Pore water colloid properties in argillaceous sedimentary rocks.
Degueldre, Claude; Cloet, Veerle
2016-11-01
The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.
Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.
Rees, T.F.; Ranville, J.F.
1990-01-01
Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.
Shape recognition of microbial cells by colloidal cell imprints
NASA Astrophysics Data System (ADS)
Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.
2013-08-01
We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.
Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela
2014-01-15
Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.
Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping
2016-01-01
Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published by Elsevier Ltd.
Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility.
Missong, Anna; Holzmann, Stefan; Bol, Roland; Nischwitz, Volker; Puhlmann, Heike; V Wilpert, Klaus; Siemens, Jan; Klumpp, Erwin
2018-09-01
The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; C org : 3-17%; Al: <4%; Si, Ca, Mn: all <2%). The proportion of colloid-associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Method for the preparation of metal colloids in inverse micelles and product preferred by the method
Wilcoxon, Jess P.
1992-01-01
A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction ismore » determined which is found to be equal to the lattice spacing of the crystal.« less
NASA Astrophysics Data System (ADS)
Johnson, William; Farnsworth, Anna; Vanness, Kurt; Hilpert, Markus
2017-04-01
The key element of a mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment) is representation of the nano-scale surface heterogeneity (herein called discrete heterogeneity) that drives colloid attachment under unfavorable conditions. The observed modes of colloid attachment under unfavorable conditions emerge from simulations that incorporate discrete heterogeneity. Quantitative prediction of attachment (and detachment) requires capturing the sizes, spatial frequencies, and other properties of roughness asperities and charge heterodomains in discrete heterogeneity representations of different surfaces. The fact that a given discrete heterogeneity representation will interact differently with different-sized colloids as well as different ionic strengths for a given sized colloid allows backing out representative discrete heterogeneity via comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has been achieved on unfavorable smooth surfaces yielding quantitative prediction of attachment, and qualitative prediction of detachment in response to ionic strength or flow perturbations. Extending this treatment to rough surfaces, and representing the contributions of nanoscale roughness as well as charge heterogeneity is a focus of this talk. Another focus of this talk is the upscaling the pore scale simulations to produce contrasting breakthrough-elution behaviors at the continuum (column) scale that are observed, for example, for different-sized colloids, or same-sized colloids under different ionic strength conditions. The outcome of mechanistic pore scale simulations incorporating discrete heterogeneity and subsequent upscaling is that temporal processes such as blocking and ripening will emerge organically from these simulations, since these processes fundamentally stem from the limited sites available for attachment as represented in discrete heterogeneity.
USDA-ARS?s Scientific Manuscript database
Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...
Silica-coated titania and zirconia colloids for subsurface transport field experiments
Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.
2000-01-01
Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.
Colloidal interactions and fouling of NF and RO membranes: a review.
Tang, Chuyang Y; Chong, T H; Fane, Anthony G
2011-05-11
Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter≪100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper. Copyright © 2010 Elsevier B.V. All rights reserved.
Multiple electrokinetic actuators for feedback control of colloidal crystal size.
Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A
2012-10-21
We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.
Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction
NASA Astrophysics Data System (ADS)
Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.
2018-01-01
Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.
NASA Astrophysics Data System (ADS)
Dahlqvist, Ralf; Benedetti, Marc F.; Andersson, Karen; Turner, David; Larsson, Tobias; Stolpe, Björn; Ingri, Johan
2004-10-01
A considerable amount of colloidally bound Ca has been detected in water samples from Amazonian rivers and the Kalix River, a sub-arctic boreal river. Fractionation experiments using several analytical techniques and processing tools were conducted in order to elucidate the matter. Results show that on average 84% of the total Ca concentration is present as free Ca. Particulate, colloidal and complexed Ca constitute the remaining 16%, of which the colloidal fraction is significant. Ultrafiltration experiments show that the colloidal fraction in the sampled Amazonian rivers and the Kalix River range between 1% and 25%. In both the Amazonian and the Kalix rivers the technique of cross-flow ultrafiltration was used to isolate particles and colloids. The difference in concentration measured with ICP-AES and a Ca ion-selective electrode in identical samples was used to define the free Ca concentration and thus indirectly the magnitude of the particulate, colloidal and complexed fractions. Results from the Kalix and Amazonian rivers are in excellent agreement. Furthermore, the results show that the colloidal concentrations of Ca can be greatly overestimated (up to 227%) when conventional analysis and calculation of ultrafiltration data is used due to retention of free Ca ions during the ultrafiltration process. Calculation methods for colloidal matter are presented in this work, using complementary data from ISE analysis. In the Kalix River temporal changes in the fractionation of Ca were studied before, during and after a spring-flood event. Changes in the size distribution of colloidally associated Ca was studied using FlFFF (Flow Field-Flow Fractionation) coupled on-line to a HR ICP-MS. The FlFFF-HR ICP-MS fractograms clearly show the colloidal component of Ca, supporting the ultrafiltration findings. During winter conditions the size distribution of colloidally associated Ca has a concentration maximum at ˜5 to 10 nm in diameter, shifting to smaller sizes (<5 nm) during and after the spring flood. This shift in size distribution follows a change in the river during this period from ironoxyhydroxy colloids being the most important colloidal carrier phase to humic substances during and after the spring flood. WHAM and NICA-Donnan models were used to calculate the amount of colloidally bound Ca. The results similar for both models, show that on average 16% of the Ca may be associated to a colloidal phase, which is in broad agreement with the measurements.
In-situ chemical barrier and method of making
Cantrell, K.J.; Kaplan, D.I.
1999-01-12
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.
In-situ chemical barrier and method of making
Cantrell, Kirk J.; Kaplan, Daniel I.
1999-01-01
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.
Active structuring of colloidal armour on liquid drops
NASA Astrophysics Data System (ADS)
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-06-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.
Active structuring of colloidal armour on liquid drops.
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; McKinney, R.A.; Brown, W.A.
1996-08-01
In this study, the three phase distributions (i.e., dissolved, colloidal, and particulate) of approximately 75 PCB congeners were measured in a marine sediment core from New Bedford Harbor, M.A. These distributions are the first report of colloid-PCB interactions in an environmentally contaminated sediment. Colloids <1.2 {mu}m in size were isolated from interstitial waters using reverse-phase chromatography with size-selected C{sub 18}. Regardless of solubility or chlorination, the majority of PCBs were associated with the particulate phase. PCBs were distributed in filtered interstitial waters between colloidal and dissolved phases as a function of solubility and degree of chlorination. Interstitial dissolved PCB concentrationsmore » generally agreed with literature-reported solubilities. The magnitude of colloid-PCB interactions increased with decreasing PCB solubility and increasing PCB chlorination. Di- and trichlorinated PCBs were approximately 40% and 65% colloidally bound, respectively, while tetra-, penta-, hexa-, hepta-, and octachlorinated PCBs were about 80% colloidally bound. As core depth increased, the magnitude of PCB-colloid interactions also increased. The relationships of organic carbon-normalized colloidal partitioning coefficient(K{sub coc}) to K{sub ow} for several PCB congeners were not linear and suggest that interstitial waters were not equilibrated. 62 refs., 8 figs., 3 tabs.« less
Trauscht, Jacob; Pazmino, Eddy; Johnson, William P
2015-09-01
Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source
NASA Astrophysics Data System (ADS)
Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.
2017-05-01
A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.
Interactions in charged colloidal suspensions: A molecular dynamics simulation study
NASA Astrophysics Data System (ADS)
Padidela, Uday Kumar; Behera, Raghu Nath
2017-07-01
Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.
Rigorous theoretical framework for particle sizing in turbid colloids using light refraction.
García-Valenzuela, Augusto; Barrera, Rubén G; Gutierrez-Reyes, Edahí
2008-11-24
Using a non-local effective-medium approach, we analyze the refraction of light in a colloidal medium. We discuss the theoretical grounds and all the necessary precautions to design and perform experiments to measure the effective refractive index in dilute colloids. As an application, we show that it is possible to retrieve the size of small dielectric particles in a colloid by measuring the complex effective refractive index and the volume fraction occupied by the particles.
Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.
2012-01-01
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822
Active structuring of colloidal armour on liquid drops
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics
NASA Astrophysics Data System (ADS)
Herring, A. R.; Henderson, J. R.
2007-01-01
Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.
Rees, Terry F.
1990-01-01
Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.
Yan, Caixia; Liu, Huihui; Sheng, Yanru; Huang, Xian; Nie, Minghua; Huang, Qi; Baalousha, Mohammed
2018-10-01
Characterization of natural colloids is the key to understand pollutant fate and transport in the environment. The present study investigates the relationship between size and fluorescence properties of colloidal organic matter (COM) from five tributaries of Poyang Lake. Colloids were size-fractionated using cross-flow ultrafiltration and their fluorescence properties were measured by three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM). Parallel factor analysis (PARAFAC) and/or Self-organizing map (SOM) were applied to assess fluorescence properties as proxy indicators for the different size of colloids. PARAFAC analysis identified four fluorescence components including three humic-like components (C1-C3) and a protein-like component (C4). These four fluorescence components, and in particular the protein-like component, are primarily present in <1 kDa phase. For the colloidal fractions (1-10 kDa, 10-100 kDa, and 100 kDa-0.7 μm), the majority of fluorophores are associated with the smallest size fraction. SOM analysis demonstrated that relatively high fluorescence intensity and aromaticity occur primarily in <1 kDa phase, followed by 1-10 kDa colloids. Coupling PARAFAC and SOM facilitate the visualization and interpretation of the relationship between colloidal size and fluorescence properties with fewer input variables, shorter running time, higher reliability, and nondestructive results. Fluorescence indices analysis reveals that the smallest colloidal fraction (1-10 kDa) was dominated by higher humified and less autochthonous COM. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao
Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.
Integration of colloids into a semi-flexible network of fibrin.
Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H
2017-02-15
Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.
Depletion interaction between colloids mediated by an athermal polymer blend
NASA Astrophysics Data System (ADS)
Chervanyov, A. I.
2018-03-01
We calculate the immersion energy of a colloid and the potential of the depletion interaction (DI) acting between colloids immersed in an athermal polymer blend. The developed theory has no limitations with respect to the polymer-to-colloid size ratios and polymer densities, covering, in particular, dense polymer blends. We demonstrate that in addition to the standard compressibility-induced mechanism of the DI there exists the mechanism relying on the correlations between compositional fluctuations specific to polymer blends. We quantitatively investigate this "compositional" mechanism of the DI and demonstrate that it causes significant contributions to the effective force acting between colloids. Further we show that relative significance of the contributions to the colloid immersion energy and the depletion potential caused by the above compositional mechanism strongly depends on the mass fractions of the polymer species and their size ratio. We find out that these contributions strongly affect the range of the DI, thus causing a significant increase in the absolute value of the second virial coefficient of the effective potential acting between colloids.
Rostad, C.E.; Rees, T.F.; Daniel, S.R.
1998-01-01
An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Toshihiro, E-mail: nakamura@el.gunma-u.ac.jp; Watanabe, Kanta; Adachi, Sadao
2016-01-11
We reported the preparation of bright and multicolor luminescent colloidal Si nanocrystal (Si-nc) by pulsed UV laser irradiation to porous Si (PSi) in an organic solvent. The different-luminescence-color (different-sized) colloidal Si-nc was produced by the pulsed laser-induced fragmentation of different-sized porous nanostructures. The colloidal Si-nc samples were found to have higher photoluminescence quantum efficiencies (20%–23%) than the PSi samples (1%–3%). The brighter emission of the colloidal Si-nc was attributed to an enhanced radiative band-to-band transition rate due to the presence of a surface organic layer formed by UV laser-induced hydrosilylation.
Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun
2016-11-16
There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.
Nematic Liquid-Crystal Colloids
Muševič, Igor
2017-01-01
This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574
Nonlinear machine learning and design of reconfigurable digital colloids.
Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L
2016-09-14
Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.
Colloid transport in dual-permeability media
NASA Astrophysics Data System (ADS)
Leij, Feike J.; Bradford, Scott A.
2013-07-01
It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.
Role of air-water interfaces in colloid transport in porous media: A review
NASA Astrophysics Data System (ADS)
Flury, Markus; Aramrak, Surachet
2017-07-01
Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm
NASA Astrophysics Data System (ADS)
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Zhou, Jingjing; Liu, Dan; Zhang, Wenjing; Chen, Xuequn; Huan, Ying; Yu, Xipeng
2017-06-01
Changes to groundwater hydrodynamics and chemistry can lead to colloid release that can have a major impact on the groundwater environment. To analyze the effects of colloid release caused by artificial groundwater recharge, field and laboratory tests on colloid characterization and colloid release were conducted. The field tests were carried out at an artificial recharge test site in Shandong Province. In the field investigation, one recharge water sample and five groundwater samples were collected and filtered through three levels of ultrafiltration membranes, with pore sizes of 0.45 μm, 100 kDa, and 50 kDa. The field results indicated that the colloid mass concentrations in groundwater retained between membranes with pore sizes of 100 kDa-0.45 μm and 50 kDa-100 kDa were 19 and 62 mg/L, respectively. In recharge water, the colloid mass concentrations retained by 100-kDa-0.45-μm and 50-kDa-100-kDa membranes were 3 and 99 mg/L, respectively. Colloids detected on the ultrafiltration membranes were mainly inorganic between 100 kDa and 0.45 μm, and mainly organic between 50 and 100 kDa. Based on the field colloid investigation results, the organic colloid was chosen in the laboratory experiments to reveal its release behavior under different conditions. Porous media diameter, flux, ionic strength (IS), and ion valence were changed to determine their influences on organic colloid concentration outflow from undisturbed porous media. The experiment's results indicate that decreasing the diameter, and increasing the flux, ionic strength, and the number of divalent cations, can promote organic colloid release. The organic colloid release rate in the early stage was high and is thus likely to affect the quality of groundwater. The results provide a useful scientific basis for minimizing changes to hydrodynamic and hydrochemical conditions during artificial recharge, thus safeguarding groundwater quality.
Colloidal paradigm in supercapattery electrode systems
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Xue, Dongfeng
2018-01-01
Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantification of hydrophobic interaction affinity of colloids
NASA Astrophysics Data System (ADS)
Saini, G.; Nasholm, N.; Wood, B. D.
2009-12-01
Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.
Flow of colloid particle solution past macroscopic bodies and drag crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanskii, S. V., E-mail: iordansk@itp.ac.ru
2013-11-15
The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in themore » drag to the flows past macroscopic bodies and flows in pipes.« less
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin
2016-09-01
Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles, respectively. The sizes of the smaller 2 fractions being below the size range of multiangle laser light scattering analysis (<20 nm) and their strong UV absorption indicates that they represent either pure cholate micelles or small mixed micelles. Within the colloidal fraction of the fed-state human aspirate, similar colloidal assemblies were detected as in the fasted state human aspirates. The observed differences between SIF and HIF indicate that the simulated intestinal fluids (FaSSIF-V1 and FeSSIF-V1) represent rather simplified models of the real human intestinal environment in terms of coexisting colloidal particles. It is hypothesized that the different supramolecular assemblies detected differ in their lipid composition, which may affect their affinity toward drug compounds and thus the drug-solubilizing capabilities. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sampling colloids and colloid-associated contaminants in ground water
Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.
1993-01-01
It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in “background” wells, colloid-size distributions, ground-water geochemistry, and colloid surface characteristics.
NASA Technical Reports Server (NTRS)
Tong, Penger
1996-01-01
In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.
Colloids from the aqueous corrosion of uranium nuclear fuel
NASA Astrophysics Data System (ADS)
Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.
2005-12-01
Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke
2016-03-01
The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.
2013-01-01
A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.
Fast microbial reduction of ferrihydrite colloids from a soil effluent
NASA Astrophysics Data System (ADS)
Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.
2012-01-01
Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite colloids from soil effluents can be considered as highly reactive electron acceptors in anoxic environments.
NASA Astrophysics Data System (ADS)
Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit
2018-03-01
Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.
Non-iridescent structural colors from uniform-sized SiO2 colloids
NASA Astrophysics Data System (ADS)
Topçu, Gökhan; Güner, Tuğrul; Demir, Mustafa M.
2018-05-01
Structural colors have recently attracted interest from diverse fields of research due to their ease of fabrication and eco-friendliness. These types of colors are, in principle, achieved by periodically arranged submicron-diameter colloidal particles. The interaction of light with a structure containing long-range ordered colloidal particles leads to coloration; this usually varies depending on the angle of observation (iridescence). However, the majority of the applications demand constant color that is independent of the viewing angle (non-iridescence). In this work, silica colloids were obtained using the Stöber method at different sizes from 150 to 300 nm in an alcoholic dispersion. The casting of the dispersion on a substrate leaves behind a photonic crystal showing a colorful iridescent film. However, centrifugation and redispersion of the SiO2 particles into fresh solvent may cause the formation of small, aggregated silica domains in the new dispersion. The casting of this dispersion allows for the development of photonic glass, presumably due to the accumulation of aggregates showing stable colloidal film independent of viewing angle. Moreover, depending on the size of the silica colloids, non-iridescent photonic glasses with various colors (violet, blue, green, and orange) are obtained.
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalwarczyk, Tomasz; Sozanski, Krzysztof; Jakiela, Slawomir; Wisniewska, Agnieszka; Kalwarczyk, Ewelina; Kryszczuk, Katarzyna; Hou, Sen; Holyst, Robert
2014-08-01
We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data.We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data. Electronic supplementary information (ESI) available: Experimental and some analysis details. See DOI: 10.1039/c4nr00647j
Model colloid system for interfacial sorption kinetics
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hudson, Steven
2014-11-01
Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.
Pavlopoulos, Nicholas G.; Dubose, Jeffrey T.; Hartnett, Erin D.; ...
2016-07-26
We report on a versatile synthetic m-shell nanoparticles (NPs) in the backbone, along with semiconductor CdSe@CdS nanorod (NR), or tetrapod (TP) side chain groups. A seven-step colloidal total synthesis enabled the synthesis of well-defined colloidal comonomers composed of a dipolar Au@CoNP attached to a single CdSe@CdS NR, or TP, where magnetic dipolar associations between Au@CoNP units promoted the formation of colloidal co- or terpolymers. The key step in this synthesis was the ability to photodeposit a single AuNP tip onto CdSe@CdS NR or TP that enables selective seeding of a dipolar CoNP onto the AuNP seed. In conclusion, we showmore » that the variation of the AuNP size directly controlled the size and dipolar character of the CoNP tip, where the size modulation of the Au and Au@CoNP tips is analogous to control of comonomer reactivity ratios in classical copolymerization processes.« less
Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.
Ebbens, Stephen; Tu, Mei-Hsien; Howse, Jonathan R; Golestanian, Ramin
2012-02-01
The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society
Cuetos, Alejandro; Patti, Alessandro
2015-08-01
We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
Structure and stability of charged colloid-nanoparticle mixtures
NASA Astrophysics Data System (ADS)
Weight, Braden M.; Denton, Alan R.
2018-03-01
Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.
Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan
2018-03-27
Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.
Magnuson, M L; Lytle, D A; Frietch, C M; Kelty, C A
2001-10-15
Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in water pipes. In this study, sedimentation field flow fractionation (SdFFF) is coupled on-line with multiangle laser light scattering (MALLS) detection to characterize these iron colloids formed following the oxygenation of iron(II) in the presence of phosphate. The SdFFF-MALLS data were used to calculate the hydrodynamic diameter, density, and particle size distribution of these submicrometer colloids. The system was first verified with standard polystyrene beads, and the results compared well with certified values. Iron(III) colloids were formed in the presence of phosphate at a variety of pH conditions. The colloids' hydrodynamic diameters, which ranged from 218 +/- 3 (pH 7) to 208 +/- 4 nm (pH 10), did not change significantly within the 95% confidence limit. Colloid density did increase significantly from 1.12 +/- 0.01 (pH 7) to 1.36 +/- 0.02 g/mL (pH 10). Iron(III) colloids formed at pH 10 in the presence of phosphate were compared to iron(III) colloids formed without phosphate and also to iron(III) colloids formed with silicate. The iron(III) colloids formed without phosphate or silicate were 0.46 g/mL more dense than any other colloids and were >6 times more narrowly distributed than the other colloids. The data suggest competitive incorporation of respective anions into the colloid during formation.
Dar, Ume-Kalsoom; Khan, Irfanullah; Javed, Muhammad; Ali, Muhammad; Hyder, Syed Waqar; Murad, Sohail; Anwar, Jamil
2013-03-01
In this study, rhenium sulfide colloidal nanoparticles were developed as radiopharmaceutical for sentinel lymph node detection. We directly used rhenium sulfide as a starting material for the preparation of colloidal nanoparticles. UV-visible spectrophotometry was used for characterization of in house developed colloidal particles. The size distribution of radioactive particles was studied by using membrane filtration method. The percentage of radiolabeled colloidal nanoparticles was determined by paper chromatography (PC). The study also includes in vitro stability, protein binding in human blood and bioevaluation in a rabbit model. The results indicate that 77.27 ± 3.26 % particles of size less than 20nm (suitable for lymphoscintigraphy) were radiolabeled. (99m)Tc labeled rhenium sulfide labeling efficacy with the radiometal is 98.5 ± 0.5%, which remains considerably stable beyond 5h at room temperature. Furthermore, it was observed that 70.2 ± 1.3% radiolabeled colloid complex showed binding with the blood protein. Bioevaluation results show the remarkable achievement of our radiopharmaceutical. The in house prepared (99m)Tc labeled rhenium sulfide colloidal nanoparticles reached the sentinel node within 15 min of post injection. These results indicate that (99m)Tc labeled rhenium sulfide colloid nanoparticles kit produced by a novel procedure seems of significant potential as a feasible candidate for further development to be used in clinical practice.
Colloid transport in porous media: impact of hyper-saline solutions.
Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander
2011-05-01
The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crystallization of DNA-coated colloids
Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.
