam, Phys. Plasmas 14 (2007) 072505]. The success in recovering the ideal magnetohydrodynamics (MHD) from this newly developed gyrokinetic theory in the proper limit leads the AEGIS-K code to be featured by being fully kinetic in essence but hybrid in appearance. The radial adaptive shooting scheme based on the method of the independent solution decomposition in the MHD AEGIS code [L.J. Zheng, M.T. Kotschenreuther, J. Comp. Phys. 211 (2006) 748] is extended to the kinetic calculation. A numerical method is developed to solve the gyrokinetic equation of lowest order for the response to the independent solutions of the electromagnetic perturbations, with the quasineutrality condition taken into account. A transform method is implemented to allow the pre-computed Z-function (i.e., the plasma dispersion function) to be used to reduce the integration dimension in the moment calculation and to assure the numerical accuracy in determining the wave-particle resonance effects. Periodic boundary condition along the whole banana orbit is introduced to treat the trapped particles, in contrast to the usual reflection symmetry conditions at the banana tips. Due to the adaptive feature, the AEGIS-K code is able to resolve the coupling between the kinetic resonances and the shear Alfvén continuum damping. Application of the AEGIS-K code to compute the resistive wall modes in ITER is discussed.
NASA Astrophysics Data System (ADS)
Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.
2014-10-01
A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.
Peeters, A. G.; Angioni, C.; Strintzi, D.
2009-03-15
The comment addresses questions raised on the derivation of the momentum pinch velocity due to the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. These concern the definition of the gradient, and the scaling with the density gradient length. It will be shown that the turbulent equipartition mechanism is included within the derivation using the Coriolis drift, with the density gradient scaling being the consequence of drift terms not considered in [T. S. Hahm et al., Phys. Plasmas 15, 055902 (2008)]. Finally the accuracy of the analytic models is assessed through a comparison with the full gyrokinetic solution.
Soft x-ray pinhole imaging diagnostics for compact toroid plasmas
NASA Astrophysics Data System (ADS)
Crawford, E. A.; Taggart, D. P.; Bailey, A. D., III
1990-10-01
Soft x-ray pinhole imaging has recently become established as a valuable diagnostic for visualization of field reversed configuration (FRC) plasmas in the TRX-2, FRX-C/LSM devices. Gated MCP image converter devices with CsI cathodes and Be filters with a peak response around 11 nm wavelength are used for exposure durations ranging from a few tenths up to several microseconds. Results of experiments with single and Chevron channel plates are discussed along with estimates of linear exposure limitations with both film and CCD cameras as recording media. Plans for multiframe devices on the FRX-C/LSM and the LSX devices are also discussed.
Electron Landau damping in toroidal plasma with Solov’ev equilibrium
Grishanov, N. I. Azarenkov, N. A.
2013-12-15
The contribution of untrapped and two groups of trapped particles to the longitudinal (with respect to the magnetic field) elements of the dielectric susceptibility is determined by solving the drift-kinetic equations for such particles in axisymmetric tokamaks with Solov’ev equilibrium. The obtained dielectric characteristics are applicable for studying linear wave processes in the frequency range of Alfvén and fast magnetosonic waves in small- and large-aspect-ratio tokamaks with circular, elliptical, and D-shaped cross sections of magnetic surfaces. The high-frequency power absorbed in plasma via electron Landau damping is estimated by summing up terms containing the imaginary parts of both diagonal and non-diagonal elements of the longitudinal susceptibility. The imaginary part of the longitudinal susceptibility is calculated numerically for spherical tokamaks in a wide range of wave frequencies and magnetic surface radii.
Electron Landau damping in toroidal plasma with Solov'ev equilibrium
NASA Astrophysics Data System (ADS)
Grishanov, N. I.; Azarenkov, N. A.
2013-12-01
The contribution of untrapped and two groups of trapped particles to the longitudinal (with respect to the magnetic field) elements of the dielectric susceptibility is determined by solving the drift-kinetic equations for such particles in axisymmetric tokamaks with Solov'ev equilibrium. The obtained dielectric characteristics are applicable for studying linear wave processes in the frequency range of Alfvén and fast magnetosonic waves in small- and large-aspect-ratio tokamaks with circular, elliptical, and D-shaped cross sections of magnetic surfaces. The high-frequency power absorbed in plasma via electron Landau damping is estimated by summing up terms containing the imaginary parts of both diagonal and non-diagonal elements of the longitudinal susceptibility. The imaginary part of the longitudinal susceptibility is calculated numerically for spherical tokamaks in a wide range of wave frequencies and magnetic surface radii.
Spolaore, M. Vianello, N.; Agostini, M.; Cavazzana, R.; De Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M.; Furno, I.; Avino, F.; Fasoli, A.; Theiler, C.; Carralero, D.; Alonso, J. A.; Hidalgo, C.
2015-01-15
Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E × B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.
NASA Astrophysics Data System (ADS)
Fernandez-Nieves, Alberto
We will discuss how nematic liquid crystals organize inside toroidal droplets. When the director is parallel to the bounding surface, we find spontaneous reflection symmetry breaking, which we attribute to the role played by saddle-splay contributions to the Frank free energy. When the director is perpendicular to the bounding surface, we find that the structure is reminiscent of the escape radial configuration seen in cylinders, but with a central doubly-twisted organization, which we attribute to the geometry of the torus. We will end by presenting recent experiments with active nematics on the toroidal surface. In this case, topology and activity both affect the structure and dynamics of the material.
