The application of atomic force microscopy in mineral flotation.
Xing, Yaowen; Xu, Mengdi; Gui, Xiahui; Cao, Yijun; Babel, Bent; Rudolph, Martin; Weber, Stefan; Kappl, Michael; Butt, Hans-Jürgen
2018-06-01
During the past years, atomic force microscopy (AFM) has matured to an indispensable tool to characterize nanomaterials in colloid and interface science. For imaging, a sharp probe mounted near to the end of a cantilever scans over the sample surface providing a high resolution three-dimensional topographic image. In addition, the AFM tip can be used as a force sensor to detect local properties like adhesion, stiffness, charge etc. After the invention of the colloidal probe technique it has also become a major method to measure surface forces. In this review, we highlight the advances in the application of AFM in the field of mineral flotation, such as mineral morphology imaging, water at mineral surface, reagent adsorption, inter-particle force, and bubble-particle interaction. In the coming years, the complementary characterization of chemical composition such as using infrared spectroscopy and Raman spectroscopy for AFM topography imaging and the synchronous measurement of the force and distance involving deformable bubble as a force sensor will further assist the fundamental understanding of flotation mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.
Vidyadhar, A; Hanumantha Rao, K
2007-02-15
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.
New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals
NASA Astrophysics Data System (ADS)
Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie
2017-11-01
Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.
Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate
NASA Astrophysics Data System (ADS)
Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus
2016-10-01
The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.
Effect of the morphology of adsorbed oleate on the wettability of a collophane surface
NASA Astrophysics Data System (ADS)
Ye, Junjian; Zhang, Qin; Li, Xianbo; Wang, Xianchen; Ke, Baolin; Li, Xianhai; Shen, Zhihui
2018-06-01
The adsorption of surfactants on a solid surface could alter its wettability, which offers a wide range of relevant applications such as mineral flotation, hydrophobic material preparation and nanomaterial dispersion. The morphology of adsorbed oleate on a collophane surface was visualized using the peakforce tapping mode of atomic force microscopy (AFM), and its effect on the wettability of collophane was analysed by contact angle measurements, adsorption measurements and molecular dynamics (MD) simulations. The AFM images demonstrated that the adsorbed structure varied with different oleate concentrations. First, the small cylindrical micelles with concomitant monolayer and bilayer structures were observed above the hemimicelle concentration (hmc) of 1 × 10-5 mol/L, which enhanced the hydrophobicity of the collophane surface, and the collophane surface was not completely covered with the oleate monolayer due to surface heterogeneity. Then, large cylindrical micelles with a major bilayer were formed as the critical micelle concentration (cmc) of 1 × 10-3 mol/L was approached, which decreased its hydrophobicity, and finally the formation of large cylindrical micelles with multilayer at the cmc caused the hydrophilicity of the collophane surface. Therefore, there was a suitable equilibrium concentration between the hmc and cmc for oleate as a collector during mineral flotation, and oleate could also be used as a dispersant for colloidal stability when its equilibrium concentration reached the cmc. The effect of the adsorbed structure on the wettability of collophane was also confirmed by MD simulations. This study provides a good understanding of the surface modification of particles by surfactants for flotation and dispersion applications.
Installation Restoration Program Records Search for Bergstrom Air Force Base, Texas.
1983-07-01
August 1981. "Pilot Plant Study of Copper , Zinc, and Trivalent Chromium Removal by Adsorbing Colloid Foam Flotation ." M.S. Thesis, Vanderbilt...graduate school and one of his activities included researching the removal of heavy metals, including copper , zinc and trivalent chromium, using a large...scale adsorbing colloid foam flotation pilot plant. Professional Registration Engineer-In-Training, Florida % -7. GREGORY T. MCINTYRE Membership in
Flotation of Heterocoagulated Particulates in Ulexite/SDS/Electrolyte System.
Celik; Yasar; El-Shall
1998-07-15
Salt-type minerals can be usually floated with either anionic or cationic collectors. In a number of systems, flotation has been reported to remarkably increase above the concentrations where precipitation of the collector salt is initiated. Some studies attribute this phenomenon to heterocoagulation of oppositely charged colloidal precipitate and mineral particles. In this study, ulexite, a semisoluble boron mineral, in the presence of various multivalent ions, i.e. Ba2+, Mg2+, Ca2+, and Al3+, was found to exhibit excellent flotation even when particles, colloidal precipitates, and bubbles acquire a similar charge, which indicates that attractive structural forces exceed the forces of electrostatic repulsion. Copyright 1998 Academic Press.
Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun
2018-04-01
Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.
The nature of hematite depression with corn starch in the reverse flotation of iron ore.
Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D
2018-08-15
The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.
Floatabilities of treated coal in water at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Rohrer, R.L.; Lai, R.W.
1995-04-01
Experiments on equilibrium adsorption loadings of various probe compounds on 60-200 mesh Illinois No. 6 coal (PSOC-1539), Adaville No. 1 coal (PSOC-1544), Wyodak coal (PSOC-1545), and Pittsburgh No. 8 coal (PSOC-1549) were performed. The probe compounds include 2-methyl-1-pentanol (2M1P), 1-heptanol, benzene, and toluene. Equilibrium adsorption loadings of aromatic compounds such as toluene and benzene on the four chosen coals obey the Langmuir isotherm model up to 100 ppm in concentrations of probe compounds. Equilibrium adsorption loadings of higher aliphatic alcohols such as 2M1P and 1-heptanol on the four chosen coals do not follow both the Langmuir isotherm model and themore » Freundlich empirical adsorption model. Flotation of the coals, equilibrated with aqueous solutions of 2M1P and 1-heptanol, increases linearly with equilibrium adsorption loadings of these probe compounds on the coals. The chosen coals were treated with nitrogen and air at 1 atm and 125-225{degrees}C for 24 h. Flotation experiments of the treated coals were conducted at room temperature, using distilled water only as a flotation medium. Flotation of Adaville No. 1 coal and Wyodak coal treated with nitrogen gas is higher than that of the untreated coals and increases with treatment temperatures. Flotation of Adaville No. 1 coal treated with air at 125-225{degrees}C is not significantly different from that of untreated coal. Flotation of Pittsburgh No. 8 coal treated with air is lower than that of untreated coal and decreases with treatment temperatures. Flotation of Illinois No. 6 coal treated with nitrogen with nitrogen only is higher than that of untreated coal. Flotation of Illinois No. 6 coal treated with nitrogen at 125-175{degrees}C increases with treatment temperatures, whereas flotation of Illinois No. 6 coal treated with nitrogen at 174-225{degrees}C decreases with treatment temperatures.« less
Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Wengang; Han, Cong; Wei, Dezhou
2018-06-01
The flotation of magnesite and dolomite were investigated with the presence of single dodecylamine (DDA) and combined mixtures of DDA and monohydric alcohols, respectively. The adsorption behavior of DDA, butanol, hexanol and octanol on the surface of the two minerals were shown by molecular dynamics simulation, and the results were corresponding with the analysis of zeta potential, measurements of the contact angle and adsorption. Flotation results indicated that part of DDA could be replaced by the three alcohols (butanol, hexanol, octanol) to get better flotation results. Molecular dynamics simulation and the results of zeta potential and contact angle measurements indicated that adsorption of DDA on mineral surfaces could be strengthened by monohydric alcohols.
Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E
2002-04-01
The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.
Adsorption of dextrin on hydrophobic minerals.
Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2009-09-01
The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.
Use of alkyl sulfates in the dewaterng of a coal flotation concentrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubkova, Yu.N.; Basenkova, V.L.; Kucher, R.V.
1981-01-01
The possibility has been shown of using anionic SAAs in the dewatering of a coal flotation concentrate. It has been established that the adsorption of alkyl sulfates (ASs) obeys the general laws of the adsorption of organic substances from solutions on coals. The addition of electrolytes intensifies the adsorption of ASs, leading to the hydrophobization of the coal particles. 10 refs.
NASA Astrophysics Data System (ADS)
Zhen, Wang
2017-07-01
Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2-7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40-80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca2+ on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca2+, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca2+ active sites on powellite surface.
Selective depression behavior of guar gum on talc-type scheelite flotation
NASA Astrophysics Data System (ADS)
Zhang, Yong-zhong; Gu, Guo-hua; Wu, Xiang-bin; Zhao, Kai-le
2017-08-01
The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum's highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.
Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua
2017-11-01
The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Interfacial interactions between plastic particles in plastics flotation.
Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian
2015-12-01
Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying
2018-06-01
In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.
Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate
NASA Astrophysics Data System (ADS)
Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian
2017-10-01
Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.
Zeta potentials in the flotation of oxide and silicate minerals.
Fuerstenau, D W; Pradip
2005-06-30
Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.
Zhang, Ming; Guiraud, Pascal
2017-12-01
The treatment of nanoparticle (NP) polluted aqueous suspensions by flotation can be problematic due to the low probability of collision between particles and bubbles. To overcome this limitation, the present work focuses on developing an enhanced flotation technique using the surface-functionalized microbubbles - colloidal gas aphrons (CGAs). The CGA generator was adapted to be air flow rate controlled based on the classical Sebba system; thus it could be well adopted in a continuous flotation process. Cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were employed for CGA creation. Positively surface-charged CTAB-CGAs (∼44.1 μm in size) and negatively surface-charged SDS-CGAs (∼42.1 μm in size) were produced at the optimum stirring speed of 8000 rpm. The half-life of CGAs varied from 100 s to 340 s under the tested conditions, which was largely sufficient for transferring CGAs from bubble generator to flotation cell. The air flow led to less stable CTAB-CGAs but apparently enhanced the stability of SDS-CGAs at higher air flow rates. In the presence of air flow, the drainage behavior was not much related to the type of surfactants. The continuous CGA-flotation trials highlighted the effective separation of silica nanoparticles - the removal efficiencies of different types of SiO 2 NPs could reach approximately 90%-99%; however, at equivalent surfactant concentrations, no greater than 58% of NPs were removed when surfactants and bubbles were separately added into the flotation cell. The SiO 2 NPs with small size were removed more efficiently by the CGA-flotation process. For the flotation with CTAB-CGAs, the neutral and basic initial SNP suspension was recommended, whereas the SDS-CGAs remained high flotation efficiency over all investigated pH. The good performance of CGA-flotation might be interpreted: most of the surfactant molecules well covered/coated on the surfaces of stable CGAs and thus fully contacted with NPs, resulting in the efficient utilization of surfactants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flotation separation of waste plastics for recycling-A review.
Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian
2015-07-01
The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xu, Longhua; Wang, Jinming; Wang, Li; Xiao, Junhui
2017-12-01
The objective of this paper is to display the results of the flotation and adsorption behaviors of benzohydroxamic acid (BHA), potassium amyl xanthate (KAX), dodecylamine- hydrochloride (DDA), mixed BHA/DDA and KAX/DDA on smithsonite. The flotation results show a collecting ability sequence of BHA > KAX > DDA on smithsonite and the best flotation performance at mixing ratio of 1:4 mol fraction DDA/KAX for mixed collector on smithsonite. The enhancement of smithsonite recovery by co-adsorption of KAX and DDA, while no promotion effect as to mixed BHA/DDA catanionic system, are attributed to the difference in steric effect of absorbed head group. According to the results of zeta potential and contact angle (CA) measurements, a most negative charged and the highest hydrophobic smithsonite surface are attained using KAX with DDA as co-collector, which shows a good agreement with the flotation results. FTIR measurements display the stabilization against oxidation and decomposition of DDA on KAX and the inhibition of preferential adsorbed BHA ions on DDA adsorption. The interaction energies of single and mixed collectors with mineral surface also shows well consistency with experimental results. The adsorption models proposed illustrate the decrease in the electrostatic head-head repulsion and the increase in lateral tail-tail hydrophobic interaction between adjacent KAX anions due to the insertion of DDA cations, while almost no DDA could access to smithsonite surface through adjacent BHA owing to steric effect.
Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch
NASA Astrophysics Data System (ADS)
Meng, Qingyou; Yuan, Zhitao; Yu, Li; Xu, Yuankai; Du, Yusheng; Zhang, Chen
2018-05-01
In order to intensify the flotation separation of ilmenite from titanaugite, surface modification of mineral particles was carried out using carboxymethyl starch (CMS) by microflotation experiments, zeta potential measurements, Fourier transform infrared (FTIR) and atomic force microscopy (AFM) analysis. Microflotation results showed that CMS was a selective depressant, and it effectively enhanced the floatability difference between ilmenite and titanaugite in the pH range from 6.0 to 10.0. As it was revealed by the zeta potential, FTIR and AFM analysis, the CMS adsorption occurred onto mineral surfaces through chemisorption and hydrogen bonding, while CMS exhibited a stronger interaction with titanaugite than ilmenite. After that, the CMS adsorption impeded the adsorption of sodium oleate collector on titanaugite surfaces, giving rise to a concomitant decrease in the floatability of titanaugite. These findings exhibit great potential for CMS application in the selective flotation of ilmenite.
Microbially induced flotation and flocculation of pyrite and sphalerite.
Patra, Partha; Natarajan, K A
2004-07-15
Cells of Paenibacillus polymyxa and their metabolite products were successfully utilized to achieve selective separation of sphalerite from pyrite, through microbially induced flocculation and flotation. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of bacterial cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined.
NASA Astrophysics Data System (ADS)
Dewi, Ratni; Sari, Ratna; Syafruddin
2017-06-01
Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2012-02-15
The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe
2018-02-15
Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.
Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi
2015-11-01
Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.
The action of macrosounds on graphite ore and derived products
NASA Technical Reports Server (NTRS)
Bradeteanu, C.; Dragan, O.
1974-01-01
A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.
Pawlik, M; Laskowski, J S; Ansari, A
2003-04-15
The adsorption of sodium carboxymethyl cellulose from aqueous solutions varying in ionic strength from that of distilled water to 50% NaCl/KCl brine (about 3.5 mol/dm(3)) onto illite and dolomite has been studied. The purpose of this work was to investigate the solvency effects in the phenomena underlying the potash flotation process that is carried out in saturated brine. Based on viscosity measurements, the adsorption results were analyzed in terms of a simple model of polymer macromolecules in solution. Suspension stability measurements carried out concomitantly with adsorption tests showed the ranges of carboxymethyl cellulose concentration over which the tested suspensions either were aggregated or were restabilized.
NASA Astrophysics Data System (ADS)
Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li
2018-01-01
The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.
Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A
2014-10-14
The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.
Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula
2013-04-01
Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.
Some physicochemical aspects of water-soluble mineral flotation.
Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D
2016-09-01
Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of lizardite surface characteristics on pyrite flotation
NASA Astrophysics Data System (ADS)
Feng, Bo; Feng, Qiming; Lu, Yiping
2012-10-01
The effect of lizardite surface characteristics on pyrite flotation has been investigated through flotation tests, adsorption tests, zeta potential measurements, FTIR study, X-ray photoelectron spectroscopy (XPS) and sedimentation tests. The flotation results show that at pH value 9, where flotation of nickel sulfide ores is routinely performed, two kinds of lizardite samples (native lizardite and leached lizardite) have different effects on the flotation of pyrite. The native lizardite adheres to the surface of pyrite and reduces pyrite flotation recovery while the leached lizardite does not interfere with pyrite flotation. Infrared analyses and XPS tests illustrate that acid leaching changed the surface characteristics of lizardite mineral and the leached lizardite has less magnesium on its surface. It has been determined that the electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on lizardite surface. So, the low isoelectric point observed in the leached sample has been linked to values of this ratio lower than that of the native lizardite.
Determination of Micro-Quantities of Chrysotile Asbestos by Dye Adsorption
ERIC Educational Resources Information Center
Markham, M. Clare; Wosczyna, Karen
1976-01-01
Airborne asbestos is analyzed by differential dye adsorption. Quantities can be estimated down to 100 mg. For industrial use, asbestos samples must be separated from interfering minerals by density flotation. (Author/BT)
Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Halsey, G.S.; Sebba, F.
1981-01-01
The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtainedmore » with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.« less
Study of adsorption process of iron colloid substances on activated carbon by ultrasound
NASA Astrophysics Data System (ADS)
Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.
2015-04-01
The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.
Kim, Shin Woong; Moon, Jongmin; An, Youn-Joo
2015-01-01
The success of soil toxicity tests using Caenorhabditis elegans may depend in large part on recovering the organisms from the soil. However, it can be difficult to learn the International Organization for Standardization/ASTM International recovery process that uses the colloidal silica flotation method. The present study determined that a soil-agar isolation method provides a highly efficient and less technically demanding alternative to the colloidal silica flotation method. Test soil containing C. elegans was arranged on an agar plate in a donut shape, a linear shape, or a C curve; and microbial food was placed outside the soil to encourage the nematodes to leave the soil. The effects of ventilation and the presence of food on nematode recovery were tested to determine the optimal conditions for recovery. A linear arrangement of soil on an agar plate that was sprinkled with microbial food produced nearly 83% and 90% recovery of live nematodes over a 3-h and a 24-h period, respectively, without subjecting the nematodes to chemical stress. The method was tested using copper (II) chloride dihydrate, and the resulting recovery rate was comparable to that obtained using colloidal silica flotation. The soil-agar isolation method portrayed in the present study enables live nematodes to be isolated with minimal additional physicochemical stress, making it a valuable option for use in subsequent sublethal tests where live nematodes are required. © 2014 SETAC.
Flotation and flocculation chemistry of coal and oxidized coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, P.
1990-01-01
The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniquesmore » capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.« less
NASA Astrophysics Data System (ADS)
Peng, Huiqing; Wu, Di; Abdelmonem, Mohamed
In this study, effects of the collector added before grinding and after grinding on the subsequent flotation and mineral surface properties were investigated. The pH was controlled at 10 during the grinding and flotation processes opened to the atmosphere. With enough amounts of sodium butyl xanthate addition, adding the collector before grinding recovered more chalcopyrite than adding it after grinding in single mineral flotation. The Eh of each ground pulp before and after conditioning were measured and it was found that adding collector before grinding obtained higher and relatively suitable pulp potential for chalcopyrite flotation. Particle size analyses of the flotation products indicate that the different flotation recoveries occurred due to the different flotation losses in fine particles (<20 μm). XPS analyses focused on the fine particles of flotation feedings and found that more carbon and oxygen, and less iron were remained on mineral surfaces when the collector was added before grinding, due to the higher collector adsorption capacity, larger free oxygen adsorbance and less iron oxide/hydroxide species.