2015-01-01
DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020
Micro-rheology on (polymer-grafted) colloids using optical tweezers.
Gutsche, C; Elmahdy, M M; Kegler, K; Semenov, I; Stangner, T; Otto, O; Ueberschär, O; Keyser, U F; Krueger, M; Rauscher, M; Weeber, R; Harting, J; Kim, Y W; Lobaskin, V; Netz, R R; Kremer, F
2011-05-11
Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.
Spontaneous resolution of colloid cyst of the third ventricle: Implications for management
Turel, Mazda Keki; Kucharczyk, Walter; Gentili, Fred
2017-01-01
While there is little controversy regarding the treatment of symptomatic colloid cysts, the optimal management of “incidentally” detected and asymptomatic colloid cyst remains unclear. The age of the patient, duration and significance of symptoms related to the cyst, size and radiological characteristics of the cyst and the presence of hydrocephalus are all factors to be considered before considering surgery. While surgery most often provides good results in the majority of patients, complications do occur. Despite growing literature about the natural history of this condition, to date, only three cases of spontaneous resolution of colloid cyst <10 mm have been reported. We report the case of spontaneous resolution of a colloid cyst larger than 10 mm, initially managed with close observation and serial neuroimaging. This case highlights the possible role for a conservative approach even in larger-sized cysts. PMID:28484531
Zhou, Zhengzhen; Guo, Laodong
2015-06-19
Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence EEMs could provide new insights into DOM heterogeneity in different colloidal size fractions. Copyright © 2015 Elsevier B.V. All rights reserved.
2001-01-24
Close-up view of the Binary Colloidal Alloy Test during an experiment run aboard the Russian Mir space station. BCAT is part of an extensive series of experiments plarned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals, which may have many unique properties that may form the basis of new classes of light switches, displays, and optical devices that can fuel the evolution of the next generation of computer and communication technologies. This Slow Growth hardware consisted of a 35-mm camera aimed toward a module which contained 10 separate colloid samples. To begin the experiment, one of the astronauts would mix the samples to disperse the colloidal particles. Then the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period. The investigation proved that gravity plays a central role in the formation and stability of these types of colloidal crystal structures. The investigation also helped identify the optimum conditions for the formation of colloidal crystals, which will be used for optimizing future microgravity experiments in the study of colloidal physics. Dr. David Weitz of the University of Pennsylvania and Dr. Peter Pusey of the University of Edinburgh, United Kingdom, are the principal investigators.
Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A
2016-12-01
Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.
Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong
2018-05-31
Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Yoon, J. S.; Culligan, P. J.; Germaine, J. T.
2003-12-01
Subsurface colloid behavior has recently drawn attention because colloids are suspected of enhancing contaminant transport in groundwater systems. To better understand the processes by which colloids move through the subsurface, and in particular the vadose zone, a new technique that enables real-time visualization of colloid particles as they move through a porous medium has been developed. This visualization technique involves the use of laser induced fluorescent particles and digital image processing to directly observe particles moving through a porous medium consisting of soda-lime glass beads and water in a transparent experimental box of 10.0cm\\x9D27.9cm\\x9D2.38cm. Colloid particles are simulated using commercially available micron sized particles that fluoresce under argon-ion laser light. The fluorescent light given off from the particles is captured through a camera filter, which lets through only the emitted wavelength of the colloid particles. The intensity of the emitted light is proportional to the colloid particle concentration. The images of colloid movement are captured by a MagnaFire digital camera; a cooled CCD digital camera produced by Optronics. This camera enables real-time capture of images to a computer, thereby allowing the images to be processed immediately. The images taken by the camera are analyzed by the ImagePro software from Media Cybernetics, which contains a range of counting, sizing, measuring, and image enhancement tools for image processing. Laboratory experiments using the new technique have demonstrated the existence of both irreversible and reversible sites for colloid entrapment during uniform saturated flow in a homogeneous porous medium. These tests have also shown a dependence of colloid entrapment on velocity. Models for colloid transport currently available in the literature have proven to be inadequate predictors for the experimental observations, despite the simplicity of the system studied. To further extend the work, the visualization technique has been developed for use on the geo-centrifuge. The advantage that the geo-centrifuge has for investigating subsurface colloid behavior, is the ability to simulate unsaturated transport mechanisms under well simulated field moisture profiles and in shortened periods of time. A series of tests to investigate colloid transport during uniform saturated flow is being used to examine basic scaling laws for colloid transport under enhanced gravity. The paper will describe the new visualization technique, its use in geo-centrifuge testing and observations on scaling relationships for colloid transport during geo-centrifuge experiments. Although the visualization technique has been developed for investigating subsurface colloid behavior, it does have application in other areas of investigation, including the investigation of microbial behavior in the subsurface.
Silver enhancement of nanogold and undecagold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainfield, J.F.; Furuya, F.R.
1995-07-01
A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequentlymore » with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.« less
Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula
2013-04-01
Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.
A field study of colloid transport in surface and subsurface flows
NASA Astrophysics Data System (ADS)
Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan
2016-11-01
Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.
Colloidal crystal grain boundary formation and motion
Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.
2014-01-01
The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Stability and minimum size of colloidal clusters on a liquid-air interface.
Pergamenshchik, V M
2012-02-01
A vertical force applied to each of two colloids, trapped at a liquid-air interface, induces their logarithmic pairwise attraction. I recently showed [Phys. Rev. E 79, 011407 (2009)] that in clusters of size R much larger than the capillary length λ, the attraction changes to that of a power law and is much stronger due to a many-body effect, and I derived two equations that describe the equilibrium coarse-grained meniscus profile and colloid density in such clusters. In this paper, this theory is shown also to describe small clusters with R≪ λ provided the number N of colloids therein is sufficiently large. An analytical solution for a small circular cluster with an arbitrary short-range power-law pairwise repulsion is found. The energy of a cluster is obtained as a function of its radius R and colloid number N. As in large clusters, the attraction force and energy universally scale with the distance L between colloids as L(-3) and L(-2), respectively, for any repulsion forces. The states of an equilibrium cluster, predicted by the theory, are shown to be stable with respect to small perturbations of the meniscus profile and colloid density. The minimum number of colloids in a circular cluster, which sustains the thermal motion, is estimated. For standard parameters, it can be very modest, e.g., in the range 20-200, which is in line with experimental findings on reversible clusterization on a liquid-air interface. © 2012 American Physical Society
NASA Astrophysics Data System (ADS)
Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng
2015-01-01
The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of 3H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of 3H2O (UPu/UT < 1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT < 1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2+, as evidenced by increasing Pu(V)O2+ concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2+ was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions.
Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.
The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less
Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids
Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.
2017-09-01
The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less
Passive colloids work together to become Active
NASA Astrophysics Data System (ADS)
Kandula, Hima Nagamanasa; Wang, Wei; Zhang, Jie; Wu, Huanxin; Han, Ming; Luijten, Erik; Granick, Steve
In recent years there is growing body of research to design self-propelled colloids to gain insights into non-equilibrium systems including living matter. While most active colloids developed hitherto entail prefabrication of Janus colloids and possess single fixed active site, we present one simple system where active colloids are formed in-situ naturally with multiple active sites and are reversible as well as reconfigurable. A binary mixture of Brownian colloids which have opposite polarizations when subjected to an AC electric field spontaneously assemble into clusters which are propelled by asymmetric induced charge electro osmosis. We find that tuning the relative sizes of the two species allows for the control over the number of active sites. More interestingly, the patches are dynamic enabling reconfiguration of the active cluster. Consequently, the clusters are active not only in motion but also in their structure.
Study of adsorption process of iron colloid substances on activated carbon by ultrasound
NASA Astrophysics Data System (ADS)
Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.
2015-04-01
The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.
Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C
2012-03-06
Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.
NASA Astrophysics Data System (ADS)
Sirivithayapakorn, Sanya; Keller, Arturo
2003-12-01
We present results from pore-scale observations of colloid transport in an unsaturated physical micromodel. The experiments were conducted separately using three different sizes of carboxylate polystyrene latex spheres and Bacteriophage MS2 virus. The main focus was to investigate the pore-scale transport processes of colloids as they interact with the air-water interface (AWI) of trapped air bubbles in unsaturated porous media, as well as the release of colloids during imbibition. The colloids travel through the water phase but are attracted to the AWI by either collision or attractive forces and are accumulated at the AWI almost irreversibly, until the dissolution of the air bubble reduces or eliminates the AWI. Once the air bubbles are near the end of the dissolution process, the colloids can be transported by advective liquid flow, as colloidal clusters. The clusters can then attach to other AWI down-gradient or be trapped in pore throats that would have allowed them to pass through individually. We also observed small air bubbles with attached colloids that traveled through the porous medium during the gas dissolution process. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to help explain the observed results. The strength of the force that holds the colloids at the AWI was estimated, assuming that the capillary force is the major force that holds the colloids at the AWI. Our calculations indicate that the forces that hold the colloids at the AWI are larger than the energy barrier between the colloids. Therefore it is quite likely that the clusters of colloids are formed by the colloids attached at the AWI as they move closer at the end of the bubble dissolution process. Coagulation at the AWI may increase the overall filtration for colloids transported through the vadose zone. Just as important, colloids trapped in the AWI might be quite mobile when the air bubbles are released at the end of the dissolution process, resulting in increased breakthrough. These pore-scale mechanisms are likely to play a significant role in the macroscopic transport of colloids in unsaturated porous media.
Inertial and viscoelastic forces on rigid colloids in microfluidic channels.
Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash
2015-06-14
We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.
Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.
Karathanasis, A D; Johnson, D M C; Matocha, C J
2005-01-01
Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.
Self-assembled three-dimensional chiral colloidal architecture
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.
2017-11-01
Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.
Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong
2018-06-19
Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.
Detection of colloidal silver chloride near solubility limit
NASA Astrophysics Data System (ADS)
Putri, K. Y.; Adawiah, R.
2018-03-01
Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.
Emergent structures and dynamics in suspensions of self-phoretic colloids
NASA Astrophysics Data System (ADS)
Scagliarini, Andrea; Pagonabarraga, Ignacio
2013-11-01
Active fluids, such as suspensions of self-propelled particles , are a fascinating example of Soft Matter displaying complex collective behaviours which provide challenges in non-equilibrium Statistical Physics. The recent development of techniques to assemble miniaturized devices has led to a growing interest for micro and nanoscale engines that can perform autonomous motion (``microrobots''), as, for instance, self-phoretic colloids, for which the propulsion is induced by the generation of a chemical species in a reaction catalyzed at the particle surface. We perform a mesoscopic numerical study of suspensions of self-phoretic colloids. We show that, at changing the sign of the phoretic mobility (which accounts for the colloid-solute interactions), the system switches from a cluster phase to a state with slowed dynamics. We find that the cluster size distribution follows an exponential behaviour, with a characteristic size growing linearly with the colloid activity, while the density fluctuations grow as a power-law with an exponent depending on the cluster fractal dimension.We single out hydrodynamic interactions, showing that their effect is to work against cluster formation. For positive μ, we observe that colloids tend to reach an ordered state on a triangular lattice.
Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz
2017-11-01
Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals
Liu, Minglu; Wang, Robert Y.
2015-01-01
Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146
pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes
2017-01-01
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin
2017-02-01
Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics and structure of an aging binary colloidal glass
NASA Astrophysics Data System (ADS)
Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.
2008-09-01
We study aging in a colloidal suspension consisting of micron-sized particles in a liquid. This system is made glassy by increasing the particle concentration. We observe samples composed of particles of two sizes, with a size ratio of 1:2.1 and a volume fraction ratio 1:6, using fast laser scanning confocal microscopy. This technique yields real-time, three-dimensional movies deep inside the colloidal glass. Specifically, we look at how the size, motion, and structural organization of the particles relate to the overall aging of the glass. Particles move in spatially heterogeneous cooperative groups. These mobile regions tend to be richer in small particles, and these small particles facilitate the motion of nearby particles of both sizes.
Size-dependent control of colloid transport via solute gradients in dead-end channels
Shin, Sangwoo; Um, Eujin; Sabass, Benedikt; Ault, Jesse T.; Rahimi, Mohammad; Warren, Patrick B.; Stone, Howard A.
2016-01-01
Transport of colloids in dead-end channels is involved in widespread applications including drug delivery and underground oil and gas recovery. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, but it is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport in dead-end channels by introducing a solute gradient. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. In addition, we show that size-dependent diffusiophoretic transport of particles can be achieved by considering a finite Debye layer thickness effect, which is commonly ignored. A combination of diffusiophoresis and Brownian motion leads to a strong size-dependent focusing effect such that the larger particles tend to concentrate more and reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific delivery systems where localized targeting of particles with minimal dispersion to the nontarget area is essential. PMID:26715753
Composition inversion in mixtures of binary colloids and polymer
NASA Astrophysics Data System (ADS)
Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick
2018-05-01
Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
Binary Colloidal Alloy Test Conducted on Mir
NASA Technical Reports Server (NTRS)
Hoffmann, Monica I.; Ansari, Rafat R.
1999-01-01
Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and the experiment was powered on, the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period.
Nanoparticles migration in fractured rocks and affects on contaminant migration
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula
2014-05-01
In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).
Fate and Transport of Colloidal Energetic Residues
2015-07-01
Vadose Zone J 3(1): 262-270. 8. Davis, A. P., M. Shokouhian, and S. Ni. 2001. Loading estimates of lead , copper, cadmium , and zinc in urban...received the mm-sized Comp B. This particulate transport increases the effective contact time between residues and infiltrating rainwater, leading ...that natural mineral colloids can enhance transport of RDX and TNT by up to 15% and 20%, respectively. RDX and TNT attachment to natural colloids
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
Generation of colloidal granules and capsules from double emulsion drops
NASA Astrophysics Data System (ADS)
Hess, Kathryn S.
Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals, and agricultural applications, among others.
Colloid cyst of the third ventricle, hypothalamus, and heart: a dangerous link for sudden death
2012-01-01
Abstract Colloid cysts are rare congenital, intracranial neoplasms, commonly located in the third ventricle. Colloid cysts are endodermal congenital malformations. The cysts commonly range in size from 1–2 cm in diameter, although large cysts >3 cm in size have been reported. The components of the cyst include an outer fibrous capsule over an inner epithelium. The epithelium is usually a single layer of mucin-producing or ciliated cells. Such cysts contain mucoid and gelatinous material, which is positive for both Periodic acid Schiff (PAS) and mucicarmen staining. Although colloid cysts usually represent histopathologically benign neoplasms, they can result in sudden, unexpected and potentially lethal complications. The mechanism(s) of death is still a controversial subject and several mechanisms have been postulated to explain the sudden onset of severe symptoms and of fatal rapid deterioration in patients with colloid cysts. In this case, macroscopic and histological findings addressed the diagnosis of colloid cyst of the third ventricle with diffuse myocardial injury (coagulative myocytolysis or contraction band necrosis, CBN) and led us to conclude that acute cardiac arrest due to hypothalamus stimulation in the context of colloid cyst of the third ventricle was the cause of death. As the hypothalamic structures which are involved in neuroendocrine and autonomic regulation playing a key role in cardiovascular control are located close to the walls of the third ventricle which is the most frequent anatomical site of colloid cyst, this may suggest that reflex cardiac effects due to the compression of the hypothalamic cardiovascular regulatory centers by the cyst explain the sudden death in patients harboring a colloid cyst when signs of hydrocephalus or brain herniation are lacking. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4915842848034158 PMID:23078815
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.
Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning
2016-09-13
Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.
Engineering of Novel Biocolloid Suspensions
NASA Technical Reports Server (NTRS)
Hammer, D. A.; Rodges, S.; Hiddessen, A.; Weitz, D. A.
1999-01-01
Colloidal suspensions are materials with a variety of uses from cleaners and lubricants to food, cosmetics, and coatings. In addition, they can be used as a tool for testing the fundamental tenets of statistical physics. Colloidal suspensions can be synthesized from a wide variety of materials, and in the form of monodisperse particles, which can self-assemble into highly ordered colloidal crystal structures. As such they can also be used as templates for the construction of highly ordered materials. Materials design of colloids has, to date, relied on entropic self-assembly, where crystals form as result of lower free energy due to a transition to order. Here, our goal is to develop a completely new method for materials fabrication using colloidal precursors, in which the self-assembly of the ordered colloidal structures is driven by a highly controllable, attractive interaction. This will greatly increase the range of potential structures that can be fabricated with colloidal particles. In this work, we demonstrate that colloidal suspensions can be crosslinked through highly specific biological crosslinking reactions. In particular, the molecules we use are protein-carbohydrate interactions derived from the immune system. This different driving force for self-assembly will yield different and novel suspensions structures. Because the biological interactions are heterotypic (A binding to B), this chemical system can be used to make binary alloys in which the two colloid subpopulations vary in some property - size, density, volume fraction, magnetic susceptibility, etc. An additional feature of these molecules which is unique - even within the realm of biological recognition - is that the molecules bind reversibly on reasonable time-scales, which will enable the suspension to sample different configurations, and allow us to manipulate and measure the size of the suspension dynamically. Because of the wide variety of structures that can be made from these novel colloids, and because the suspension structure can be altered dynamically, we believe this biocolloid system will yield a novel set of materials with many technological applications, including sensors (both biological and non-biological), optical filters and separation media.
Transient bleaching of small PbS colloids. Influence of surface properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenadovic, M.T.; Comor, M.I.; Vasic, V.
1990-08-09
Small PbS colloids with a particle diameter of 40 {angstrom} were prepared in aqueous solution, and their absorption spectra exhibit several maxima. Injection of electrons into these particles was achieved by using the pulse radiolysis technique. Excess electrons trapped on the surface lead to a blue shift in the absorption edge of colloids. The appearance of this shift depends critically on the method of colloid preparation. PbS and CdS colloids prepared at pH < 6 have long-lived bleaching, which disappears after several seconds. On the other hand, absorption bleaching does not appear after the addition of hydroxide ions to colloidalmore » solutions (pH > 8). The existence of a hydroxide ion on the particle surface most likely removes surface defects on which electrons are trapped. PbS colloids prepared in the presence of 3-mercapto-1,2-propanediol have an unstructured absorption spectrum, which is due to a wide particle size distribution (10-50 {angstrom}).« less
99M-Technetium labeled tin colloid radiopharmaceuticals
Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer
1976-07-06
An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.
Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin
2012-05-30
A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Colloidal motion under the action of a thermophoretic force.
Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika
2017-09-07
We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.
Colloidal motion under the action of a thermophoretic force
NASA Astrophysics Data System (ADS)
Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika
2017-09-01
We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.
NASA Astrophysics Data System (ADS)
Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn
2017-01-01
Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.
Lipid vesicles and other colloids as drug carriers on the skin.
Cevc, Gregor
2004-03-27
Colloids from an aqueous suspension can cross the skin barrier only through hydrophilic pathways. Various colloids have a different ability to do this by penetrating narrow pores of fixed size in the skin, or the relevant nano-pores in barriers modelling the skin. Such ability is governed by colloid adaptability, which must be high enough to allow penetrant deformation to the size of a pore in such barrier: for a 100 nm colloid trespassing the skin this means at least 5-fold deformation/elongation. (Lipid) Bilayer vesicles are normally more adaptable than the comparably large (lipid coated) fluid droplets. One of the reasons for this, and an essential condition for achieving a high bilayer adaptability and pore penetration, is a high bilayer membrane elasticity. The other reason is the relaxation of changing colloid's volume-to-surface constraint during pore penetration; it stands to reason that such relaxation requires a concurrent, but only transient and local, bilayer permeabilisation. Both these phenomena are reflected in bilayer composition sensitivity, which implies non-linear pressure dependency of the apparent barrier penetrability, for example. Amphipats that acceptably weaken a membrane (surfactants, (co)solvents, such as certain alcohols, etc.) consequently facilitate controlled, local bilayer destabilisation and increase lipid bilayer flexibility. When used in the right quantity, such additives thus lower the energetic expense for elastic bilayer deformation, associated with pore penetration. Another prerequisite for aggregate transport through the skin is the colloid-induced opening of the originally very narrow ( approximately 0.4 nm) gaps between cells in the barrier to pores with diameter above 30 nm. Colloids incapable of enforcing such widening-and simultaneously of self-adapting to the size of 20-30 nm without destruction-are confined to the skin surface. All relatively compact colloids seem to fall in this latter category. This includes mixed lipid micelles, solid (nano)particles, nano-droplets, biphasic vesicles, etc. Such colloids, therefore, merely enter the skin through the rare wide gaps between groups of skin cells near the organ surface. Transdermal drug delivery systems based on corresponding drug formulations, therefore, rely on simple drug diffusion through the skin; the colloid then, at best, can modulate drug transport through the barrier. In contrast, the adaptability-and stability-optimised mixed lipid vesicles (Transfersomes, a trademark of IDEA AG) can trespass much narrower pathways between most cells in the skin; such highly adaptable colloids thus mediate drug transport through the skin. Sufficiently stable ultra-adaptable carriers, therefore, can ensure targeted drug delivery deep below the application site. This has already been shown in numerous preclinical tests and several phase I and phase II clinical studies. Drug delivery by means of highly adaptable drug carriers, moreover, allows highly efficient and well-tolerated drug targeting into the skin proper. Sustained drug release through the skin into systemic blood circulation is another field of ultradeformable drug carrier application.
Vector assembly of colloids on monolayer substrates
NASA Astrophysics Data System (ADS)
Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve
2017-06-01
The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.
Mughal, A; El Demellawi, J K; Chaieb, Sahraoui
2014-12-14
Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.
Analysis on laser plasma emission for characterization of colloids by video-based computer program
NASA Astrophysics Data System (ADS)
Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni
2016-02-01
Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.
Colloidal assembly directed by virtual magnetic moulds
NASA Astrophysics Data System (ADS)
Demirörs, Ahmet F.; Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.