NASA Astrophysics Data System (ADS)
Munoz Burgos, Jorge Manuel
Accurate knowledge of atomic processes plays a key role in modeling the emission in laboratory as well as in astrophysical plasmas. These processes are included in a collisional-radiative model and the results are compared with experimental measurements for Ar and Ne ions from the ASTRAL (Auburn Steady sTate Research fAciLity) experiment. The accuracy of our model depends upon the quality of the atomic data we use. Atomic data for near neutral systems present a challenge due to the low accuracy of perturbative methods for these systems. In order to improve our model we rely on non-perturbative methods such as R - Matrix and RMPS ( R -Matrix with Pseudo-States) to include correlation in the collision cross-sections. In the case of Ar + we compared R -Matrix electron-impact excitation data against the results from a new RMPS calculation. The aim was to assess the effects of continuum-coupling effects on the atomic data and the resulting spectrum. We do our spectral modeling using the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi- static equilibrium with the ground and metastable populations. In our model we allow for N e and T e variation along the line of sight by fitting our densities and temperature profiles with those measured within the experiment. The best results so far have been obtained by the fitting of the experimental temperature and density profiles with Gaussian and polynomial distribution functions. The line of sight effects were found to have a significant effect on the emission modeling. The relative emission rates were measured in the ASTRAL helicon plasma source. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar and Ne plasmas with n e = 10 11 to 10 13 cm -3 and T e = 2 to 10 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to
NASA Astrophysics Data System (ADS)
Munoz Burgos, Jorge Manuel
Accurate knowledge of atomic processes plays a key role in modeling the emission in laboratory as well as in astrophysical plasmas. These processes are included in a collisional-radiative model and the results are compared with experimental measurements for Ar and Ne ions from the ASTRAL (Auburn Steady sTate Research fAciLity) experiment. The accuracy of our model depends upon the quality of the atomic data we use. Atomic data for near neutral systems present a challenge due to the low accuracy of perturbative methods for these systems. In order to improve our model we rely on non-perturbative methods such as R - Matrix and RMPS ( R -Matrix with Pseudo-States) to include correlation in the collision cross-sections. In the case of Ar + we compared R -Matrix electron-impact excitation data against the results from a new RMPS calculation. The aim was to assess the effects of continuum-coupling effects on the atomic data and the resulting spectrum. We do our spectral modeling using the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi- static equilibrium with the ground and metastable populations. In our model we allow for N e and T e variation along the line of sight by fitting our densities and temperature profiles with those measured within the experiment. The best results so far have been obtained by the fitting of the experimental temperature and density profiles with Gaussian and polynomial distribution functions. The line of sight effects were found to have a significant effect on the emission modeling. The relative emission rates were measured in the ASTRAL helicon plasma source. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar and Ne plasmas with n e = 10 11 to 10 13 cm -3 and T e = 2 to 10 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to
Transport Equations In Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Callen, J. D.
2009-11-01
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm's law (trapped particle effects on resistivity, bootstrap current); fluctuation-induced transport; heating, current-drive and flow sources and sinks; small B field non-axisymmetries; magnetic field transients etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed recently using a kinetic-based framework. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfv'en waves (Grad-Shafranov equilibrium, ion radial force balance); sound waves (pressure constant along field lines, incompressible flows within a flux surface); and ion collisions (damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on the plasma fluid: 7 ambipolar collision-based ones (classical, neoclassical, etc.) and 8 non-ambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients etc.). The plasma toroidal rotation equation [1] results from setting to zero the net radial current induced by the non-ambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the non-ambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The resultant transport equations will be presented and contrasted with the usual ones. [4pt] [1] J.D. Callen, A.J. Cole, C.C. Hegna, ``Toroidal Rotation In
Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak
2015-10-15
The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show that the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.
Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field
Schaffer, Michael J.
1986-01-01
A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.
NASA Astrophysics Data System (ADS)
Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud
2016-03-01
The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK-dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
Transport and Dynamics in Toroidal Fusion Systems
Schnack, Dalton D
2006-05-16
This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD
Kanki, T.; Nagata, M.
2006-07-15
Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) in the realistic confinement region, including a flux conserver and a coaxial helicity source, are numerically determined by means of the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluid near the central conductor is tied to a vacuum toroidal field and ion fluid is not. The magnetic configurations change from the high-q HD-ST (safety factor, q>1) with a paramagnetic toroidal field and low-{beta} (volume average {beta} value, <{beta}>{approx_equal}2%) through the helicity-driven spheromak and reversed-field pinch to the ultra-low-q HD-ST (0toroidal field and high-{beta} (<{beta}>{approx_equal}18%) as the vacuum toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift has the same direction as the ExB one.
Toroidal modeling of penetration of the resonant magnetic perturbation field
Liu Yueqiang; Kirk, A.
2013-04-15
A toroidal, quasi-linear model is proposed to study the penetration dynamics of the resonant magnetic perturbation (RMP) field into the plasma. The model couples the linear, fluid plasma response to a toroidal momentum balance equation, which includes torques induced by both fluid electromagnetic force and by (kinetic) neoclassical toroidal viscous (NTV) force. The numerical results for a test toroidal equilibrium quantify the effects of various physical parameters on the field penetration and on the plasma rotation braking. The neoclassical toroidal viscous torque plays a dominant role in certain region of the plasma, for the RMP penetration problem considered in this work.
Chen, Yang
2012-03-07
At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects
NASA Astrophysics Data System (ADS)
Lee, H. H.; Seol, J.; Ko, W. H.; Terzolo, L.; Aydemir, A. Y.; In, Y.; Ghim, Y.-c.; Lee, S. G.