NASA Astrophysics Data System (ADS)
Dong, Liuyang; Jiao, Fen; Qin, Wenqing; Zhu, Hailing; Jia, Wenhao
2018-06-01
In this paper, the effect of acidified water glass (AWG) on the flotation separation of scheelite from calcite using mixed collector of dodecylamine (DDA) and sodium oleate (NaOL) was investigated. The flotation results show that AWG could selectively depress the flotation of calcite at pH 7. A series of mechanism experiments confirm that the chemisorption of AWG on calcite surface is more intense than scheelite. Although the chemisorption of NaOL on calcite surface is almost unaffected by the presence of AWG, the chemisorption of AWG hinders the adsorption of DDA on calcite surface.
Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants.
Rath; Subramanian; Pradeep
2000-09-01
The interaction of dextrin and guar gum with pyrite has been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of the polysaccharides onto pyrite reveal a region of higher adsorption density in the pH range 7.5-11, with a maximum around pH 10 for both polymers. The isotherms exhibit Langmuirian behavior. The adsorption density of guar gum onto pyrite is higher than that of dextrin. Electrokinetic measurements indicate a decrease in the electrophoretic mobility values in proportion to the concentration of the polymer added. Co-precipitation tests confirm polymer-ferric species interaction in the bulk solution, especially in the pH range 5.5-8.5. The pH range for higher adsorption, significant co-precipitation, and appreciable depression of pyrite encompass each other. XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and the hydroxyl groups of the polymeric depressants. Copyright 2000 Academic Press.
Reduce oil and grease content in wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.W.; Matelli, G.N.; Bradford, M.L.
Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less
NASA Astrophysics Data System (ADS)
Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi
2017-07-01
The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.
Investigation of impact of water type on borate ore flotation.
Ozkan, S G; Acar, A
2004-04-01
In this work, the impact of water type on borate ore flotation was investigated, while various physical parameters during flotation were considered in order to compare the results. Two different colemanite samples from Emet deposits of Turkey, named as Emet-A and Emet-B contained 44% B(2)O(3) and 40% B(2)O(3), respectively. The flotation tests were performed at feed particle size range of -210 +20 microm. Optimal consumption values for the reagents were determined as 2000 gt(-1) for AeroPromoter R825 from Cytec Company, a sulphonate type collector, 1500 gt(-1) for Procol CA927 from Allied Colloids Company, a sulphosuccinamate type collector and 100 gt(-1) for AeroFrother 70 from Cytec Company, an alcohol-type frother. In the tests, the impeller speed of the Denver-type flotation machine was set to 1200 rpm and the samples were fed into a litre cell at 25% solid/liquid ratio and at natural pH value of the slurry at room temperature. The flotation results obtained from the tests with use of tap water, demineralised water and the artificial water prepared with Ca(2+) and Mg(2+) cations deliberately added into demineralised water were compared to each other in optimal flotation conditions.
Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A
1984-08-01
A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.
Flotation selectivity of novel alkyl dicarboxylate reagents for apatite-calcite separation.
Karlkvist, Tommy; Patra, Anuttam; Rao, Kota Hanumantha; Bordes, Romain; Holmberg, Krister
2015-05-01
The investigation aims to demonstrate the conceptual thoughts behind developing mineral specific reagents for use in flotation of calcium containing ores. For this purpose, a series of dicarboxylate-based surfactants with varying distance between the carboxylate groups (one, two or three methylene groups) was synthesized. A surfactant with the same alkyl chain length but with only one carboxylate group was also synthesized and evaluated. The adsorption behavior of these new reagents on pure apatite and pure calcite surfaces was studied using Hallimond tube flotation, FTIR and ζ potential measurements. The relation between the adsorption behavior of a given surfactant at a specific mineral surface and its molecular structure over a range of concentrations and pH values, as well as the region of maximum recovery, was established. It was found that one of the reagents, with a specific distance between the carboxylate groups, was much more selective for a particular mineral surface than the other homologues. For example, out of the four compounds synthesized, only the one where the carboxylate groups were separated by a single methylene group floated apatite but not calcite, whereas calcite was efficiently floated with the monocarboxylic reagent, but not with the other reagents synthesized. This selective adsorption of a given surfactant to a particular mineral surface relative to other mineral surfaces as evidenced in the flotation studies was substantiated by ζ potential and infra-red spectroscopy data. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nduwa Mushidi, Josue
Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.
Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying
2018-04-26
Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.
Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation
2017-01-01
It is demonstrated that the adsorption of bovine serum albumin (BSA) to aqueous gold colloids can be quantified with molecular resolution by differential centrifugal sedimentation (DCS). This method separates colloidal particles of comparable density by mass. When proteins adsorb to the nanoparticles, both their mass and their effective density change, which strongly affects the sedimentation time. A straightforward analysis allows quantification of the adsorbed layer. Most importantly, unlike many other methods, DCS can be used to detect chemisorbed proteins (“hard corona”) as well as physisorbed proteins (“soft corona”). The results for BSA on gold colloid nanoparticles can be modeled in terms of Langmuir-type adsorption isotherms (Hill model). The effects of surface modification with small thiol-PEG ligands on protein adsorption are also demonstrated. PMID:28513153
The flotation and adsorption of mixed collectors on oxide and silicate minerals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua
2017-12-01
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on oxide and silicate minerals, we review and summarize the flotation and adsorption of three most widely used mixed surfactant systems (anionic-cationic, anionic-nonionic, and cationic-nonionic) at the liquid/mineral interface in order to fully understand the self-assembly progress. In the end, the paper gives a brief future outlook of the possible development in the mixed surfactants. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
NASA Astrophysics Data System (ADS)
Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming
2018-04-01
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
Catalytic effect of soil colloids on the reaction between CrVI and p-methoxyphenol.
Zhou, D M; Chen, H M; Zheng, C R; Tu, C
2001-01-01
Adsorption of CrVI and p-methoxyphenol (PMP) on soil colloids at different pH media was studied. The resulting k1 and n of 1.89 x 10(2) and 0.53 (r2 = 0.99) and k2 and b of 0.13 and 1.25 x 10(3) (r2 = 0.96) were obtained from Freundlich (Q = k1Caqn) and Langmuir [Q = k2bCaq/(1 + k2Caq)] simulation equations, respectively, for CrVI adsorption on soil colloids (pH 4.20). The adsorption of PMP on soil colloids in pH 5.72 media was simulated by five different equations and the results indicated that the Fritz-Schluender one (r2 = 1.00) was the most suitable among them. Adsorption quantity of CrVI and PMP on colloids increased with increasing acidity in the pH range of 3.5-9.0. Study of CrVI adsorption kinetics indicated that the adsorption equilibrium of CrVI was reached rapidly within 2 h. In pure aqueous solution, CrVI reduction by PMP was observed only when the media's pH was lower than 4.0. Oxidation and reduction reaction between CrVI and p-methoxyphenol obviously occurred when soil colloids were involved in this system, even at pH > or = 7.0, which strongly suggested that minerals in soil colloids acted as catalysts to speed the reaction of CrVI and PMP. The oxidized product of PMP by CrVI, extracted by chloroform in acid media and analyzed by gas chromatography-mass spectrometry, was identified as benzoquinone. The reaction included two steps of one electron process.
Adsorption of heavy metal in freeway by asphalt block
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2017-08-01
Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.
Yan, Jinlong; Jiang, Tao; Yao, Ying; Wang, Jun; Cai, Yuanli; Green, Nelson W; Wei, Shiqiang
2017-05-01
The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45μm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The <1kDa component of P was still the predominant fraction in the supernatant, and underestimated colloidal P accounted for 2.2%, 55.1%, 45.5%, and 38.7% of P adsorption onto the solid surface of FH, FH-HA, GE and GE-HA, respectively. Thus, the colloid P could not be neglected. Notably, it could be interpreted that Fe 3+ hydrolysis from the adsorbents followed by the formation of colloidal hydrous ferric oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment. Copyright © 2016. Published by Elsevier B.V.
Controlled assembly of jammed colloidal shells on fluid droplets.
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
Controlled assembly of jammed colloidal shells on fluid droplets
NASA Astrophysics Data System (ADS)
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
NASA Astrophysics Data System (ADS)
Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei
2017-12-01
Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.
NASA Astrophysics Data System (ADS)
He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.
2018-01-01
Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.
Flotation mechanisms of molybdenite fines by neutral oils
NASA Astrophysics Data System (ADS)
Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Liu, You-cai; Fu, Jian-gang; Wang, Chong-qing
2018-01-01
The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measurements, infrared spectroscopy, and interfacial interaction calculations. The results of the flotation test show that at pH 2-11, the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil. The addition of transformer oil, which enhances the floatability of molybdenite fines, promotes the aggregation of molybdenite particles. Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite. Interfacial interaction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector, water, and molybdenite. Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water. Furthermore, the dispersion capability of the collector, not the interaction strength between the oily collectors and molybdenite, has a highly significant role in the flotation system of molybdenite fines. Our findings provide insights into the mechanism of molybdenite flotation.
Kinetic studies of sulfide mineral oxidation and xanthate adsorption
NASA Astrophysics Data System (ADS)
Mendiratta, Neeraj K.
2000-10-01
Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10 -4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22--30°C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones.
Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T
2001-03-30
A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.
Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M
2005-06-30
Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.
Ozdemir, Orhan; Du, Hao; Karakashev, Stoyan I; Nguyen, Anh V; Celik, M S; Miller, Jan D
2011-03-15
There is anecdotal evidence for the significant effects of salt ions on the flotation separation of minerals using process water of high salt content. Examples include flotation of soluble salt minerals such as potash, trona and borax in brine solutions using alkylammonium and alkylsulfate collectors such as dodecylamine hydrochloride and sodium dodecylsulfate. Although some of the effects are expected, some do not seem to be encompassed by classical theories of colloid science. Several experimental and modeling techniques for determining solution viscosity, surface tension, bubble-particle attachment time, contact angle, and molecular dynamics simulation have been used to provide further information on air-solution and solid-solution interfacial phenomena, especially with respect to the interfacial water structure due to the presence of dissolved ions. In addition atomic force microscopy, and sum frequency generation vibrational spectroscopy have been used to provide further information on surface states. These studies indicate that the ion specificity effect is the most significant factor influencing flotation in brine solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
Gravity-induced encapsulation of liquids by destabilization of granular rafts
NASA Astrophysics Data System (ADS)
Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.
2013-05-01
Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.
Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.
Padukone, S Usha; Natarajan, K A
2011-11-01
Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.
Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.
Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan
2010-08-15
For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.
Kinetic control of the coverage of oil droplets by DNA-functionalized colloids
Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika
2016-01-01
We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053
Eckenrode, Heather M; Dai, Hai-Lung
2004-10-12
A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society
Effects of ozone and peroxone on algal separation via dispersed air flotation.
Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C
2013-05-01
Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.
A review of zinc oxide mineral beneficiation using flotation method.
Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi
2014-04-01
In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.
Multifaceted adsorption of α-cyano-4-hydroxycinnamic acid on silver colloidal and island surfaces
NASA Astrophysics Data System (ADS)
Jung, Dawoon; Jeon, Kooknam; Yeo, Juhyun; Hussain, Shafqat; Pang, Yoonsoo
2017-12-01
The surface adsorption of organic nitrile compounds on the silver colloidal and island surfaces has been studied using surface-enhanced Raman scattering (SERS). α-Cyano-4-hydroxycinnamic acid (CHCA) with nitrile and carboxyl groups shows various surface adsorption on the silver surfaces. In acidic conditions, the surface adsorption of CHCA via the nitrile group with a more or less tilted geometry to the surface was found. When the solution pH increases, the carboxylate and nitrile groups of deprotonated CHCA participate in the surface adsorption, whereas the molecular plane of CHCA becomes more parallel to the surface. The ν(Ctbnd N) band in SERS of CHCA is the indicator of the surface adsorption geometry. The strongly red-shifted and broadened ν(Ctbnd N) band in SERS represents the surface adsorption via π-electrons of the Ctbnd N bond (side-on geometry; π-coordination). Nitriles adsorbed on the surface via the nonbonding electron pair of the nitrogen atom (end-on geometry; σ-coordination) often cause the blue-shifts and small band broadening in ν(Ctbnd N) in SERS. The surface adsorption geometry of organic nitriles based on many previous experimental results was further confirmed by the surface adsorption of CHCA on the silver island surfaces and dinitrile compounds on the silver colloidal surfaces.
Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S
2005-01-01
The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.
Adsorption Mechanism of 4-Amino-5-mercapto-1,2,4-triazole as Flotation Reagent on Chalcopyrite.
Yin, Zhigang; Hu, Yuehua; Sun, Wei; Zhang, Chenyang; He, Jianyong; Xu, Zhijie; Zou, Jingxiang; Guan, Changping; Zhang, Chenhu; Guan, Qingjun; Lin, Shangyong; Khoso, Sultan Ahmed
2018-04-03
A novel compound 4-amino-5-mercapto-1,2,4-triazole was first synthesized, and its selective adsorption mechanism on the surface of chalcopyrite was comprehensively investigated using UV-vis spectra, zeta-potential, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy measurements (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and first principles calculations. The experimental and computational results consistently demonstrated that AMT would chemisorb onto the chalcopyrite surface by the formation of a five-membered chelate ring. The first principles periodic calculations further indicated that AMT would prefer to adsorb onto Cu rather than Fe due to the more negative adsorption energy of AMT on Cu in the chalcopyrite (001) surface, which was further confirmed by the coordination reaction energies of AMT-Cu and AMT-Fe based on the simplified cluster models at a higher accuracy level (UB3LYP/Def2-TZVP). The bench-scale results indicated that the selective index improved significantly when using AMT as a chalcopyrite depressant in Cu-Mo flotation separation.
Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings
NASA Astrophysics Data System (ADS)
Wang, L.; Zuo, R.
2017-12-01
The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.
NASA Astrophysics Data System (ADS)
Matveeva, T. N.; Chanturiya, V. A.
2017-07-01
The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.
Separation of packaging plastics by froth flotation in a continuous pilot plant.
Carvalho, Teresa; Durão, Fernando; Ferreira, Célia
2010-11-01
The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei
2015-10-01
A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g
Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B
2013-10-15
This study analyzes the kinetics of sediment sorption on two chemical surfactants (Tween 20 and SDS) and a biotechnologically produced surfactant (obtained from Lactobacillus pentosus). Biosurfactants were produced by fermentation of hemicellulosic sugars from vineyard pruning waste supplied as a substrate to L. pentosus. Results obtained showed that almost no SDS was adsorbed onto the sediments, whereas Tween 20 and biosurfactants from L. pentosus were absorbed after a few minutes. Kinetic models revealed that adsorption of surfactant onto riverbed sediments is governed not only by an intra-particle diffusion model (evaluated by the Weber and Morris model), but also by surface reaction models (evaluated by first, second, third order equations and Elovich equation), showing the best fit when employing the Elovich model. The adsorption properties showed by biosurfactant from L. pentosus onto sediments present it as a potential foaming agent in froth flotation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solvent coarsening around colloids driven by temperature gradients
NASA Astrophysics Data System (ADS)
Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna
2018-04-01
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector
NASA Astrophysics Data System (ADS)
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Yang, Yaohui; Sun, Wei; Hu, Yuehua
2017-12-01
The effects of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid (BHA) as a collector were investigated using microflotation tests, zeta potential measurements, adsorption analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The microflotation results indicate that the addition of Pb2+ significantly improves the recovery of ilmenite using BHA as a collector. A maximum recovery of 88.46% is obtained at pH 8.12 in the presence of Pb2+; a maximum recovery of 45% is obtained at the same pH using BHA alone. At pHs below 8.0, lead nitrate are mainly present in the solution as Pb2+ and PbOH+, while at pHs above 8.0, the predominant components are Pb(OH)2(s) and Pb(OH)3-. The adsorption of these lead species influences the zeta potential of ilmenite and the number of activated sites on the ilmenite surface. FTIR and XPS analyses reveal that lead species and BHA react with the metal sites on the ilmenite surface. The lead species in solution are either adsorbed onto the ilmenite surface, which increases the surface activity of ilmenite, or react with BHA in solution to form complexes of lead and BHA.
Molecular design of flotation collectors: A recent progress.
Liu, Guangyi; Yang, Xianglin; Zhong, Hong
2017-08-01
The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan
2014-07-09
Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.
Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud
2016-11-01
Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Flotability and flotation separation of polymer materials modulated by wetting agents.
Wang, Hui; Wang, Chong-qing; Fu, Jian-gang; Gu, Guo-hua
2014-02-01
The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.
Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A
2009-09-01
The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.
Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface
NASA Astrophysics Data System (ADS)
Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu
2010-08-01
Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.
Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation
Hussain; Dem&idot;rc&idot;; özbayoğlu
1996-12-25
There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.
Zasadzinski, Joseph A.; Stenger, Patrick C.; Shieh, Ian; Dhar, Prajnaparamita
2009-01-01
Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. or polyelectrolytes such as chitosan, added to LS, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer. PMID:20026298
Araújo, Nuno A M; Dias, Cristóvão S; Telo da Gama, Margarida M
2017-01-11
Colloidal particles are considered ideal building blocks to produce materials with enhanced physical properties. The state-of-the-art techniques for synthesizing these particles provide control over shape, size, and directionality of the interactions. In spite of these advances, there is still a huge gap between the synthesis of individual components and the management of their spontaneous organization towards the desired structures. The main challenge is the control over the dynamics of self-organization. In their kinetic route towards thermodynamically stable structures, colloidal particles self-organize into intermediate (mesoscopic) structures that are much larger than the individual particles and become the relevant units for the dynamics. To follow the dynamics and identify kinetically trapped structures, one needs to develop new theoretical and numerical tools. Here we discuss the self-organization of functionalized colloids (also known as patchy colloids) on attractive substrates. We review our recent results on the adsorption and relaxation and explore the use of annealing cycles to overcome kinetic barriers and drive the relaxation towards the targeted structures.
Model colloid system for interfacial sorption kinetics
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hudson, Steven
2014-11-01
Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.
How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins.