2013-11-01
Interest in assemblies of colloidal particles has long been motivated by their applications in photonics, electronics, sensors and microlenses. Existing assembly schemes can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies. A few schemes can efficiently produce complex colloidal structures, but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid can serve as `virtual moulds' to act as templates for the assembly of large numbers (~108) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.
Inventions Utilizing Microfluidics and Colloidal Particles
NASA Technical Reports Server (NTRS)
Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.
2009-01-01
Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
Oettel, M
2004-04-01
We analyze the depletion interaction between two hard colloids in a hard-sphere solvent and pay special attention to the limit of large size ratio between colloids and solvent particles which is governed by the well-known Derjaguin approximation. For separations between the colloids of less than the diameter of the solvent particles (defining the depletion region), the solvent structure between the colloids can be analyzed in terms of an effective two-dimensional gas. Thereby we find that the Derjaguin limit is approached more slowly than previously thought. This analysis is in good agreement with simulation data which are available for a moderate size ratio of 10. Small discrepancies in results from density functional theory (DFT) at this size ratio become amplified for larger size ratios. Therefore we have improved upon previous DFT techniques by imposing test-particle consistency which connects DFT to integral equations. However, the improved results show no convergence towards the Derjaguin limit and thus we conclude that this implementation of DFT together with previous ones which rely on test-particle insertion become unreliable in predicting the force in the depletion region for size ratios larger than 10.
Cheng, S L; Wong, S L; Lu, S W; Chen, H
2008-09-01
We report here the successful fabrication of large-area size-tunable periodic arrays of cobalt and Co-silicide nanodots on silicon substrates by employing the colloidal nanosphere lithography (NSL) technique and heat treatments. The growth of low-resistivity epitaxial CoSi(2) was found to be more favorable for the samples with smaller Co nanodot sizes. The sizes of the epitaxial CoSi(2) nanodots can be tuned from 50 to 100 nm by varying the diameter of the colloidal spheres and annealing temperatures. The epitaxial CoSi(2) nanodots were found to grow with an epitaxial orientation with respect to the (001)Si substrates: [001]CoSi(2)//[001]Si and (200)CoSi(2)//(400)Si. From the results of planview HRTEM, XTEM, and SAED analysis, the epitaxial CoSi(2) nanodots were identified to be inverse pyramids in shape, and the average sizes of the faceted silicide nanodots were measured to decrease with annealing temperature. The observed results present the exciting prospect that with appropriate controls, the colloidal NSL technique promises to facilitate the growth of a variety of well-ordered silicide nanodots with selected shape, size, and periodicity.
Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2015-05-19
Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.
Chancellor Water Colloids: Characterization and Radionuclide Associated Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William; Boukhalfa, Hakim
2014-09-26
Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less
NASA Astrophysics Data System (ADS)
Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.
2015-12-01
Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.
Active colloids in the context of chemical kinetics
NASA Astrophysics Data System (ADS)
Oshanin, G.; Popescu, M. N.; Dietrich, S.
2017-03-01
We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.
Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles
Gutul, Tatyana; Condur, Nadejda; Ursaki, Veaceslav; Goncearenco, Evgenii; Vlazan, Paulina
2014-01-01
Summary We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone) (PVP) as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV) which corresponds to the emission of the free exciton recombination in ZnO nanoparticles. PMID:24778966
Energy transport velocity in bidispersed magnetic colloids.
Bhatt, Hem; Patel, Rajesh; Mehta, R V
2012-07-01
Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.
Self-assembled three-dimensional chiral colloidal architecture.
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C; Sha, Ruojie; Seeman, Nadrian C; Chaikin, Paul M
2017-11-03
Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu
2017-07-01
Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled assembly of jammed colloidal shells on fluid droplets.
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
Controlled assembly of jammed colloidal shells on fluid droplets
NASA Astrophysics Data System (ADS)
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
Polydispersity effects in colloid-polymer mixtures.
Liddle, S M; Narayanan, T; Poon, W C K
2011-05-18
We study phase separation and transient gelation experimentally in a mixture consisting of polydisperse colloids (polydispersity: ≈ 6%) and non-adsorbing polymers, where the ratio of the average size of the polymer to that of the colloid is ≈ 0.062. Unlike what has been reported previously for mixtures with somewhat lower colloid polydispersity (≈ 5%), the addition of polymers does not expand the fluid-solid coexistence region. Instead, we find a region of fluid-solid coexistence which has an approximately constant width but an unexpected re-entrant shape. We detect the presence of a metastable gas-liquid binodal, which gives rise to two-stepped crystallization kinetics that can be rationalized as the effect of fractionation. Finally, we find that the separation into multiple coexisting solid phases at high colloid volume fractions predicted by equilibrium statistical mechanics is kinetically suppressed before the system reaches dynamical arrest.
Sodium caseinate stabilized zein colloidal particles.
Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P
2010-12-08
The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.
Fabrication of large binary colloidal crystals with a NaCl structure
Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.
2009-01-01
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259
Philippe, Allan; Schaumann, Gabriele E.
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail. PMID:24587393
Philippe, Allan; Schaumann, Gabriele E
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.
NASA Astrophysics Data System (ADS)
Harada, T.; Kiyokawa, S.; Ikehara, M.
2016-12-01
Satsuma Iwo-Jima Island, with volcanic activities, is located about 40km south of Kyushu Island, Japan. This island is one of the best places to observe a shallow water hydrothermal system. Nagahama Bay, in the south of Satsuma Iwo-Jima Island, is partly separated from open sea. The seawater appears dark reddish brown color due to colloidal iron hydroxide by the mixing of volcanic fluids (pH=5.5, 50-60 degree Celsius) and oceanic water (Ninomiya & kiyokawa, 2009; Kiyokawa et al., 2012; Ueshiba & kiyokawa, 2012). Very high deposition rate (33 cm per year) of iron-rich sediments was observed in the bay (Kiyokawa et al., 2012). However, precipitation behavior of colloidal iron hydroxide has not been clarified. In this study, I report the results of analysis of deposition experiments of the colloidal particles at the Nagahama bay. Since the size of the colloidal particles is 1nm 1μm, single particle cannot be precipitated. This arise from precipitation of the particles in the viscous fluid is according to the Stokes' law. Colloidal iron hydroxide has the property of having the electric charges on the surface. The charge on the colloids is affected by pH of its surrounding seawater and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+) in the seawater. This property affects the stability of the colloidal dispersion. FE-SEM observation shows that the suspended particles consist of colloidal iron hydroxide (about 0.2μm), on the other hand, the iron-rich sediments are composed of bigger one (>1 μm). This indicates the colloidal iron hydroxide is precipitated by flocculation. We examined the precipitation amount of colloidal iron hydroxide under the various pH environments. The precipitation amount of pH=7.8 seawater 10% higher than that of pH=7.2. This result is roughly follows the theoretical value.
[AgBr colloids prepared by electrolysis and their SERS activity research].
Si, Min-Zhen; Fang, Yan; Dong, Gang; Zhang, Peng-Xiang
2008-01-01
Ivory-white AgBr colloids were prepared by means of electrolysis. Two silver rods 1.0 cm in diameter and 10.0 cm long were respectively used as the negative and positive electrodes, the aqueous solution of hexadecyl trimethyl ammonium bromide was used as the electrolyte, and a 7 V direct current was applied on the silver rods for three hours. The obtained AgBr colloids were characterized by UV-Vis spectroscopy, transmission electron microscopy, and SERS using a 514. 5 nm laser line on Renishaw 2000 Raman spectrometer. These particles are about nanometer size and their shapes are as spherical or elliptic, with a slight degree of particle aggregation. The UV-Vis spectra exhibit a large plasmon resonance band at about 292.5 nm, similar to that reported in the literature. The AgBr colloids were very stable at room temperature for months. In order to test if these AgBr colloids can be used for SERS research, methyl orange, Sudan red and pyridine were used. It was found that AgBr colloids have SERS activity to these three molicules. For methyl orange, the intense Raman peaks are at 1 123, 1 146, 1 392, 1 448 and 1 594 cm(-1); for Sudan red, the intense Raman peaks are at 1 141, 1 179, 1 433 and 1 590 cm(-1); and for pyridine, the intense Raman peaks are at 1 003, 1 034 and 1 121 cm(-1). It is noticeable that SERS of methyl orange was observed on AgBr colloids, but not on the gray and yellow silver colloids prepared by traditional means. The possible reason was explained. One major advantage of this means is the absence of the spectral interference such as citrate, BH4- arising from reaction products of the colloids formation process. On AgBr colloids, one can get some molecular SERS impossible to get on the gray and yellow silver colloids.
Colloid-polymer mixtures under slit confinement.
Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo
2017-03-14
We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σ c ⩾H⩾3σ c , σ c being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σ c ) -1 for H≳4σ c . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σ c ) -1 , from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.
Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N
2012-06-01
At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.
Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.; Zimmerli, Gregory A.
2002-01-01
These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.
NASA Astrophysics Data System (ADS)
Wang, Hui; Sun, Hongyuan; He, Jieyu
2017-12-01
The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.
Colloid-polymer mixtures under slit confinement
NASA Astrophysics Data System (ADS)
Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo
2017-03-01
We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1 ⩾q ⩾0.4 and the confinement distance, H, in 10 σc ⩾H ⩾3 σc , σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc ) -1 for H ≳4 σc . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc ) -1, from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.
Rasmuson, Anna; Pazmino, Eddy; Assemi, Shoeleh; Johnson, William P
2017-02-21
Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 μm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.
Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting
NASA Astrophysics Data System (ADS)
Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella
2017-02-01
Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.
Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?
Goggin, Rachel; Jardeleza, Camille; Wormald, Peter-John; Vreugde, Sarah
2014-03-01
Colloidal silver is an alternative medicine consisting of silver particles suspended in water. After using this solution as a nasal spray, the symptoms of a previously recalcitrant Staphylococcus aureus (S. aureus)-infected chronic rhinosinusitis patient were observed to have improved markedly. The aim of this study was to determine whether colloidal silver has any direct bactericidal effects on these biofilms in vitro. S. aureus biofilms were grown from the ATCC 25923 reference strain on Minimum Biofilm Eradication Concentration (MBEC) device pegs, and treated with colloidal silver. Concentrations tested ranged from 10 to 150 μL colloidal silver diluted to 200 μL with sterile water in 50 μL cerebrospinal fluid (CSF) broth. Control pegs were exposed to equivalent volumes of CSF broth and sterile water. The sample size was 4 biomass values per treatment or control group. Confocal scanning laser microscopy and COMSTAT software were used to quantify biofilms 24 hours after treatment. Significant differences from control were found for all concentrations tested bar the lowest of 10 μL colloidal silver in 200 μL. At 20 μL colloidal silver, the reduction in biomass was 98.9% (mean difference between control and treatment = -4.0317 μm(3) /μm(2) , p < 0.0001). A maximum biomass reduction of 99.8% was reached at both 100 and 150 μL colloidal silver (mean differences = -4.0681 and -4.0675μm(3) /μm(2) , respectively, p < 0.0001). Colloidal silver directly attenuates in vitro S. aureus biofilms. © 2014 ARS-AAOA, LLC.
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo
2017-07-25
Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.
Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
Harnish, R.A.; McKnight, Diane M.; Ranville, James F.
1994-01-01
In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.
Site-specific colloidal crystal nucleation by template-enhanced particle transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
2016-10-01
The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly. Here, we circumvented this fundamental limitation by designing templates with spatially varying feature sizes, in this case moiré patterns, which in the presence of short-range depletion attraction presented surface energy gradients for the diffusing colloids. The templates serve a dual purpose: first, directing the particles to target sites by enhancing their surface mean-free paths and second, dictating the size and symmetry of the growing crystallites. Using optical microscopy, we directly followed the nucleation and growth kinetics of colloidal islands on these surfaces at the single-particle level. We demonstrate nucleation control, with high fidelity, in a regime that has remained unaccessed in theoretical, numerical, and experimental studies on atoms and molecules as well. Our findings pave the way for fabricating nontrivial surface architectures composed of complex colloids and nanoparticles as well.
Colloid-facilitated radionuclide transport: a regulatory perspective
NASA Astrophysics Data System (ADS)
Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.
2001-12-01
What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently investigating approaches to colloid modeling in order to help evaluate DOE's approach. One alternative approach uses DOE laboratory data to invoke kinetic controls on reversible radionuclide attachment to colloids. A kinetic approach in which desorption from colloids is slow may help assess whether DOE's instantaneous equilibrium approach for reversible attachment, as well as their application of irreversible attachment to only a small portion of the radionuclide inventory, are reasonable and conservative. An approach to examine microbial processes would also contribute to considerations of leaching of radionuclides and colloid formation. Reducing uncertainties in colloid transport processes should help in better understanding their importance to repository performance. This work is an independent product and does not necessarily reflect the views or regulatory position of the NRC. CNWRA participation was funded under contract No. NRC-02-97-009.
Simulation of the self-assembly of colloidal droplets in a micro-channel
NASA Astrophysics Data System (ADS)
Ge, Zhouyang; Brandt, Luca
2016-11-01
In colloidal sciences, much progress has been made on the synthesis of complex building blocks mimicking molecular structures to elaborate innovative materials. The basic elements of such colloidal molecules are particles or droplets less than one millimeter in size. Their self-assembly relies on either lengthy brownian motion or careful microfludic designs, on top of typical colloidal interactions, e.g. depletion attraction. Regardless of the approach, however, questions remain why the colloids undergo certain path to organize themselves and how such process can be optimized. Here, we perform direct numerical simulations using a Navier-Stokes solver at low Reynolds number, combined with either the immersed boundary method (IBM) or a newly-proposed level set (LS) method for interface description. In the IBM simulations, the colloids are treated as rigid, spherical particles under a Lennard-Jones-like potential, reproducing attractive depletion force. Results show that, for four particles, a planar diamond is formed under a weak potential while a 3D tetrahedron is formed under a strong potential, which agree qualitatively with experiments. In the next step, LS simulation of colloidal droplets will be performed to investigate the roles of surface tension in the self-assembly. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 664823.
Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.
Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter
2015-04-28
In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.
Gold nanostar synthesis with a silver seed mediated growth method.
Kereselidze, Zurab; Romero, Victor H; Peralta, Xomalin G; Santamaria, Fidel
2012-01-15
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications. Gold is particularly used because of its low toxicity. A property of metal nano-colloids is that they can have a strong surface plasmon resonance. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal. We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles or nanostars. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.
Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.
Oyanedel-Craver, Vinka A; Smith, James A
2008-02-01
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
Perspective: The Asakura Oosawa model: a colloid prototype for bulk and interfacial phase behavior.
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-14
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
NASA Astrophysics Data System (ADS)
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-01
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey
2016-03-01
Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coffee-rings and glasses: Colloids out of equilibrium
NASA Astrophysics Data System (ADS)
Yunker, Peter Joseph
This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the deposition of particles during evaporation and the glass transition are explored. In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres. In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy materials. "Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional chambers at high packing fractions; this system enabled the study of the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles exhibit a mix of rotational and translational character. Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a correlated manner. During aging, we observed that the size of these collective rearrangements increases. Thus, the slowing dynamics of aging appear governed by growing correlated domains of particles required for relaxation. Using the same microgel particles, the transformation of a crystal into a glass due to added disorder was investigated by adding smaller particles into a quasi-two-dimensional colloidal crystal. The crystal-glass transition bears structural signatures similar to those of the crystal-fluid transition, but also exhibits a sharp change in dynamic heterogeneity which ``turns-on'' abruptly as a function of increasing disorder. Finally, we investigated the influence of morphology and size on the vibrational properties of disordered clusters of colloidal particles. Spectral features of cluster vibrational modes are found to depend strongly on the average number of nearest neighbors but only weakly on the number of particles in each glassy cluster. The scaling of the median phonon frequency with nearest neighbor number is reminiscent of athermal simulations of the jamming transition.
Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane
2014-08-08
Environmentally friendly silver nanocomposite films were prepared by an ex situ method consisting firstly in the preparation of colloidal silver dispersions and secondly in the dispersion of the as-prepared nanoparticles in a potato starch/glycerol matrix, keeping a green chemistry process all along the synthesis steps. In the first step concerned with the preparation of the colloidal silver dispersions, water, glucose and soluble starch were used as solvent, reducing agent and stabilizing agent, respectively. The influences of the glucose amount and reaction time were investigated on the size and size distribution of the silver nanoparticles. Two distinct silver nanoparticle populations in size (diameter around 5 nm size for the first one and from 20 to 50 nm for the second one) were distinguished and still highlighted in the potato starch/glycerol based nanocomposite films. It was remarkable that lower nanoparticle mean sizes were evidenced by both TEM and UV-vis analyses in the nanocomposites in comparison to the respective colloidal silver dispersions. A dispersion mechanism based on the potential interactions developed between the nanoparticles and the polymer matrix and on the polymer chain lengths was proposed to explain this morphology. These nanocomposite film series can be viewed as a promising candidate for many applications in antimicrobial packaging, biomedicines and sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying
2018-04-26
Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.
Synthesis of macroporous structures
Stein, Andreas; Holland, Brian T.; Blanford, Christopher F.; Yan, Hongwei
2004-01-20
The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.
Motion of Colloidal Particles near Plateau Border in Freely Suspended Soap Film
NASA Astrophysics Data System (ADS)
Pak, Hyuk Kyu; Sur, Jeanman
2000-03-01
We study the motion of colloidal particle near Plateau border in free-standing soap film which is placed perpendicularly to the gravitational direction. When the thickness of soap film is a micron order, two air/water interfacial surfaces of the film can be deformed by the presence of the colloidal particle. When the colloidal particles are in the central area of soap film, they move in random directions. But, as the particles approach near Plateau border, they are accelerated to the border of the film. The travelling distance, before the accelerated particle stops, depends on particle size. We propose a simple model to explain the motion of particle near Plateau border using a surface energy argument and compare the results with experimental measurements.
Entropy favours open colloidal lattices
NASA Astrophysics Data System (ADS)
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Surface patterning of nanoparticles with polymer patches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less
Surface patterning of nanoparticles with polymer patches
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; ...
2016-08-24
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less
Surface patterning of nanoparticles with polymer patches
NASA Astrophysics Data System (ADS)
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia
2016-10-01
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.
MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles
NASA Astrophysics Data System (ADS)
Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.
2017-11-01
Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.
NASA Astrophysics Data System (ADS)
Clement, Sandhya; Gardner, Brint; Razali, Wan Aizuddin W.; Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Goldys, Ewa M.; Herrmann, Jan; Zvyagin, Andrei
2017-11-01
The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering (DLS), which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution (PSD) and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative PSD of a colloidal suspension. The work presents an approach to account for PSDs achieved by DLS which, due to the underlying model, may not be representative of the true sample PSD. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.
Glushko, O; Meisels, R; Kuchar, F
2010-03-29
The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.
Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.
Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo
2015-10-07
Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.
Agarwal, Gaurav; Rajan, Sendhil; Mayilvaganan, Sabaretnam; Mishra, Anjali; Krishnani, Narendra; Gambhir, Sanjay
2018-05-01
The current standard-of-care for surgical staging of the axilla in clinically node-negative (N0) early breast cancers is sentinel lymph node biopsy (SLNB), which requires expensive radiopharmaceuticals for efficacious results. In-house produced low-cost radiopharmaceuticals may be the solution and have shown efficacy in earlier observational/pilot studies. We compared SLNB using in-house prepared radiopharmaceutical ( 99m Tc-Antimony-colloid) versus commercially marketed radiopharmaceutical ( 99m Tc-Sulphur-colloid) in this prospective randomized study. 78 clinically N0 early breast cancer patients (T1/2, N0 stages), undergoing primary surgery were prospectively randomized 1:1 into two groups; to receive SLNB using methylene blue, and either 99m Tc-Antimony colloid (Group-1) or 99m Tc-Sulphur colloid (Group-2). Completion axillary dissection was done in all (validation SLNB). SLNB indices were compared between the groups. The groups were comparable with regard to age, stage, tumour size, hormone receptors and HER2neu status. Cost of the in-house prepared 99m Tc-antimony colloid was 16-times lesser compared to 99m Tc-sulphur colloid. SLN identification rates (IR) in Groups 1 and 2 were 100 and 97.4% respectively, (p > 0.05). False negative rates (FNR) in Group 1 and 2 were 6.3% (1/16 patients) and 7.7% (1/13 patients), respectively, (p > 0.05). There were no major allergic reactions in either group. In this prospective randomized trial on early breast cancer patients, accuracy of SLNB was comparable using in-house prepared, 99m Tc-antimony colloid and commercially marketed 99m Tc-sulphur colloid as radiopharmaceutical, while 99m Tc-antimony colloid was much cheaper than 99m Tc-sulphur colloid.
Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao
2017-10-01
In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.
Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara
2016-10-04
The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.
Magnetically actuated and controlled colloidal sphere-pair swimmer
NASA Astrophysics Data System (ADS)
Ran, Sijie; Guez, Allon; Friedman, Gary
2016-12-01
Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.
Araújo, Nuno A M; Dias, Cristóvão S; Telo da Gama, Margarida M
2017-01-11
Colloidal particles are considered ideal building blocks to produce materials with enhanced physical properties. The state-of-the-art techniques for synthesizing these particles provide control over shape, size, and directionality of the interactions. In spite of these advances, there is still a huge gap between the synthesis of individual components and the management of their spontaneous organization towards the desired structures. The main challenge is the control over the dynamics of self-organization. In their kinetic route towards thermodynamically stable structures, colloidal particles self-organize into intermediate (mesoscopic) structures that are much larger than the individual particles and become the relevant units for the dynamics. To follow the dynamics and identify kinetically trapped structures, one needs to develop new theoretical and numerical tools. Here we discuss the self-organization of functionalized colloids (also known as patchy colloids) on attractive substrates. We review our recent results on the adsorption and relaxation and explore the use of annealing cycles to overcome kinetic barriers and drive the relaxation towards the targeted structures.
Local phase transitions in driven colloidal suspensions
NASA Astrophysics Data System (ADS)
Scacchi, A.; Brader, J. M.