2016-08-01
Effects of neoclassical toroidal viscosity (NTV) induced by intrinsic error fields and toroidal field ripple on cocurrent toroidal rotation in H-mode tokamak plasmas are investigated. It is expected that large NTV torque can be localized at the edge region through the 1/ν-regime in the vicinity of E r ˜ 0 in the cocurrent rotating H-mode plasma. Numerical simulation on toroidal rotation demonstrates that the edge localized NTV torque determined by the intrinsic error fields and toroidal field ripples in the level of most tokamaks can damp the toroidal rotation velocity over the whole region while reducing the toroidal rotation pedestal which is clearly observed in Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It is found that the NTV torque changes the toroidal rotation gradient in the pedestal region dramatically, but the toroidal rotation profile in the core region responds rigidly without a change in the gradient. On the other hand, it shows that the NTV torque induced by the intrinsic error fields and toroidal field ripple in the level of the KSTAR tokamak, which are expected to be smaller than most tokamaks by at least one order of magnitude, is negligible in determining the toroidal rotation velocity profile. Experimental observation on the toroidal rotation change by the externally applied nonaxisymmetric magnetic fields on KSTAR also suggests that NTV torque arising from nonaxisymmetric magnetic fields can damp the toroidal rotation over the whole region while diminishing the toroidal rotation pedestal.
Graf, A; Howard, S; Horton, R; Hwang, D; May, M; Beiersdorfer, P; McLean, H; Terry, J
2006-05-15
A novel Doppler spectrometer is currently being used for ion or neutral velocity and temperature measurements on the Alcator C-Mod Tokamak. The spectrometer has an f/No. of {approx}3.1 and is appropriate for visible light (3500-6700 {angstrom}). The full width at half maximum from a line emitting calibration source has been measured to be as small as 0.4 {angstrom}. The ultimate time resolution is line brightness light limited and on the order of ms. A new photon efficient detector is being used for the setup at C-Mod. Time resolution is achieved by moving the camera during a plasma discharge in a perpendicular direction through the dispersion plane of the spectrometer causing a vertical streaking across the camera face. Initial results from C-Mod as well as previous measurements from the Compact Toroid Injection Experiment (CTIX) and the Sustained Spheromak Plasma Experiment (SSPX) are presented.
Neoclassical momentum transport in an impure rotating tokamak plasma
Newton, S.; Helander, P.
2006-01-15
It is widely believed that transport barriers in tokamak plasmas are caused by radial electric-field shear, which is governed by angular momentum transport. Turbulence is suppressed in the barrier, and ion thermal transport is comparable to the neoclassical prediction, but experimentally angular momentum transport has remained anomalous. With this motivation, the collisional transport matrix is calculated for a low collisionality plasma with collisional impurity ions. The bulk plasma toroidal rotation velocity is taken to be subsonic, but heavy impurities undergo poloidal redistribution due to the centrifugal force. The impurities give rise to off-diagonal terms in the transport matrix, which cause the plasma to rotate spontaneously. At conventional aspect ratio, poloidal impurity redistribution increases the angular momentum flux by a factor up to {epsilon}{sup -3/2} over previous predictions, making it comparable to the 'banana' regime heat flux. The flux is primarily driven by radial pressure and temperature gradients.
Smith, R F; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V N; Rocca, J J; Hunter, J R; Marconi, M C
2004-10-04
We have directly probed the plasma conditions in which the Ni-like Pd transient collisional x-ray laser is generated and propagates by measuring the near-field image and by utilizing picosecond resolution soft x-ray laser interferometry of the preformed Pd plasma gain medium. The electron density and gain region of the plasma have been determined experimentally and are found to be in good agreement with simulations. We observe a strong dependence of the laser pump-gain medium coupling on the laser pump parameters. The most efficient coupling of laser pump energy into the gain region occurs with the formation of lower density gradients in the pre-formed plasma and when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for mid-Z Ni-like schemes). This increases the output intensity by more than an order of magnitude relative to the commonly utilized case where the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). In contrast, the higher intensity heating pulses are observed to be absorbed at higher electron densities and in regions where steep density gradients limit the effective length of the gain medium.
NASA Astrophysics Data System (ADS)
Vdovin, V. L.
2011-02-01
We present recent numerically well resolved ECRF 3D STELEC toroidal full wave code [1] modelling results for fundamental and second harmonics scenarios in several tokamaks and ITER. Improved numerical resolution for middle size tokamaks further solidly confirms previously discovered O- and X- modes strong coupling at fundamental harmonic leading to broadened power deposition profiles, in compare with ray tracing predictions, due to influence of Upper Hybrid Resonance (UHR). For the T-10/DIII-D tokamaks we consider O-mode outside launch cases with EC resonance in plasma with UHR usual "moon serp" surface and out off plasma EC resonance at High Field Side when UHR surface is in-plasma internally closed one with Electron Bernstein Waves (EBW) being excited inside of it due to mode conversion process. Combined self consistent dynamic O-mode, X-mode and EB waves structure is intriguing one and is shown. This out off plasma EC fundamental resonance scenario was discovered in WEGA stellarator [2]. In second harmonic scenarios we are concentrating on X-mode outside launch at sufficiently large plasma densities for JET, some times close (but lower) to this mode density cut off. Exact boundary problem EC wave solution again shows that simultaneously is exciting also the O-mode (with smaller amplitude), presumably due to reflection effects and wave depolarization at the wall.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
Wang Shaojie
2011-10-15
A theoretical model is proposed to interpret the counter-current rotation driven by the lower-hybrid-wave observed in the tokamak lower-hybrid-wave parallel current drive experiments. It is found that ions absorb the toroidal momentum indirectly from the wave through collisional friction with the resonant electrons that directly take the momentum from the wave through Landau resonance. This momentum coupling pumps out the ions to produce a negative radial electric field and makes the plasma rotate in the counter-current direction.
Tokamak with liquid metal for inducing toroidal electrical field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.
Fokker-Planck model for collisional loss of fast ions in tokamaks
NASA Astrophysics Data System (ADS)
Yavorskij, V.; Goloborod'ko, V.; Schoepf, K.