Seneca, Senne; Simon, Johanna; Weber, Claudia; Ghazaryan, Arthur; Ethirajan, Anitha; Mailaender, Volker; Morsbach, Svenja; Landfester, Katharina
2018-06-25
It is now well-established that the surface chemistry and "stealth" surface functionalities such as poly(ethylene glycol) (PEG) chains of nanocarriers play an important role to decrease unspecific protein adsorption of opsonizing proteins, to increase the enrichment of specific stealth proteins, and to prolong the circulation times of the nanocarriers. At the same time, PEG chains are used to provide colloidal stability for the nanoparticles. However, it is not clear how the chain length and density influence the unspecific and specific protein adsorption keeping at the same time the stability of the nanoparticles in a biological environment. Therefore, this study aims at characterizing the protein adsorption patterns depending on PEG chain length and density to define limits for the amount of PEG needed for a stealth effect by selective protein adsorption as well as colloidal stability during cell experiments. PEG chains are introduced using the PEGylated Lutensol AT surfactants, which allow easy modification of the nanoparticle surface. These findings indicate that a specific enrichment of stealth proteins already occurs at low PEG concentrations; for the decrease of unspecific protein adsorption and finally the colloidal stability a full surface coverage is advised. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, Xue; Chang, Zhidong; Liu, Yao; Choe, Chol Ryong
2017-12-01
Solvent-extraction is widely used in chemical industry. Due to the amphiphilic character, a large amount of extractant remains in water phase, which causes not only loss of reagent, but also secondary contamination in water phase. Novel fluorinated extractants with ultra-low solubility in water were regarded as effective choice to reduce extractant loss in aqueous phase. However, trace amount of extractant still remained in water. Based on the high tensioactive aptitude of fluorinated solvent, flotation was applied to separate fluorinated extractant remaining in raffinate. According to the data of surface tension measurement, the surface tension of solution was obviously decreased with the addition of fluorinated extractant tris(2,2,3,3,4,4,5,5-octafluoropentyl) phosphate (FTAP). After flotation, the FTAP dissolved in water can be removed as much as 70%, which proved the feasibility of this key idea. The effects of operation time, gas velocity, pH and salinity of bulk solution on flotation performance were discussed. The optimum operating parameters were determined as gas velocity of 12ml/min, operating time of 15min, pH of 8.7, and NaCl volume concentration of 1.5%, respectively. Moreover, adsorption process of FTAP on bubble surface was simulated by ANSYS VOF model using SIMPLE algorithm. The dynamic mechanism of flotation was also theoretically investigated, which can be considered as supplement to the experimental results.
Recuperation de la matiere organique biodegradable presente dans l'effluent d'un MBBR a forte charge
NASA Astrophysics Data System (ADS)
Brosseau, Catherine
High-rate processes are receiving great interest due to their potential to favor the energy balance of water resource recovery facilities (WRRFs) either for their design or retrofit. Anaerobic digestion is a process that allows the valorization of organic biodegradable matter contained in sludge into biogas. This process also produces a stabilized sludge named digestate or biosolids that can be reused for agriculture purposes. This project proposed a secondary treatment train composed of a high-rate moving bed biofilm reactor (HR-MBBR) to biotransform colloidal and soluble biodegradable organics into particulate matter followed by an enhanced and compact physico-chemical separation process to recover mainly particulate organics and a part of the colloidal matter. A high-rate biological process operated at a low hydraulic retention time aimed at transforming colloidal and soluble fractions of organic matter into a particulate fraction for recovery by downstream separation process. The HR-MBBR effluent solids are known for their poor settleability, therefore requiring an efficient separation process downstream to ensure their recovery and to meet the effluent discharge regulations. The global objective of this project was to maximize the recovery of organic biodegradable matter for valorization into biogas by anaerobic digestion with an innovative treatment train combining an HR-MBBR and a separation process. The specific objectives of this report were 1) to characterize the HR-MBBR effluent solids and 2) to determine the efficiency of several physico-chemical separation processes combined with unbiodegradable or natural based coagulants and polymers. Effluents of lab-scale HR-MBBR fed with a synthetic soluble or domestic wastewater influent and the effluent of a full-scale HR-MBBR were used to evaluate the efficiency of separation processes adapted at bench-scale in jar-tests experiments. The processes studied were conventionnal settling, ballasted flocculation, dissolved air flotation and an innovative enhanced flotation process. Unlike conventional settling and dissolved air flotation, ballasted flocculation and enhanced flotation use a ballasted or flotation agent to accelerate the sludge settling or flotation rate. The original scientific hypothesis of this project is that the combination of enhanced flotation and natural based chemicals can meet a target total suspended solids (TSS) concentration of less or equal to 10 mg TSS/L in the clarified effluent of an HR-MBBR. The separation processes efficiencies were evaluated based on their TSS recoveries. Monitoring the chemical oxygen demand (COD) fractions allowed to better understand the underlying mechanisms of organic matter biotransformation and capture throughout the proposed treatment train. The concentration of solids expressed in TSS concentration in the MBBR effluent with a synthetic soluble influent was kept very low, from 27 to 61 mg TSS/L, which is about 2 to 9 times less than the expected concentration for an MBBR fed with domestic wastewater. Without the presence of particulate matter in the influent, the particulate matter in the MBBR effluent represented only the production of biomass detached by the shearing forces between the carriers. The TSS concentration and the efficiency of colloidal and soluble matter biotransformation into particulate matter increased with the MBBR hydraulic retention time. Wide volumetric particle size distributions ranging from 5 to 1000 mum in the lab-scale MBBR effluent were observed with a higher proportion of particles larger than 100 mum for a synthetic feed, and a higher proportion of small size particles of 30 mum for a domestic wastewater feed. The presence of lots of small size particles was attributed to unsettleable solids in the influent unchanged in the reactor. Despite the high proportion of large size particles for the MBBR with a synthetic feed, poor settleability of effluent solids was observed as static settling could only achieve TSS recoveries between 35 to 78%. Hence, coagulating agents were necessary to enhance the solids recovery. The combination of the innovative enhanced flotation process and unbiodegradable chemicals allowed to achieve TSS recovery efficiencies up to 97%. The enhanced flotation efficiency was reduced when using natural based chemicals, especially the natural based polymer which was not suited to treat waters with such high TSS concentrations. The hypothesis of the residual TSS concentration of 10 mg TSS/L was verified for half of the HR-MBBR operating conditions and the recovery efficiency did not seem to be influenced by the reactor hydraulic retention time, organic loading rate and temperature. More experiments are needed to confirm the effect of these parameters on TSS recovery efficiency. Although natural based chemicals reduced the coagulation and flocculation efficiency, they allowed a decrease in sludge production, which can represent a significant cost benefit. These chemicals resulted in an increase of 33 to 60% of the total COD of the MBBR effluent, compared to the unbiodegradable chemicals which only contributed about 2%. Natural based chemicals are recommended over unbiodegradable ones to promote the use of high biodegradability potential chemicals and to reduce the production of chemical sludge. However, to offset the increase of total COD, it may be required to add a treatment downstream to meet target secondary treatment COD concentration. Conventionnal settling and ballasted flocculation offered similar TSS recovery efficiencies to enhanced flottation (88% TSS recovery efficiency). The efficiency was reduced by 34% when using the dissolved air flotation process, much lower than the ones expected for such a separation process. The efficiency reduction was attributed to non-optimized and unadapted flotation lab-scale setups to treat medium strength wastewater. A similar innovative treatment train is currently being tested at pilot-scale in order to evaluate its carbon footprint and its potential to be eventually transposed to full-scale. Furthermore, the biodegradability and the biochemical methane production of the natural based chemicals are being determined. This project allowed to determine the potential of the innovative enhanced flotation process to recover the HR-MBBR solids when combined with natural based chemicals which are currently not often used in wastewater treatment for resource recovery.
Gao, Yuesheng; Gao, Zhiyong; Sun, Wei; Yin, Zhigang; Wang, Jianjun; Hu, Yuehua
2018-02-15
The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H 2 PO 4 - /HPO 4 2- and Ca 2+ ) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO 4 2- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Active structuring of colloidal armour on liquid drops
NASA Astrophysics Data System (ADS)
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-06-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.
Active structuring of colloidal armour on liquid drops.
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
A Course in Colloid and Surface Science.
ERIC Educational Resources Information Center
Scamehorn, John F.
1984-01-01
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
Active structuring of colloidal armour on liquid drops
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716
Zhou, Dong-qin; Wei, De-zhou
2006-05-01
The process of adsorptive-flotation and desorption to remove and recovery heavy metals from aqueous solution was studied using Gordona amarae as sorbent, and the mechanisms of biosorption and flotation were analyzed. Experimental results showed that the selectivity of Gordona amarae for various heavy metal cations was Pb > Hg > Cu, and the restrain oneself of Cu2+ was the highest. the present of NH4+ ion on loaded Pb2+ cells was remarkably improved, however, K+, Na+, Ca2+, Mg2+ of co-existing ions slightly restrained influence. The flotation recoveries respectively of Pb2+ and biomass more than 93% and 96% for with DA dosage of 17.5 mmol/L in the pH of 9.5, and that was almost quantitative remaining around 94% and 97% being desorbed when desorption frequence of Na2CO3 was up to three times. The measure of Zeta potential and infrared spectroscopy analysis showed that the ioselectric point of Gordona amarae in water was 3.50, up to 4.02 when loaded Pb2+, down to 3.02 when DA doseage added in the loaded biomass. Experiments indicated the lead bosorpting process was likely to involving in the group of -NHCOCH3 and COO- on the cell wall, while the biosorptive flotation was concerned cooperatively to be basing on electrostatic attraction, hydrogen bond, ion exchange and chemical complexation. SEM observation showed that Gordona amarae biomass loaded Hg2+ changed into flocculent matter.
Thomas, S; Maiti, N; Mukherjee, T; Kapoor, S
2013-08-01
The surface-enhanced Raman scattering (SERS) studies of anserine (beta-alanyl-N-methylhistidine) was carried out on colloidal silver nanoparticles to understand its adsorption characteristics. The experimentally observed Raman bands were assigned based on the results of DFT calculations. The studies suggest that the interaction of anserine is primarily through the carboxylate group with the imidazole ring in an upright position with respect to the silver surface. Concentration dependent SERS studies suggest a change in orientation at sub-monolayer concentration. Copyright © 2013 Elsevier B.V. All rights reserved.
Nanoparticle flotation collectors: mechanisms behind a new technology.
Yang, Songtao; Pelton, Robert; Raegen, Adam; Montgomery, Miles; Dalnoki-Veress, Kari
2011-09-06
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling. © 2011 American Chemical Society
Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skubal, L. R.; Meshkov, N. K.; Rajh, T.
2002-05-31
This study investigated the use of titanium dioxide (TiO{sub 2}) nanoparticles to remove aqueous cadmium from simulated wastewaters. Nanosized (45 A) colloids of anatase TiO{sub 2} were synthesized through the controlled hydrolysis of TiCl4 and their surfaces modified with the bidental chelating agent thiolactic acid (TLA). Colloids were introduced into 65 ppm cadmium-laden waters, and the suspensions were purged aerobically, anoxically with an inert gas, or by a sequential aerobic/anoxic purge. Suspensions were illuminated with 253.7 nm light. In each experiment, samples were taken from the reactor, filtered, and the filtrates analyzed by atomic absorption spectroscopy for residual cadmium. Resultsmore » from the aerobic experiments exhibited minimal (approximately 10%) removal of the cadmium from solution and no reduction of the metal on either the modified or the unmodified colloid. Anoxic results were more promising, showing no cadmium reduction on the unmodified colloid but a 40% adsorption and reduction (from a +2 valence state to elemental cadmium as determined by methyl viologen tests) of cadmium on TLA-modified colloid in the presence of light. Results from the mixed atmospheric conditions fared the best and demonstrated that in the absence of light, approximately 20% of aqueous cadmium was sorbed to the modified colloid via a Freundlich adsorption isotherm. Upon illumination, greater than 90% of cadmium was removed by both adsorption and reduction processes onto the TLA-modified TiO{sub 2}. These removal and reduction processes were catalytic in nature. Results from this study are significant because to date, no other research in the literature has been able to accomplish cadmium removal and reduction using TiO{sub 2}.« less
Patra, Partha; Natarajan, K A
2006-06-15
Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.
THE EFFECT OF WATER CHEMISTRY ON THE PROPERTIES OF IRON PARTICLES AND IRON SUSPENSIONS
The structure and properties of iron colloids in aquatic systems is important in understanding their behavior in environmental and engineering systems. For example the adsorption of contaminants onto iron colloids and subsequent transport through ground water aquifers and surface...
Functional models for colloid retention in porous media at the triple line.
Dathe, Annette; Zevi, Yuniati; Richards, Brian K; Gao, Bin; Parlange, J-Yves; Steenhuis, Tammo S
2014-01-01
Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.
Bioweathering of nontronite colloids in hybrid silica gel: implications for iron mobilization.
Oulkadi, D; Balland-Bolou-Bi, C; Michot, L J; Grybos, M; Billard, P; Mustin, C; Banon, S
2014-02-01
This study aimed to study biotic iron dissolution using a new hybrid material constituted of well-dispersed mineral colloids in a silica gel matrix. This permitted to prevent adsorption of colloidal mineral particles on bacteria. Hybrid silica gel (HSG) permitted to study bioweathering mechanisms by diffusing molecules. Hybrid silica gel was synthesized through a classical sol-gel procedure in which mineral colloidal particles (NAu-2) were embedded in a porous silica matrix. Rahnella aquatilis RA1, isolated from a wheat rhizosphere was chosen for its ability to dissolve minerals by producing various organic acids and siderophores. Pyruvic, acetic and lactic acids were the major organic acids produced by R. aquatilis RA1 followed by oxalic and citric acids at the end of incubation. Comparison of abiotic and biotic experiments revealed a high efficiency of R. aquatilis RA1 for iron dissolution suggesting an optimized action of different ligands that solubilized or mobilized iron. Hybrid silica gel allowed focusing on the colloidal mineral weathering by metabolites diffusion without mineral adsorption on bacteria. Hybrid silica gels are new and efficient tools to study colloidal mineral bioweathering. Adjusting HSG porosity and hydrophobicity should permit to precise the influence of limiting diffusion of siderophores or aliphatic organic acids on mineral weathering. © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra
The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.
NASA Astrophysics Data System (ADS)
Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua
2018-03-01
Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K d, indicating that true sorption equilibrium was not achieved withinmore » the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less
Desorption of plutonium from montmorillonite: An experimental and modeling study
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
2017-01-15
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K d, indicating that true sorption equilibrium was not achieved withinmore » the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less
Desorption of plutonium from montmorillonite: An experimental and modeling study
NASA Astrophysics Data System (ADS)
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
2017-01-01
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.
Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo
2018-03-01
The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.
Adsorption of silica colloids onto like-charged silica surfaces of different roughness
Dylla-Spears, R.; Wong, L.; Shen, N.; ...
2017-01-17
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
NASA Astrophysics Data System (ADS)
Schlautman, Mark A.; Morgan, James J.
1994-10-01
The adsorption of Suwannee River humic substances (HS) on colloidal-size aluminum oxide particles was examined as a function of solution chemistry. The amount of humic acid (HA) or fulvic acid (FA) adsorbed decreased with increasing pH for all solutions of constant ionic strength. In NaCl solutions at fixed pH values, the adsorption of HA and FA increased with increasing ionic strength. The presence of Ca 2+ enhanced the adsorption of HA but had little effect on FA. For identical solution conditions, the amount (by mass) of HA adsorbed to alumina was always greater than FA. Adsorption densities for both HA and FA showed good agreement with the Langmuir equation, and interpretations of adsorption processes were made from the model parameters. For FA, ligand exchange appears to be the dominant adsorption reaction for the conditions studied here. Ligand exchange is also a major adsorption reaction for HA; however, other reactions contribute to adsorption for some solution compositions. At high pH, cation and water bridging become increasingly important for HA adsorption with increasing amounts of Na + and Ca 2+, respectively. At low to neutral pH values, increases in these same two cations make hydrophobic bonding more effective. Calculations of HS carboxyl group densities in the adsorbed layer support the proposed adsorption reactions. From the adsorption data it appears that fewer than 3.3 HS-COO - groups per nm 2 can be bound directly as inner-sphere complexes by the alumina surface. We propose that the influence of aqueous chemistry on HS adsorption reactions, and therefore on the types of HS surface complexes formed, affects the formation and nature of organic coatings on mineral surfaces.
Electrode reactions of iron oxide-hydroxide colloids.
Mahmoudi, Leila; Kissner, Reinhard
2014-11-07
Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.
Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo
2017-03-07
The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants and fundamental understanding of bubble-solid interactions in mineral flotation. The methodologies used in this work can be readily extended to studying similar interfacial interactions in many other engineering applications such as froth flotation deinking and bitumen extraction in oil sands industry.
Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou
2014-08-01
Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Surface chemical effects on colloid stability and transport through natural porous media
Puls, Robert W.; Paul, Cynthia J.; Clark, Donald A.
1993-01-01
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was retrieved from a sand and gravel aquifer on Cape Cod, MA. Previous studies have indicated enhanced stability and transport of iron oxide particles due to specific adsorption of some inorganic anions on the iron oxide surface. This phenomenon was further evaluated with an anionic surfactant, sodium dodecyl sulfate. Surfactants constitute a significant mass of the contaminant loading at the Cape Cod site and their presence may contribute to colloidal transport as a significant transport mechanism at the site. Other studies at the site have previously demonstrated the occurrence of this transport mechanism for iron phosphate particles. Photon correlation spectroscopy, micro-electrophoretic mobility, and scanning electron microscopy were used to evaluate particle stability, mobility and size. Adsorption of negatively charged organic and inorganic species onto the surface of the iron oxide particles was shown to significantly enhance particle stability and transport through alterations of the electrokinetic properties of the particle surface. Particle breakthrough generally occurred simultaneously with tritiated water, a conservative tracer. The extent of particle breakthrough was primarily dependent upon colloidal stability and surface charge.
Transformation of organo-ferric peat colloids by a heterotrophic bacterium
NASA Astrophysics Data System (ADS)
Oleinikova, Olga V.; Shirokova, Liudmila S.; Gérard, Emmanuele; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.