2018-02-01
Using dynamical density functional theory and Brownian dynamics simulations, we investigate the influence of a driven tracer particle on the density distribution of a colloidal suspension at a thermodynamic state point close to the liquid side of the binodal. In bulk systems, we find that a localised region of the colloid-poor phase, a 'cavitation bubble', forms behind the moving tracer. The extent of the cavitation bubble is investigated as a function of both the size and velocity of the tracer. The addition of a confining boundary enables us to investigate the interaction between the local phase instability at the substrate and that at the particle surface. When both the substrate and tracer interact repulsively with the colloids we observe the formation of a colloid-poor bridge between the substrate and the tracer. When a shear flow is applied parallel to the substrate the bridge becomes distorted and, at sufficiently high shear-rates, disconnects from the substrate to form a cavitation bubble.
Microbial effects on colloidal agglomeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hersman, L.
1995-11-01
Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared tomore » sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.« less
Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.
Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D
2017-04-01
Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.
Wu, Hao; Li, Ming; Zhong, Li; Luo, Yuan Yuan; Li, Guang Hai
2016-12-05
Amorphous VO 2 (a-VO 2 ) colloids were synthesized by electrochemical anodic oxidation of metallic vanadium. It was found that the a-VO 2 colloids have a cotton-like morphology composed of very small clusters, and that the crystallization temperature of the a-VO 2 colloids can be adjusted either by the electrolyte of the anodic oxidation or/and the dispersion agent of the colloids. VO 2 (M) nanoparticles (NPs) (and a NP film) with an average size of about 50 nm can be obtained by a rapid thermal annealing of the a-VO 2 colloids at 310 °C under air, which is beneficial for practical applications. The VO 2 (M) NP film shows an obvious metal-semiconductor transition with a resistance less than 10 Ω in the metallic state. An integral visible transmittance of 40.7 %, a solar transmittance modulation of 9.4 %, and a resistance modulation in the order of 5×10 4 were realized in the VO 2 (M) NP film. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dhanasekaran, Madhumitha; Dhathathreyan, Aruna
2017-08-01
This work examines fibro-proliferation through interaction of myoglobin (Mb), a globular protein with collagen, an extracellular matrix fibrous protein. Designed colloids of Mb at pH 4.5 and 7.5 have been mixed with collagen solution at pH 7.5 and 4.5 in different concentrations altering their surface charges. For the Mb colloids, 100-200nm sizes have been measured from Transmission electron micrographs and zeta sizer. CD spectra shows a shift to beta sheet like structure for the protein in the colloids. Interaction at Mb/Collagen interface studied using Dilational rheology, Quartz crystal microbalance with dissipation and Differential Scanning calorimetry show that the perturbation is not only by the charge compensation arising from the difference in pH of the colloids and collagen, but also by the organized assembly of collagen at that particular pH. Results demonstrate that positive Mb colloids at pH 4.5, having more% of entrained water stabilize the collagen fibrils (pH 7.5) around them. Ensuing dehydration leads to effective cross-linking and inherently anisotropic growth of fibrils/fibres of collagen. In the case of Mb colloids at pH 7.5, the fibril formation seems to supersede the clustering of Mb suggesting that the fibro-proliferation is both pH and hydrophilic-hydrophobic balance dependent at the interface. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varney, Michael C. M.
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.
Analytic solutions for colloid transport with time- or depth-dependent retention in porous media
USDA-ARS?s Scientific Manuscript database
Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for...
NASA Astrophysics Data System (ADS)
Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine
2017-04-01
Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal-P exhaustion was tightly associated with DOC, Fe and Al exhaustions. Colloids were larger in size at the beginning than at the end of all cycles. Peak at the beginning of each wet cycles remained quite constant even after two drying/leaching cycles, evidencing the existence of mechanisms able to rebuild a pool of leachable P during drying process. Thus, there was clearly a control of soil characteristics on the released P forms in leachates. Colloidal P carriers appeared to consist of Fe and/or Al oxyhydroxide nano/microparticles associated with organic matter. Most importantly, a survey of colloidal size distribution during leaching indicated that the rapidly exhausted MUP pool consisted of larger size MUP and colloidal P phases, which probably originated from soil macropores, while the relatively infinite MRP pool consisted of smaller size colloidal P and true dissolved MRP phases, which was mobilized from soil micropores. These results further demonstrate the ability of rewetting after drying to lead to pulses of dissolved and colloidal P in riparian soils, thereby evidencing the risks that P-enriched soil particles accumulated in RVBS could constitute a long-term threat for surface water.
Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development
NASA Astrophysics Data System (ADS)
Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha
2012-12-01
Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody-colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.
Characterization of particulate and dissolved phosphorus in tile and nearby riverine systems
NASA Astrophysics Data System (ADS)
Jiang, X.; Arai, Y.; David, M.; Gentry, L.
2017-12-01
In the Midwestern U.S., the drainage of agricultural land is predominantly managed by the tile drain system because of its poorly drain properties of clay rich indigenous soils. An accelerated subsurface flow of phosphorus (P) has recently been documented as a primary P transport path in contrast to the typical surface runoff events observed in the Eastern U.S. Recent studies suggested the important role of particulate P (PP) load in agricultural tile drainage water during high flow events. It was hypothesized that PP in the tile water is transported to riverine system contributing to the negative environmental impacts in the Midwestern U.S. In this study, correlation assessment of physicochemical properties of PP in agricultural tile drainage and nearby river samples after a storm event was conducted using a combination of 31P-nuclear magnetic resonance spectroscopy, P K-edge X-ray absorption near edge structure spectroscopy, X-ray diffraction, zetasizer, and transmission electron microscopy. Results show that significantly more colloidal (i.e. 1 nm- 2 µm) and silt-sized (i.e. > 2 µm) particles as well as higher dissolved total P (DTP) and dissolved reactive P (DRP) concentrations existed in river samples than tile samples. Tile and river samples showed similar zeta potential in each particle-size fraction and similar element distributions on colloidal fraction. However, colloidal P concentration and distribution are slightly different between tile and river samples: more colloidal total P and organic P existed in tile colloids than river colloids. The results of P speciation and mineralogical assessment will also be discussed.
Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe
2015-01-06
Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.
Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Bradford, Scott A.
2017-04-01
Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.
Colloid facilitated transport of lanthanides through discrete fractures in chalk
NASA Astrophysics Data System (ADS)
Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-04-01
Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of transport rates and calculation of overall tracer recovery. Preliminary results suggest that mobility of Ce as a solute is negligible, and in experiments conducted without bentonite colloids, the 2% of the Ce that was recovered during the experiments travelled as "intrinsic" colloids in the form of Ce2(CO3)3-6H2O precipitate. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and the carbonate precipitate colloids were injected. In addition, the maximum relative concentration (C/C0) of the Ce in the samples from the experiments conducted without bentonite colloids is about 0.002, whereas that of the experiments conducted in the presence of bentonite colloids reaches almost 0.2. This indicates that colloid presence does indeed markedly increase the mobility of radionuclides through fractured chalk matrices and should therefore be considered in models representing transport of radionuclide waste originating from nuclear repositories.
Refractive index of colloidal dispersions of spheroidal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeten, G.H.
1980-09-01
The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.
New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.
2018-01-01
We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.
Solution-processed photodetectors from colloidal silicon nano/micro particle composite.
Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y
2010-10-11
We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.
Characterization of Nano-scale Aluminum Oxide Transport through Porous Media
NASA Astrophysics Data System (ADS)
Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.
2011-12-01
Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for facilitated transport of toxins through the subsurface and into our surface and groundwater bodies.
Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.
2017-02-22
Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less
Colloidal systems and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.; Morrison, E.D.
1988-01-01
This book is an excellent, four-part introductory text and sourcebook for those who want to acquire a quick background in , or brush up on, the physical properties and behavior of colloidal dispersions and interfaces. Part I covers properties of particles and techniques for determining particle size and surface area. Part II concentrates on the properties of interfaces, with brief subsections on insoluble monolayers, surface active solutes in aqueous and non-aqueous media, and the thermodynamics of adsorption at interfaces. Part III considers attractive and repulsive interactions, colloid stability (DLVO theory), and kinetics of coagulation. Part IV applies these concepts tomore » emulsions, foams, and suspensions. The sections on colloid rheology, interfacial tensions, Marangoni effects, and calculation of Hamaker constants are particularly good, as are Part IV and the numerous examples of practical applications used throughout the book to illustrate the concepts.« less
Site-Specific Colloidal Crystal Nucleation by Template-enhanced Particle Transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
The deliberate positioning of nano- and microstructures on surfaces is often a prerequisite for fabricating functional devices. While template-assisted nucleation is a promising route to self-assemble these structures, its success hinges on particles reaching target sites prior to nucleation and for nano/microscale particles, this is hampered by their small surface mobilities. We tailored surface features, which in the presence of attractive depletion interactions not only directed micrometer-sized colloids to specific sites but also subsequently guided their growth into ordered crystalline arrays of well-defined size and symmetry. By following the nucleation kinetics with single-particle resolution, we demonstrate control over nucleation density in a growth regime that has hitherto remained inaccessible. Our findings pave the way towards realizing non-trivial surface architectures composed of complex colloids/nanoparticles as well.
NASA Astrophysics Data System (ADS)
Ngueleu Kamangou, S.; Cirpka, O. A.; Grathwohl, P.
2012-04-01
In many developing countries, the hygienic situation has improved by changing from surface-water bodies to groundwater as drinking water resource. However, failures have frequently been reported, presumably caused by wrong design of groundwater extraction (e.g., wells too close to open-water bodies, landfill leachates or agricultural areas). Moreover threat to groundwater pollution is enhanced when colloidal particles in the subsurface can act as carriers for adsorbing contaminants such as hydrophobic chlorinated organic contaminants. In this study, the main objective was to investigate the influence of particles in the size range of colloids on the subsurface transport of pesticides which are known to cause severe health problems. The model pesticide was gamma-hexachlorocyclohexane, a representative hydrophobic insecticide which is still used mainly in tropical countries. Colloid-facilitated transport was carried out by considering a first case where the adsorption of the contaminant to the particles is at equilibrium before getting simultaneously transported, and a second case where this equilibrium was not reached before their transport. Another focus besides colloid-facilitated transport was placed on the release of the contaminant from trapped colloids. Data analysis was done with the help of numerical modeling and the minimum model complexity needed to simulate such transports was examined.
Transformation of metals speciation in a combined landfill leachate treatment.
Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming
2011-04-01
Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved. Copyright © 2011 Elsevier B.V. All rights reserved.
Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang
2016-01-01
Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can broaden the application of zein and be suitable for incorporating water-insoluble bioactive components in functional food and beverage products.
Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang
2016-01-01
Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can broaden the application of zein and be suitable for incorporating water-insoluble bioactive components in functional food and beverage products. PMID:27893802
Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters
NASA Astrophysics Data System (ADS)
Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons
2015-04-01
Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 <ɛ <10 ) provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ-1 and the ratio of charges on the particles, showing good agreement with experimental observations.
Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob
2017-07-01
Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ures, Ma Cristina; Savio, Eduardo; Malanga, Antonio; Fernández, Marcelo; Paolino, Andrea; Gaudiano, Javier
2002-01-01
Background Radiosynovectomy is a type of radiotherapy used to relieve pain and inflammation from rheumatoid arthritis. In this study, 188-Rhenium (188Re) colloids were characterized by physical and biological methodologies. This was used to assess which parameters of the kit formulation would be the basis in the development of a more effective radiopharmaceutical for synovectomy. Intraarticular injection in knees of rabbits assessed cavity leakage of activity. Methods The physical characteristics of tin (Sn) and sulphur (S) colloids were determined to assess the formulation with suitable properties. Particles were grouped in three ranges for analyzing their distribution according to their number, volume and surface. The ideal particle size range was considered to be from 2 to 10 microns. Membrane filtration and laser diffraction characterization methodologies were used. Results While membrane filtration could give misleading data, laser diffraction proportions more reliable results. The Sn colloid showed a better distribution of particle volume and surface than S colloid, in the 2 to 10 microns range. The 188Re-Sn colloid was obtained with a radiochemical purity higher than 95% after 30 minutes of autoclaving. While Sn colloid kit stability was verified for 60 days, the 188Re-Sn preparation was stable in the first 24 hrs. No significant intrabatch variability (n = 3) was detected. Biodistribution and scintigraphic studies in rabbits after intraarticular injection showed relevant activity only in knee, being 90% at 48 hours. Conclusion The 188Re-Sn colloid is easy to prepare, is stable for 24 hours and shows minimal cavity leakage after intraarticular injection into rabbit knees, suggesting this radiotherapeutical agent has suitable physical properties for evaluation for joint treatment in humans. PMID:12379158
Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Torkzaban, S.; Leij, F. J.; Simunek, J.
2014-12-01
Colloid retention and release is well known to depend on a wide variety of physical, chemical, and microbiological factors that may vary temporally in the subsurface environment. We present equilibrium, kinetic, combined equilibrium and kinetic, and two-site kinetic models of colloid release during transient physicochemical conditions. Our mathematical modeling approach relates colloid release under transient conditions to changes in the fraction of the solid surface area that contributes to retention. The developed models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of E. coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity, respectively. The retention and release of 20 nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca2+ than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2 mM CaCl2 solution, and release of NPs only occurred after exchange of Ca2+ by Na+ and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider Born repulsion and nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque. Collectively, experimental and modeling results indicate that episodic colloid transport in the subsurface is expected because of transient conditions.
Experimental evidence of colloids and nanoparticles presence from 25 waste leachates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr; Avellan, Astrid; Yan, Junfang
Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used tomore » easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO{sub 2}, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates. These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.« less
Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.
Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R
2016-08-24
Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.
Critical Casimir effect for colloids close to chemically patterned substrates.
Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S
2010-08-21
Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.
Hao, H L; Wu, W S; Zhang, Y; Wu, L K; Shen, W Z
2016-08-12
We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.
DNA Origami Patterned Colloids for Programmed Design and Chirality
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul
Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ning
Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts and rates of colloid release and indicate that episodic colloid transport is expected under transient physicochemical conditions. Published by Elsevier B.V.
Arora, Geetanjali; Singh, Manoranjan; Jha, Pragati; Tripathy, Sarthak; Bal, Chandrasekhar; Mukherjee, Anirban; Shamim, Shamim A
2017-07-01
Easy large-scale production, easy availability, cost-effectiveness, long half-life, and favorable radiation characteristics have made lutetium-177 (Lu) a preferred radionuclide for use in therapy. Lutetium-177-labeled stannous (Lu-Sn) colloid particles were formulated for application in radiosynovectomy, followed by in-vitro and in-vivo characterization. Stannous chloride (SnCl2) solution and Lu were heated together, the pH was adjusted, and the particles were recovered by centrifugation. The heating time and amount of SnCl2 were varied to optimize the labeling protocol. The labeling efficiency (LE) and radiochemical purity (RCP) of the product were determined. The size and shape of the particles were determined by means of electron microscopy. In-vitro stability was tested in PBS and synovial fluid, and in-vivo stability was tested in humans. LE and RCP were greater than 95% and ∼99% (Rf=0-0.1), respectively. Aggregated colloidal particles were spherical (mean size: 241±47 nm). The product was stable in vitro for up to 7 days in PBS as well as in synovial fluid. Injection of the product into the infected knee joint of a patient resulted in its homogenous distribution in the intra-articular space, as seen on the scan. No leakage of activity was seen outside the knee joint even 7 days after injection, indicating good tracer binding and in-vivo stability. Lu-Sn colloid was successfully prepared with a high LE (>95%) and high RCP (99%) under optimized reaction conditions. Because of the numerous benefits of Lu and the ease of preparation of tin colloid particles, Lu-Sn colloid particles are significantly superior to its currently available counterparts for use in radiosynovectomy.
Pattern formation in binary colloidal assemblies: hidden symmetries in a kaleidoscope of structures.
Lotito, Valeria; Zambelli, Tomaso
2018-06-10
In this study we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of non-preservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology in order to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are precious for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor physical properties of colloidal assemblies.
Majewski, P; Krysiński, P
2008-01-01
We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.
In Vitro and In Vivo Short-Term Pulmonary Toxicity of Differently Sized Colloidal Amorphous SiO2
Wiemann, Martin; Sauer, Ursula G.; Vennemann, Antje; Bäcker, Sandra; Keller, Johannes-Georg; Ma-Hock, Lan; Wohlleben, Wendel; Landsiedel, Robert
2018-01-01
In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, β-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration–based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as “active.” This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials. PMID:29534009
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
NASA Astrophysics Data System (ADS)
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-10-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-01-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948
Gehrmann, Sandra; Bunjes, Heike
2018-05-01
Premix membrane emulsification is a possibility to produce colloidal emulsions as carrier systems for poorly water soluble drugs. During the extrusion of a coarse pre-emulsion through a porous membrane, the emulsion droplets are disrupted into smaller droplets. The influence of the membrane material on the emulsification success was investigated in dependence on the emulsifier. Premixed medium chain triglyceride (MCT) emulsions stabilized with five different emulsifiers were extruded through seven different hydrophilic polymeric membrane materials with pore sizes of 200nm. The resulting emulsions differed strongly in particle size and particle size distribution with a range of median particle sizes between 0.08μm and 11μm. The particle size of the emulsions did not depend mainly on the structure or thickness of the membrane but on the combination of emulsifier and membrane material. Contact angle measurements indicated that the wetting of the membrane with the continuous phase of the emulsion was decisive for achieving emulsions with colloidal particle sizes. The type of dispersed phase was of minor importance as basically the same results were obtained with peanut oil instead of MCT. To prove the assumption that only sufficiently hydrophilic membrane materials led to emulsions with colloidal particle sizes, two membrane materials were hydrophilized by plasma treatment. After hydrophilization, the emulsifying process led to emulsions with smaller particle sizes. The use of an alumina membrane (Anodisc®) improved the process even more. With this type of membrane, emulsions with a median particle size below 250nm and a narrow particle size distribution could be obtained with all investigated emulsifiers. Copyright © 2016 Elsevier B.V. All rights reserved.
Shear Melting of a Colloidal Glass
NASA Astrophysics Data System (ADS)
Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.
2010-01-01
We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.
Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.
Collins, Gillian; Holmes, Justin D
2016-07-01
Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid molecular-colloidal liquid crystals.
Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I
2018-05-18
Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules
NASA Astrophysics Data System (ADS)
Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.
2014-01-01
Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Sankaran, Subramanian
2003-01-01
Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.
Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.
Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo
2015-08-01
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy
2018-03-01
Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.
Colloid-facilitated metal transport in peat filters.
Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin
2010-06-01
The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.
Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam
2016-09-01
Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of manure-related DOM on sulfonamide transport in arable soils
NASA Astrophysics Data System (ADS)
Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina
2016-09-01
Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.
Colloid transport in model fracture filling materials
NASA Astrophysics Data System (ADS)
Wold, S.; Garcia-Garcia, S.; Jonsson, M.
2010-12-01
Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture minerals was studied prior to the transport experiments under the same conditions. By varying the amount of solid substrate, it was possible to determine an interaction constant from a linear expression. Complementary zeta potential measurements and scanning electron microscopy (SEM) imaging were performed to examine the mineral surfaces after exposure to colloids. In experiments with low flow rates the retention of the colloids in the transport experiments were attributed to the interaction constants including both physical filtration and sorption. At higher flow rate the interactions between colloids and mineral surfaces were also significant but not as pronounced. Immobilization and retardation of the colloids were reflected by the interaction constants, which included both an irreversible and a reversible component of physical filtration and sorption. References Darbha, G.K., Schaefer, T., Heberling, F., Lüttge, A. and Fisher, C. 2010. Retention of Latex Colloids on Calcite as a Function of Surface Roughness and Topography. Langmuir, 26(7), 4743-4752. Filby, A., Plaschke, M., Geckeis, H., Fanghänel, Th. 2008. Interaction of latex colloids with mineral surfaces and Grimsel granodiorite. J. Contam. Hydrol., 102, 273-284.
NASA Astrophysics Data System (ADS)
Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.
Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: < 2 ţm; a microaggregate fraction: 2-20 ţm and a sediment fraction: > 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of about 1-2 mM Ca2+ can be estimated which increases the stability of soil aggregates in water. Different titration, electrokinetic and spectroscopic methods were applied to characterize the colloidal and electrolyte phases. These techniques provide information on the physicochemical heterogeneity of mobile OM from various agricultural soils.
NASA Astrophysics Data System (ADS)
Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon
2015-04-01
To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.
Stimulak, Mitja; Ravnik, Miha
2014-09-07
Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.
Does water content or flow rate control colloid transport in unsaturated porous media?
Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B
2014-04-01
Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.
Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard
2015-09-07
Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water
NASA Astrophysics Data System (ADS)
Krstulović, Nikša; Salamon, Krešimir; Budimlija, Ognjen; Kovač, Janez; Dasović, Jasna; Umek, Polona; Capan, Ivana
2018-05-01
Al-doped ZnO crystalline colloidal nanoparticles were synthesized by a laser ablation of ZnO:Al2O3 in MilliQ water. Experiments were performed systematically by changing the number of applied laser pulses and laser output energy with the aim to affect the nanoparticle size, composition (Al/Zn ratio) and characteristics (band-gap, crystallinity). Distinctly, set of nanoparticle syntheses was performed in deionized water for comparison. SEM investigation of colloidal nanoparticles revealed that the formed nanoparticles are 30 nm thick discs with average diameters ranging from 450 to 510 nm. It was found that craters in the target formed during the laser ablation influence the size of synthesized colloidal nanoparticles. This is explained by efficient nanoparticle growth through diffusion process which take place in spatially restricted volume of the target crater. When laser ablation takes place in deionized water the synthesized nanoparticles have a mesh-like structure with sparse concentration of disc-like nanoparticles. Al/Zn ratio and band-gap energy of nanoparticles are highly influenced by the number and output energy of applied laser pulses. In addition, the procedure how to calculate the concentration of colloidal nanoparticles synthesized by laser ablation in liquids is proposed. The Al-doped ZnO colloidal nanoparticles properties were obtained using different techniques like scanning electron microscopy, optical microscopy, energy-dispersive X-ray spectroscopy, grazing-incidence X-ray diffraction, photoabsorption, photoluminescence and X-ray photoelectron spectroscopy.
Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo
2010-05-18
The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.
Acquisition of a High Voltage/High resolution Transmission Electron Microscope.
1988-08-21
microstructural design starts at the nanometer level. One such method is colloidal processing of materials with ultrafine particles in which particle...applications in the colloidal processing of ceramics with ultrafine particles . Aftervards, nanometer-sized particles will be synthesized and...STRUCTURAL CONTROL WITH ULTRAFINE PARTICLES Jun Liu. Mehmet Sarikaya, and I. A. Aksay Department of Materials Science and Engineering. Advanced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.
A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less
Impact of manure-related DOM on sulfonamide transport in arable soils.
Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina
2016-09-01
Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.
Van Leeuwen, Herman P; Buffle, Jacques
2009-10-01
Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.
Ingrosso, Chiara; Panniello, AnnaMaria; Comparelli, Roberto; Curri, Maria Lucia; Striccoli, Marinella
2010-01-01
The unique size- and shape-dependent electronic properties of nanocrystals (NCs) make them extremely attractive as novel structural building blocks for constructing a new generation of innovative materials and solid-state devices. Recent advances in material chemistry has allowed the synthesis of colloidal NCs with a wide range of compositions, with a precise control on size, shape and uniformity as well as specific surface chemistry. By incorporating such nanostructures in polymers, mesoscopic materials can be achieved and their properties engineered by choosing NCs differing in size and/or composition, properly tuning the interaction between NCs and surrounding environment. In this contribution, different approaches will be presented as effective opportunities for conveying colloidal NC properties to nanocomposite materials for micro and nanofabrication. Patterning of such nanocomposites either by conventional lithographic techniques and emerging patterning tools, such as ink jet printing and nanoimprint lithography, will be illustrated, pointing out their technological impact on developing new optoelectronic and sensing devices.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
Aging of a Binary Colloidal Glass
NASA Astrophysics Data System (ADS)
Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.
2008-03-01
After having undergone a glass transition, a glass is in a non-equilibrium state, and its properties depend on the time elapsed since vitrification. We study this phenomenon, known as aging. In particular, we study a colloidal suspension consisting of micron-sized particles in a liquid --- a good model system for studying the glass transition. In this system, the glass transition is approached by increasing the particle concentration, instead of decreasing the temperature. We observe samples composed of particles of two sizes (d1= 1.0μm and d2= 2.0μm) using fast laser scanning confocal microscopy, which yields real-time, three-dimensional movies deep inside the colloidal glass. We then analyze the trajectories of several thousand particles as the glassy suspension ages. Specifically, we look at how the size, motion and structural organization of the particles relate to the overall aging of the glass. We find that areas richer in small particles are more mobile and therefore contribute more to the structural changes found in aging glasses.
Orbitals for classical arbitrary anisotropic colloidal potentials
NASA Astrophysics Data System (ADS)
Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera
2017-11-01
Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.
NASA Astrophysics Data System (ADS)
Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc
2017-06-01
This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.
NASA Astrophysics Data System (ADS)
Diaz, R.; Palleau, E.; Poirot, D.; Sangeetha, N. M.; Ressier, L.
2014-08-01
This work demonstrates the excellent capability of the recently developed electrical nanoimprint lithography (e-NIL) technique for quick, high-throughput production of well-defined colloid assemblies on surfaces. This is shown by fabricating micron-sized photoluminescent quick response (QR) codes based on the electrostatic directed trapping (so called nanoxerography process) of 28 nm colloidal lanthanide-doped upconverting NaYF4 nanocrystals. Influencing experimental parameters have been optimized and the contribution of triboelectrification in e-NIL was evidenced. Under the chosen conditions, more than 300 000 nanocrystal-based QR codes were fabricated on a 4 inch silicon wafer, in less than 15 min. These microtags were then transferred to transparent flexible films, to be easily integrated onto desired products. Invisible to the naked eye, they can be decoded and authenticated using an optical microscopy image of their specific photoluminescence mapping. Beyond this very promising application for product tracking and the anti-counterfeiting strategies, e-NIL nanoxerography, potentially applicable to any types of charged and/or polarizable colloids and pattern geometries opens up tremendous opportunities for industrial scale production of various other kinds of colloid-based devices and sensors.
Active colloidal propulsion over a crystalline surface
NASA Astrophysics Data System (ADS)
Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix
2017-12-01
We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Roberts, K.; Kaplan, D.
Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release inmore » natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.« less
Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y
2016-12-06
Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.
Gigault, Julien; El Hadri, Hind; Reynaud, Stéphanie; Deniau, Elise; Grassl, Bruno
2017-11-01
In the last 10 years, asymmetrical flow field flow fractionation (AF4) has been one of the most promising approaches to characterize colloidal particles. Nevertheless, despite its potentialities, it is still considered a complex technique to set up, and the theory is difficult to apply for the characterization of complex samples containing submicron particles and nanoparticles. In the present work, we developed and propose a simple analytical strategy to rapidly determine the presence of several submicron populations in an unknown sample with one programmed AF4 method. To illustrate this method, we analyzed polystyrene particles and fullerene aggregates of size covering the whole colloidal size distribution. A global and fast AF4 method (method O) allowed us to screen the presence of particles with size ranging from 1 to 800 nm. By examination of the fractionating power F d , as proposed in the literature, convenient fractionation resolution was obtained for size ranging from 10 to 400 nm. The global F d values, as well as the steric inversion diameter, for the whole colloidal size distribution correspond to the predicted values obtained by model studies. On the basis of this method and without the channel components or mobile phase composition being changed, four isocratic subfraction methods were performed to achieve further high-resolution separation as a function of different size classes: 10-100 nm, 100-200 nm, 200-450 nm, and 450-800 nm in diameter. Finally, all the methods developed were applied in characterization of nanoplastics, which has received great attention in recent years. Graphical Absract Characterization of the nanoplastics by asymmetrical flow field flow fractionation within the colloidal size range.
Designing Micro- and Nanoswimmers for Specific Applications.
Katuri, Jaideep; Ma, Xing; Stanton, Morgan M; Sánchez, Samuel
2017-01-17
Self-propelled colloids have emerged as a new class of active matter over the past decade. These are micrometer sized colloidal objects that transduce free energy from their surroundings and convert it to directed motion. The self-propelled colloids are in many ways, the synthetic analogues of biological self-propelled units such as algae or bacteria. Although they are propelled by very different mechanisms, biological swimmers are typically powered by flagellar motion and synthetic swimmers are driven by local chemical reactions, they share a number of common features with respect to swimming behavior. They exhibit run-and-tumble like behavior, are responsive to environmental stimuli, and can even chemically interact with nearby swimmers. An understanding of self-propelled colloids could help us in understanding the complex behaviors that emerge in populations of natural microswimmers. Self-propelled colloids also offer some advantages over natural microswimmers, since the surface properties, propulsion mechanisms, and particle geometry can all be easily modified to meet specific needs. From a more practical perspective, a number of applications, ranging from environmental remediation to targeted drug delivery, have been envisioned for these systems. These applications rely on the basic functionalities of self-propelled colloids: directional motion, sensing of the local environment, and the ability to respond to external signals. Owing to the vastly different nature of each of these applications, it becomes necessary to optimize the design choices in these colloids. There has been a significant effort to develop a range of synthetic self-propelled colloids to meet the specific conditions required for different processes. Tubular self-propelled colloids, for example, are ideal for decontamination processes, owing to their bubble propulsion mechanism, which enhances mixing in systems, but are incompatible with biological systems due to the toxic propulsion fuel and the generation of oxygen bubbles. Spherical swimmers serve as model systems to understand the fundamental aspects of the propulsion mechanism, collective behavior, response to external stimuli, etc. They are also typically the choice of shape at the nanoscale due to their ease of fabrication. More recently biohybrid swimmers have also been developed which attempt to retain the advantages of synthetic colloids while deriving their propulsion from biological swimmers such as sperm and bacteria, offering the means for biocompatible swimming. In this Account, we will summarize our effort and those of other groups, in the design and development of self-propelled colloids of different structural properties and powered by different propulsion mechanisms. We will also briefly address the applications that have been proposed and, to some extent, demonstrated for these swimmer designs.
Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent
NASA Astrophysics Data System (ADS)
Susilowati, E.; Maryani; Ashadi
2018-04-01
The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.
Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S.; Shapiro, B. I.
2015-03-15
The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots ismore » explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.« less
Preparation and characterization of silver nanoparticles homogenous thin films
NASA Astrophysics Data System (ADS)
Hegazy, Maroof A.; Borham, E.
2018-06-01
The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.
NASA Astrophysics Data System (ADS)
Bun-Athuek, Natthaphon; Yoshimoto, Yutaka; Sakai, Koya; Khajornrungruang, Panart; Suzuki, Keisuke
2017-07-01
The surface and diameter size variations of colloidal silica particles during the chemical mechanical polishing (CMP) of sapphire substrates were investigated using different particle diameters of 20 and 55 nm. Dynamic light scattering (DLS) results show that the silica particles became larger after CMP under both conditions. The increase in particle size in the slurry was proportional to the material removal amount (MRA) as a function of the removed volume of sapphire substrates by CMP and affected the material removal rate (MRR). Transmission electron microscopy (TEM) images revealed an increase in the size of the fine particles and a change in their surface shape in the slurry. The colloidal silica was coated with the material removed from the substrate during CMP. In this case, the increase in the size of 55 nm diameter particles is larger than that of 20 nm diameter particles. X-ray fluorescence spectrometry (XRF) results indicate that the aluminum element from polished sapphire substrates adhered to the surfaces of silica particles. Therefore, MRR decreases with increasing of polishing time owing to the degradation of particles in the slurry.
Phases transitions and interfaces in temperature-sensitive colloidal systems
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Schall, Peter
2013-03-01
Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.
NASA Astrophysics Data System (ADS)
Demirel, Abdülmelik; Öztaş, Tuğba; Kurşungöz, Canan; Yılmaz, İbrahim; Ortaç, Bülend
2016-05-01
We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295-400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.
Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J
2010-05-12
While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.
A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun
2013-06-01
Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.
Speciation of Se and DOC in soil solution and their relation to Se bioavailability.
Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H
2011-01-01
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
Progress Report on FY15 Crystalline Experiments M4FT-15LL0807052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-08-13
Colloid-facilitated plutonium transport is expected to be the dominant mechanism in its migration through the environment. The forms of Pu colloids (intrinsic versus pseudo-colloid) and their stabilities control temporal and spatial scales of Pu transport in the environment. In the present study, we examine the stability of Pu intrinsic colloids freshly prepared in alkaline solution relative to Pu-montmorillonite pseudo-colloids using a dialysis device and modeling approaches. Intrinsic colloids prepared under alkaline conditions were found to be unstable over a timescale of months. The kinetics of multiple processes, including hydrolysis/precipitation of Pu(IV), dissolution of intrinsic colloids in the absence and presencemore » of the clay colloids, transport of dissolved Pu species across the dialysis membrane, and formation of pseudo-colloids were examined. The dissolution of intrinsic colloids was the rate-limiting process in most cases. The apparent intrinsic colloid dissolution rate constants range from 6×10 -7 to 1×10 - 6 mol·m -2·day -1 and 4×10 -6 to 8×10 -6 mol·m -2·day -1 at 25 and 80°C, respectively, while the apparent diffusion rate constants for Pu ions crossing the dialysis membrane are >200 times higher. Elevated temperatures enhance dissolution of Pu colloids and the activation energy for the process is estimated to be 28 kJ mol -1. The sorption of Pu to montmorillonite appears to be endothermic as the affinity of Pu for the clay increases with increasing temperature. Our results provide an in-depth understanding of how intrinsic and pseudo-colloids interact with each other kinetically. Although the fact that intrinsic colloids tend to dissolve in the presence of montmorillonite and transform into pseudo-colloids may limit the migration of intrinsic colloids, the thermodynamically more stable pseudo-colloids may play an important role in Pu transport in the environment over significant temporal and spatial scales.« less
Makselon, Joanna; Siebers, Nina; Meier, Florian; Vereecken, Harry; Klumpp, Erwin
2018-07-01
Undisturbed outdoor lysimeters containing arable loamy sand soil were used to examine the influence of either heavy rain events (high frequency of high rain intensity), steady rain (continuous rainfall of low rain intensity), and natural rainfall on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP). In addition, the AgNP-soil associations within the A p horizon were analyzed by means of particle-size fractionation, asymmetrical flow field-flow fractionation coupled with UV/Vis-detection and inductively coupled plasma mass spectrometer (AF4-UV/Vis-ICP-MS), and transmission electron microscopy coupled to an energy-dispersive X-ray (TEM-EDX) analyzer. The results showed that AgNP breakthrough for all rain events was less than 0.1% of the total AgNP mass applied, highlighting that nearly all AgNP were retained in the soil. Heavy rain treatment and natural rainfall revealed enhanced AgNP transport within the A p horizon, which was attributed to the high pore water flow velocities and to the mobilization of AgNP-soil colloid associations. Particle-size fractionation of the soil revealed that AgNP were present in each size fraction and therefore indicated strong associations between AgNP and soil. In particular, water-dispersible colloids (WDC) in the size range of 0.45-0.1 μm were found to exhibit high potential for AgNP attachment. The AF4-UV/Vis-ICP-MS and TEM-EDX analyses of the WDC fraction confirmed that AgNP were persistent in soil and associated to soil colloids (mainly composed of Al, Fe, Si, and organic matter). These results confirm the particularly important role of soil colloids in the retention and remobilization of AgNP in soil. Furthermore, AF4-UV/Vis-ICP-MS results indicated the presence of single, homo-aggregated, and small AgNP probably due to dissolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Baudouin, David; Szeto, Kaï Chung; Laurent, Pierre; De Mallmann, Aimery; Fenet, Bernard; Veyre, Laurent; Rodemerck, Uwe; Copéret, Christophe; Thieuleux, Chloé
2012-12-26
Preparing highly active and stable non-noble-metal-based dry reforming catalysts remains a challenge today. In this context, supported nickel nanoparticles with sizes of 1.3 ± 0.2 and 2.1 ± 0.2 nm were synthesized on silica and ceria, respectively, via a two-step colloidal approach. First, 2-nm nickel-silicide colloids were synthesized from Ni(COD)(2) and octylsilane at low temperature; they were subsequently dispersed onto supports prior to reduction under H(2). The resulting catalysts display high activity in dry reforming compared to their analogues prepared using conventional approaches, ceria providing greatly improved catalyst stability.
Bubble colloidal AFM probes formed from ultrasonically generated bubbles.
Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2008-02-05
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
DHS Internship Summary-Crystal Assembly at Different Length Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, L
2009-08-06
I was part of a project in which in situ atomic force microscopy (AFM) was used to monitor growth and dissolution of atomic and colloidal crystals. At both length scales, the chemical environment of the system greatly altered crystal growth and dissolution. Calcium phosphate was used as a model system for atomic crystals. A dissolution-reprecipitation reaction was observed in this first system, involving the conversion of brushite (DCPD) to octacalcium phosphate (OCP). In the second system, polymeric colloidal crystals were dissolved in an ionic solvent, revealing the underlying structure of the crystal. The dissolved crystal was then regrown through anmore » evaporative step method. Recently, we have also found that colloids can be reversibly deposited in situ onto an ITO (indium tin oxide) substrate via an electrochemistry setup. The overall goal of this project was to develop an understanding of the mechanisms that control crystallization and order, so that these might be controlled during material synthesis. Controlled assembly of materials over a range of length scales from molecules to nanoparticles to colloids is critical for designing new materials. In particular, developing materials for sensor applications with tailorable properties and long range order is important. In this work, we examine two of these length scales: small molecule crystallization of calcium phosphate (whose crystal phases include DCPD, OCP, and HAP) and colloidal crystallization of Poly(methyl methacrylate) beads. Atomic Force Microscopy is ideal for this line of work because it allows for the possibility of observing non-conducting samples in fluid during growth with high resolution ({approx} 10 nm). In fact, during atomic crystal growth one can observe changes in atomic steps, and with colloidal crystals, one can monitor the individual building blocks of the crystal. Colloids and atoms crystallize under the influence of different forces acting at different length scales as seen in Table 1. In particular, molecular crystals, which are typically dominated by ionic and covalent bonding, are an order of magnitude more strongly bonded than colloidal crystals. In molecular crystals, ordering is driven by the interaction potentials between molecules. By contrast, colloidal assembly is a competition between the repulsive electrostatic forces that prevent aggregation in solution (due to surface charge), and short-range van der Waals and entropic forces that leads to ordering. Understanding atomic crystallization is fundamentally important for fabrication of tailorable crystalline materials, for example for biological or chemical sensors. The transformation of brushite to OCP not only serves as a model system for atomic crystal growth (applicable to many other crystal growth processes), but is also important in bone cements. Colloidal crystals have unique optical properties which respond to chemical and mechanical stimuli, making them very important for sensing applications. The mechanism of colloidal crystal assembly is thus fundamentally important. Our in situ dissolution and regrowth experiments are one good method of analyzing how these crystals pack under different conditions and how defect sites are formed and filled. In these experiments, a silica additive was used to strengthen the colloidal crystal during initial assembly (ex situ) and to increase domain size and long range order. Reversible electrodeposition of colloids onto a conductive substrate (ITO in our case) is another system which can further our knowledge of colloidal assembly. This experiment holds promise of allowing in situ observation of colloidal crystal growth and the influence of certain additives on crystal order. The ultimate goal would be to achieve long range order in these crystals by changing the surface charge or the growth environment.« less
Synthesis of new nanocrystal materials
NASA Astrophysics Data System (ADS)
Hassan, Yasser Hassan Abd El-Fattah
Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).
Synthesis and Characterization of Supramolecular Colloids.
Vilanova, Neus; De Feijter, Isja; Voets, Ilja K
2016-04-22
Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.
Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.
1991-01-01
A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.
Thermophoretic torque in colloidal particles with mass asymmetry
NASA Astrophysics Data System (ADS)
Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando
2018-05-01
We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.
Direct and inverted nematic dispersions for soft matter photonics.
Muševič, I; Skarabot, M; Humar, M
2011-07-20
General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.; Chapman, Walter G.
2013-09-01
In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.
Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.
Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo
2017-07-12
In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.
Colloid-Mediated Transport of PPCPs through Porous Media
NASA Astrophysics Data System (ADS)
Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie
2017-04-01
Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Stabilized super-thermite colloids: A new generation of advanced highly energetic materials
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.
2017-10-01
One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.
Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.
Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna
2010-08-03
We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.
2D mesoscale colloidal crystal patterns on polymer substrates
NASA Astrophysics Data System (ADS)
Bredikhin, Vladimir; Bityurin, Nikita
2018-05-01
The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.
Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan
2013-01-01
Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.
Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide
2016-05-24
Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.
Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).
Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong
2012-10-01
The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio
2015-01-01
Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499
Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V
2011-07-13
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.
Influence of Geometries on the Assembly of Snowman-Shaped Janus Nanoparticles.
Kang, Chengjun; Honciuc, Andrei
2018-04-24
The self-assembly of micro/nanoparticles into suprastructures is a promising way to develop reconfigurable materials and to gain insights into the fundamental question of how matter organizes itself. The geometry of particles, especially those deviating from perfectly spherical shapes, is of significant importance in colloidal assembly because it influences the particle "recognition", determines the particle packing, and ultimately dictates the formation of assembled suprastructures. In order to organize particles into desired structures, it is of vital importance to understand the relationship between the shape of the colloidal building blocks and the assembled suprastructures. This fundamental issue is an enduring topic in the assembly of molecular surfactants, but it remained elusive in colloidal assembly. To address this issue, we use snowman-shaped Janus nanoparticles (JNPs) as a model to systematically study the effect of colloidal geometries on their assembled suprastructures. Ten types of JNPs with identical chemical compositions but with different geometries were synthesized. Specifically, the synthesized JNPs differ in their lobe size ratios, phase separation degrees, and overall sizes. We show that by altering these parameters, both finite suprastructures, such as capsules with different curvatures, and nonfinite suprastructures, including free-standing single-layered or double-layered JNPs sheets, can be obtained via self-assembly. All these different types of suprastructures are constituted by highly oriented and hexagonally packed JNPs. These findings demonstrate the significance of geometries in colloidal assembly, such that slightly changing the building block geometries could result in a large variety of very different assembled structures, without altering the chemistry of the particles.
Diamond family of colloidal supercrystals as phononic metamaterials
NASA Astrophysics Data System (ADS)
Aryana, Kiumars; Zanjani, Mehdi B.
2018-05-01
Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f < 0.45) include smaller bandgaps compared to those with medium filling factors (0.65 > f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.
Size charge fractionation of metals in municipal solid waste landfill leachate.
Oygard, Joar Karsten; Gjengedal, Elin; Røyset, Oddvar
2007-01-01
Municipal solid waste landfill leachates from 9 Norwegian sites were size charge fractionated in the field, to obtain three fractions: particulate and colloidal matter >0.45microm, free anions/non-labile complexes <0.45microm and free cations/labile complexes <0.45microm. The fractionation showed that Cd and Zn, and especially Cu and Pb, were present to a large degree (63-98%) as particulate and colloidal matter >0.45microm. Cr, Co and Ni were on the contrary present mostly as non-labile complexes (69-79%) <0.45microm. The major cations Ca, Mg, K, and Mn were present mainly as free cations/labile complexes <0.45microm, while As and Mo were present to a large degree (70-90%) as free anions/non-labile complexes <0.45microm. Aluminium was present mainly as particulate and colloidal matter >0.45microm. The particulate and colloidal matter >0.45microm was mainly inorganic; indicating that the metals present in this fraction were bound as inorganic compounds. The fractionation gives important information on the mobility and potential bioavailability of the metals investigated, in contrast to the total metal concentrations usually reported. To study possible changes in respective metal species in leachate in aerated sedimentation tanks, freshly sampled leachate was stored for 48h, and subsequently fractionated. This showed that the free heavy metals are partly immobilized during storage of leachate with oxygen available. The largest effects were found for Cd and Zn. The proportion of As and Cr present as particulate matter or colloids >0.45microm also increased.