2016-11-01
Modelling of the collisional loss of fast ions from tokamak plasmas is important from the point of view of the impact of fusion alphas and neutral beam injection ions on plasma facing components as well as for the development of diagnostics of fast ion losses [1-3]. This paper develops a Fokker-Planck (FP) method for the assessment of distributions of collisional loss of fast ions as depending on the coordinates of the first wall surface and on the velocities of lost ions. It is shown that the complete 4D drift FP approach for description of fast ions in axisymmetric tokamak plasmas can be reduced to a 2D FP problem for lost ions with a boundary condition delivered by the solution of a 3D boundary value problem for confined ions. Based on this newly developed FP approach the poloidal distribution of neoclassical loss, depending on pitch-angle and energy, of fast ions from tokamak plasma may be examined as well as the contribution of this loss to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss distributions obtained with the novel FP treatment may serve as an alternative approach with respect to Monte-Carlo models [4, 5] commonly used for simulating fast ion loss from toroidal plasmas.
NASA Astrophysics Data System (ADS)
Gangwar, Reetesh K.; Dipti; Srivastava, Rajesh; Stafford, Luc
2016-06-01
A collisional-radiative (C-R) model for krypton plasma using fully relativistic distorted-wave cross sections for electron excitations was developed. The model was applied to the characterization of inductively coupled Kr plasma with cylindrical geometry over the pressure regime 1-50 mTorr. Radially averaged emission intensities from transitions of Kr (4p55p → 4p55s) in the range 500-900 nm were recorded at 17 cm from the planar RF-driven coil, with the plasma operated in the inductive regime (H mode). The measured emission intensities were then fitted by varying the electron density, n e, and electron temperature, T e, in the C-R model. At both low and high pressures, variations of the electron density by over two orders of magnitude had only a minor role on the relative emission intensities. On the other hand, T e values deduced from the comparison between experiment and model decreased from 6.7 to 2.6 eV as pressure increased from 1 to 50 mTorr. These results are found to be in good agreement with the effective electron temperature determined from Langmuir probe measurements and the predictions of a model based on the particle balance equation of charged particles.
Toroidal current asymmetry in tokamak disruptions
Strauss, H. R.
2014-10-15
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I{sub ϕ}. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I{sub ϕ} asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.
Theory comparison and numerical benchmarking on neoclassical toroidal viscosity torque
Wang, Zhirui; Park, Jong-Kyu; Logan, Nikolas; Kim, Kimin; Menard, Jonathan E.; Liu, Yueqiang
2014-04-15
Systematic comparison and numerical benchmarking have been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications [Park et al., Phys. Rev. Lett. 102, 065002 (2009)]; MARS-Q includes smoothly connected NTV formula [Shaing et al., Nucl. Fusion 50, 025022 (2010)] based on Shaing's analytic formulation in various collisionality regimes; MARS-K, originally computing the drift kinetic energy, is upgraded to compute the NTV torque based on the equivalence between drift kinetic energy and NTV torque [J.-K. Park, Phys. Plasma 18, 110702 (2011)]. The derivation and numerical results both indicate that the imaginary part of drift kinetic energy computed by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, the agreement and correlation between the connected NTV formula and the combined NTV theory in different collisionality regimes are shown for the first time. Additionally, both IPEC-PENT and MARS-K indicate the importance of the bounce harmonic resonance which can greatly enhance the NTV torque when E×B drift frequency reaches the bounce resonance condition.
Theory comparison and numerical benchmarking on neoclassical toroidal viscosity torque
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Liu, Yueqiang; Logan, Nikolas; Kim, Kimin; Menard, Jonathan E.
2014-04-01
Systematic comparison and numerical benchmarking have been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications [Park et al., Phys. Rev. Lett. 102, 065002 (2009)]; MARS-Q includes smoothly connected NTV formula [Shaing et al., Nucl. Fusion 50, 025022 (2010)] based on Shaing's analytic formulation in various collisionality regimes; MARS-K, originally computing the drift kinetic energy, is upgraded to compute the NTV torque based on the equivalence between drift kinetic energy and NTV torque [J.-K. Park, Phys. Plasma 18, 110702 (2011)]. The derivation and numerical results both indicate that the imaginary part of drift kinetic energy computed by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, the agreement and correlation between the connected NTV formula and the combined NTV theory in different collisionality regimes are shown for the first time. Additionally, both IPEC-PENT and MARS-K indicate the importance of the bounce harmonic resonance which can greatly enhance the NTV torque when E ×B drift frequency reaches the bounce resonance condition.
ELM Suppression in Low Edge Collisionality H-Mode Discharges Using n=3 Magnetic Perturbations
Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L
2005-07-11
Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces the edge pressure gradient and pedestal current density below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.
Motie, Iman; Bokaeeyan, Mahyar
2015-02-15
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.
NASA Astrophysics Data System (ADS)
Li, Yan; Sung, Yung-Ta; Scharer, John
2015-11-01
Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.
NASA Astrophysics Data System (ADS)
Motie, Iman; Bokaeeyan, Mahyar
2015-02-01
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.
Grierson, B. A.; Pablant, N. A.; Solomon, W. M.; Burrell, K. H.; Heidbrink, W. W.; Lanctot, M. J.