2017-05-01
Bacterial mineralization of allochthonous (soil) dissolved organic matter (DOM) in boreal waters governs the CO2 flux from the lakes and rivers to the atmosphere, which is one of the main factor of carbon balance in high latitudes. However, the fate of colloidal trace element (TE) during bacterial processing of DOM remains poorly constrained. We separated monoculture of Pseudomonas saponiphila from a boreal creek and allowed it to react with boreal Fe-rich peat leachate of approximate colloidal (3 kDa-0.45 μm) composition C1000Fe12Al3.3Mg2Ca3.7P1.2Mn0.1Ba0.5 in nutrient-free media. The total net decrease of Dissolved Organic Carbon (DOC) concentration over 4 day of exposure was within 5% of the initial value, whereas the low molecular weight fraction of Corg (LMW<3 kDa) yielded a 16%-decrease due to long-term bio-uptake or coagulation. There was a relative depletion in Fe over Corg of 0.45 μm, colloidal and LMW fraction in the course of peat leachate interaction with P. saponiphila. Al, Mn, Ni, Cu, Ga, REEs, Y, U were mostly affected by bacterial presence and exhibited essentially the adsorption at the cell surface over first hours of reaction, in contrast to Fe, Ti, Zr, and Nb that showed both short-term adsorption and long-term removal by physical coagulation/coprecipitation with Fe hydroxide. The low molecular weight fraction (LMW<3 kDa) of most TE was a factor of 2-5 less affected by microbial presence via adsorption or removal than the high molecular weight (HMW) colloidal fractions (<0.45 μm and <50 kDa). The climate change-induced acceleration of heterotrophic bacterial activity in boreal and subarctic waters may lead to preferential removal of Fe over DOC from conventionally dissolved fraction and the decrease of the proportion of LMW < 3 kDa fraction and the increase of HMW colloids. Enhanced heterotrophic mineralization of organo-ferric colloids under climate warming scenario may compensate for on-going "browning" of surface waters.
Tartakovsky, Alla; Drutis, Dane M; Carnali, Joseph O
2003-07-15
The adsorption of cationic and amphoteric copolymers onto controlled pore glass (CPG) powders has been studied by measurement of the powder particle zeta (zeta) potential, by determination of the adsorption isotherm, and by FT Raman measurements of the polymer-coated powder. The cationic polymers consisted chiefly of homopolymers of dimethyldiallylammonium chloride (DMDAAC) or copolymers of DMDAAC and acrylamide. The amphoteric polymers studied included copolymers of DMDAAC and acrylic acid. The comonomer ratio was varied to explore the dependence of cationic charge density on the extent and effect of adsorption. Both types of polymers adsorb onto the anionic glass surface via an ion-exchange mechanism. Consequently, a correspondingly higher mass of a low-charge-density copolymer adsorbs than of a cationic homopolymer. The presence of the anionic portion in the amphoteric polymers does not significantly alter this picture. The zeta potential, however, reflects the overall nature of the polymer. Cationic polymers effectively neutralize the glass surface, while amphoteric polymers leave the zeta potential net negative. Adsorption isotherms, determined via the depletion technique using colloidal titration, were used to "calibrate" a FT Raman method. The latter was used to determined the amount of adsorbed polymer under solution conditions in which colloidal titration could not be performed.
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
Thrash, Marvin E; Pinto, Neville G
2006-09-08
The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.
A study of metal ion adsorption at low suspended-solid concentrations
Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.
1987-01-01
A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (<50 mg l-1) is described. Methodological complications previously associated with such experiments have been overcome. Adsorption of zinc ion onto synthetic colloidal titania (TiO2) was studied as a function of pH, supporting electrolyte (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.
ERIC Educational Resources Information Center
Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.
2010-01-01
Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…
Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.
Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan
2017-01-25
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAINFELD,J.F.POWELL,R.D.FURUYA,F.R.
2003-04-17
Gold has been used for immunocytochemistry since 1971 when Faulk and Taylor discovered adsorption of antibodies to colloidal gold. It is an ideal label for electron microscopy (EM) due to its high atomic number, which scatters electrons efficiently, and the fact that preparative methods have been developed to make uniform particles in the appropriate size range of 5 to 30 nm. Use in light microscopy (LM) generally requires silver enhancement (autometallography; AMG) of these small gold particles. Significant advances in this field since that time have included a better understanding of the conditions for best antibody adsorption, more regular goldmore » size production, adsorption of other useful molecules, like protein A, and advances in silver enhancement. Many studies have also been accomplished showing the usefulness of these techniques to cell biology and biomedical research. A further advance in this field was the development of Nanogold{trademark}, a 1.4 nm gold cluster. A significant difference from colloidal gold is that Nanogold is actually a coordination compound containing a gold core covalently linked to surface organic groups. These in turn may be covalently attached to antibodies. This approach to immunolabeling has several advantages compared to colloidal gold such as vastly better penetration into tissues, generally greater sensitivity, and higher density of labeling. Since Nanogold is covalently coupled to antibodies, it may also be directly coupled to almost any protein, peptide, carbohydrate, or molecule of interest, including molecules which do not adsorb to colloidal gold. This increases the range of probes possible, and expands the applications of gold labeling.« less
Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
Turan, N Gamze; Ergun, Osman Nuri
2009-08-15
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
Todoran, R; Todoran, D; Szakács, Zs
2016-01-05
In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.
Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi
2018-02-27
When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.
Podstawka, Edyta; Ozaki, Yukihiro
2008-10-01
In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver. (c) 2008 Wiley Periodicals, Inc.
PCR detection of groundwater bacteria associated with colloidal transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.
1996-02-29
Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineralmore » transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.« less
Electrostatics of colloids in mixtures
NASA Astrophysics Data System (ADS)
Samin, Sela; Tsori, Yoav
2013-03-01
We examine the force between two charged colloids immersed in salty aqueous mixtures close to the coexistence curve. In an initially water-poor phase, the short-range solvation-related forces promote the condensation of a water-rich phase at a distance in the range 1-100nm. This leads to a strong long-range attraction between the colloids and hence to a deep metastable or globally stable energetic state. Our calculations are in good agreement with recent experiments on the reversible aggregation of colloids in critical mixtures. The specific nature of the solvation energy of ions can lead to some surprising effects, whereby positively charged surfaces attract while negatively charged surfaces repel. For hydrophilic anions and hydrophobic cations, a repulsive interaction is predicted between oppositely charged and hydrophilic colloids even though both the electrostatic and adsorption forces alone are attractive.
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M
2009-09-03
Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.
NASA Astrophysics Data System (ADS)
Rowe, Jeffrey D.; Baird, James K.
2007-06-01
A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.
NASA Astrophysics Data System (ADS)
Gleber, S.-C.; Vogt, S.; Niemeyer, J.; Finney, L.; McNulty, I.; Thieme, J.
2011-09-01
A prominent feature of soil colloids is their huge specific surface. It determines colloidal properties such as adsorption capacity or diffusion. The colloidal interactions differ significantly from the behavior of the same materials in a bulk system. Interactions in the colloidal regime are crucial, for example, for the transport and release of nutrients and toxicants in soils, which then influences directly the growth of plants. However, there is still a need for more analytical resources to study those interactions. To reveal the correlation of the particular trace elements and their distribution in correlation to colloidal interactions as well as changing pH values, experiments at the hard x-ray fluorescence microprobe at beamline 2-ID-E of the Advanced Photon Source (APS), were performed with colloidal clay and soil samples in an aqueous environment as naturally relevant. To obtain further spatial information, stereo imaging has been used. To study the dynamical behavior of these colloidal suspensions at changing pH, a wet sample chamber allowing in situ manipulation was developed and utilized.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Bradford, Scott A.
2017-04-01
Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.
Adsorption of etheramine on kaolinite: a cheap alternative for the treatment of mining effluents.
Magriotis, Zuy M; Leal, Paulo V B; Sales, Priscila F; Papini, Rísia M; Viana, Paulo R M
2010-12-15
The results of laboratory experiments aimed at determining the influence of physicochemical parameters on the adsorption of etheramine (adsorbate) on white, pink and yellow kaolinites (adsorbent) are presented. The adsorption of etheramine was favoured at pH 10.0 under conditions where the initial concentration of etheramine was 200 mg l(-1) and the ratio of adsorbent to volume of etheramine solution was 1:100 g ml(-1). Equilibrium adsorption was attained within 30 min and the efficiencies of removal of etheramine by white, pink and yellow kaolinite were 77%, 80% and 69%, respectively. The adsorption isotherms of the kaolinites were determined under optimum conditions and with adsorbate in the concentration range of 0-4000 mg l(-1). The amounts of etheramine adsorbed per unit mass of adsorbent were 33.03, 34.32 and 23.11 mg g(-1) for white, pink and yellow kaolinites, respectively. The adsorption of etheramine on kaolinites was better fitted to the Langmuir rather than the Freundlich isotherm, and could be explained by a pseudo-second-order kinetic model. It is concluded that kaolinites offer significant potential in the treatment of effluents originating from the processing of lower grade iron ores by froth flotation. Copyright © 2010 Elsevier B.V. All rights reserved.
Separation of biogenic materials by electrophoresis under zero gravity (L-3)
NASA Technical Reports Server (NTRS)
Kuroda, Masao
1993-01-01
Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.
SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.
Chen, Y; Chen, S J; Li, S; Wei, J J
2015-10-16
In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.
Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates
NASA Astrophysics Data System (ADS)
Galt, Greer Elaine
Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.
Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.
Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan
2015-10-07
In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.
THE UPTAKE OF RADIOCOLLOIDS BY MACROPHAGES IN VITRO
Gosselin, Robert E.
1956-01-01
Macrophages isolated from the rabbit peritoneal cavity extract radioactive colloidal gold from solutions in vitro. This reaction (ultraphagocytosis) involves two phases: the reversible adsorption of gold on the cell surface and the subsequent irreversible removal of surface-bound colloid into the cell. The latter process (called ingestion) appears to proceed at a rate which is proportional at any moment to the amount of gold attached to the cell surface; the latter in turn can be related to the concentration in extracellular fluid by a simple adsorption isotherm. In terms of rate, therefore, ingestion is related to the extracellular gold concentration in the same way that many enzyme reactions are related to the substrate concentration. Although enzyme kinetics are useful in describing rates of ultraphagocytosis, there is no evidence that enzymes participate in either adsorption or ingestion or that metabolic energy is required of the macrophage. Exudative leucocytes of the heterophilic series show little or no interaction with these finely dispersed gold sols (mean particle diameter 6 to 9 millimicrons). 37°C. three parameters are sufficient to characterize the reaction between gold and a suspension of macrophages, namely an affinity constant (1/Ks), an adsorption maximum (L), and a rate constant of ingestion (k 3). Although numerical values differed markedly among cells of different exudates, all three parameters were estimated in three instances. In these suspensions between 2 and 20 per cent of the surface-bound gold was ingested each minute (37°C., pH 7.4). Under conditions of surface saturation, it was estimated that tens of thousands of gold particles were attached to the surface of an average macrophage; this amount of colloid, however, occupied less than 1 per cent of the geometric area of the cell surface. Although surface saturation imposed an upper limit on the rate of ingestion, no practical limit was noted in the capacity of macrophages to continue the reaction. Optical measurements imply that within the cell agglutination of colloidal gold began promptly after its ingestion. These data are compared with published kinetic studies on the phagocytosis of microscopic particulates and on the parasitism of bacteria by virus. PMID:13319653
Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray
2016-04-15
Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.
This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and atmore » lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.« less
FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Cao, Zhao; Cao, Yongdan; Sun, Chuanyao
2013-09-01
The Fourier transform infrared (FTIR) spectra of sodium butyl xanthate, dibutyl dixanthogen, metal xanthate compounds and surfaces of chalcopyrite, pentlandite and pyrite treated with sodium butyl xanthate solution were systematically studied. The products of xanthate adsorpted on the three different minerals were characterized by comparing their FTIR spectra to those of dixanthogen and metal xanthate. Both metal xanthate and dixanthogen are formed on the surfaces of these minerals. However, the relative proportions of metal xanthate to dixanthogen on the minerals are different. In the cases of chalcopyrite and pentlandite, the quantity of metal xanthate is larger than that of dixanthogen. For pyrite, on the contrary, the quantity of dixanthogen is much greater than that of ferric xanthate. Therefore, the formation of dixanthogen is more essential for the flotation of pyrite.
Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles
2017-01-01
Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for “lollipop”-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth. PMID:29057028
A modified Poisson-Boltzmann equation applied to protein adsorption.
Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto
2018-01-05
Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane-water interface
NASA Astrophysics Data System (ADS)
Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale
2011-12-01
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane-water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351-6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid-liquid interfaces.
pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes
2017-01-01
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800
Adsorption of goethite onto quartz and kaolinite
Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.
1984-01-01
The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO 3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m 2 in vacuum and 0.45 J/m 2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m 2, in good agreement with a value of 1.11 J/m 2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing collector molecules that can bind specifically to bastnasite.« less
Illustrating Chemical Concepts through Food Systems: Introductory Chemistry Experiments.
ERIC Educational Resources Information Center
Chambers, E., IV; Setser, C. S.
1980-01-01
Demonstrations involving foods that illustrate chemical concepts are described, including vaporization of liquids and Graham's law of diffusion, chemical reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration. (CS)
Colloidal systems and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.; Morrison, E.D.
1988-01-01
This book is an excellent, four-part introductory text and sourcebook for those who want to acquire a quick background in , or brush up on, the physical properties and behavior of colloidal dispersions and interfaces. Part I covers properties of particles and techniques for determining particle size and surface area. Part II concentrates on the properties of interfaces, with brief subsections on insoluble monolayers, surface active solutes in aqueous and non-aqueous media, and the thermodynamics of adsorption at interfaces. Part III considers attractive and repulsive interactions, colloid stability (DLVO theory), and kinetics of coagulation. Part IV applies these concepts tomore » emulsions, foams, and suspensions. The sections on colloid rheology, interfacial tensions, Marangoni effects, and calculation of Hamaker constants are particularly good, as are Part IV and the numerous examples of practical applications used throughout the book to illustrate the concepts.« less
NASA Astrophysics Data System (ADS)
Wang, Qing; Cheng, Tao; Wu, Yang
2014-12-01
Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH 5 in the absence of HA due to low mobility of the colloids. At pH 9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH 5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.
Structure and Spectroscopy of Buried Interfaces in Organic Thin Films and Colloids
2012-03-01
A systematic study of adsorption of linear acenes, from benzene to pentacene , on metal surfaces has been conducted using Temperature Programmed...inter- adsorbate repulsive interaction resulted from local dipole moment at the adsorption site induced by the adsorbate-surface charge transfer...adsorbate interactions resulting from a local dipole moment of 4.3 D at the adsorbate-substrate complex. The interface dipole of naphthalene on Ag is 51
Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.
Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen
2005-06-21
The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.
Biocolloids with ordered urease multilayer shells as enzymatic reactors.
Lvov, Y; Caruso, F
2001-09-01
The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.
On the enrichment of hydrophobic organic compounds in fog droplets
NASA Astrophysics Data System (ADS)
Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.
The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.
Recovery of Copper from Cyanidation Tailing by Flotation
NASA Astrophysics Data System (ADS)
Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli
2016-02-01
In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.
Nanoparticle engineering of colloidal suspension behavior
NASA Astrophysics Data System (ADS)
Chan, Angel Thanda
We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.
Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning
2016-09-13
Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.
Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.
Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N
2016-09-15
The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Chandra, A P; Gerson, A R
2009-01-30
A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.
Directional transport of colloids inside a bath of self-propelling walkers.
Merlitz, Holger; Wu, Chenxu; Sommer, Jens-Uwe
2017-05-24
We present a setup in which passive colloids inside a solvent are moved to the boundaries of the container. The directional transport is facilitated by self-propelling microparticles ("walkers") with an activity gradient, which reduces their propulsion in the vicinity of bounding walls. An attractive interaction leads to the adsorption of walkers onto the colloid-surfaces in regions of low walker activity. It is shown that the activity gradient generates a free energy gradient which in turn acts as a driving force on the passive colloids. We carry out molecular dynamics simulations and present approaches to a theoretical description of the involved processes. Although the simulation data are not reproduced on a fully quantitative level, their qualitative features are covered by the model. The effect described here may be applied to facilitate a directional transport of drugs or to eliminate pollutants.
Schierz, A; Zänker, H
2009-04-01
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.
Flow-induced conformational changes in gelatin structure and colloidal stabilization.
Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K
2008-09-02
Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.
Effects of pH and cation adsorption on colloidal stability of graphene oxide in aquatic environments
NASA Astrophysics Data System (ADS)
Terracciano, Amalia
The presented doctoral research aims to improve the current understanding of the chemistry of Graphene Oxide Nanoparticles (GONPs) in common water systems. The widespread demand and future use of this nanomaterial in a broad range of different applications (i.e. biomedical, electronic, environmental) will certainly lead to its release in the environment with consequent exposure of ecosystems to graphene oxide (GO) toxicity. The described scenario demand a careful investigation and deep understanding of the environmental behavior and fate of GONPs, especially in water systems. Therefore this study focused on the investigation the effects of pH some of the most common water electrolytes (monovalent and divalent) and on GO colloidal stability. The interactions between the selected ions and the GO functional groups was also studied. The mobility of GO in porous media was first studied through filtrations tests that determine influence of ionic strength (IS) and solution composition on GO mobility. The GONPs showed to be completely retained in the porous media in presence of 3.5 mM of CaCl2 and in tap water while no retention was found for 10 mM of NaCl solution. The results indicated significant impact of divalent cations on the mobility of GO. Serial experiments were performed to quantify the adsorption of several cations (Na+, Ca2+ and Ba2+) on GO. The divalent cations showed to be strongly adsorbed on the GO surface with increasing pH and cation concentrations, while no significant sodium adsorption was detected. Raman spectroscopy and XPS analysis also showed strong differences in the typical spectra of GO, before and after adsorption of Ca2+ and Ba2+ which suggest chemical bond formation with the GO functional groups. The aggregation regime and the colloidal stability of the GO suspension in presence of selected electrolytes (Na+, Mg2+, Ca2+ and Ba2+) as function of pH was also extensively studied. The zeta potential, which is index of the stability of a colloidal suspension, was found to became more negative for GO in NaCl solutions for solution pH from 4 to 10 which is due to increased deprotonation of carboxyl (-COOH) and hydroxyl (-COH) groups on GO. Values of the zeta potential higher than +/-30 indicated increase stability of the colloidal suspension; however in presence of Ca2+ in solution, the zeta potential of GONPs become less negative (>-10 mV) with formation of aggregates which can be attributed to increased Ca2+ adsorption, especially at high pH. The increase adsorption will neutralize the negative surface charge to reduce electrostatic repulsion and promote aggregation. The same trend was found in presence of Ba2+ in solution. The critical coagulation concentration (CCC) of GO also showed to be strongly affected by Ca2+ and pH. The CCC value of GO remained at about 48 mM NaCl with increasing pH from 4.4 to 7 while it dramatically decreased from about 1.7 to 0.3 mM in CaCl2 solution with increasing pH. The results of this study suggest that pH and divalent cations, especially Ca2+ could significantly affect the colloidal stability of GONPs and therefore influence their mobility in the environment. Moreover the interactions between Ca2+ and Ba2+ and the GO nanosheets showed to be particularly strong which suggest inner-sphere complexation formation. The findings obtained from this doctoral research will contribute in improving the understanding of the fate and transport of the GONPs in aquatic environments and to develop more suitable models to predict its behavior.