NASA Astrophysics Data System (ADS)
Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin
2018-01-01
Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.
Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.
Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau
2017-09-01
Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2015-08-04
In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.
Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
2004-01-01
Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rock were heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.
Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng
2015-12-30
We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.
Reentrant equilibrium disordering in nanoparticle–polymer mixtures
Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...
2017-01-31
A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Amr I.; Roberts, Peter M.
2006-05-01
It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.
Colloid labelled with radionuclide and method
Atcher, R.W.; Hines, J.J.
1990-11-13
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings
Method of making colloid labeled with radionuclide
Atcher, Robert W.; Hines, John J.
1991-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Colloid labelled with radionuclide and method
Atcher, Robert W.; Hines, John J.
1990-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Liao, Peng; Yuan, Songhu; Wang, Dengjun
2016-10-18
Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.
Natural colloidal P and its contribution to plant P uptake.
Montalvo, Daniela; Degryse, Fien; McLaughlin, Mike J
2015-03-17
Phosphorus (P) bioavailability depends on its concentration and speciation in solution. Andisols and Oxisols have very low soil solution concentration of free orthophosphate, as they contain high concentrations of strongly P-sorbing minerals (Al/Fe oxyhydroxides, allophanes). Free orthophosphate is the form of P taken up by plants, but it is not the only P species present in the soil solution. Natural colloidal P (P associated with Al, Fe, and organic matter of sizes ranging from 1 to 1000 nm) constitutes an important fraction of soil solution P in these soils; however, its availability has not been considered. We measured the uptake of P by wheat (Triticum aestivum) from radiolabeled nonfiltered (colloid-containing) and 3-kDa filtered (nearly colloid-free) soil-water extracts from Andisols and Oxisols. In the Andisol extracts, P uptake was up to 5-fold higher from the nonfiltered solutions than the corresponding 3-kDa filtered solutions. In the Oxisol extract, no difference in P uptake between both solutions was observed. Also the diffusional flux of P as measured with the DGT technique was larger in the nonfiltered than in the 3-kDa filtered solutions. Our results suggest that colloidal P from Andisols is not chemically inert and contributes to plant uptake of P.
Surface chemical effects on colloid stability and transport through natural porous media
Puls, Robert W.; Paul, Cynthia J.; Clark, Donald A.
1993-01-01
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was retrieved from a sand and gravel aquifer on Cape Cod, MA. Previous studies have indicated enhanced stability and transport of iron oxide particles due to specific adsorption of some inorganic anions on the iron oxide surface. This phenomenon was further evaluated with an anionic surfactant, sodium dodecyl sulfate. Surfactants constitute a significant mass of the contaminant loading at the Cape Cod site and their presence may contribute to colloidal transport as a significant transport mechanism at the site. Other studies at the site have previously demonstrated the occurrence of this transport mechanism for iron phosphate particles. Photon correlation spectroscopy, micro-electrophoretic mobility, and scanning electron microscopy were used to evaluate particle stability, mobility and size. Adsorption of negatively charged organic and inorganic species onto the surface of the iron oxide particles was shown to significantly enhance particle stability and transport through alterations of the electrokinetic properties of the particle surface. Particle breakthrough generally occurred simultaneously with tritiated water, a conservative tracer. The extent of particle breakthrough was primarily dependent upon colloidal stability and surface charge.
Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation
Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio
2013-01-01
Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533
Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
Melnychuk, Christopher; Guyot-Sionnest, Philippe
2018-05-03
The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.
Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals
NASA Astrophysics Data System (ADS)
Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.
2016-11-01
Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.
A density functional theory for colloids with two multiple bonding associating sites.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2016-06-22
Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.
NASA Astrophysics Data System (ADS)
Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2009-06-01
We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.
Characterization of magnetic colloids by means of magnetooptics.
Baraban, L; Erbe, A; Leiderer, P
2007-05-01
A new, efficient method for the characterization of magnetic colloids based on the Faraday effect is proposed. According to the main principles of this technique, it is possible to detect the stray magnetic field of the colloidal particles induced inside the magnetooptical layer. The magnetic properties of individual particles can be determined providing measurements in a wide range of magnetic fields. The magnetization curves of capped colloids and paramagnetic colloids were measured by means of the proposed approach. The registration of the magnetooptical signals from each colloidal particle in an ensemble permits the use of this technique for testing the magnetic monodispersity of colloidal suspensions.
Assembly of Colloidal Materials Using Bioadhesive Interactions
NASA Technical Reports Server (NTRS)
Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.
2002-01-01
We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using these different crosslinking molecules, we have assembled colloidal materials from different-sized colloidal particles, A and B. In the first sets of experiment, we used high densities of adhesion molecules, and 0.96 micron (A) and 5.5 micron (B) diameter particles. The high density of adhesion molecules means that the structures are kinetically trapped in nonequilibrium configurations. The structure of the suspension can be varied by changing the number ratio of the two types of colloidal particles, NA and NB, where A is the smaller particle. With carbohydrate-selectin or avidin-biotin interactions, large NA/NB leads to the formation of colloidal micelles, with the large center B particle surrounded by many smaller A particles. As the ratio NA/NB decreases, the structures become more extended, approaching the formation of macro-Rouse polymers - extended linear chains where A beads are connected with intervening small B linkers.
NASA Astrophysics Data System (ADS)
Johnson, William P.; Tong, Meiping; Li, Xiqing
2007-12-01
This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under environmental conditions, where repulsion exists between colloids and surfaces. This failure cannot be blamed solely on the complexities of the subsurface, since colloid filtration theory (CFT) works well in the absence of colloid-collector repulsion despite its idealization of porous media as consisting of spherical grains completely surrounded by fluid envelopes. Rather, the failure of CFT stems from failure to incorporate the correct mechanisms of retention when repulsion exists. Recent observations implicate wedging in grain-to-grain contacts and retention in secondary energy minima as dominant mechanisms of colloid retention in the presence of an energy barrier. Mechanistic simulations in unit cells containing grain-to-grain contacts corroborate these mechanisms of colloid retention. The resulting concept for colloid retention in the presence of an energy barrier involves translation of colloids across the collector surfaces until they become wedged within grain-to-grain contacts, or are retained via secondary energy minima (without attachment) in zones where the balance of fluid drag, diffusion, gravitational, and colloid-collector interaction forces allow retention. The above findings highlight the pore domain geometry as a dominant governor of colloid retention in so far as the geometry gives rise to grain-to-grain contacts and zones of relatively low fluid drag.
Synthesis and Characterization of Molybdenum Based Colloidal Particles.
Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein
1998-11-15
The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan
2017-03-01
Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.
Dielectric resonator: cavity-enhanced optical manipulation in the near field
NASA Astrophysics Data System (ADS)
Reece, Peter J.; Wright, Ewan; Garcés-Chávez, Veneranda; Dholakia, Kishan
2006-08-01
In the following paper we explore the dynamics of single colloidal particles and particle aggregates in a counterpropagating cavity-enhanced evanescent wave optical trap. For this study we make use of Fabry-Perot like cavity modes generated in a prism-coupled resonant dielectric waveguide. The advantage of using this type of optical structure is that there is an enhancement in the electric field of the evanescent at the sample surface that may be used to achieve greater coupling to colloidal particles for the purposes of optical micromanipulation. We demonstrate an order of magnitude increase in the optical forces acting on micrometer sized colloidal particles using cavity enhanced evanescent waves, compared with evanescent wave produced by conventional prism-coupling techniques. The combination of the enhanced optical interaction and the wide area illumination provided by the prism coupler makes it an ideal geometry for studying the collective dynamics of many particles over a large area. We study the different type of ordering observed when particles of different sizes are accumulated at the centre of this novel optical trap. We find that for large particles sizes (greater than 2μm), colloid dynamics are primarily driven by thermodynamics, whilst for smaller particles, in the range of 200-600nm, particles ordering is dictated by optical-matter interactions. We suggest a qualitative model for the observed optically induced ordering occurs and discuss how these results tie in with existing demonstrations of twodimensional optical binding.
Colloid mobilization and seasonal variability in a semiarid headwater stream
Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.
2017-01-01
Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the <0.45-µm fraction in the stream. Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
The role of silica colloids on facilitated cesium transport through glass bead columns and modeling
NASA Astrophysics Data System (ADS)
Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.
1998-05-01
Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.
Shirokova, L S; Pokrovsky, O S; Moreva, O Yu; Chupakov, A V; Zabelina, S A; Klimov, S I; Shorina, N V; Vorobieva, T Ya
2013-10-01
The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking
Liang, Mengning; Harder, Ross; Robinson, Ian K.
2014-04-14
Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT) to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves butmore » also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.« less
Glass/Jamming Transition in Colloidal Aggregation
NASA Technical Reports Server (NTRS)
Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.
Internal Structure and Preferential Protein Binding of Colloidal Aggregates.
Duan, Da; Torosyan, Hayarpi; Elnatan, Daniel; McLaughlin, Christopher K; Logie, Jennifer; Shoichet, Molly S; Agard, David A; Shoichet, Brian K
2017-01-20
Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.
2011-12-01
ISS030-E-007417 (1 Dec. 2011) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.
2011-12-01
ISS030-E-007418 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.
2011-12-01
ISS030-E-007419 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.
Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method
NASA Astrophysics Data System (ADS)
Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul
2011-06-01
Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b
Xiong, Boya; Zydney, Andrew L; Kumar, Manish
2016-08-01
There is growing interest in possible options for treatment or reuse of flowback and produced waters from natural gas processing. Here we investigated the fouling characteristics during microfiltration of different flowback and produced waters from hydraulic fracturing sites in the Marcellus shale. All samples caused severe and highly variable fouling, although there was no direct correlation between the fouling rate and total suspended solids, turbidity, or total organic carbon. Furthermore, the fouling of water after prefiltration through a 0.2 μm membrane was also highly variable. Low fouling seen with prefiltered water was mainly due to removal of submicron particles 0.4-0.8 μm during prefiltration. High fouling seen with prefiltered water was mainly caused by a combination of hydrophobic organics and colloidal particles <100 nm in size (quantified by transmission electron microscopy) that passed through the prefiltration membranes. The small colloidal particles were highly stable, likely due to the surfactants and other organics present in the fracking fluids. The colloid concentration was as high as 10(11) colloids/ml, which is more than 100 times greater than that in typical seawater. Furthermore, these colloids were only partially removed by MF, causing substantial fouling during a subsequent ultrafiltration. These results clearly show the importance of organics and colloidal material in membrane fouling caused by flowback and produced waters, which is of critical importance in the development of more sustainable treatment strategies in natural gas processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing
2018-02-01
Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Choi, Seong-Ho; Park, Hyun Gyu
2005-04-01
PVP-protected silver colloids were prepared by γ-irradiation and chemical reduction method. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by γ-irradiation were recorded. The SERS spectra of sodium benzoate were successfully recorded in Ag colloids, whereas the Raman spectra did not appear without Ag colloids. The Raman spectra of 4-picoline were not detected without Ag colloids, while the SERS spectra of 4-picoline were increased by adding Ag colloids. The carboxylate group of sodium benzoate and N donor of 4-picoline were adsorbed on the surface of Ag nanoparticles.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Colloid-facilitated mobilization of metals by freeze-thaw cycles.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2014-01-21
The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.
Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.
Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F
2016-08-01
Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.
Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun
2011-11-01
Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
Redox active polymers and colloidal particles for flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin
The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPsmore » is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.« less
Using Light Scattering to Track, Characterize and Manipulate Colloids
NASA Astrophysics Data System (ADS)
van Oostrum, P. D. J.
2011-03-01
A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer particles and the unaltered portion of a laser beam that was used to illuminate dilute colloidal dispersions on a light microscope in transmission mode. We numerically fit Mie-theory for the light-scattering by micrometer sized particles to these experimental in-line holograms. The fit values give the position in three dimensions with an accuracy of a few nanometers in the lateral directions and several tens of nanometers in the axial direction. The individual particles radii and refractive indices could be determined to within tens of nanometers and a few hundredths respectively. By using a fast CCD camera, we can track particles with millisecond resolution in time which allows us to study dynamical properties such as the hydrodynamic radius and the sedimentation coefficient. The scattering behavior of the particles that we use to track and characterize colloidal particles makes it possible to exert pico-Newton forces on them close to a diffraction limited focus. When these effects are used to confine colloids in space, this technique is called Optical Tweezers. Both by numerical calculations and by experiments, we explore the possibilities of optical tweezers in soft condensed matter research. Using optical tweezers we placed multiple particles in interesting configurations to measure the interaction forces between them. The interaction forces were Yukawa-like screened charge repulsions. Careful timing of the blinking of time-shared optical tweezers and of the recording of holographic snapshots, we were able to measure interaction forces with femto-Newton accuracy from an analysis of (driven) Brownian motion. Forces exerted by external fields such as electric fields and gravity were measured as well. We induced electric dipoles in colloidal particles by applying radio frequency electric fields. Dipole induced strings of particles were formed and made permanent by van der Waals attractions or thermal annealing. Such colloidal strings form colloidal analogues of charged and un-charged (bio-) polymers. The diffusion and bending behavior of such strings was probed using DHM and optical tweezers.
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
2018-03-01
Like ordinary molecules are composed of atoms, colloidal molecules consist of several species of colloidal particles tightly bound together. If one of these components is self-propelled or swimming, novel “active colloidal molecules” emerge. Active colloidal molecules exist on various levels such as “homonuclear”, “heteronuclear” and “polymeric” and possess a dynamical function moving as propellers, spinners or rotors. Self-assembly of such active complexes has been studied a lot recently and this perspective article summarizes recent progress and gives an outlook to future developments in the rapidly expanding field of active colloidal molecules.
Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media
NASA Astrophysics Data System (ADS)
Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E.
2014-08-01
Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from - 62 mV to - 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.
Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E
2014-08-01
Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50=2.4μm) are investigated in column tests using columns of 40cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62mV to -80mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong
2018-03-24
Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
ERIC Educational Resources Information Center
Lamb, William G.
1985-01-01
Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)
Microfluidic colloid filtration
Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias
2016-01-01
Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706
Tracking liquid in drying colloidal fluids with polarized light microscopy
NASA Astrophysics Data System (ADS)
Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook
2014-11-01
When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.
Chiral liquid crystal colloids
NASA Astrophysics Data System (ADS)
Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.
2018-01-01
Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.
Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin
2015-01-01
Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121
Predicting colloid transport through saturated porous media: A critical review
NASA Astrophysics Data System (ADS)
Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.
2015-09-01
Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities include improving mechanistic descriptions, and subsequent correlation equations, for nanoparticle (i.e., Brownian particle) transport through soil, developing mechanistic descriptions of colloid retention in so-called "unfavorable" conditions via methods such as the "discrete heterogeneity" approach, and employing imaging techniques such as X-ray tomography to develop realistic expressions for grain topology and mineral distribution that can aid the development of these mechanistic approaches.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
Rational Self-Assembly of Nano-Colloids using DNA Interaction
NASA Astrophysics Data System (ADS)
Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.
2010-03-01
DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.
Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.
2016-07-01
The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.
Building micro-soccer-balls with evaporating colloidal fakir drops
NASA Astrophysics Data System (ADS)
Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.
2013-11-01
Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.
Mechanics and stability of vesicles and droplets in confined spaces
Benet, Eduard; Vernerey, Franck J.
2017-01-01
The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314
Wang, Xiaoguang; Miller, Daniel S.; de Pablo, Juan J.; ...
2014-08-15
The spontaneous positioning of colloids on the surfaces of micrometer-sized liquid crystal (LC) droplets and their subsequent polymerization offers the basis of a general and facile method for the synthesis of patchy microparticles. The existence of multiple local energetic minima, however, can generate kinetic traps for colloids on the surfaces of the LC droplets and result in heterogeneous populations of patchy microparticles. To address this issue, in this paper it is demonstrated that adsorbate-driven switching of the internal configurations of LC droplets can be used to sweep colloids to a single location on the LC droplet surfaces, thus resulting inmore » the synthesis of homogeneous populations of patchy microparticles. The surface-driven switching of the LC can be triggered by addition of surfactant or salts, and permits the synthesis of dipolar microparticles as well as “Janus-like” microparticles. Finally, by using magnetic colloids, the utility of the approach is illustrated by synthesizing magnetically responsive patchy microdroplets of LC with either dipolar or quadrupolar symmetry that exhibit distinct optical responses upon application of an external magnetic field.« less
Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.
2010-01-01
We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800
Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution
Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai
2015-01-01
Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry–Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10−14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm−2 under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950
Patel, Ashok R; Heussen, Patricia C M; Hazekamp, Johan; Drost, Ellen; Velikov, Krassimir P
2012-07-15
Quercetin loaded biopolymeric colloidal particles were prepared by precipitating quercetin (water insoluble polyphenol) and zein (hydrophobic protein), simultaneously, by adding their hydro-alcoholic solution to aqueous solution in presence of sodium caseinate as an electrosteric stabiliser. The presence of protein resulted in altering the shape of quercetin precipitates from needle-like to spherical shape at higher zein proportions, as confirmed by transmission electron microscopy. The average particle size of zein:quercetin composite particles was below 200 nm (130-161 nm) with negative surface charge (-30 to -41 mV), as confirmed by dynamic light scattering and electrophoretic mobility data. Solid state characterisation (X-ray diffraction) and spectroscopic measurements (UV-Vis and IR spectroscopy) confirmed characteristic changes in quercetin due to the entrapment in the biopolymeric matrix of colloidal particles. Results from anti-oxidant study demonstrated the advantage of entrapping quercetin in the colloidal particles in terms of the chemical stability in the alkaline pH and against photodegradation under UV-light irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biological alkylation and colloid formation of selenium in methanogenic UASB reactors.
Lenz, Markus; Smit, Martijn; Binder, Patrick; van Aelst, Adriaan C; Lens, Piet N L
2008-01-01
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.
Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Doherty, Michael P.
1998-01-01
The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for instrument calibration.
Avalanches, plasticity, and ordering in colloidal crystals under compression.
McDermott, D; Reichhardt, C J Olson; Reichhardt, C
2016-06-01
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
Solvent coarsening around colloids driven by temperature gradients
NASA Astrophysics Data System (ADS)
Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna
2018-04-01
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
NASA Astrophysics Data System (ADS)
Jansons, Adam Wayne
Colloidal nanocrystals offer new and improved performance in applications as well as less environmental impact when compared to traditional device fabrication methods. The important properties that enable improved applications are a direct result of nanocrystal structure. While there have been many great advances in the production of colloidal nanocrystals over the past three decades, precise, atomic-level control of the size, composition, and structure of the inorganic core remains challenging. Rather than dictate these material aspects through traditional synthetic routes, this dissertation details the development and exploitation of a colloidal nanocrystal synthetic method inspired by polymerization reactions. Living polymerization reactions offer precise control of polymer size and structure and have tremendously advanced polymer science, allowing the intuitive production of polymers and block co-polymers of well-defined molecular weights. Similarly, living nanocrystal synthetic methods allow an enhanced level of structural control, granting the synthesis of binary, doped, and core/shell nanocrystals of well-defined size, composition, and structure. This improved control in turn grants enhanced nanocrystal property performance and deepens our understanding of structure/property relationships. This dissertation defines living nanocrystal growth and demonstrates the potential of the living methods in the colloidal production of oxide nanocrystals. After a brief introduction, living growth is defined and discussed in the context of synthetic prerequisites, attributes, and outcomes. Living growth is also compared to more traditional colloidal nanocrystal synthetic methods. The following chapters then demonstrate the precise control living approaches offer in three separate studies; the first highlights sub-nanometer control of nanocrystal size from 2-22+ nm in diameter. Next the improvement in nanocrystal composition is illustrated using several transition metal dopants into an oxide nanocrystal matrix at near thermodynamically allowed compositions. Additionally, precise radial dopant placement is demonstrated, which has striking implications for material properties. The radial position of tin in tin-doped indium oxide nanocrystals and the resulting differences on the localized surface plasmon resonance are discussed. Finally, future opportunities are reviewed. This dissertation includes previously published co-authored material.
Synthesis of mesoscale, crumpled, reduced graphene oxide roses by water-in-oil emulsion approach
NASA Astrophysics Data System (ADS)
Sharma, Shruti; Pham, Viet H.; Boscoboinik, Jorge A.; Camino, Fernando; Dickerson, James H.; Tannenbaum, Rina
2018-05-01
Mesoscale crumpled graphene oxide roses (GO roses) were synthesized by using colloidal graphene oxide (GO) variants as precursors for a hybrid emulsification-rapid evaporation approach. This process produced rose-like, spherical, reduced mesostructures of colloidal GO sheets, with corrugated surfaces and particle sizes tunable in the range of ∼800 nm to 15 μm. Excellent reproducibility for particle size distribution is shown for each selected speed of homogenizer rotor among different sample batches. The morphology and chemical structure of these produced GO roses was investigated using electron microscopy and spectroscopy techniques. The proposed synthesis route provides control over particle size, morphology and chemical properties of the synthesized GO roses.
Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer
Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.
1999-01-01
Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.
Capping agents in nanoparticle synthesis: Surfactant and solvent system
NASA Astrophysics Data System (ADS)
Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.
2018-05-01
The preparation of nanomaterials by organometallic precursors require a capping agent, which primarily acts as stabilizing agent and provide colloidal stability along with preventing agglomeration and stopping uncontrolled growth. Final morphology of nanocrystal largely depends on the type of capping agent which is adsorbed on the surface of nanocrystal. Thus capping agents are the keys to obtain the small-sized nanoparticles and are very frequently used in colloidal synthesis of nanoparticles to avoid its overgrowth.
Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan
2016-02-01
Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, William; Wang, Shunzhi; Cho, David
2017-04-07
Nanoscale UiO-66 Zr6(OH)4O4(C8O4H4)6 has been synthesized with a series of carboxylic acid modulators, R-COOH (where R = H, CH3, CF3, and CHCl2). The phase purity and size of each MOF was confirmed by powder X-ray diffraction, BET surface area analysis, and scanning transmission electron microscopy (STEM). Size control of UiO-66 crystals from 20 nm to over 1 μm was achieved, and confirmed by STEM. The colloidal stability of each MOF was evaluated by dynamic light scattering and was found to be highly dependent on the modulator conditions utilized in the synthesis, with both lower pKa and higher acid concentration resultingmore » in more stable structures. Furthermore, STEM was carried out on both colloidally stable samples and those that exhibited a large degree of aggregation, which allowed for visualization of the different degrees of dispersion of the samples. The use of modulators at higher concentrations and with lower pKas leads to the formation of more defects, as a consequence of terephthalic acid ligands being replaced by modulator molecules, thereby enhancing the colloidal stability of the UiO-66 nanoparticles. These findings could have a significant impact on nanoscale MOF material syntheses and applications, especially in the areas of catalysis and drug delivery.« less
Electrohydrodynamically patterned colloidal crystals
NASA Technical Reports Server (NTRS)
Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)
2003-01-01
A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.
Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus
2007-05-01
Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.
Organic colloids and their influence on low-pressure membrane filtration.
Laabs, C; Amy, G; Jekel, M
2004-01-01
Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.
Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95
NASA Technical Reports Server (NTRS)
Hoffmann, Monica T.
2000-01-01
The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.
Transport of Intrinsic Plutonium Colloids in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.
2011-12-01
Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.
NASA Astrophysics Data System (ADS)
Hillyer, Julián F.; Albrecht, Ralph M.
1998-10-01
: Colloidal gold, conjugated to ligands or antibodies, is routinely used as a label for the detection of cell structures by light (LM) and electron microscopy (EM). To date, several methods to count the number of colloidal gold labels have been employed with limited success. Instrumental neutron activation analysis (INAA), a physical method for the analysis of the elemental composition of materials, can be used to provide a quantitative index of gold accumulation in bulk specimens. Given that gold is not naturally found in biological specimens in any substantial amount and that colloidal gold and ligand conjugates can be prepared to yield uniform bead sizes, the amount of label can be calculated in bulk biological samples by INAA. Here we describe the use of INAA, LM, transmission EM, and X-ray microanalysis (EDX) in a model to determine both distribution (localization) and amount of colloidal gold at the organ, tissue, cellular, and ultrastructural levels in whole animal systems following administration. In addition, the sensitivity for gold in biological specimens by INAA is compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The correlative use of INAA, LM, TEM, and EDX can be useful, for example, in the quantitative and qualitative tracking of various labeled molecular species following administration in vivo.
Thompson, W L
1980-01-01
HES products should be designated by both their number average of molecular weight (that determines colloidal activity) and molar substitution ratios. In addition to the original HES-70/70 developed in 1960, a rapidly excreted HES-50/50 has been available since 1977. HES-70/70 and human albumin are equivalent in both healthy and hypoalbuminemia subjects in regard to maximal and total effects on plasma volume, intravascular colloidal activity and plasma concentration of ingested colloid. Albumin and HES-70/70 are extravasated at nearly equal rates. Albumin elimination is predominantly monoexponential. HES-70/70 however, is partly metabolized and partly excreted in urine at rates that decrease progressively as the amount remaining in the body decreases. HES-50/50 has maximal effects on plasma volume and colloidal activity similar to those of dextran-40, but it is eliminated twice as rapidly and unlike dextran-40, does not accumulate on repeated ingestion of large doses. HES ingestion increases apparent serum activity of alpha amylase by slowing enzyme elimination. Anaphylactoid reactions have been infrequent and mild, even on repetitive ingestion in recurrent "Phoresis" donors. The effect of HES on coagulation in urine but does not slow urine flow by hyperviscosity. Hydroxyethylation of waxy starches yields safe colloids with the advantage of permitting selective control of drug effects by altering independently molecular size and rate of enzymatic hydrolysis, tailoring drug kinetics to specific uses.
NASA Astrophysics Data System (ADS)
Nelson, Kirk E.; Ginn, Timothy R.
2011-05-01
A new equation for the collector efficiency (η) of the colloid filtration theory (CFT) is developed via nonlinear regression on the numerical data generated by a large number of Lagrangian simulations conducted in Happel's sphere-in-cell porous media model over a wide range of environmentally relevant conditions. The new equation expands the range of CFT's applicability in the natural subsurface primarily by accommodating departures from power law dependence of η on the Peclet and gravity numbers, a necessary but as of yet unavailable feature for applying CFT to large-scale field transport (e.g., of nanoparticles, radionuclides, or genetically modified organisms) under low groundwater velocity conditions. The new equation also departs from prior equations for colloids in the nanoparticle size range at all fluid velocities. These departures are particularly relevant to subsurface colloid and colloid-facilitated transport where low permeabilities and/or hydraulic gradients lead to low groundwater velocities and/or to nanoparticle fate and transport in porous media in general. We also note the importance of consistency in the conceptualization of particle flux through the single collector model on which most η equations are based for the purpose of attaining a mechanistic understanding of the transport and attachment steps of deposition. A lack of sufficient data for small particles and low velocities warrants further experiments to draw more definitive and comprehensive conclusions regarding the most significant discrepancies between the available equations.
What happens when pharmaceuticals meet colloids.
Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin
2015-12-01
Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
Kinetic control of the coverage of oil droplets by DNA-functionalized colloids
Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika
2016-01-01
We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053
Self-Assembly at the Colloidal Scale
NASA Astrophysics Data System (ADS)
Zhong, Xiao
The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.
Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.
Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna
2015-09-01
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.
Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies
Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna
2015-01-01
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583
Dynamical studies of confined fluids and polymers
NASA Astrophysics Data System (ADS)
Grabowski, Christopher A.
Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.
Properties of forced convection experimental with silicon carbide based nano-fluids
NASA Astrophysics Data System (ADS)
Soanker, Abhinay
With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027431 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
SERS Technique for Rapid Bacterial Screening
USDA-ARS?s Scientific Manuscript database
This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027435 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
Contributions of nanoscale roughness to anomalous colloid retention and stability behavior
USDA-ARS?s Scientific Manuscript database
Expressions were presented to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binary nanoscale roughness and chemical heterogeneity. The influence of heterogeneity type, roughness para...
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts.
Zheng, Yun; Geng, Hongbo; Zhang, Yufei; Chen, Libao; Li, Cheng Chao
2018-04-02
In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A
2016-05-15
The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aguilar
This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less
Colloid-borne forms of tetravalent actinides: A brief review
NASA Astrophysics Data System (ADS)
Zänker, Harald; Hennig, Christoph
2014-02-01
Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.
Gonzalo, Soledad; Llaneza, Veronica; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael
2014-01-01
Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.
Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Navaneetham, Guru; Posner, Jonathan
2007-11-01
An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.
Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael
2014-01-01
Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs. PMID:25340509
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.
Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R
2018-05-25
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
NASA Astrophysics Data System (ADS)
Bradford, S. A.
2016-12-01
The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
NASA Astrophysics Data System (ADS)
Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.
2018-05-01
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Becker, M.W.; Reimus, P.W.; Vilks, P.
1999-01-01
Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.
Colloid formation in Hanford sediments reacted with simulated tank waste.
Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting
2004-11-01
Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.
Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki
2014-08-01
This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William
2015-10-01
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids. Published by Elsevier Ltd.
Nguyen, Dinh Huong; Song, Gwang Seok; Lee, Dai Soo
2011-05-01
The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.
Strong collective attraction in colloidal clusters on a liquid-air interface.
Pergamenshchik, V M
2009-01-01
It is shown that in a cluster of many colloids, trapped at a liquid-air interface, the well-known vertical-force-induced pairwise logarithmic attraction changes to a strongly enhanced power-law attraction. In large two-dimensional clusters, the attraction energy scales as the inverse square of the distance between colloids. The enhancement is given by the ratio eta = (square of the capillary length) / (interface surface area per colloid) and can be as large as 10;{5} . This explains why a very small vertical force on colloids, which is too weak to bring two of them together, can stabilize many-body structures on a liquid-air interface. The profile of a cluster is shown to consist of a large slow collective envelope modulated by a fast low-amplitude perturbation due to individual colloids. A closed equation for the slow envelope, which incorporates an arbitrary power-law repulsion between colloids, is derived. For example, this equation is solved for a large circular cluster with the hard-core colloid repulsion. It is suggested that the predicted effect is responsible for mysterious stabilization of colloidal structures observed in experiments on a surface of isotropic liquid and nematic liquid crystal.
Effect of hydrofracking fluid on colloid transport in the unsaturated zone.
Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S
2014-07-15
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.
The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...
Contributions of nanoscale roughness to anomalous colloid retention and stability behavior
USDA-ARS?s Scientific Manuscript database
All natural surfaces exhibit nanoscale roughness (NR) and chemical heterogeneity (CH) to some extent. Expressions were developed to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binar...
NASA Astrophysics Data System (ADS)
Wang, Qing; Cheng, Tao; Wu, Yang
2014-12-01
Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH 5 in the absence of HA due to low mobility of the colloids. At pH 9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH 5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.
Dynamics of Fractal Cluster Gels with Embedded Active Colloids
NASA Astrophysics Data System (ADS)
Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.
2017-08-01
We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.
Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.
Shira, Jason M; Williams, Barbara C; Flury, Markus; Czigány, Szabolcs; Tuller, Markus
2006-01-01
The suitability of passive capillary samplers (PCAPS) for collection of representative colloid samples under partially saturated conditions was evaluated by investigating the transport of negatively and positively charged colloids in fiberglass wicks. A synthetic pore water solution was used to suspend silica microspheres (330 nm in diameter) and ferrihydrite (172 nm in diameter) for transport experiments on fiberglass wicks. Breakthrough curves were collected for three unsaturated flow rates with silica microspheres and one unsaturated flow rate with ferrihydrite colloids. A moisture characteristic curve, relating tensiometer measurements of matric potential to moisture content, was developed for the fiberglass wick. Results indicate that retention of the silica and the ferrihydrite on the wick occurred; that is, the wicks did not facilitate quantitative sampling of the colloids. For silica microspheres, 90% of the colloids were transmitted through the wicks. For ferrihydrite, 80 to 90% of the colloids were transmitted. The mechanisms responsible for the retention of the colloids on the fiberglass wicks appeared to be physicochemical attachment and not thin-film, triple-phase entrapment, or mechanical straining. Visualization of pathways by iron staining indicates that flow is preferential at the center of twisted bundles of filaments. Although axial preferential flow in PCAPS may enhance their hydraulic suitability for sampling mobile colloids, we conclude that without specific preparation to reduce attachment or retention, fiberglass wicks should only be used for qualitative sampling of pore water colloids.
Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J
2009-09-22
Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.
Supracolloidal Architectures Self-Assembled in Microdroplets.
Xu, Xuejiao; Tian, Feng; Liu, Xin; Parker, Richard M; Lan, Yang; Wu, Yuchao; Yu, Ziyi; Scherman, Oren A; Abell, Chris
2015-10-26
We demonstrate a novel method for the formation of a library of structured colloidal assemblies by exploiting the supramolecular heteroternary host-guest interaction between cucurbit[8]uril (CB[8]) and methyl viologen- and naphthalene-functionalised particles. The approach is dependent upon compartmentalisation in microdroplets generated by a microfluidic platform. Though the distribution of colloidal particles encapsulated within each microdroplet followed a Poisson distribution, tuning the concentration of the initial colloidal particle suspensions provided some level of control over the structure of the formed colloidal assemblies. This ability to direct the assembly of complementarily-functionalised colloids through a supramolecular interaction, without the need for complex modification of the colloidal surface or external stimuli, presents an exciting new approach towards the design of structured colloidal materials with the potential to produce many challenging structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino
2012-01-10
A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.
Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta
2014-08-27
Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stable colloids in molten inorganic salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.
2017-02-15
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solventsmore » with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.« less
Feedback Controlled Colloidal Assembly at Fluid Interfaces
NASA Astrophysics Data System (ADS)
Bevan, Michael
The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.
NASA Astrophysics Data System (ADS)
Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean
2013-04-01
Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.
NASA Astrophysics Data System (ADS)
Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang
2017-06-01
The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.
Park, Moongyu; Cushman, John Howard; O'Malley, Dan
2014-09-30
The collective molecular reorientations within a nematic liquid crystal fluid bathing a spherical colloid cause the colloid to diffuse anomalously on a short time scale (i.e., as a non-Brownian particle). The deformations and fluctuations of long-range orientational order in the liquid crystal profoundly influence the transient diffusive regimes. Here we show that an anisotropic fractional Brownian process run with a nonlinear multiscaling clock effectively mimics this collective and transient phenomenon. This novel process has memory, Gaussian increments, and a multiscale mean square displacement that can be chosen independently from the fractal dimension of a particle trajectory. The process is capable of modeling multiscale sub-, super-, or classical diffusion. The finite-size Lyapunov exponents for this multiscaling process are defined for future analysis of related mixing processes.
Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah
2012-01-01
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
Giansante, Carlo; Infante, Ivan
2017-10-19
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid
Atcher, Robert W.; Hines, John J.
1992-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Manipulating colloids with charges and electric fields
NASA Astrophysics Data System (ADS)
Leunissen, M. E.
2007-02-01
This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various useful colloidal structures. Besides modifying the particle charge, we employed the sensitivity of colloids to ‘external fields’ to manipulate the structure and dynamics of our suspensions. In particular, we used an electric field, in which the particles acquired a dipole moment. The induced dipole-dipole interactions gave rise to uniquely different crystalline and non-crystalline structures, due to their anisotropic nature. We explored the phase behavior as a function of the particle concentration, the electric field strength and the field geometry, and showed how one can rapidly switch from one structure to another. The latter is particularly interesting for applications. Finally, we also studied much weaker, inhomogeneous electric fields. In this case, the dipole moment of the particles was too small to change the phase behavior, but large enough to induce dielectrophoretic motion, driving the particles to the areas with the lowest field strength. We demonstrated how this can be used to manipulate the local particle concentration inside a sealed sample, on a time scale of minutes-weeks. The combination with real-time confocal microscopy allowed us to follow all particle rearrangements during the densification. Such controlled compression is of interest to colloidal model studies and the fabrication of high-quality crystals for applications. After all, for all suspensions the particle concentration is one of the most important factors determining the behavior.
Sedimentation equilibrium and the generalized Archimedes' principle.
Parola, Alberto; Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto
2013-03-21
The buoyancy concept is critically re-examined for applications to dispersions of nano-particles, such as colloids, proteins, or macromolecules. It is shown that when the size of the buoyant particle is not too different (say, at most a factor of ten) from the size of the dispersed particles, new intriguing phenomena emerge, leading to the violation of the Archimedes' principle. The resulting buoyancy force depends not only on the volume of the particle and on the mass density of the dispersion, but also on the relative size of the particles, on their geometry, and on the interactions between the buoyant particle and the fluid. Explicit expressions for such a generalized Archimedes' principle are obtained and the results are tested against targeted experiments in colloidal dispersions.
Sedimentation equilibrium and the generalized Archimedes' principle
NASA Astrophysics Data System (ADS)
Parola, Alberto; Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto
2013-03-01
The buoyancy concept is critically re-examined for applications to dispersions of nano-particles, such as colloids, proteins, or macromolecules. It is shown that when the size of the buoyant particle is not too different (say, at most a factor of ten) from the size of the dispersed particles, new intriguing phenomena emerge, leading to the violation of the Archimedes' principle. The resulting buoyancy force depends not only on the volume of the particle and on the mass density of the dispersion, but also on the relative size of the particles, on their geometry, and on the interactions between the buoyant particle and the fluid. Explicit expressions for such a generalized Archimedes' principle are obtained and the results are tested against targeted experiments in colloidal dispersions.
Autonomous colloidal crystallization in a galvanic microreactor
NASA Astrophysics Data System (ADS)
Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.
2012-10-01
We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.
Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples
NASA Technical Reports Server (NTRS)
Kurk, Michael A. (Andy)
2015-01-01
Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.
Fractal Aggregates in Tennis Ball Systems
ERIC Educational Resources Information Center
Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.
2009-01-01
We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…
The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...
USDA-ARS?s Scientific Manuscript database
The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...
NASA Astrophysics Data System (ADS)
Leclercq, Loïc
2018-05-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization. These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry”.
Influence of internal viscoelastic modes on the Brownian motion of a λ-DNA coated colloid.
Yanagishima, Taiki; Laohakunakorn, Nadanai; Keyser, Ulrich F; Eiser, Erika; Tanaka, Hajime
2014-03-21
We study the influence of grafted polymers on the diffusive behaviour of a colloidal particle. Our work demonstrates how such additional degrees of freedom influence the Brownian motion of the particle, focusing on internal viscoelastic coupling between the polymer and colloid. Specifically, we study the mean-squared displacements (MSDs) of λ-DNA grafted colloids using Brownian dynamics simulation. Our simulations reveal the non-trivial effect of internal modes, which gives rise to a crossover from the short-time viscoelastic to long-time diffusional behaviour. We also show that basic features can be captured by a simple theoretical model considering the relative motion of a colloid to a part of the polymer corona. This model describes well a MSD calculated from an extremely long trajectory of a single λ-DNA coated colloid from experiment and allows characterisation of the λ-DNA hairs. Our study suggests that the access to the internal relaxation modes via the colloid trajectory offers a novel method for the characterisation of soft attachments to a colloid.
NASA Astrophysics Data System (ADS)
Gleber, S.-C.; Vogt, S.; Niemeyer, J.; Finney, L.; McNulty, I.; Thieme, J.
2011-09-01
A prominent feature of soil colloids is their huge specific surface. It determines colloidal properties such as adsorption capacity or diffusion. The colloidal interactions differ significantly from the behavior of the same materials in a bulk system. Interactions in the colloidal regime are crucial, for example, for the transport and release of nutrients and toxicants in soils, which then influences directly the growth of plants. However, there is still a need for more analytical resources to study those interactions. To reveal the correlation of the particular trace elements and their distribution in correlation to colloidal interactions as well as changing pH values, experiments at the hard x-ray fluorescence microprobe at beamline 2-ID-E of the Advanced Photon Source (APS), were performed with colloidal clay and soil samples in an aqueous environment as naturally relevant. To obtain further spatial information, stereo imaging has been used. To study the dynamical behavior of these colloidal suspensions at changing pH, a wet sample chamber allowing in situ manipulation was developed and utilized.
NASA Astrophysics Data System (ADS)
García-Ramos, J. V.; Sánchez-Cortés, S.
1997-03-01
Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.
Structural evolution of Colloidal Gels under Flow
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao; Jamali, Safa
Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.
Leclercq, Loïc
2018-01-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization (Graphical Abstract). These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart, and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry.”
NASA Astrophysics Data System (ADS)
Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen
2016-05-01
To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.
Colloidal gold-modified optical fiber for chemical and biochemical sensing.
Cheng, Shu-Fang; Chau, Lai-Kwan
2003-01-01
A novel class of fiber-optic evanescent-wave sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids. The optical properties and, hence, the attenuated total reflection spectrum of self-assembled gold colloids on the optical fiber changes with different refractive index of the environment near the colloidal gold surface. With sucrose solutions of increasing refractive index, the sensor response decreases linearly. The colloidal gold surface was also functionalized with glycine, succinic acid, or biotin to enhance the selectivity of the sensor. Results show that the sensor response decreases linearly with increasing concentration of each analyte. When the colloidal gold surface was functionalized with biotin, the detection limit of the sensor for streptavidin was 9.8 x 10(-11) M. Using this approach, we demonstrate proof-of-concept of a class of refractive index sensor that is sensitive to the refractive index of the environment near the colloidal gold surface and, hence, is suitable for label-free detection of molecular or biomolecular binding at the surface of gold colloids.
Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone
2014-01-01
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants. PMID:24905470
Linear and ring polymers in confined geometries
NASA Astrophysics Data System (ADS)
Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk
2017-03-01
A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.
Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria
2014-12-01
The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.
Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime
NASA Astrophysics Data System (ADS)
Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.
2016-03-01
Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.
Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.
Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi
2017-10-10
The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.
NASA Astrophysics Data System (ADS)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin
2015-11-01
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.
NASA Astrophysics Data System (ADS)
Osterday, Kathryn; Aliseda, Alberto; Lasheras, Juan
2009-11-01
The atomization of colloidal suspensions is of particular interest to the manufacturing of tablets and pills used as drug delivery systems by the pharmaceutical industry. At various stages in the manufacturing process, the tablets are coated with a spray of droplets produced by co-axial atomizers. The mechanisms of droplet size and spray formation in these types of atomizers are dominated by Kelvin-Helmholtz and Raleigh-Taylor instabilities for both low[1] and high[2] Ohnesorge numbers. We present detailed phase Doppler measurements of the Sauter Mean Diameter of the droplets produced by co-axial spray atomizers using water-based colloidal suspensions with solid concentrations ranging from fifteen to twenty percent and acetone-based colloidal suspensions with solid concentrations ranging from five to ten percent. Our results compare favorably with predictions by Aliseda's model. This suggests that the final size distribution is mainly determined by the instabilities caused by the sudden acceleration of the liquid interface. [1]Varga, C. M., et al. (2003) J. Fluid Mech. 497:405-434 [2]Aliseda, A. et al. (2008). J. Int. J. Multiphase Flow, 34(2), 161-175.
Schemel, L.E.; Kimball, B.A.; Bencala, K.E.
2000-01-01
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.