2012-05-15
Bulk ion toroidal rotation plays a critical role in controlling microturbulence and MHD stability as well as yielding important insight into angular momentum transport and the investigation of intrinsic rotation. So far, our understanding of bulk plasma flow in hydrogenic plasmas has been inferred from impurity ion velocity measurements and neoclassical theoretical calculations. However, the validity of these inferences has not been tested rigorously through direct measurement of the main-ion rotation in deuterium plasmas, particularly in regions of the plasma with steep pressure gradients where very large differences can be expected between bulk ion and impurity rotation. New advances in the analysis of wavelength-resolved D{sub {alpha}} emission on the DIII-D tokamak [J. L. Luxon et al., Fusion Sci. Technol. 48, 807 (2002)] have enabled accurate measurements of the main-ion (deuteron) temperature and toroidal rotation. The D{sub {alpha}} emission spectrum is accurately fit using a model that incorporates thermal deuterium charge exchange, beam emission, and fast ion D{sub {alpha}} (FIDA) emission spectra. Simultaneous spectral measurements of counter current injected and co current injected neutral beams permit a direct determination of the deuterium toroidal velocity. Time-dependent collisional radiative modeling of the photoemission process is in quantitative agreement with measured spectral characteristics. L-mode discharges with low beam ion densities and broad thermal pressure profiles exhibit deuteron temperature and toroidal rotation velocities similar to carbon. However, intrinsic rotation H-mode conditions and plasmas with internal transport barriers exhibit differences between core deuteron and carbon rotation which are inconsistent with the sign and magnitude of the neoclassical predictions.
Jeans stability in collisional quantum dusty magnetoplasmas
Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
NASA Astrophysics Data System (ADS)
Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa
2016-10-01
The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).
NASA Astrophysics Data System (ADS)
Fuchs, J.; Labaune, C.; Depierreux, S.; Tikhonchuk, V. T.; Baldis, H. A.
2000-11-01
Experiments have been conducted at the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) multibeam laser facility to study in detail stimulated Brillouin (SBS) and Raman (SRS) scattering from an intense (mean average intensity up to 1014W/cm2) long (600 ps full width at half-maximum) laser beam interacting with thin exploded plastic foils. The plasmas are well characterized and the vacuum laser intensity distribution is well known due to using either random phase plates or polarization smoothing. Direct and simultaneous Thomson scattering measurements of the associated plasma waves allow us to obtain detailed information about the SBS and SRS temporal evolution and spatial localization. These data are being used to benchmark a statistical model of SBS and SRS from self-focused speckles. The results of this comparison will be presented in a companion paper. The analysis shows that both SBS and SRS are originated from self-focused speckles and reveals that plasma heating has an important effect on speckle self-focusing.
Experimental studies of compact toroids
Not Available
1991-01-01
The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.
Barnes, D.C.; Fernandez, J.C.; Rej, D.J.
1990-05-01
The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.
NASA Astrophysics Data System (ADS)
Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.
2016-07-01
We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.
Auluck, S. K. H.
2014-10-15
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2014-10-01
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
Lindenmeyer, Carl W.
1981-01-01
A lower support receives a toroid at a winding station with the axis of the toroid aligned with a slot in the support. An upper guide member applies an axial force to hold the toroid against the lower support. A pair of movable jaws carried by an indexing mechanism engage the outer surface of the toroid to apply a radial holding force. While the toroid is thus held, a wire is placed axially through the toroid, assisted by a funnel-shaped surface in the upper guide member, and is drawn tight about the toroid by a pair of cooperating draw rollers. When operated in the "full cycle" mode, the operator then actuates a switch which energizes a power drive to release the axial clamp and to drive the indexing mechanism and the jaws to rotate the toroid about its axis. At the same time, the wire is ejected from the draw rollers beneath the toroid so that the operator may grasp it to form another loop. When the toroid is fully indexed, the jaws release it, and the upper guide member is returned to clamp the toroid axially while the indexing mechanism is returned to its starting position. The apparatus may also be operated in a "momentary contact" mode in which the mechanism is driven only for the time a switch is actuated.
Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K.; Sharma, D.; Ghosh, J.; Saxena, Y. C.; Thomas, Edward
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of the dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.
Formation of a compact toroid for enhanced efficiency
Mozgovoy, A. G.; Romadanov, I. V.; Ryzhkov, S. V.
2014-02-15
We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.
Investigation of 3D tungsten distributions in (1,1) kink modes induced by toroidal plasma rotation
NASA Astrophysics Data System (ADS)
Weiland, M.; Gude, A.; Igochine, V.; Maraschek, M.; Zohm, H.; Bohle, R.; Dux, R.; Lackner, K.; Odstrčil, T.; Pütterich, T.
2015-08-01
The presence of high-Z impurities, such as tungsten (W), can lead to non-uniform SXR radiation on flux surfaces due to the centrifugal forces in rotating plasmas. The goal of this work is to characterize the effects of such rotation-induced radiation asymmetries on FFT-based SXR mode analysis. Therefore, a synthetic SXR diagnostic has been implemented, which takes into account the full 3D geometry of the detectors, resulting in a volume integration rather than the more simplifying line integration. We have focused on resistive (1,1) kink modes, where we have implemented a model for the flux surfaces perturbed by the mode and the W distribution within. In a rotation scan, which leads to a variation of the asymmetry, a strong dependence of the FFT phase profile on the asymmetry strength is found. A comparison with experimental data shows good agreement, which verifies the used models.
Huang, Yao-Wei; Chen, Wei Ting; Wu, Pin Chieh; Fedotov, Vassili A.; Zheludev, Nikolay I.; Tsai, Din Ping
2013-01-01
Toroidal shapes are often found in bio-molecules, viruses, proteins and fats, but only recently it was proved experimentally that toroidal structures can support exotic high-frequency electromagnetic excitations that are neither electric or magnetic multipoles. Such excitations, known as toroidal moments, could be playing an important role in enhancing inter-molecular interaction and energy transfer due to its higher electromagnetic energy confinement and weaker coupling to free space. Using a model toroidal metamaterial system, we show that coupling optical gain medium with high Q-factor toroidal resonance mode can enhance the single pass amplification to up to 65 dB. This offers an opportunity of creating the “toroidal” lasing spaser, a source of coherent optical radiation that is fueled by toroidal plasmonic oscillations in the nanostructure. PMID:23393619
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Ren, Haijun; Cao, Jintao
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Yun, Gunsu S.; Choi, Minjun J.; Kwon, Jae-Min; Jeon, Young-Mu; Lee, Woochang; Luhmann, Neville C.; Park, Hyeon K.