NASA Astrophysics Data System (ADS)
Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.
2017-07-01
The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.
Colloidal characterization of ultrafine silicon carbide and silicon nitride powders
NASA Technical Reports Server (NTRS)
Whitman, Pamela K.; Feke, Donald L.
1986-01-01
The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.
Microbially induced separation of quartz from hematite using sulfate reducing bacteria.
Prakasan, M R Sabari; Natarajan, K A
2010-07-01
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.
Denitrification using a monopolar electrocoagulation/flotation (ECF) process.
Emamjomeh, Mohammad M; Sivakumar, Muttucumaru
2009-01-01
Nitrate levels are limited due to health concerns in potable water. Nitrate is a common contaminant in water supplies, and especially prevalent in surface water supplies and shallow wells. Nitrate is a stable and highly soluble ion with low potential for precipitation or adsorption. These properties make it difficult to remove using conventional water treatment methods. A laboratory batch electrocoagulation/flotation (ECF) reactor was designed to investigate the effects of different parameters such as electrolysis time, electrolyte pH, initial nitrate concentration, and current rate on the nitrate removal efficiency. The optimum nitrate removal was observed at a pH range of between 9 and 11. It appeared that the nitrate removal rate was 93% when the initial nitrate concentration and electrolysis time respectively were 100 mg L(-1)-NO(3)(-) and 40 min. The results showed a linear relationship between the electrolysis time for total nitrate removal and the initial nitrate concentration. It is concluded that the electrocoagulation technology for denitrification can be an effective preliminary process when the ammonia byproduct must be effectively removed by the treatment facilities.
Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, Iván E.; Pastorino, Claudio, E-mail: pastor@cnea.gov.ar; Urrutia, Ignacio, E-mail: iurrutia@cnea.gov.ar
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surfacemore » tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T − ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.« less
Rolling and aging in temperature-ramp soft adhesion
NASA Astrophysics Data System (ADS)
Boniello, Giuseppe; Tribet, Christophe; Marie, Emmanuelle; Croquette, Vincent; Zanchi, Dražen
2018-01-01
Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above Tc=32 ±1∘C , at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x -y ) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α (f ) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
Adsorption and Conformation Change of Helical Peptides on Colloidal Silica
NASA Astrophysics Data System (ADS)
Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra
2001-03-01
Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.
Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.
Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian
2017-09-26
The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.
Clay mineral colloids play important roles in the adsorption of polar organic contaminants in the environment. Similarly, cyclodextrins (CD) can entrap poorly water-soluble organic compounds. A combination of CDs and clay minerals affords great opportunities to investigate simult...
Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.
Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu
2013-02-13
Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.
Water evaporation in silica colloidal deposits.
Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier
2013-10-15
The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.
Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai
2013-01-01
Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487
Colloidal silica films for high-capacity DNA arrays
NASA Astrophysics Data System (ADS)
Glazer, Marc Irving
The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is controlled by traditional adsorption (ka) and desorption (kd) coefficients, as well as morphology factors and transient binding interactions between the target and probes. The strength of the transient probe/target binding interactions are on the order of 5--7 DNA base pairs, which suggests the formation of nucleation or other metastable complexes, rather than fully-zippered duplexes.
Peiris, Ramila H; Ignagni, Nicholas; Budman, Hector; Moresoli, Christine; Legge, Raymond L
2012-09-15
Characterization of the interactions between natural colloidal/particulate- and protein-like matter is important for understanding their contribution to different physiochemical phenomena like membrane fouling, adsorption of bacteria onto surfaces and various applications of nanoparticles in nanomedicine and nanotoxicology. Precise interpretation of the extent of such interactions is however hindered due to the limitations of most characterization methods to allow rapid, sensitive and accurate measurements. Here we report on a fluorescence-based excitation-emission matrix (EEM) approach in combination with principal component analysis (PCA) to extract information related to the interaction between natural colloidal/particulate- and protein-like matter. Surface plasmon resonance (SPR) analysis and fiber-optic probe based surface fluorescence measurements were used to confirm that the proposed approach can be used to characterize colloidal/particulate-protein interactions at the physical level. This method has potential to be a fundamental measurement of these interactions with the advantage that it can be performed rapidly and with high sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
NASA Astrophysics Data System (ADS)
Podstawka, E.; Kudelski, A.; Kafarski, P.; Proniewicz, L. M.
2007-10-01
The nature of phosphonopeptides containing N-terminal L-phenylalanine ( L-Phe), namely L-Phe- DL-NH-CH(CH(CH 3) 2)-PO 3H 2 ( A), L-Phe- L-NH-CH(CH 3)-PO 3H 2 ( B), and L-Phe- DL-NH-CH(CH 2CH 2COOH)-PO 3H 2 ( C) ( Fig. 1 presents molecular structure of these molecules), adsorbed on electrochemically roughened and colloidal silver surfaces has been explored by surface-enhanced Raman spectroscopy (SERS). To reveal adsorption mechanism of these species on the basis of their SERS spectra at first Fourier-transform Raman (FT-RS) and absorption infrared (FT-IR) spectra of non-adsorbed molecules were measured. Examination of enhancement, frequency shifts, and changes in relative intensities of SERS bands due to adsorption and surface roughens variation reveals that the tilted compounds adsorb on the electrochemically roughened silver substrate in similar way, while they behave differently on the colloidal silver surface. A stronger enhancement of in-plane ring vibrations of the L-Phe ring, i.e., ν3 and ν18b (B 2), over these of the A 2 symmetry in all SERS spectra on the electrochemically roughened silver substrate suggests that the ring interacts with this surface adopting slightly deflect orientation from the perpendicular one. Also, enhancement of P dbnd O and -CH 2-/-CH 3 fragments vibrations points out that they are involved in adsorption process on this substrate. This conclusion was drawn on the basis of the enhancement of 1274-1279 and 1138-1152 ( ν(P dbnd O)), 1393-1400 ( δ(CH) + ρb(CNH 2) + ν(C-C dbnd O ) + δ(CH 3)), ˜1455 ( δ(CCH 3/CCH 2) + ρb(CH 3/CH 2), and 1505-1512 cm -1 ( δ(CH 2) + Phe( ν19a)) bands. Although a relative intensity ratio of these bands in the presented SERS spectra is different. On the other hand, on the colloidal silver nanoparticles, the aromatic ring of all molecules is lying flat or takes almost parallel orientation to this surface. Besides, A interacts also via P-terminal group (568, 765, 827, 1040, and 1150 cm -1), whereas B mainly through NH 2-C-(C dbnd O)-CNH-(712 and 1255 cm -1). In the case of C, it adsorbs on the silver colloidal surface mainly through the aromatic ring of L-Phe, while other fragments of the molecule are in close proximity to this surface as comes off the weak enhancement of bands due to the aliphatic vibrations.
Obst, Katja; Yealland, Guy; Balzus, Benjamin; Miceli, Enrico; Dimde, Mathias; Weise, Christoph; Eravci, Murat; Bodmeier, Roland; Haag, Rainer; Calderón, Marcelo; Charbaji, Nada; Hedtrich, Sarah
2017-06-12
The adsorption of biomolecules to the surface of nanoparticles (NPs) following administration into biological environments is widely recognized. In particular, the "protein corona" is well understood in terms of formation kinetics and impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein coronas of six polymeric nanoparticles of prospective therapeutic use were investigated. These included three colloidal NPs-soft core-multishell (CMS) NPs, plus solid cationic Eudragit RS (EGRS), and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalized dPG-NGs. Following incubation with human plasma, protein coronas were characterized and their biological interactions compared with pristine NPs. All NPs demonstrated protein adsorption and increased hydrodynamic diameters, although the solid EGRS and EC NPs bound notably more protein than the other tested particles. Shifts toward moderately negative surface charges were also observed for all corona bearing NPs, despite varied zeta potentials in their pristine states. While the uptake and cellular adhesion of the colloidal NPs in primary human keratinocytes and human umbilical vein endothelial cells were significantly decreased when bearing the protein corona, no obvious impact was seen in the NGs. By contrast, corona bearing NGs induced marked increases in cytokine release from primary human macrophages not seen with corona bearing colloidal NPs. Despite this, no apparent enhancement to in vitro toxicity was noted. Finally, drug release from EGRS and EC NPs was assessed, where a decrease was seen in the EGRS NPs alone. Together these results provide a direct comparison of the physical and biological impact the protein corona has on NPs of widely varied character and in particular highlights a distinction between the corona's effects on NGs and colloidal NPs.
NASA Astrophysics Data System (ADS)
Ngueleu Kamangou, S.; Cirpka, O. A.; Grathwohl, P.
2012-04-01
In many developing countries, the hygienic situation has improved by changing from surface-water bodies to groundwater as drinking water resource. However, failures have frequently been reported, presumably caused by wrong design of groundwater extraction (e.g., wells too close to open-water bodies, landfill leachates or agricultural areas). Moreover threat to groundwater pollution is enhanced when colloidal particles in the subsurface can act as carriers for adsorbing contaminants such as hydrophobic chlorinated organic contaminants. In this study, the main objective was to investigate the influence of particles in the size range of colloids on the subsurface transport of pesticides which are known to cause severe health problems. The model pesticide was gamma-hexachlorocyclohexane, a representative hydrophobic insecticide which is still used mainly in tropical countries. Colloid-facilitated transport was carried out by considering a first case where the adsorption of the contaminant to the particles is at equilibrium before getting simultaneously transported, and a second case where this equilibrium was not reached before their transport. Another focus besides colloid-facilitated transport was placed on the release of the contaminant from trapped colloids. Data analysis was done with the help of numerical modeling and the minimum model complexity needed to simulate such transports was examined.
NASA Astrophysics Data System (ADS)
Podstawka-Proniewicz, Edyta; Ozaki, Yukihiro; Kim, Younkyoo; Xu, Yizhuang; Proniewicz, Leonard M.
2011-07-01
SERS studies presented in this work on BN8-14, [ D-Phe 6,β-Ala11,Phe13,Nle14]BN6-14, [ D-Tyr 6, β-Ala11,Phe13,Nle14]BN6-14, BN and its modified analogues, as well as NMB, NMC, and PG-L show that these molecules at pH 8.3 bind to a colloidal silver surface mainly through Trp 8 and Met 14 residues. Trp 8 adsorbs at the surface almost perpendicularly. Met 14 appears on the surface mainly as a P C-G conformer. His 12, as is evident from the spectra, practically does not take part in the adsorption process. Substitution of L-leucine at the 13 position of amino acid sequence with L-phenylalanine does not change substantially the pattern of the adsorption mechanism; however, substitution of phenylalanine at the 12 position (instead of L-histidine) causes changes in the SERS spectra that show that Phe 12 takes parallel orientation to the surface upon adsorption of [ D-Phe 12]BN, while in the case of [Tyr4, D-Phe 12]BN this residue is perpendicular to the surface and influences the orientation of the bound Trp 8. On the other hand, substitution of Asn with Tyr in the 6 position in nonapeptide fragment causes changes in the adsorption mechanism. In this case, the discussed fragment binds to the silver colloidal surface by Tyr 6, Trp 8, and Met 14. The SERS spectrum of NMC is very similar to that of BN; although it differs by the binding orientation of the amide bond towards the surface. Appearance of Phe 13 in NMB and PG-L causes that this residue competes successfully with Trp 8 forcing it to take tilted orientation. As seen from the enhancement of the characteristic Phe vibrations this moiety in NMB and PG-L adsorbs on the silver surface in a tilted fashion. This arrangements cause that the 8-14 peptide chain in all these studied compounds takes almost a parallel orientation to the surface while the 1-5 fragment of the peptide chain is removed from the silver surface vicinity.
NASA Astrophysics Data System (ADS)
Szeghalmi, A. V.; Leopold, L.; Pînzaru, S.; Chis, V.; Silaghi-Dumitrescu, I.; Schmitt, M.; Popp, J.; Kiefer, W.
2005-02-01
Surface enhanced Raman spectroscopy (SERS) on silver colloid has been applied to characterize the interaction of 6-mercaptopurine (6MP), an active drug used in chemotherapy of acute lymphoblastic leukemia, with a model biological substrate at therapeutical concentrations and as function of the pH value. The adsorption active sites and molecular orientation on the metal surface have been determined on the basis of SERS 'surface selection rules' subsequent to a detailed vibrational analysis of the 6MP tautomeric forms. Therefore, DFT calculations (vibrational wavenumbers, Raman scattering activities, partial atomic charges) of the optimized tautomers and potential energy distribution calculations have been performed. Around neutral pH value reorientation of the molecule has been observed. Under basic conditions the 6MP molecule is probably adsorbed on the silver colloid through the N1 atom of the purine ring and possibly the S atom, and adopts a tilted orientation to the surface. A reduction in the number of adsorbed molecules under basic conditions is proposed, since the SERS spectrum recorded at 10-6 M concentration at neutral pH value resembles the SERS spectra obtained under basic conditions at 10-5 M concentration. At acidic pH values a stronger interaction through the N9 and N3 atoms is suggested with an end-on orientation.
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
NASA Astrophysics Data System (ADS)
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.
An explanation for differences in the process of colloid adsorption in batch and column studies
USDA-ARS?s Scientific Manuscript database
It is essential to understand the mechanisms that control virus and bacteria removal in the subsurface environment to assess the risk of groundwater contamination with fecal microorganisms. This study was conducted to explicitly provide a critical and systematic comparison between batch and column e...
NASA Astrophysics Data System (ADS)
Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs
2016-08-01
We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.
Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter
2015-12-02
Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research.
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Obeid, Layaly; Bee, Agnes; Talbot, Delphine; Abramson, Sebastien; Welschbillig, Mathias
2014-05-01
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate, a polysaccharide extracted from brown seaweeds, is extensively used as inexpensive, non-toxic and efficient biosorbent. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet [1, 2]. In the present work, we have studied the adsorption affinity of magnetic alginate beads (called magsorbents)for p-nitrophenol (PNP), used as a hydrophobic pollutant, in presence of cetylpyridinium chloride (CPC), a cationic surfactant. First, the effect of different parameters (pH solution, contact time, surfactant initial concentration…) on the adsorption of CPC on the alginate beads was investigated. Adsorption of the surfactant occurs due to electrostatic attractions between its cationic head groups and negative carboxylate functions of the alginate beads. At larger surfactant concentrations, adsorption is also due to the interaction between the hydrocarbon chains of CPC forming aggregated structures capable of solubilizing hydrophobic solutes. In a second step, we showed that PNP can reach up to 95% of adsorption in the beads in presence of CPC, although the pollutant is poorly adsorbed by alginate in absence of the surfactant. At highest CPC concentrations, desorption occurs as micellar solubilization is preferred over coadsorption. Our magsorbents appear to efficiently remove both cationic surfactant and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. 1. A.Bee, D.Talbot, S.Abramson, V.Dupuis, Journal of colloid and Interface science, 362, 486-492 (2011). 2. L. Obeid, A. Bee, D. Talbot, S. Ben Jaafar, V. Dupuis, S. Abramson, V. Cabuil, M. Weschbillig, Journal of Colloid and Interface Science, 410, 52-58 (2013).
Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres
NASA Astrophysics Data System (ADS)
Cherstvy, A. G.; Winkler, R. G.
2006-08-01
We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthén potential, which is used as an approximation for the screened Debye-Hückel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.
Moore, Robert C [Edgewood, NM; Anderson, D Richard [Albuquerque, NM
2007-07-24
Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.
A Review on Advanced Treatment of Pharmaceutical Wastewater
NASA Astrophysics Data System (ADS)
Guo, Y.; Qi, P. S.; Liu, Y. Z.
2017-05-01
The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.
NASA Astrophysics Data System (ADS)
Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel
2016-02-01
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.
Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review
NASA Astrophysics Data System (ADS)
Malik, D. S.; Jain, C. K.; Yadav, Anuj K.
2017-09-01
Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.
Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification
Ingrid C. Hoeger; Sandeep S. Nair; Arthur J. Ragauskas; Yulin Deng; Orlando J. Rojas; J.Y. Zhu
2013-01-01
Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider®. The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and...
Effect of Nonionic Surfactants on the Stability of Hydrophobic Colloids.
1987-07-30
as a point of referen e for the data with the polyoxyethlated alkylphenols . The surfactant selected was the C12E12. The reason for the selection was...ccnsequently in the stability of disper- sion. One may expect that the adsorption of polyoxyethylated alkylphenols , with the aromatic ring lying flat on
SERS as analytical tool for detection of bacteria
NASA Astrophysics Data System (ADS)
Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen
2007-07-01
The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.
Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening
NASA Astrophysics Data System (ADS)
de Graaf, J.