Liu, Bing; Wang, Lingling; Tong, Bei; Zhang, Yan; Sheng, Wei; Pan, Mingfei; Wang, Shuo
2016-11-15
In this study, the three nanomaterials: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon were respectively labeled with the antibody against salbutamol (SAL). We aimed to develop immunochromatographic strips with these nanomaterial labels and determine their performance in visual detection of SAL. For the colloidal gold-based strip, the detection limit of SAL was 1.0µgL(-1) in standard solution and 5.0µgkg(-1) in meat samples. For the GPG- and colloidal carbon-based strips, the limit of detection was 2.0µgL(-1) in standard solution and 10µgkg(-1) in meat samples. The results obtained using the test strips were found to be highly consistent with those obtained using a commercial kit, indicating the high accuracy of these strips. The three strips were also found to be stable up to 18 weeks under laboratory conditions. In terms of sensitivity, the colloidal gold-based strip was slightly better than the other two. For the GPG- and colloidal carbon-based strips, the difference between the results obtained for different batches was small (high consistency), and the stability was much better than that of the colloidal gold-based one. Our results indicate that colloidal carbon can be used as a label in immunochromatographic tests; it can also help reduce the cost involved and scale-up the production. The use of immunochromatographic test strips labeled with colloidal carbon can be a rapid and inexpensive method for SAL assays in on-site applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.
1997-01-01
Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.
Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.
Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan
2010-08-15
For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...
2015-07-13
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L –1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10 –10 M 241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k f) of 0.01–0.02 h –1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h –1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids.« less
Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
Angelico, Ruggero; Ceglie, Andrea; He, Ji-Zheng; Liu, Yu-Rong; Palumbo, Giuseppe; Colombo, Claudio
2014-03-01
Humic acids (HA) have a colloidal character whose size and negative charge are strictly dependent on surface functional groups. They are able to complex large amount of poorly ordered iron (hydr)oxides in soil as a function of pH and other environmental conditions. Accordingly, with the present study we intend to assess the colloidal properties of Fe(II) coprecipitated with humic acids (HA) and their effect on Fe hydroxide crystallinity under abiotic oxidation and order of addition of both Fe(II) and HA. TEM, XRD and DRS experiments showed that Fe-HA consisted of Ferrihydrite with important structural variations. DLS data of Fe-HA at acidic pH showed a bimodal size distribution, while at very low pH a slow aggregation process was observed. Electrophoretic zeta-potential measurements revealed a negative surface charge for Fe-HA macromolecules, providing a strong electrostatic barrier against aggregation. Under alkaline conditions HA chains swelled, which resulted in an enhanced stabilization of the colloid particles. The increasing of zeta potential and size of the Fe-HA macromolecules, reflects a linear dependence of both with pH. The increase in the size and negative charge of the Fe-HA precipitate seems to be more affected by the ionization of the phenolic acid groups, than by the carboxylic acid groups. The main cause of negative charge generation of Fe/HA is due to increased dissociation of phenolic groups in more expanded structure. The increased net negative surface potential induced by coprecipitation with Ferrihydrite and the correspondent changes in configuration of the HA could trigger the inter-particle aggregation with the formation of new negative surface. The Fe-HA coprecipitation can reduce electrosteric repulsive forces, which in turn may inhibit the aggregation process at different pH. Therefore, coprecipitation of Ferrihydrite would be expected to play an important role in the carbon stabilization and persistence not only in organic soils, but also in waters containing dissolved organic matter. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shape control and compartmentalization in active colloidal cells
Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.
2015-01-01
Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763
Shape control and compartmentalization in active colloidal cells.
Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C
2015-08-25
Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation.
Effect of wastewater colloids on membrane removal of antibiotic resistance genes.
Breazeal, Maria V Riquelme; Novak, John T; Vikesland, Peter J; Pruden, Amy
2013-01-01
Recent studies have demonstrated that wastewater treatment plants (WWTPs) significantly alter the magnitude and distribution of antibiotic resistance genes (ARGs) in receiving environments, indicating that wastewater treatment represents an important node for limiting ARG dissemination. This study examined the potential for membrane treatment of microconstituent ARGs and the effect of native wastewater colloids on the extent of their removal. Plasmids containing vanA (vancomycin) and bla(TEM) (β-lactam) ARGs were spiked into three representative WWTP effluents versus a control buffer and tracked by quantitative polymerase chain reaction through a cascade of microfiltration and ultrafiltration steps ranging from 0.45 μm to 1 kDa. Significant removal of ARGs was achieved by membranes of 100 kDa and smaller, and presence of wastewater colloids resulted in enhanced removal by 10 kDa and 1 kDa membranes. ARG removal was observed to correlate significantly with the corresponding protein, polysaccharide, and total organic carbon colloidal fractions. Alumina membranes removed ARGs to a greater extent than polyvinylidene fluoride membranes of the same pore size (0.1 μm), but only in the presence of wastewater material. Control studies confirmed that membrane treatment was the primary mechanism of ARG removal, versus other potential sources of loss. This study suggests that advanced membrane treatment technology is promising for managing public health risks of ARGs in wastewater effluents and that removal may even be enhanced by colloids in real-world wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chang, Tongxin; Du, Binyang; Huang, Haiying; He, Tianbai
2016-08-31
Two kinds of large-area ordered and highly tunable micro/submicro-nanopatterned surfaces in a complementary manner were successfully fabricated by elaborately combining block copolymer self-assembly and colloidal lithography. Employing a monolayer of polystyrene (PS) colloidal spheres assembled on top as etching mask, polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) or polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelle films were patterned into micro/submicro patches by plasma etching, which could be further transferred into micropatterned metal nanoarrays by subsequent metal precursor loading and a second plasma etching. On the other hand, micro/submicro-nanopatterns in a complementary manner were generated via preloading a metal precursor in initial micelle films before the assembly of PS colloidal spheres on top. Both kinds of micro/submicro-nanopatterns showed good fidelity at the micro/submicroscale and nanoscale; meanwhile, they could be flexibly tuned by the sample and processing parameters. Significantly, when the PS colloidal sphere size was reduced to 250 nm, a high-resolution submicro-nanostructured surface with 3-5 metal nanoparticles in each patch or a single-nanoparticle interconnected honeycomb network was achieved. Moreover, by applying gold (Au) nanoparticles as anchoring points, micronanopatterned Au arrays can serve as a flexible template to pattern bovine serum albumin (BSA) molecules. This facile and cost-effective approach may provide a novel platform for fabrication of micropatterned nanoarrays with high tunability and controllability, which are promising in the applications of biological and microelectronic fields.
Colloidal Covalent Organic Frameworks
2017-01-01
Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954
Shape control and compartmentalization in active colloidal cells
Spellings, Matthew; Engel, Michael; Klotsa, Daphne; ...
2015-08-07
Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose, in this paper we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout themore » entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Finally, our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation.« less
Structure and Symmetry of Ground States of Colloidal Clusters
NASA Astrophysics Data System (ADS)
Klein, Ellen D.; Rogers, W. Benjamin; Manoharan, Vinothan N.
We experimentally study colloidal clusters consisting of 6 to 100 spherical particles bound together with short range, DNA-mediated attractions. These clusters are a model system for understanding colloidal self-assembly and dynamics, since the positions and motion of all particles can be observed in real space. For 10 particles and fewer, the ground states are degenerate, and, as shown in previous work, the probabilities of observing specific clusters depend primarily on their rotational entropy, which is determined by symmetry. Thus less symmetric structures are more frequently observed. However, for larger numbers of particles the ground states appear to be subsets of close-packed lattices, which tend to have higher symmetry. To understand how this transition occurs as a function of the number of particles, we coat colloidal particles with complementary DNA strands that induce a short-range, temperature-dependent interparticle attraction. We then assemble and anneal an ensemble of clusters with 10 or more particles. We characterize the number of apparent ground states, their symmetries, and their probabilities as a function of the size of the cluster using confocal microscopy. This work is supported by NSF DMR-1306410. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program.
High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation
Bravo, Iria; Catalan-Gomez, Sergio; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis
2017-01-01
New methods for the production of colloidal Ga nanoparticles (GaNPs) are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO) layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV) region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA) method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed. PMID:28684687
Precise colloids with tunable interactions for confocal microscopy
Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris
2015-01-01
Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044
Interaction of chiral rafts in self-assembled colloidal membranes
NASA Astrophysics Data System (ADS)
Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.
2016-03-01
Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, Deepa; Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.i
2010-09-15
Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS,more » and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.« less
Testing the paradigms of the glass transition in colloids
NASA Astrophysics Data System (ADS)
Zia, Roseanna; Wang, Jialun; Peng, Xiaoguang; Li, Qi; McKenna, Gregory
2017-11-01
Many molecular liquids freeze upon fast enough cooling. This so-called glass state is path dependent and out of equilibrium, as measured by the Kovacs signature experiments, i.e. intrinsic isotherms, asymmetry of approach and memory effect. The reasons for this path- and time-dependence are not fully understood, due to fast molecular relaxations. Colloids provide a natural way to model such behavior, owing to disparity in colloidal versus solvent time scales that can slow dynamics. To shed light on the ambiguity of glass transition, we study via large-scale dynamic simulation of hard-sphere colloidal glass after volume-fraction jumps, where particle size increases at fixed system volume followed by protocols of the McKenna-Kovacs signature experiments. During and following each jump, the positions, velocities, and particle-phase stress are tracked and utilized to characterize relaxation time scales. The impact of both quench depth and quench rate on arrested dynamics and ``state'' variables is explored. In addition, we expand our view to various structural signatures, and rearrangement mechanism is proposed. The results provide insight into not only the existence of an ``ideal'' glass transition, but also the role of structure in such a dense amorphous system.
Eckenrode, Heather M; Dai, Hai-Lung
2004-10-12
A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society
NASA Astrophysics Data System (ADS)
Luna, Carlos; Chávez, V. H. G.; Barriga-Castro, Enrique Díaz; Núñez, Nuria O.; Mendoza-Reséndez, Raquel
2015-04-01
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.
Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel
2015-04-15
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.
Formalism for calculation of polymer-solvent-mediated potential
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2006-07-01
A simple theoretical approach is proposed for calculation of a solvent-mediated potential (SMP) between two colloid particles immersed in a polymer solvent bath in which the polymer is modeled as a chain with intramolecular degrees of freedom. The present recipe is only concerned with the estimation of the density profile of a polymer site around a single solute colloid particle instead of two solute colloid particles separated by a varying distance as done in existing calculational methods for polymer-SMP. Therefore the present recipe is far simpler for numerical implementation than the existing methods. The resultant predictions for the polymer-SMP and polymer solvent-mediated mean force (polymer-SMMF) are in very good agreement with available simulation data. With the present recipe, change tendencies of the contact value and second virial coefficiency of the SMP as a function of size ratio between the colloid particle and polymer site, the number of sites per chain, and the polymer concentration are investigated in detail. The metastable critical polymer concentration as a function of size ratio and the number of sites per chain is also reported for the first time. To yield the numerical solution of the present recipe at less than 1min on a personal computer, a rapid and accurate algorithm for the numerical solution of the classical density functional theory is proposed to supply rapid and accurate estimation of the density profile of the polymer site as an input into the present formalism.
An overview of inverted colloidal crystal systems for tissue engineering.
João, Carlos Filipe C; Vasconcelos, Joana Marta; Silva, Jorge Carvalho; Borges, João Paulo
2014-10-01
Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.
New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).
Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid
2013-09-01
Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.
2014-01-01
Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644
Stability of aggregates in the environment: role of solid bridging
NASA Astrophysics Data System (ADS)
Seiphoori, A.; Jerolmack, D. J.; Arratia, P. E.
2017-12-01
Colloids in suspension may form larger flocs under favorable conditions, via diffusion- or reaction-limited aggregation. In addition, the process of drying colloidal suspensions drives colloids together via hydrodynamic forces to form aggregates, that may be stable or unstable when subject to re-wetting and transport. Channel banks, shorelines and hillslopes are examples where the periodic wetting and drying results in the aggregation of muds. If aggregates disperse, the mud structure is unstable to subsequent wetting or fluid shear and can easily be detached and transported to rivers and coasts. The effective friction that governs hillslope and channel-bank soil creep rates also depends on the stability of the soil aggregates. Yet, few studies probe the particle-scale assembly or stability of aggregates subject to environmental loads, and the effects of shape or size heterogeneity have not been examined in detail. Here we investigate the formation and stability of aggregates subject to passive re-wetting (by misting) and shearing using a simple Poiseuille flow in a microfluidic device. We study the kinetics of a wide range of silicate colloids of different size and surface charge properties using in situ microscopy and particle tracking. We find that negatively charged silica microspheres are dragged by the retreating edge of an evaporating drop and are resuspended easily on re-wetting, showing that aggregates are unstable. In contrast, a bi-disperse suspension created by the addition of silica nanoparticles forms stable deposits, where nanoparticles bind larger particles by bridging the interparticle space, a mechanism similar to capillary bridging that we refer to as "solid bridging." Although aggregate structure and dynamics of the bi-disperse system changes quantitatively with surface-charge of the nanoparticles, smaller particles always conferred stability on the aggregates. Investigation of other colloids, including asbestos fibers and various clays, reveals that this solid bridging effect is robust across variations in particle shape and material composition. These experiments suggest that natural mud and soil may form more stable aggregates than would naively be expected by considering the charge effects alone, because their inherent size heterogeneity is conducive to solid bridging.
Surface preparation of substances for continuous convective assembly of fine particles
Rossi, Robert
2003-01-01
A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.
Automated video-microscopic imaging and data acquisition system for colloid deposition measurements
Abdel-Fattah, Amr I.; Reimus, Paul W.
2004-12-28
A video microscopic visualization system and image processing and data extraction and processing method for in situ detailed quantification of the deposition of sub-micrometer particles onto an arbitrary surface and determination of their concentration across the bulk suspension. The extracted data includes (a) surface concentration and flux of deposited, attached and detached colloids, (b) surface concentration and flux of arriving and departing colloids, (c) distribution of colloids in the bulk suspension in the direction perpendicular to the deposition surface, and (d) spatial and temporal distributions of deposited colloids.
Ho, Hau My; Lin, Binhua; Rice, Stuart A
2006-11-14
We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.
Radiation synthesis and characterization of hyaluronan capped gold nanoparticles.
Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Quoc, Le Anh
2012-06-20
Gold nanoparticles (AuNPs) with diameter from 4 to 10nm, capping by hyaluronan (HA) were synthesized using a γ-irradiation method. The maximum absorption wavelengths at 517-525 nm of colloidal AuNPs/HA solutions were measured by UV-vis spectroscopy. The size and size distribution of AuNPs were determined from TEM images. The influence of various factors on the size of AuNPs particularly the concentration of Au3+ and HA, and dose rate were also investigated. Results indicated that higher dose rate and HA concentration favor smaller sizes of AuNPs whereas the size increases with Au3+ concentration. The colloidal AuNPs/HA solution was fairly stable more than 6 months under storage at ambient condition. The AuNPs stabilized by biocompatible HA with the size less than 10nm as prepared can potentially be applied in biomedicines and cosmetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Advanced Colloids Experiment (ACE) Science Overview
NASA Technical Reports Server (NTRS)
Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun;
2013-01-01
The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.
The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study
NASA Technical Reports Server (NTRS)
McClymer, Jim
2002-01-01
Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the ALV light detection optics, which is fed into an APD detector module and linked to a computer. The scattering angle (between 12 and 160 degrees), scattering angle step size (0.1 degree minimum) and acquisition time (minimum 3 s) is set by the user.
Analytical phase diagrams for colloids and non-adsorbing polymer.
Fleer, Gerard J; Tuinier, Remco
2008-11-04
We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.
Producing colloids with microfluidics
NASA Astrophysics Data System (ADS)
Pannacci, Nicolas; Willaime, Herve; Tabeling, Patrick
2008-11-01
Submicronic emulsions are commonly used in pharmaceutical, food, cosmetic and material industries. Standard microfluidic tool is particularly convenient to produce in a very controlled way either droplets of typical diameter ranging from 10 to 300 microns with a perfect monodispersity (<3%), or double emulsions as well as double droplets (janus). We report the use of microfluidic devices to produce submicronic objects. We use a hydrodynamic flow-focusing that has the advantage to generate nanodrops in a way that is slightly dependent on the fluids used. The control on such a flow authorizes the adjustment of the diameter of the colloids formed. We will show brownian particles from 860 nm to 1.3 μm in diameter obtained in such way and their clustering into crystals thanks to their high monodispersity. These first experimental results are very promising and make evident the great potential of micro and nano-fluidics to produce nano-emulsions or colloids with very controlled size that metamaterials can require.
Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua
2018-05-01
The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.
Cocklebur-shaped colloidal dispersions.
Lestage, David J; Urban, Marek W
2005-11-08
Unique cocklebur-shaped colloidal dispersions were prepared using a combination of a nanoextruder applied to the aqueous solution containing methyl methacrylate (MMA) and n-butyl acrylate (n-BA) with azo-bis-isobutyronitrile (AIBN) or potassium persulfate (KPS) initiators and stabilized by a mixture of sodium dioctyl sulfosuccinate (SDOSS) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DCPC) phospholipid. Upon extrusion and heating to 75 degrees C, methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal particles containing tubules pointing outward were obtained as a result of DCPC phospholipids present at the particle surfaces. The same cocklebur-shaped particles were obtained when classical polymerization was used without a nanoextruder under similar compositional and thermal conditions, giving a particle size of 159 nm. However, when Ca(2+) ions are present during polymerization, cocklebur morphologies are disrupted. Because DCPC tubules undergo a transition at 38 degrees C, such cocklebur morphologies may offer numerous opportunities for devices with stimuli-responsive characteristics.
Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.
Zhou, Hao; White, Lee R; Tilton, Robert D
2005-05-01
Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.
Nanoparticle assembly on patterned "plus/minus" surfaces from electrospray of colloidal dispersion.
Lenggoro, I Wuled; Lee, Hye Moon; Okuyama, Kikuo
2006-11-01
Selective deposition of metal (Au) and oxide (SiO2) nanoparticles with a size range of 10-30 nm on patterned silicon-silicon oxide substrate was performed using the electrospray method. Electrical charging characteristics of particles produced by the electrospray and patterned area created by contact charging of the electrical conductor with non- or semi-conductors were investigated. Colloidal droplets were electrosprayed and subsequently dried as individual nanoparticles which then were deposited on substrates, and observed using field emission-scanning electron microscopy. The number of elementary charge units on particles generated by the electrospray was 0.4-148, and patterned area created by contact charging contained sufficient negative charges to attract multiple charged particles. Locations where nanoparticles were (reversibly) deposited depended on voltage polarity applied to the spraying colloidal droplet and the substrate, and the existence of additional ions such as those from a stabilizer.
Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L
2015-01-01
A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective
2017-01-01
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763
UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.
Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D
2011-01-10
UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.
Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred
2016-03-22
We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.
2016-05-01
The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.
Local electrophoretic deposition using a nanopipette for micropillar fabrication
NASA Astrophysics Data System (ADS)
Iwata, Futoshi; Metoki, Junya
2017-12-01
A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2016-03-01
Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.
Ren, Huimin; Liu, Huijuan; Qu, Jiuhui; Berg, Michael; Qi, Weixiao; Xu, Wei
2010-01-01
The role of colloids in estuarine and marine systems has been studied extensively in recent years, whereas less is known about the polluted freshwater system. Yongdingxin River is one of the major recipients of industrial effluents in Tianjin. This article evaluates the role of colloids in controlling geochemical behavior of Cu, Zn, Fe, Mn, Hg and Cr at the confluences between Yongdingxin River and its major tributaries Beijing Drainage River, Jinzhong River and Beitang Drainage River. Based on the distribution of metal partitioning among particulate (>0.22mum), colloidal (1kDa to 0.22mum) and truly dissolved (<1kDa) fractions, the metals can be assigned to the following groups: Group 1 - organic colloidal pool-borne elements Cu and Cr; Group 2 - inorganic colloidal pool-borne metals Fe and Mn; Group 3 - Zn and Hg characterized by varying complexation patterns. The distribution of metal partitioning among particulate, colloidal and truly dissolved fractions was influenced by anthropogenic input. In addition, the theoretical concentrations of elements in case of conservative mixing between the waters of Yongdingxin River and the waters of its tributaries were compared with the measured values to evaluate the geochemical role of colloids. The result showed that all of the metals presented a non-conservative mixing behavior. Addition of colloids resulted in the removal of metals from the water column to bed sediment during river water mixing, which was furthermore confirmed by the similar partition coefficient of metal concentration between colloid and sediment. Copyright 2009 Elsevier Ltd. All rights reserved.
A mass-balance model to separate and quantify colloidal and solute redistributions in soil
Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.
2011-01-01
Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.
Li, HaiMing; Wei, JinBu; Ge, YaChao; Wang, ZhanQuan; Wang, Ye; Li, YingLong
2016-11-01
This experiment was conducted with an indoor sand-column device, the migration of colloids with the presence of Na + and Ca 2+ and the migration of ammonia nitrogen with the presence of Na + , Ca 2+ or/and colloids was studied. The results showed that the migration of colloids was influenced by the ion valence state, different ions with different valence could block the migration of colloids. In addition, the blocking effect of bivalent ions was more obvious than that of monovalent ions. In the presence of Na + and Ca 2+ , the R d value of the ammonia-nitrogen migration process were 1.01 and 1.41, respectively, which indicated that bivalent ions have a greater blocking effect on ammonia-nitrogen migration than monovalent ions. Colloids could also block the ammonia-nitrogen migration, and R d value in the ammonia-nitrogen migration process was 1.17. Moreover, the presence of Na + /colloids and Ca 2+ /colloids could enhance the blocking effect on the ammonia-nitrogen migration, and resulting the R d values at 1.20 and 1.52, respectively. The cohesion of colloids caused by the compaction of its electric double layer with those ions added maybe the key causes of those blocking. Copyright © 2016 Elsevier B.V. All rights reserved.