2016-08-01
The effect of static n =1 resonant magnetic perturbation (RMP) on the spatial structure and temporal dynamics of edge-localized modes (ELMs) and edge turbulence in tokamak plasma has been investigated. Two-dimensional images measured by a millimeter-wave camera on the KSTAR tokamak revealed that the coherent filamentary modes (i.e., ELMs) are still present in the edge region when the usual large scale collapse of the edge confinement, i.e., the ELM crash, is completely suppressed by n =1 RMP. Cross-correlation analyses on the 2D images show that (1) the RMP enhances turbulent fluctuations in the edge toward the ELM-crash-suppression phase, (2) the induced turbulence has a clear dispersion relation for wide ranges of wave number and frequency, and (3) the turbulence involves a net radially outward energy transport. Nonlinear interactions of the turbulent eddies with the coexisting ELMs are clearly observed by bispectral analysis, which implies that the exchange of energy between them may be the key to the prevention of large scale crashes.
Lee, Jaehyun; Yun, Gunsu S; Choi, Minjun J; Kwon, Jae-Min; Jeon, Young-Mu; Lee, Woochang; Luhmann, Neville C; Park, Hyeon K
2016-08-12
The effect of static n=1 resonant magnetic perturbation (RMP) on the spatial structure and temporal dynamics of edge-localized modes (ELMs) and edge turbulence in tokamak plasma has been investigated. Two-dimensional images measured by a millimeter-wave camera on the KSTAR tokamak revealed that the coherent filamentary modes (i.e., ELMs) are still present in the edge region when the usual large scale collapse of the edge confinement, i.e., the ELM crash, is completely suppressed by n=1 RMP. Cross-correlation analyses on the 2D images show that (1) the RMP enhances turbulent fluctuations in the edge toward the ELM-crash-suppression phase, (2) the induced turbulence has a clear dispersion relation for wide ranges of wave number and frequency, and (3) the turbulence involves a net radially outward energy transport. Nonlinear interactions of the turbulent eddies with the coexisting ELMs are clearly observed by bispectral analysis, which implies that the exchange of energy between them may be the key to the prevention of large scale crashes. PMID:27563970
Ono, Masayuki; Furth, Harold
1993-01-01
An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
Hornsby, W. A. Migliano, P.; Buchholz, R.; Kroenert, L.; Weikl, A.; Peeters, A. G.; Zarzoso, D.; Poli, E.; Casson, F. J.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.
Theory verification and numerical benchmarking on neoclassical toroidal viscosity
NASA Astrophysics Data System (ADS)
Wang, Z. R.; Park, J.-K.; Liu, Y. Q.; Logan, N. C.; Menard, J. E.
2013-10-01
Systematic verification and numerical benchmarking has been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications; MARS-K originally calculating the kinetic energy is upgraded to calculate the NTV torque based on the equivalence between kinetic energy and NTV torque; MARS-Q includes smoothly connected NTV formula. The derivation and numerical results both indicate that the imaginary part of kinetic energy calculated by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, it is first time to show the agreement and the correlation between the connected NTV formula and the combined NTV theory in different collisional region. Additionally, both IPEC-PENT and MARS-K indicates the importance of the bounce harmonic resonance which could greatly enhance the NTV torque when E cross B drift frequency reaches the bounce resonance condition. Since MARS-K also has the capability to calculate the plasma response including the kinetic effect self-consistently, the self-consistent NTV torque calculations have also been tested. This work is supported by DOE Contract No. DE-AC02-09CH11466.
Toroidal rotation and halo current produced by disruptions
NASA Astrophysics Data System (ADS)
Strauss, Henry; Sugiyama, Linda; Paccagnella, Roberto; Breslau, Joshua; Jardin, Stephen
2013-10-01
In several experiments including JET, it was observed that disruptions were accompanied by toroidal rotation. There is a concern that there may be a resonance between rotating toroidal perturbations and the resonant frequencies of the ITER vacuum vessel, causing enhanced damage. MHD simulations with M3D demonstrate that disruptions produce toroidal rotation. The toroidal velocity can produce several rotations of the sideways force during a disruption. Edge localized modes (ELMs) also produce poloidal and toroidal rotation. A theory of rotation produced by MHD activity will be presented. In the case of ELMs, the theory gives toroidal rotation Alfven Mach number, Mϕ ~10-2βN . This is consistent with a scaling for intrinsic toroidal rotation in H mode tokamaks. It was also discovered on JET that disruptions were accompanied by toroidal variation of the plasma current Iϕ. From ∇ . j = 0 , the toroidal current variation ΔIϕ is proportional to the 3D halo current, ∮Jn Rdl , where Jn is the normal current density at the wall. The 3D halo current is calculated analytically and computationally. A bound on ΔIϕ /Iϕ is found, proportional to the halo current fraction and toroidal peaking factor. Supported by USDOE and ITER.
NCSX Toroidal Field Coil Design
Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.
2005-10-07
The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.
Collisional effects on kinetic electromagnetic modes and associated quasilinear transport
Rewoldt, G.; Tang, W.M.; Hastie, R.J.