2012-06-01
In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our investigation is therefore particularly relevant to current and future experimental studies of colloids. We examine several topics for which shape anisotropy plays an important role: (1.) - Interfacial adsorption. We introduced the triangular-tessellation technique to approximate the surface areas and line length which are associated with a plane-particle intersection. Our method allowed us to determine the free energy of adsorption for a single irregular colloid with heterogeneous surface properties adsorbed at a flat liquid-liquid interface in the Pieranski approximation. Ellipsoids only adsorbed at the interface perpendicular to the interfacial normal. However, for cylinders we could find a metastable adsorption minimum corresponding to parallel adsorption. We also considered the possible time dependence of the adsorption process using simple dynamics. Finally, we studied the adsorption of truncated nanocubes with a contact-angle surface pattern and we observed that there are three prototypical equilibrium adsorption configurations for these particles. (2.) - Crystal-structure prediction. We extended an existing crystal-structure-prediction algorithm to predict structures for systems comprised of irregular hard particles. Using this technique we examined the high-density crystal structures for 17 irregular nonconvex shapes and we confirmed several mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also proved that we have obtained the densest configurations for rhombicuboctahedra and rhombic enneacontrahedra, respectively. Moreover, we considered a family of truncated cubes, which interpolates between a cube and an octahedron, for which we obtained a fascinating richness in crystal structures. For the octahedron we determined the equation of state and we obtained a liquid, a (metastable) body-centred-cubic rotator phase, and a crystal phase. (3.) - Octapod hierarchical self-assembly. We analysed the recently observed hierarchical self-assembly of octapod-shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We constructed an empirical simulation model capable of reproducing the initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions between octapods suspended in an (a)polar medium were obtained by means of a Hamaker-de-Boer-type integration and the nature of these interactions allowed us to justify elements of our empirical model. We used the theoretical vdW calculation, together with the experimental and simulation results, to formulate a mechanism which explained the observed self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod interactions. (4.) - Ionic screening of charged Janus particles. We studied the screening of charged Janus particles in an electrolyte by primitive-model Monte Carlo (MC) simulations for a wide variety of parameters. We also introduced a method to compare these results to the predictions of nonlinear Poisson-Boltzmann (PB) theory. The comparison of MC and PB results allowed us to probe the range of validity of the PB approximation. This range of validity corresponds well to the range that was predicted by field-theoretical studies of homogeneously charged flat surfaces.
Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore
NASA Astrophysics Data System (ADS)
Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong
2016-12-01
The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.
Protein adsorption on tailored substrates: long-range forces and conformational changes
NASA Astrophysics Data System (ADS)
Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.
2008-10-01
Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.
Zhao, P; Takizawa, S; Katayama, H; Ohgaki, S
2005-01-01
Two pilot-scale powdered activated carbon-microfiltration (PAC-MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60-80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(ll) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.
Cauwenberg, P; Verdonckt, F; Maes, A
1998-01-19
The particle size distribution and the metal speciation of the heavy metals were investigated on dredged sediment and on the fractions obtained by mechanical agitated (Denver) flotation. The transition metal ions (cadmium, copper, lead and zinc) were flotated specifically independent of the particle size. Particle size analysis, EDTA extraction and sequential extracts indicated that during flotation a redistribution of metals occurred due to the oxidation of metal sulphides. This oxidation process was more pronounced when the flotation was performed at higher pH values and resulted in a decrease in flotation specificity.
Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin
2012-05-30
A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara
2016-10-04
The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.
Cerbelaud, Manuella; Videcoq, Arnaud; Alison, Lauriane; Tervoort, Elena; Studart, André R
2017-12-19
Emulsions stabilized by mixtures of particles and amphiphilic molecules are relevant for a wide range of applications, but their dynamics and stabilization mechanisms on the colloidal level are poorly understood. Given the challenges to experimentally probe the early dynamics and mechanisms of droplet stabilization, Brownian dynamics simulations are developed here to study the behavior of oil-in-water emulsions stabilized by colloidal particles modified with short amphiphiles. Simulation parameters are based on an experimental system that consists of emulsions obtained with octane as the oil phase and a suspension of alumina colloidal particles modified with short carboxylic acids as the continuous aqueous medium. The numerical results show that attractive forces between the colloidal particles favor the formation of closely packed clusters on the droplet surface or of a percolating network of particles throughout the continuous phase, depending on the amphiphile concentration. Simulations also reveal the importance of a strong adsorption of particles at the liquid interface to prevent their depletion from the droplet surface when another droplet approaches. Strongly adsorbed particles remain immobile on the droplet surface, generating an effective steric barrier against droplet coalescence. These findings provide new insights into the early dynamics and mechanisms of stabilization of emulsions using particles and amphiphilic molecules.
46 CFR 179.240 - Foam flotation material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Foam flotation material. 179.240 Section 179.240... Requirements § 179.240 Foam flotation material. (a) Foam may only be installed as flotation material on a vessel when approved by the cognizant OCMI. (b) If foam is installed as flotation material on a vessel...
46 CFR 179.240 - Foam flotation material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Foam flotation material. 179.240 Section 179.240... Requirements § 179.240 Foam flotation material. (a) Foam may only be installed as flotation material on a vessel when approved by the cognizant OCMI. (b) If foam is installed as flotation material on a vessel...
Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob
2017-07-01
Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
33 CFR 183.112 - Flotation material and air chambers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a) Flotation...
33 CFR 183.112 - Flotation material and air chambers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a) Flotation...
33 CFR 183.112 - Flotation material and air chambers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a) Flotation...
33 CFR 183.112 - Flotation material and air chambers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a) Flotation...
Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N
2011-10-01
Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
33 CFR 183.114 - Test of flotation materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...
Adsorption of Ca2+ on single layer graphene oxide.
Terracciano, Amalia; Zhang, Jianfeng; Christodoulatos, Christos; Wu, Fengchang; Meng, Xiaoguang
2017-07-01
Graphene oxide (GO) holds great promise for a broad array of applications in many fields, but also poses serious potential risks to human health and the environment. In this study, the adsorptive properties of GO toward Ca 2+ and Na + were investigated using batch adsorption experiments, zeta potential measurements, and spectroscopic analysis. When pH increased from 4 to 9, Ca 2+ adsorption by GO and the zeta potential of GO increased significantly. Raman spectra suggest that Ca 2+ was strongly adsorbed on the GO via -COOCa + formation. On the other hand, Na + was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential. While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca 2+ , it was more stable at higher pH in the NaCl solution. The findings of this research provide insights in the adsorption of Ca 2+ on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment. Copyright © 2017. Published by Elsevier B.V.
System for removal of arsenic from water
Moore, Robert C.; Anderson, D. Richard
2004-11-23
Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.
Adsorption of CGA on colloidal silver particles: DFT and SERS study
NASA Astrophysics Data System (ADS)
Biswas, Nandita; Kapoor, Sudhir; Mahal, Harbir S.; Mukherjee, Tulsi
2007-08-01
Raman and surface-enhanced Raman scattering (SERS) of chlorogenic acid (CGA) have been investigated. CGA is an important plant metabolite with anti-viral and anti-bacterial properties and thus, it is useful to study its surface adsorption characteristics. The experimental Raman data is supported with DFT calculations using B3LYP functional with 6-31G ∗ and LANL2DZ basis set. This is the first report on the vibrational analysis of CGA and its silver complex. From the SERS spectra as well as theoretical calculations, it has been inferred that the molecule is chemisorbed to the silver surface through the oxygen atoms of the carboxylate group.
Zhu, Fei-Die; Choo, Kwang-Ho; Chang, Hyun-Shik; Lee, Byunghwan
2012-05-01
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Water structure and its influence on the flotation of carbonate and bicarbonate salts.
Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D
2007-10-15
Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of the surface charge behavior of commercial silicon nitride and silicon carbide powders
NASA Technical Reports Server (NTRS)
Whitman, Pamela K.; Feke, Donald L.
1988-01-01
The adsorption and desorption of protons from aqueous solution onto the surfaces of a variety of commercial silicon carbide and silicon nitride powders has been examined using a surface titration methodology. This method provides information on some colloidal characteristics, such as the point of zero charge (pzc) and the variation of proton adsorption with dispersion pH, useful for the prediction of optimal ceramic-processing conditions. Qualitatively, the magnitude of the proton adsorption from solution reveals small differences among all of the materials studied. However, the results show that the pzc for the various silicon nitride powders is affected by the powder synthesis route. Complementary investigations have shown that milling can also act to shift the pzc exhibited by silicon nitride powder. Also, studies of the role of the electrolyte in the development of surface charge have indicated no evidence of specific adsorption of ammonium ion on either silicon nitride or silicon carbide powders.
NASA Astrophysics Data System (ADS)
Zou, Hua; Melro, Liliana; de Camargo Chaparro, Thaissa; de Souza Filho, Isnaldi Rodrigues; Ananias, Duarte; Bourgeat-Lami, Elodie; dos Santos, Amilton Martins; Barros-Timmons, Ana
2017-02-01
The use of a macromolecular RAFT (macro-RAFT) agent to encapsulate anisotropic nano-objects via emulsion polymerization is an emerging route to prepare polymer/inorganic colloidal nanocomposites. However, a number of requirements have to be fulfilled. This work aims at highlighting the effects of the preparative procedure and dispersion method on the amount of macro-RAFT agent adsorbed onto SiO2-coated Gd2O3:Eu3+ nanorods. The adsorption of macro-RAFT agent was studied using the depletion method with UV-vis spectrophotometry. Measurements were performed at a fixed concentration of nanorods and varying concentrations of the macro-RAFT agent in aqueous dispersion at room temperature. The adsorption isotherms showed that for the same initial macro-RAFT agent concentration, the highest adsorption capacity of the macro-RAFT agent on nanorods was usually achieved for non-calcined thin SiO2-coated nanorods under mild bath sonication.
Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua
2016-03-01
Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harvey, R.W.; Garabedian, S.P.
1991-01-01
??? A filtration model commonly used to describe removal of colloids during packed-bed filtration in water treatment applications was modified for describing downgradient transport of bacteria in sandy, aquifer sediments. The modified model was applied to the results of a small-scale (7 m), natural-gradient tracer test and to observations of an indigenous bacterial population moving downgradient within a plume of organically contaminated groundwater in Cape Cod, MA. The model reasonably accounted for concentration histories of labeled bacteria appearing at samplers downgradient from the injection well in the tracer experiment and for the observed 0.25-??m increase in average cell length for an unlabeled, indigenous bacterial population, 0.6 km downgradient from the source of the plume. Several uncertainties were apparent in applying filtration theory to problems involving transport of bacteria in groundwater. However, adsorption (attachment) appeared to be a major control of the extent of bacterial movement downgradient, which could be described, in part, by filtration theory. Estimates of the collision efficiency factor, which represents the physicochemical factors that determine adsorption of the bacteria onto the grain surfaces, ranged from 5.4 ?? 10-3 to 9.7 ?? 10-3.
Stankus, Dylan P; Lohse, Samuel E; Hutchison, James E; Nason, Jeffrey A
2011-04-15
The adsorption of natural organic matter (NOM) to the surfaces of natural colloids and engineered nanoparticles is known to strongly influence, and in some cases control, their surface properties and aggregation behavior. As a result, the understanding of nanoparticle fate, transport, and toxicity in natural systems must include a fundamental framework for predicting such behavior. Using a suite of gold nanoparticles (AuNPs) with different capping agents, the impact of surface functionality, presence of natural organic matter, and aqueous chemical composition (pH, ionic strength, and background electrolytes) on the surface charge and colloidal stability of each AuNP type was investigated. Capping agents used in this study were as follows: anionic (citrate and tannic acid), neutral (2,2,2-[mercaptoethoxy(ethoxy)]ethanol and polyvinylpyrrolidone), and cationic (mercaptopentyl(trimethylammonium)). Each AuNP type appeared to adsorb Suwannee River Humic Acid (SRHA) as evidenced by measurable decreases in zeta potential in the presence of 5 mg C L(-1) SRHA. It was found that 5 mg C L(-1) SRHA provided a stabilizing effect at low ionic strength and in the presence of only monovalent ions while elevated concentrations of divalent cations lead to enhanced aggregation. The colloidal stability of the NPs in the absence of NOM is a function of capping agent, pH, ionic strength, and electrolyte valence. In the presence of NOM at the conditions examined in this study, the capping agent is a less important determinant of stability, and the adsorption of NOM is a controlling factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin; Li, Wenbin; Zhu, Mao
2014-03-15
The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates thatmore » self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.« less
Leal, Paulo Vitor Brandão; Magriotis, Zuy Maria; Sales, Priscila Ferreira de; Papini, Rísia Magriotis; Viana, Paulo Roberto de Magalhães
2017-07-15
The present work evaluated the effect of the acid treatment conditions of natural kaolinite (NK) regarding its efficiency in removing etheramine. The treatment was conducted using sulfuric acid at the concentrations of 1 mol L -1 (KA-01), 2 mol L -1 (KA-02) and 5 mol L -1 (KA-05) at 85 °C. The obtained adsorbents were characterized by X-ray fluorescence, X-ray diffraction, N 2 adsorption/desorption isotherms, zeta potential analysis and infrared spectroscopy. The Response Surface Method was used to optimize adsorption parameters (initial concentration of etheramine, adsorbent mass and pH of the solution). The results, described by means of a central composite design, were adjusted to the quadratic model. Results revealed that the adsorption was more efficient at the etheramine concentration of 400 mg L -1 , pH 10 and adsorbent mass of 0.1 g for NK and 0.2 g for KA-01, KA-02 and KA-05. The sample KA-02 presented a significant increase of etheramine removal compared to the NK sample. The adsorption kinetics conducted under optimized conditions showed that the system reached the equilibrium in approximately 30 min. The kinetic data were better adjusted to the pseudo-second order model. The isotherm data revealed that the Sips model was the most adequate one. The calculation of E ads allowed to infer that the mechanism for etheramine removal in all the evaluated samples was chemisorption. The reuse tests showed that, after four uses, the efficiency of adsorbents in removing etheramine did not suffer significant modifications, which makes the use of kaolinite to treat effluents from the reverse flotation of iron ore feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Christie, J; Schwan, E V; Bodenstein, L L; Sommerville, J E M; van der Merwe, L L
2011-06-01
Several faecal examination techniques have shown variable sensitivity in demonstrating Spirocerca lupi (S. lupi) eggs. The objective of this study was to determine which faecal examination technique, including a novel modified centrifugal flotation technique, was most sensitive to diagnose spirocercosis. Ten coproscopic examinations were performed on faeces collected from 33 dogs confirmed endoscopically to have spirocercosis. The tests included a direct faecal examination, a faecal sedimentation/flotation test, 4 direct faecal flotations and 4 modified faecal centrifugal flotations. These latter 2 flotation tests utilised 4 different faecal flotation solutions: NaNO3 (SG 1.22), MgSO4 (SG 1.29), ZnSO4 (SG 1.30) and sugar (SG 1.27). The sensitivity of the tests ranged between 42% and 67%, with the NaNO3 solution showing the highest sensitivity in both the direct and modified-centrifugal flotations. The modified NaNO3 centrifugal method ranked 1st with the highest mean egg count (45.24 +/- 83), and was superior (i.e. higher egg count) and significantly different (P < 0.05) compared with the routine saturated sugar, ZnSO4 and MgSO4 flotation methods. The routine NaNO3 flotation method was also superior and significantly different (P < 0.05) compared with the routine ZnSO4 and MgSO4 flotation methods. Fifteen per cent (n = 5) of dogs had neoplastic oesophageal nodules and a further 18% (n = 6) had both neoplastic and non-neoplastic nodules. S. lupi eggs were demonstrated in 40% of dogs with neoplastic nodules only and 72.9% of the dogs with non-neoplastic nodules. The mean egg count in the non-neoplastic group (61) was statistically greater (P = 0.02) than that of the neoplastic group (1). The results show that faecal examination using a NaNO3 solution is the most sensitive in the diagnosis of spirocercosis. The modified centrifugal flotation faecal method using this solution has the highest egg count. The study also found that dogs with neoplastic nodules shed significantly fewer eggs than dogs with non-neoplastic nodules.
Porous Networks Through Colloidal Templates
NASA Astrophysics Data System (ADS)
Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich
Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.
33 CFR 183.322 - Flotation materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet the...
33 CFR 183.322 - Flotation materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet the...
33 CFR 183.322 - Flotation materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet the...
The effect of iron and copper impurities on the wettability of sphalerite (110) surface.
Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R
2011-07-15
The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.
Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore
NASA Astrophysics Data System (ADS)
Otsuki, A.; Yue, C.
2017-07-01
This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.
The Management of Lead Concentrate Acquisition in "Trepca"
NASA Astrophysics Data System (ADS)
Haxhiaj, Ahmet; Fan, Maoming; Haxhiaj, Bajram
Based on the placement of lead and its consumption in industry branches, the paper deals with the composition of lead in the ores of Kopaonik, grinding and flotation recovery of galena. In the flotation process, the flotation machine, the flotation reagents, chemical composition of the flotation concentrates and tailings were discussed in this paper. Verification of the chemical composition of Pb concentrates with Pb, Zn, and Ag, etc. was conducted in this study. It is special that the ratio of Pb to Zn in Kopaonik massive composition is 1.4:1.0. During the flotation, lead tends to float with concentrate more than allowed. In this investigation, effects have been made to minimize the loss of Pb to concentrates. This paper as such gave the first effects in optimizing of these parameters with positive effects in the flotation process in Trepca.
Wang, Chong-Qing; Wang, Hui; Huang, Luo-Luo
2017-07-01
A novel process was proposed for separation of ternary waste plastics by froth flotation. Pretreatment of plastics with potassium permanganate (KMnO 4 ) solution was conducted to aid flotation separation of polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) plastics. The effect of pretreatment parameters including KMnO 4 concentration, treatment time, temperature and stirring rate on flotation recovery were investigated by single factor experiments. Surface treatment with KMnO 4 changes selectively the flotation behavior of PC, PVC and PMMA, enabling separation of the plastics by froth flotation. Mechanism of surface treatment was studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). Effect of frother concentration and flotation time on flotation behavior of plastic mixtures was further studied for flotation separation. The optimized conditions for separation of PC are KMnO 4 concentration 2mmolL -1 , treatment time 10min, temperature 60°C, stirring rate 300rpm, flotation time 1min and frother concentration 17.5mgL -1 . Under optimum conditions, PVC and PMMA mixtures are also separated efficiently by froth flotation associated with KMnO 4 treatment. The purity of PC, PVC and PMMA is up to 100%, 98.41% and 98.68%, while the recovery reaches 96.82%, 98.71% and 98.38%, respectively. Economic analysis manifests remarkable profits of the developed process. Reusing KMnO 4 solution is feasible, enabling the process greener. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pokrovsky, O S; Shirokova, L S
2013-02-01
This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O₂ measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO₄, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (<1 kDa) and high molecular weight (HMW) colloids (1 kDa-0.22 μm) and to assess their diurnal pattern. Colloidal Al and Fe were the highest during the night, when the contribution of HMW allochthonous colloids was maximal. Typical insoluble trivalent and tetravalent elements exhibited constant complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element behavior during cyanobacterial bloom in the water column--constant concentration and sinusoidal variations--likely depend on element speciation in solution and their relative affinity to surfaces of aquatic microorganisms and complexation with authochthonous and allochthonous organic matter. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit
2015-05-01
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01006c
Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview.