1986-08-01
The general procedure for the analysis of low-frequency electrostatic and electro-magnetic modes in toroidal geometry is now well known. In the collisionless limit, the relevant dynamics (e.g., trapped particles, resonances, etc.) can be treated appropriately. However, with the introduction of collisional effects, it is customary, for tractability, to employ model collision operators of varying degrees of complexity. Guided by results of earlier studies of alternative collision operators in unsheared slab geometry and in toroidal geometry, an improved model collision operator is introduced here for calculating toroidal eigenmodes. Analytic and numerical results are presented to support its relevance and to demonstrate its improvement over earlier models. The associated quasilinear particle and energy transport coefficients for each species are also calculated, and compared with the usual D/sub j/ approx. = kappa/sub j/ approx. = ..gamma../k /sub perpendicular//sup 2/ estimate.
Spontaneous toroidal flow generation due to negative effective momentum diffusivity
McMillan, Ben F.
2015-02-15
Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.
Spontaneous toroidal flow generation due to negative effective momentum diffusivity
NASA Astrophysics Data System (ADS)
McMillan, Ben F.
2015-02-01
Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.
System and method of operating toroidal magnetic confinement devices
Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.
1984-08-30
This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.
Potthoff, Clifford M.
1978-01-01
The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.
Living Toroids - Cells on Toroidal Surfaces
NASA Astrophysics Data System (ADS)
Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto
2014-03-01
Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Influence of toroidal rotation on resistive tearing modes in tokamaks
Wang, S.; Ma, Z. W.
2015-12-15
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Influence of toroidal rotation on resistive tearing modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Mirror theory applied to toroidal systems
Cohen, R.H.
1987-08-25
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs.
Neoclassical Transport Including Collisional Nonlinearity
Candy, J.; Belli, E. A.
2011-06-10
In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Experiments on the Propagation of Plasma Filaments
Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos
2008-07-04
We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.
Solar Wind Collisional Age from a Global Magnetohydrodynamics Simulation
NASA Astrophysics Data System (ADS)
Chhiber, R.; Usmanov, AV; Matthaeus, WH; Goldstein, ML
2016-04-01
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.
2004-08-10
A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.
Third Elementary Dipole Moment: Toroidal
NASA Astrophysics Data System (ADS)
Cordrey, Vincent; Eshete, Amanuel; Majewski, Walerian
2015-04-01
In this paper we study the generally unknown characteristics of toroids, magnets without magnetic poles. Toroids have never seemed interesting enough to be studied for their physical features in labs due to the fact that they have no magnetic fields on the outside, but rather a very strong magnetic field trapped inside. Toroidal solenoids or magnets (rings magnetized circumferentially) interact with the external magnetic field only through its curl, which can be created either by an electric current, or by a time-dependent electric flux. We confirmed a theoretical prediction, that a toroid would not interact with the curl-less magnetic field of a current-carrying wire running outside of the torus's hole. We used our toroids as magnetic curlmeters, measuring the torque on the toroid, when the current-carrying wire runs through the toroid. From this torque we found the toroidal dipole moment. We are experimenting on detecting the escape of the inner magnetic field of the toroid outside of it, when magnetic toroid rotates or when electric toroid is driven by AC voltage. We also will discuss toroidal (or anapole) moments of fundamental particles, nuclei and atoms, and toroids' applications in metamaterials.
Toroidal ripple transport of beam ions in the mega-ampere spherical tokamak
McClements, K. G.
2012-07-15
The transport of injected beam ions due to toroidal magnetic field ripple in the mega-ampere spherical tokamak (MAST) is quantified using a full orbit particle tracking code, with collisional slowing-down and pitch-angle scattering by electrons and bulk ions taken into account. It is shown that the level of ripple losses is generally rather low, although it depends sensitively on the major radius of the outer midplane plasma edge; for typical values of this parameter in MAST plasmas, the reduction in beam heating power due specifically to ripple transport is less than 1%, and the ripple contribution to beam ion diffusivity is of the order of 0.1 m{sup 2} s{sup -1} or less. It is concluded that ripple effects make only a small contribution to anomalous transport rates that have been invoked to account for measured neutron rates and plasma stored energies in some MAST discharges. Delayed (non-prompt) losses are shown to occur close to the outer midplane, suggesting that banana-drift diffusion is the most likely cause of the ripple-induced losses.
Progress in Compact Toroid Experiments
Dolan, Thomas James
2002-09-01
The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.
Yamamoto, T; Shibata, T; Ohta, M; Yasumoto, M; Nishida, K; Hatayama, A; Mattei, S; Lettry, J; Sawada, K; Fantz, U
2014-02-01
To control the H(0) atom production profile in the H(-) ion sources is one of the important issues for the efficient and uniform surface H(-) production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H(0) atoms from H2 molecules in the model geometry of the radio-frequency (RF) H(-) ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H(0) production and the Balmer Hα photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H(-) ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established. PMID:24593558
NASA Astrophysics Data System (ADS)
Ginzburg, V. B.
1996-09-01
A toroidal spiral field is introduced that propagates around all the objects in the universe. The nature of this field can be either gravitational or electrostatic or magnetic, and it governs the motion of the objects as well as the forces that act upon them. The topology of the toroidal spiral field is obtained when the Bertrami vortex comprised of two helical fluxes of opposite vorticity is curved into a circle. The main parameter that defines the geometry of the toroidal spiral field is the inversion radius of a sphere at which the toroidal fluxes of opposite vorticity meet. The inversion sphere is the border surface at which the matter converts into anti-matter, and at which the law of physics are inverted. The theory covers the problem of two objects orbiting each other with possible sizes ranging from an elementary particle to a black hole and to a galaxy. The equations obtained define the radii of the stationary quantum orbits which can be applied to a structure of the hydrogen atom, including its nucleus, as well as to a structure of a planetary system and a black hole. They also establish the relativistic relationships for the gravitational and inertial masses as well as for the electrical charge which are quite different than those proposed by Lorentz.
Equilibrium analysis of tokamak discharges with toroidal variation
Zwingmann, W.; Becoulet, M.; Moreau, Ph.; Nardon, E.
2006-11-30
Tokamaks provide a field structure that is almost axisymmetric around the torus axis. There are however always small toroidal variations due to the limited number of toroidal field coils, the magnetic field ripple. On the other hand, non-axisymmetric external fields are applied on purpose to ergodise the field structure close to the separatrix, to control the heat and particle transport across the plasma boundary. We present a perturbation method to calculate the magnetic field of tokamak discharges with with weak toroidal variation. The method is applied for the equilibrium reconstruction of Tore Supra discharges with toroidal ripple. The perturbation method does not rely on a flux surface representation and can therefore be applied to structures with magnetic islands. We obtain the plasma response to the field of ergodising external coils, as proposed for the ITER device.
Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)
NASA Astrophysics Data System (ADS)
Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.
2011-10-01
First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.
Transition from Collisionless to Collisional MRI
Prateek Sharma; Gregory W. Hammett; Eliot Quataert
2003-07-24
Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-27
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-28
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma
Physics models in the toroidal transport code PROCTR
Howe, H.C.
1990-08-01
The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
Collisional lifetimes of meteoroids
NASA Astrophysics Data System (ADS)
Soja, R. H.; Schwarzkopf, G. J.; Sommer, M.; Vaubaillon, J.; Albin, T.; Rodmann, J.; Grün, E.; Srama, R.
2016-01-01
Collisions of meteoroids with interplanetary dust grain fragments particles, dispersing larger particles amongst lower mass intervals. Here we use the method of Grün et al. (1985) and the IMEM interplanetary dust model to calculate the collisional lifetimes for different orbits, and for particles in different meteor showers. The timescales are usually long - of order 10^4 years for 1mm grains on Jupiter-family and Hally-type comet orbits. However, near-sun orbits particles suffer more frequent collisions and therefore have much shorter lifetimes. We discuss factors that affect the accuracy of these calculations.
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.
Reactors Power Balance Based on Compact Toroid
NASA Astrophysics Data System (ADS)
Romadanov, I.
2013-10-01
The power balance of the plasma source system based on compact toroid with a pulse mode of formation is considered. Developed model takes into account the time dependence of the processes, in a pulsed mode of operation of the system. Also magnetic configuration shape and nuclei energy distribution fluency were considered. Analytical solution of Grad-Shafranov equation was taken to determine the shape of the separatrix and magnetic fields into the configuration. For practical calculation, program was written. Code is able to calculates volume power reactions in the confined plasma, using as input the geometry of the magnetic field, the cross section of reaction rates and energy distribution of the nuclei.
Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry
Yang, J.G.; Oh, Y.H.; Choi, D.I. ); Kim, J.Y.; Horton, W. )
1992-03-01
The flux-surface-averaged linearized resistive magnetohydrodynamic (MHD) boundary-layer equations including the compressibility, diamagnetic drift, and neoclassical viscosity terms are derived in toroidal geometry. These equations describe the resistive layer dynamics of resistive MHD modes over the collisionality regime between the banana plateau and the Pfirsch--Schlueter. From the resulting equations, the effects of neoclassical viscosity on the stability of the tearing and resistive ballooning modes are investigated numerically. Also, a study is given for the problem of how the neoclassical resistive MHD mode is generated as the collisionality is reduced. It is shown that the neoclassical viscosity terms give a significant destabilizing effect for the tearing and resistive ballooning modes. This destabilization comes mainly from the reduction of the stabilizing effect of the parallel ion sound compression by the ion neoclassical viscosity. In the banana-plateau collisionality limit, where the compressibility is negligible, the dispersion relations of the tearing and resistive ballooning modes reduce to the same form, with the threshold value of the driving force given by {Delta}{sub {ital c}}=0. On the other hand, with the finite neoclassical effect it is found that the neoclassical resistive MHD instability is generated in agreement with previous results. Furthermore, it is shown that this later instability can be generated in a wide range of the collisionality including near the Pfirsch--Schlueter regime as well as the banana-plateau regime, suggesting that this mode is a probable cause of anomalous transport.
Collisional-Radiative Kinetics in Monatomic Gases
NASA Astrophysics Data System (ADS)
Le, Hai; Karagozian, Ann
2012-11-01
A detailed model of electronic excited states is essential in capturing all the nonequilibrium processes of a partially ionized plasma by means of collisional and radiative interactions. This collisional-radiative (CR) model allows us to consider deviations from equilibrium distribution of the internal states, and is now more commonly used in the study of plasma discharges. Prior studies by Kapper and Cambier and Panesi et al. suggest that this level of detail is needed for an accurate prediction of the flow field, and it is particularly relevant to plasma-combustion interactions. The required number of excited states needed to be included in the CR model is often prohibitively large due to the nonequilibrium condition of the plasma. The consequence is a large system of ODE's which needs to be solved at each time step. A reduced mechanism for the CR model can be attained by grouping the upper states of the atomic state distribution (ASDF) into a pseudo-level in which the population is characterized either by a uniform distribution or a Boltzmann distribution. This talk presents both detailed and reduced models for an ionizing shock in Argon. Supported by the US Air Force/ERC, Inc. under subcontract RS111738.
Formation and dynamics of a toroidal bubble during laser propelling a cavity object in water.
Chen, Jun; Zhang, Hong-Chao; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu
2013-10-01
We captured stable self-oscillations of a toroidal bubble moving away from a laser propelled cavity object in water using a high-speed imaging system. The entire laser propelling process generates a hemispherical bubble, two toroidal bubbles, and a microbubble cluster. The hemispherical bubble is formed by laser breakdown in water. The toroidal bubbles are formed by the variation of the pressure field as a result of the propagation, reflection, and convergence of the laser plasma shockwave in the cavity.