Lofrano, Giusy; Carotenuto, Maurizio; Libralato, Giovanni; Domingos, Rute F; Markus, Arjen; Dini, Luciana; Gautam, Ravindra Kumar; Baldantoni, Daniela; Rossi, Marco; Sharma, Sanjay K; Chattopadhyaya, Mahesh Chandra; Giugni, Maurizio; Meric, Sureyya
2016-04-01
Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.
Jiang, Jun; Dai, Zhaoxia; Sun, Rui; Zhao, Zhenjie; Dong, Ying; Hong, Zhineng; Xu, Renkou
2017-07-01
Iron oxides are dominant effective adsorbents for arsenate in iron oxide-rich variable charge soils. Oxisol-derived paddy soils undergo intensive ferrolysis, which results in high leaching and transformation of iron oxides. However, little information is available concerning the effect of ferrolysis on arsenate adsorption by paddy soil and parent Oxisol. In the present study, we examined the arsenate affinity of soils using arsenate adsorption/desorption isotherms, zeta potential, adsorption kinetics, pH effect and phosphate competition experiments. Results showed that ferrolysis in an alternating flooding-drying Oxisol-derived paddy soil resulted in a significant decrease of free iron oxides and increase of amorphous iron oxides in the surface and subsurface layers. There were more reactive sites exposed on amorphous than on crystalline iron oxides. Therefore, disproportionate ratios of arsenate adsorption capacities and contents of free iron oxides were observed in the studied Oxisols compared with paddy soils. The Gibbs free energy values corroborated that both electrostatic and non-electrostatic adsorption mechanisms contributed to the arsenate adsorption by bulk soils, and the kinetic adsorption data further suggested that the rate-limiting step was chemisorption. The zeta potential of soil colloids decreased after arsenate was adsorbed on the surfaces, forming inner-sphere complexes and thus transferring their negative charges to the soil particle surfaces. The adsorption/desorption isotherms showed that non-electrostatic adsorption was the main mechanism responsible for arsenate binding to the Oxisol and derived paddy soils, representing 91.42-94.65% of the adsorption capacities. Further studies revealed that arsenate adsorption was greatly inhibited by increasing suspension pH and incorporation of phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...
2017-02-24
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S
2017-03-15
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Gao, B.; Steenhuis, T. S.
2008-12-01
Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.
Roles of surfactants in flotation deinking
Yulin Zhao; Yulin Deng; J.Y. Zhu
2004-01-01
Flotation deinking is a common practice for removing ink from wastepaper, and it is becoming a key process in many recycling paper mills. Flotation deinking was successfully introduced to the paper recycling industry in the 1980s, and its applications in wax removal, sticky control, and fiber fractionation have attracted great research interest. A successful flotation...
46 CFR 25.25-13 - Personal flotation device lights.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that is...
46 CFR 25.25-13 - Personal flotation device lights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that is...
46 CFR 25.25-13 - Personal flotation device lights.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that is...
46 CFR 25.25-13 - Personal flotation device lights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that is...
46 CFR 25.25-13 - Personal flotation device lights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that is...
Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri
2009-02-01
This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla-Spears, R.; Wong, L.; Shen, N.
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
Adsorption of heavy metals on amine-functionalized MCM-48
NASA Astrophysics Data System (ADS)
Taba, P.; Budi, P.; Puspitasari, A. Y.
2017-04-01
The ordered mesoporous silica with cubic structure, MCM-48 was synthesized by post-synthesis under basic media using colloidal silica, cetyltrimethylammonium bromide, and Triton X-100. The modified material, NH2-MCM-48 was prepared using 3-aminopropyl trimetoxysilane (3-APTMS). X-ray diffraction and FT-IR were used to characterize the samples. The modified material was utilized for adsorption of Cu2+and Mn2+ from aqueous solution. Parameters used for studying the adsorption process were pH, time of contact, and the initial concentrations of Cu2+ and Mn2+ ions. Desorption of ions from the adsorbent was also studied using several desorbing agents. The pseudo-second order was found to be the kinetic order for the metals adsorption. The adsorption of Cu2+ and Mn2+ on NH2-MCM-48 was fixed by the Langmuir model better than the Freundlich model with the capacity of 0.52 and 0.80 mmol g-1 for Cu2+ and Mn2+, respectively. The best desorbing agents for removing the adsorbed Cu2+ and Mn2+ from the adsorbent were 1 M HNO3 and 1 M HC1, respectively.
Ward, Keeran; Xi, Jingshu; Stuckey, David C
2015-12-01
The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.
The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.
Kaptay, George
2018-06-01
In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science. Copyright © 2018 Elsevier B.V. All rights reserved.
A molecular investigation of adsorption onto mineral pigments
NASA Astrophysics Data System (ADS)
Ninness, Brian J.
Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces of the modified pigments are dominated by the presence of TiO2. The modified kaolin pigments display increased dispersion stability as compared to the parent kaolin. The electrokinetic behavior of the modified kaolin is shown to be identical to that of pure TiO2 pigments.
The role of mineral surface chemistry in modified dextrin adsorption.
Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A
2011-05-15
The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of graphite, and thus has more potential for use as a polymer depressant in this separation. Copyright © 2011 Elsevier Inc. All rights reserved.
An investigative study of polymer adsorption onto montmorillonite clay
NASA Astrophysics Data System (ADS)
McConnell Boykin, Cheri Lynn
For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the nonionic polymers act as H-bond acceptors (amide and acid moieties) and donators (acid groups) which result in associatively stabilized homogeneous montmorillonite clay dispersions. The cationic copolymers exhibit strong, irreversible interactions with the clay resulting in heterogeneous bridging flocculation, which was shown to be dependent on the charge density of the copolymer. Furthermore, the anionic copolymers show no signs of adsorption, but create a network of repulsive forces with the montmorillonite clay, which ultimately results in depletion stabilization with some degree of depletion flocculation.
Selective flotation of inorganic sulfides from coal
Miller, Kenneth J.; Wen, Wu-Wey
1989-01-01
Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.
Physically absorbable reagents-collectors in elementary flotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.A. Kondrat'ev; I.G. Bochkarev
2007-09-15
Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.
Flotation machine and process for removing impurities from coals
Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.
1995-12-05
The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other mineral particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.
Flotation machine and process for removing impurities from coals
Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.
1995-01-01
The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.
Flotation machine and process for removing impurities from coals
Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.
1997-02-11
The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.
Flotation machine and process for removing impurities from coals
Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.
1997-01-01
The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.
Cordeiro, Thiago G; Hidalgo, Pilar; Gutz, Ivano G R; Pedrotti, Jairo J
2010-07-15
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide, CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon=65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer's law is obeyed in a 1x10(-6) to 2x10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r=0.999) and a detection limit of 3.1x10(-7) mol L(-1), corresponding to 38 microg L(-1). At flow rates of 200 microL min(-1) of the donor stream and 100 microL min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD<2.3% (n=10, 300 microL injections of 1x10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. Copyright 2010 Elsevier B.V. All rights reserved.
Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese
2015-01-01
In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.
Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy.
Johnson; Yuan; Lenhoff
2000-03-15
The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.
Morozesk, Mariana; Franqui, Lidiane S; Mansano, Adrislaine S; Martinez, Diego Stéfani T; Fernandes, Marisa N
2018-05-05
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Karamon, Jacek; Ziomko, Irena; Cencek, Tomasz; Sroka, Jacek
2008-10-01
The modification of flotation method for the examination of diarrhoeic piglet faeces for the detection of Isospora suis oocysts was elaborated. The method was based on removing fractions of fat from the sample of faeces by centrifugation with a 25% Percoll solution. The investigations were carried out in comparison to the McMaster method. From five variants of the Percoll flotation method, the best results were obtained when 2ml of flotation liquid per 1g of faeces were used. The limit of detection in the Percoll flotation method was 160 oocysts per 1g, and was better than with the McMaster method. The efficacy of the modified method was confirmed by results obtained in the examination of the I. suis infected piglets. From all faecal samples, positive samples in the Percoll flotation method were double the results than that of the routine method. Oocysts were first detected by the Percoll flotation method on day 4 post-invasion, i.e. one-day earlier than with the McMaster method. During the experiment (except for 3 days), the extensity of I. suis invasion in the litter examined by the Percoll flotation method was higher than that with the McMaster method. The obtained results show that the modified flotation method with the use of Percoll could be applied in the diagnostics of suckling piglet isosporosis.
Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C
2018-01-16
Aluminum hydroxide (AH) salts are the most widely used adjuvants in vaccine formulation. They trigger immunogenicity from antigenic subunits that would otherwise suffer from a lack of efficiency. Previous studies focusing on antigen-AH interaction mechanisms, performed with model proteins, suggested that electrostatic interactions and phosphate-hydroxyl ligand exchanges drive protein adsorption on AH. We however recently evidenced that NaCl, used in vaccine formulation, provokes AH particle aggregation. This must be taken into account to interpret data related to protein adsorption on AH. Here, we report on the successful development and use of a stable AH-coated surface to explore the mechanisms of protein adsorption by means of ultrasensitive surface analysis tools. Bovine serum albumin (BSA) adsorption was studied at different pHs and ionic strengths (I) using quartz crystal microbalance. The results show that protein adsorption on the AH adjuvant cannot be explained solely by electrostatic interactions and ligand exchanges. Hence, a higher adsorption was observed at pH 3 compared to pH 7, although AH and BSA respectively undergo repulsive and attractive electrostatic interactions at these pH values. Almost no effect of I on adsorption was moreover noted at pH 7. These new developments and observations not only suggest that other mechanisms govern protein adsorption on AH but also offer a new platform for the study of antigen adsorption in the context of vaccine formulation. Immobilizing particles on QCM sensors also enriches the range of applications for which QCM can be exploited, especially in colloid science.
Selective flotation of inorganic sulfides from coal
Miller, K.J.; Wen, Wu-Wey
1988-05-31
Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.
Semi-industrial experimental study on bauxite separation using a cell-column integration process
NASA Astrophysics Data System (ADS)
Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You
2016-01-01
The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.
Loh, A G; Israf, D A
1998-03-01
The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.
Improved flotation performance of hematite fines using citric acid as a dispersant
NASA Astrophysics Data System (ADS)
Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan
2016-10-01
In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.
Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles
NASA Astrophysics Data System (ADS)
Filippov, L. O.; Royer, J. J.; Filippova, I. V.
2017-07-01
The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.
NASA Astrophysics Data System (ADS)
Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.
2017-07-01
The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.
Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas
2016-02-17
Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.
Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.
1992-01-01
A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.
Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.
1995-01-01
An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.
Yoon, R.H.; Adel, G.T.; Luttrell, G.H.
1995-03-14
An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.
Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.
1998-01-01
A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.
Stewart, Alan; Bell, Steven E J
2011-04-21
Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately. © The Royal Society of Chemistry 2011
Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre
2011-12-29
We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society
Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions
NASA Astrophysics Data System (ADS)
Hirano, Atsushi; Gao, Weilu; He, Xiaowei; Kono, Junichiro
2017-01-01
The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.
Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.
Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen
2008-07-15
TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.
Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong
2016-06-01
ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.
Cao, Mingli; Liu, Qi
2006-09-15
Zinc sulfate is a well-known selective depressant for zinc sulfide minerals such as sphalerite during the flotation of complex Cu-Pb-Zn sulfide ores. It deactivates sphalerite flotation by substituting the activating metal ions, and depresses sphalerite flotation by forming hydrophilic coatings of zinc hydroxyl species on sphalerite surfaces. However, we recently observed that zinc sulfate could also induce coagulation of fine sphalerite particles and such coagulation significantly reduced the mechanical entrainment of the fine sphalerite. Therefore, it seems that the effectiveness of zinc sulfate as a selective sphalerite depressant is not only due to its ability to make mineral surface hydrophilic, which reduces genuine flotation, but also due to its ability to coagulate the mineral, which reduces mechanical entrainment. Zinc sulfate is a "dual function" selective flotation depressant.
Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia
2018-03-01
Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.
Beneficiation of borax by reverse flotation in boron saturated brine.
Cafer Cilek, Emin; Uresin, Hasan
2005-10-15
Flotation is one of the plausible methods for recovering borax fines discharged as fine waste to the tailings dam in the Kirka borax processing plant. A literature review dealing with the flotation behavior of boron minerals reveals that clay minerals in the boron ores coat boron minerals and thus deteriorate the quality of boron concentrates produced by direct flotation. The main objective of this study is therefore to recover borax fines from the tailings of the concentrator by reverse flotation. A three-level-factor experimental design was used to determine the main and interaction effects of variables selected on the metallurgical performance of reverse flotation. An analysis of variance for experimental results indicates that interaction effects of the variables for concentrate quality and recovery of B2O3 is nonsignificant and the most important variable for grade of concentrate and recovery is the collector dosage. It is shown that a concentrate assaying 11.25% B2O3 with 89.90% B2O3 recovery could be produced by means of single-stage (rougher) reverse flotation. Additionally, in order to produce a sufficient-quality concentrate, a multistage reverse flotation scheme involving rougher, scavenger, and two cleaners was devised. A final concentrate containing 23.47% B2O3 with 81.78% B2O3 recovery was obtained from these tests. The reverse flotation method can be thus considered as an important option for the beneficiation of borax fines.
Egg flotation estimates nest age for Pacific and Red-throated Loons
Rizzolo, Daniel; Schmutz, Joel A.
2007-01-01
We used Pacific Loon (Gavia pacifica) and Red-throated Loon (G. stellata) nests with known ages to gauge the efficacy of egg flotation for determining nest age in coastal Alaska. Egg flotation accurately estimated nest age for both species; the mean ± 1SD difference between known age and age determined with egg flotation was - 0.05 ± 2.00 d and -0.02 ± 1.63 d for Pacific and Red-throated Loons, respectively. Day of nest initiation did not influence the relationship between known nest age and nest age estimated with egg flotation, indicating incubation period was not shortened in nests initiated later in the season. Additionally, we found no difference in the ability of egg flotation to estimate nest age between two widely dispersed study sites for Pacific Loons, and only a small difference between two of three widely dispersed study sites for Red-throated Loons. Thus, our described relationships between egg flotation categories and nest age should be broadly applicable for these holarctic species. We conclude that for Pacific and Red-throated Loons, egg flotation is a useful technique for determining nest age in the field to better monitor nest fate, and to quantify nest age effects on nest daily survival rate.
Yoon, R.H.; Adel, G.T.; Luttrell, G.H.
1992-12-01
A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.
Yoon, R.H.; Adel, G.T.; Luttrell, G.H.
1998-09-29
A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.
Adsorption of reovirus by minerals and soils.
Moore, R S; Taylor, D H; Reddy, M M; Sturman, L S
1982-01-01
Adsorption of [35S]methionine-labeled reovirus by 30 dry soils, minerals, and finely ground rocks suspended in synthetic freshwater at pH 7 was investigated to determine the conditions necessary for optimum virus removal during land application of wastewaters. All of the minerals and soils studied were excellent adsorbents of reovirus, with greater than 99% of the virus adsorbed after 1 h at 4 degrees C. Thereafter, virus remaining in suspension was significantly inactivated, and within 24 h a three to five log10 reduction in titer occurred. The presence of divalent cations, i.e., Ca2+ and Mg2+, in synthetic freshwater enhanced removal, whereas soluble organic matter decreased the amount of virus adsorbed in secondary effluent. The amount of virus adsorbed by these substrates was inversely correlated with the amount of organic matter, capacity to adsorb cationic polyelectrolyte, and electrophoretic mobility. Adsorption increased with increasing available surface area, as suspended infectivity was reduced further by the more finely divided substrates. However, the organic content of the soils reduced the level of infectious virus adsorbed below that expected from surface area measurements alone. The inverse correlation between virus adsorption and substrate capacity for cationic polyelectrolyte indicates that the adsorption of infectious reovirus particles is predominately a charged colloidal particle-charged surface interaction. Thus, adsorption of polyelectrolyte may be useful in predicting the fate of viruses during land application of sewage effluents and sludges. PMID:7149717
Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C
2014-08-30
Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.
Hildebrand, Annegret; Schaedlich, Anita; Rothe, Ulrich; Neubert, Reinhard H H
2002-05-15
A quartz crystal microbalance was used to investigate the adsorption behavior of liposomes and mixed micelles with attached carbohydrate recognition structures at lectin-coated quartz plates. With a self-assembly technique, the quartz was coated with the lectin Concanavalin A. In a first attempt, liposomes of natural soybean PC as well as synthetic POPC, containing 10% reactive N-Glut-PE each, were decorated with a mannopyranoside recognition structure to investigate the specific adsorption at the lectin-coated quartz surface in dependence on the concentration. In a second model, the bile salt sodium cholate was introduced to solubilize the mannopyranoside-modified liposomes and to transform them into mannopyranoside-modified binary mixed micelles. The adsorption of these micelles was further investigated. In a third approach, the adsorption behavior of mannopyranoside-modified ternary mixed bile salt-phosphatidylcholine-fatty acid micelles was characterized with sodium laurate, palmitate, and oleate as fatty acids. The micelles with oleate showed only a small frequency decrease, whereas the micelles with laurate and palmitate induced higher frequency changes. A dependence on the alkyl chain length could be detected. While the adsorption of liposomes containing recognition structures at QCM surfaces is nowadays well-established, the QCM detection of the adsorption of mixed bile salt micelles, transformed from these liposomes by solubilization, is a novel and very promising field for the development of innovative colloidal drug delivery systems.
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
NASA Astrophysics Data System (ADS)
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
Switching and optimizing control for coal flotation process based on a hybrid model
Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang
2017-01-01
Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305
Effective harvesting of microalgae by coagulation–flotation
Xia, Ling; Li, Yinta; Huang, Rong
2017-01-01
This study developed a coagulation–flotation process for microalgae Chlorella sp. XJ-445 harvesting, which was composed of algal surface modification by combined use of Al3+ and cetyltrimethylammonium bromide (CTAB) and followed dispersed bubble flotation. Dissolved organic matter (DOM) in the medium was firstly characterized and mainly consisted of hydrophilic low molecular weight molecules. The dosage of collector (CTAB) and coagulant (Al3+) were optimized, and with the pretreatment of 40 mg Al3+ and 60 mg CTAB per 1 g dry biomass without pH adjustment, a maximum flotation recovery efficiency of 98.73% can be achieved with the presence of DOM. Algal cells characterization results showed that the combined use of CTAB and Al3+ largely enhanced the algal floc size, and exhibited higher degree of hydrophobicity, which favoured the flotation, and can be interpreted by DLVO (Derjaguin, Landau, Verwey and Overbeek) modelling. A benefit in fatty acid conversion was further found with the optimized coagulation–flotation process. It was suggested that this coagulation based flotation is a promising strategy for high-efficiency harvesting of microalgae. PMID:29291079
NASA Astrophysics Data System (ADS)
Klein, Bern; Altun, Naci Emre; Ghaffari, Hassan
2016-08-01
The possibility of using a centrifugal-gravity concentrator to reject Mg-bearing minerals and minimize metal losses in the flotation of base metals was evaluated. Sample characterization, batch scoping tests, pilot-scale tests, and regrind-flotation tests were conducted on a Ni flotation tailings stream. Batch tests revealed that the Mg grade decreased dramatically in the concentrate products. Pilot-scale testing of a continuous centrifugal concentrator (Knelson CVD6) on the flotation tailings revealed that a concentrate with a low mass yield, low Mg content, and high Ni upgrade ratio could be achieved. Under optimum conditions, a concentrate at 6.7% mass yield was obtained with 0.85% Ni grade at 12.9% Ni recovery and with a low Mg distribution (1.7%). Size partition curves demonstrated that the CVD also operated as a size classifier, enhancing the rejection of talc fines. Overall, the CVD was capable of rejecting Mg-bearing minerals. Moreover, an opportunity exists for the novel use of centrifugal-gravity concentration for scavenging flotation tailings and/or after comminution to minimize amount of Mg-bearing minerals reporting to flotation.
Innovations in the flotation of fine and coarse particles
NASA Astrophysics Data System (ADS)
Fornasiero, D.; Filippov, L. O.
2017-07-01
Research on the mechanisms of particle-bubble interaction has provided valuable information on how to improve the flotation of fine (<20 µm) and coarse particles (>100 µm) with novel flotation machines which provide higher collision and attachment efficiencies of fine particles with bubbles and lower detachment of the coarse particles. Also, new grinding methods and technologies have reduced energy consumption in mining and produced better mineral liberation and therefore flotation performance.
Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel
2014-12-09
The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandys, M.; Sassoon, R.E.; Rabani, J.
1987-02-12
The formation and decay of the radical cations of 1,4-dimethoxybenzene (DMB) and 1,2,4,5-tetramethoxybenzene (TMB) were investigated by the pulse radiolysis technique in the absence and the presence of colloidal RuO/sub 2/ particles. DMB/sup +/ was obtained only by Tl/sup 2 +/ oxidation of DMB while TMB/sup +/ was produced by oxidation of TMB using both Tl/sup 2 +/ and Br/sub 2//sup -/. In the absence of RuO/sub 2/ both DMB/sup +/ and TMB/sup +/ decay predominantly via a second-order process, although there is a contribution of a pseudo-first-order reaction. The rate constants for these reactions are reported. RuO/sub 2/ colloidalmore » particles catalyze the decay of both TMB/sup +/ and DMB/sup +/. The reactions of TMB/sup +/ with RuO/sub 2/ were found to depend on pH, pulse intensity, and colloid concentration. At pH 3-4, adsorption of TMB/sup +/ to the colloid is observed, followed by the decay of the remaining TMB/sup +/ in the bulk. At higher pHs, loading of the RuO/sub 2/ colloid by positive holes takes place until equilibrium is achieved between loaded holes and TMB/sup +/ and again the remaining TMB/sup +/ decays at a later stage. The fraction of TMB/sup +/ that loads the colloidal particles increases with both pH and (RuO/sub 2/). It is also suggested that DMB/sup +/ loads the RuO/sub 2/ at the pH where experiments were performed. (TMB)/sub 2/ and (DMB)/sub 2/ dimers (or higher oligomers) are suggested to be the final products both in the absence and presence of RuO/sub 2/. No O/sub 2/ is formed with the RuO/sub 2/ colloid despite a favorable redox potential for water oxidation.« less
NASA Astrophysics Data System (ADS)
Gaonkar, O. D.; Nambi, I. M.; G, S. K.
2016-12-01
The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the interactions at soil solid-liquid interface.
Remediation of metal-contaminated urban soil using flotation technique.
Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G
2010-02-01
A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (<20 microm) caused a flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.
Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun
2017-02-01
Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sorption/Desorption Interactions of Plutonium with Montmorillonite
NASA Astrophysics Data System (ADS)
Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.
2012-12-01
Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161
FLOCCULATION-FLOTATION AIDS FOR TREATMENT OF COMBINED SEWER OVERFLOWS
The objectives of this study were to investigate the flocculation/flotation characteristics of combined sewer overflow through laboratory and field testing. The concept involves the introduction of chemicals and buoyant flotation aids into the overflow and the subsequent cofloccu...
Potential application of SERS for arsenic speciation in biological matrices.
Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong
2017-08-01
Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.
NASA Astrophysics Data System (ADS)
Tserendavga, Tsend-Ayush
The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the results from characterization, the extent to which these factors contribute to the loss of sulfide mineral particles in the tailings were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. R. Doshi; J. Dyer
Laboratory research indicates that wax is amenable to removal by froth flotation provided it is free or detached from the fiber. The only effective means, at this time, of maximizing detachment of wax is through the use of low consistency pulping at temperatures above the melting point of wax. Wax removal from WCC through washing, flotation, or a combination of both was approximately 90% in these laboratory studies, indicating that not all of the wax is detached from fibers. These results were summarized in Annual Report 1, December 1, 1997 to November 30, 1998. Pilot trials were conducted in whichmore » the authors simulated a conventional OCC repulping process with and without flotation. Additional aggressive washing and water clarification were also examined during the study. The inclusion of flotation in the OCC stock preparation system significantly improved the removal of wax spots and extractable material from the furnish. Based on this study, the authors predict that a compact flotation system with 2 lb surfactant/ton of fiber would improve the OCC pulp quality with regard to wax spots by 60% and would not negatively affect strength properties. Flotation losses would be in the 2-5% range. Two mill trials were conducted during the last quarter of the project. One trial was carried out at Green Bay Packaging, Green Bay, WI, and a second trial was conducted at Menasha Corporation, Otsego, MI. A 250-liter Voith Sulzer Ecocell was used to evaluate the removal of wax and stickies from the OCC processing systems at these two mills. The inclusion of flotation in the OCC stock preparation system significantly improved the removal of wax spots from the furnish. The data indicate that flotation was more effective in removing wax and stickies than reverse cleaners. The mill trials have demonstrated that flotation can be substituted for or replace existing reverse cleaning systems and, in some cases, can replace dispersion systems. In this manner, the use of flotation can provide significant energy savings when compared to reverse cleaning or dispersion.« less
Characteristic of flotation deinking using bio and synthetic surfactant at different air flow rate
NASA Astrophysics Data System (ADS)
Trismawati, Wardana, I. N. G.; Hamidi, Nurkholis; Sasongko, Mega Nur
2016-03-01
Flotation deinking has industrially applied but several problems keep unsolved because limitations have to compete with several variables present. Flotation deinking is multi variables process, so studying flotation deinking is still interesting. In this research, the amount of variables was reduced and focused to the performance comparison between flotation deinking of old newspaper (ONP) using biodegradable fatty acid of morinda citrifolia as the raw bio surfactant (RBS) and biodegradable fatty acid of palm oil that had been converted to be commercial surfactant (CS). The flotation was done at laboratory flotation cell equipped with orifice at different diameter (orifice number 20, 40 and 60) with adjustable airflow rate. Brightness and Effective Residual Ink Concentration (ERIC) of the deinked pulp were measured. The best results were achieved on orifice number 40 with the highest brightness of 41.96 °ISO and 40.96 °ISO when using CS and RBS respectively, and lowest ERIC of 896.82 ppm and 1001.72 ppm when using CS and RBS respectively. The percentage delta of deinking power characteristic between CS and RBS was 2.36% and 11.70% for brightness and ERIC, respectively.
Kinetic approach to the study of froth flotation applied to a lepidolite ore
NASA Astrophysics Data System (ADS)
Vieceli, Nathália; Durão, Fernando O.; Guimarães, Carlos; Nogueira, Carlos A.; Pereira, Manuel F. C.; Margarido, Fernanda
2016-07-01
The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%-99% of the maximum value of the SE function.
Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation.
Censori, Matteo; La Marca, Floriana; Carvalho, M Teresa
2016-08-01
Froth flotation is a promising technique to separate polymers of similar density. The present paper shows the need for performing kinetic tests to evaluate and optimize the process. In the experimental study, batch flotation tests were performed on samples of ABS and PS. The floated product was collected at increasing flotation time. Two variables were selected for modification: the concentration of the depressor (tannic acid) and airflow rate. The former is associated with the chemistry of the process and the latter with the transport of particles. It was shown that, like mineral flotation, plastics flotation can be adequately assumed as a first order rate process. The results of the kinetic tests showed that the kinetic parameters change with the operating conditions. When the depressing action is weak and the airflow rate is low, the kinetic is fast. Otherwise, the kinetic is slow and a variable percentage of the plastics never floats. Concomitantly, the time at which the maximum difference in the recovery of the plastics in the floated product is attained changes with the operating conditions. The prediction of flotation results, process evaluation and comparisons should be done considering the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Majewski, P; Krysiński, P
2008-01-01
We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.
Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation
Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.
1993-01-01
The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid. ?? 1993.
Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H
2005-01-01
Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be < 1 hour. A cationic polymer combined with iron is used as coagulant at low dosages (i.e. 1-2 mg polymer/l, 5-10 mg Fe/l) resulting in low sludge production (compared to conventional chemical treatment) and sufficient P-removal.
Study on the sulfidation behavior of smithsonite
NASA Astrophysics Data System (ADS)
Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo
2015-02-01
Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.
NASA Astrophysics Data System (ADS)
Larsen, E.; Kleiv, R. A.
2017-12-01
Flotation experiments performed on metallurgical grade silicon have demonstrated that silicon (Si) can be floated in diluted solutions of hydrogen fluoride (HF) and a frother. The recovery was found to depend on HF conditioning time, frother type, and the concentration of both HF and frother. Although Brij 58 produced the highest recoveries of the frothers that was tested, good recoveries were also obtained for Flotanol C07. Chemical analyses showed that the flotation products were purer than the corresponding feed materials, and that most impurity elements were concentrated in the tailings. A case study on cleaning of slag containing 36 pct metallurgical silicon showed promising results concerning the recovery of silicon by flotation.
33 CFR 183.202 - Flotation and certification requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to pass...
33 CFR 183.202 - Flotation and certification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to pass...
Recycling of coal combustion wastes.
Oz, Derya; Koca, Sabina; Koca, Huseyin
2009-05-01
The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.
Sankaran, Revathy; Show, Pau Loke; Lee, Sze Ying; Yap, Yee Jiun; Ling, Tau Chuan
2018-02-01
Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
Kandasamy, Ganesan; Shaleh, Sitti Raehanah Muhamad
2018-01-01
A new approach to recover microalgae from aqueous medium using a bio-flotation method is reported. The method involves utilizing a Moringa protein extract - oil emulsion (MPOE) for flotation removal of Nannochloropsis sp. The effect of various factors has been assessed using this method, including operating parameters such as pH, MPOE dose, algae concentration and mixing time. A maximum flotation efficiency of 86.5% was achieved without changing the pH condition of algal medium. Moreover, zeta potential analysis showed a marked difference in the zeta potential values when increase the MPOE dose concentration. An optimum condition of MPOE dosage of 50ml/L, pH 8, mixing time 4min, and a flotation efficiency of greater than 86% was accomplished. The morphology of algal flocs produced by protein-oil emulsion flocculant were characterized by microscopy. This flotation method is not only simple, but also an efficient method for harvesting microalgae from culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gan, Weibing
A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.
Trueman, Benjamin F; Gagnon, Graham A
2016-07-05
High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.
Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F
2018-05-15
Film-forming polymer latex particles of diameter <300 nm can be prepared in the complete absence of surfactants, stabilised in part by silica nanoparticles through a Pickering type emulsion polymerisation. Control of the silica wettability through modulation of reaction pH or by reaction of the nanoparticles with a hydrophobic silane results in silica-covered latex particles. The oil-in-water polymerisation process used methyl methacrylate (MMA) and n-butyl acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.
General route for the assembly of functional inorganic capsules.
Akartuna, Ilke; Tervoort, Elena; Studart, André R; Gauckler, Ludwig J
2009-11-03
Semipermeable, hollow capsules are attractive materials for the encapsulation and delivery of active agents in food processing, pharmaceutical and agricultural industries, and biomedicine. These capsules can be produced by forming a solid shell of close packed colloidal particles, typically polymeric particles, at the surface of emulsion droplets. However, current methods to prepare such capsules may involve multistep chemical procedures to tailor the surface chemistry of particles or are limited to particles that exhibit inherently the right hydrophobic-hydrophilic balance to adsorb around emulsion droplets. In this work, we describe a general and simple method to fabricate semipermeable, inorganic capsules from emulsion droplets stabilized by a wide variety of colloidal metal oxide particles. The assembly of particles at the oil-water interface is induced by the in situ hydrophobization of the particle surface through the adsorption of short amphiphilic molecules. The adsorption of particles at the interface leads to stable capsules comprising a single layer of particles in the outer shell. Such capsules can be used in the wet state or can be further processed into dry capsules. The permeability of the capsules can be modified by filling the interstices between the shell particles with polymeric or inorganic species. Functional capsules with biocompatible, bioresorbable, heat-resistant, chemical-resistant, and magnetic properties were prepared using alumina, silica, iron oxide, or tricalcium phosphate as particles in the shell.
NASA Astrophysics Data System (ADS)
Sarvaramini, A.; Azizi, D.; Larachi, F.
2016-11-01
Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.
33 CFR 142.45 - Personal flotation devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of a... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Personal flotation devices. 142...
33 CFR 142.45 - Personal flotation devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of a... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Personal flotation devices. 142...
21 CFR 890.3175 - Flotation cushion.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion. (a...
21 CFR 890.3175 - Flotation cushion.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion. (a...
21 CFR 890.3175 - Flotation cushion.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion. (a...
21 CFR 890.3175 - Flotation cushion.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion. (a...
21 CFR 890.3175 - Flotation cushion.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion. (a...
Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung
2005-03-17
Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.
Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight
Davis, J.A.; Gloor, R.
1981-01-01
Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.
21 CFR 880.5550 - Alternating pressure air flotation mattress.
Code of Federal Regulations, 2013 CFR
2013-04-01
... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...
21 CFR 880.5550 - Alternating pressure air flotation mattress.
Code of Federal Regulations, 2010 CFR
2010-04-01
... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...
21 CFR 880.5550 - Alternating pressure air flotation mattress.
Code of Federal Regulations, 2014 CFR
2014-04-01
... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...
21 CFR 880.5550 - Alternating pressure air flotation mattress.
Code of Federal Regulations, 2011 CFR
2011-04-01
... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...
21 CFR 880.5550 - Alternating pressure air flotation mattress.
Code of Federal Regulations, 2012 CFR
2012-04-01
... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology
NASA Astrophysics Data System (ADS)
Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.
2017-06-01
Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.
Kwak, Dong-Heui; Kim, Mi-Sug
2015-01-01
The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.
Modelling the global efficiency of dissolved air flotation.
Leppinen, D M; Dalziel, S B; Linden, P F
2001-01-01
The purpose of this paper is to examine how the efficiency of dissolved air flotation is affected by the size of bubbles and particles. The rise speed of bubble/particle agglomerates is modelled as a function of bubble and particle size, while the kinematics of the bubble attachment process is modelled using the population balance approach adopted by Matsui, Fukushi and Tambo. It is found that flotation, in general, is enhanced by the use of larger particles and larger bubbles. In particular, it is concluded that for the ultra-high surface loading rates of 25 m/hr or more planned for future flotation tanks, bubble size will have to be increased by a factor of two over the size currently employed in many facilities during dissolved air flotation.
Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian
2015-11-01
Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
The roles of fluid motion and other transport phenomena in the morphology of materials
NASA Technical Reports Server (NTRS)
Saville, D. A.
1993-01-01
Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.
The roles of fluid motion and other transport phenomena in the morphology of materials
NASA Astrophysics Data System (ADS)
Saville, D. A.
1993-11-01
Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.
Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin
2015-05-05
Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkov, N. K.
1998-08-27
Titanium dioxide (TiO{sub 2}) colloidal particles ({approximately}45{angstrom}) whose surfaces were modified with chelating agents for photocatalytic removal of heavy-metal ions and their subsequent reduction to metallic form were investigated. Experiments were performed on nanoparticle TiO{sub 2} colloids derivatized with bidentate and tridentate ligands (thiolactic acid [TLA], cysteine, and alanine [ALA]) in batch mode in a photoreactor with 254nm light. We used catalysts designed and synthesized for selective and efficient removal of Pb and Cu with and without added hole scavenger (methanol). Parallel experiments also have been carried out in the dark to study metal ion adsorption properties. Solutions have beenmore » filtered to remove TiO{sub 2}, and metal particulates. Both the native solution and the metal deposited on the nanocrystalline TiO{sub 2} particles were analyzed. Results demonstrate that for the case of lead, the most effective TiO{sub 2} surface modifier was TLA (>99% Pb(II) removed from solution). Experiments performed to study Cn removal using TiO{sub 2} colloids modified with alanine showed that copper ions were effectively removed and reduced to metallic form in the presence of methanol.« less
NASA Astrophysics Data System (ADS)
Carpinone, Paul
Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken together, the data presented in this work indicates that the stability of the PEG coating and the many factors affecting it represent a fundamental limitation to the use of these particles.
Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability.
Pavlovic, Marko; Rouster, Paul; Somosi, Zoltan; Szilagyi, Istvan
2018-08-15
Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes. Copyright © 2018 Elsevier Inc. All rights reserved.
Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Yankun; Liu, Yushan; Zhang, Jianmin
2015-10-01
In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO2/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption experiments. The morphology analyses showed that the SnO2 nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g-1 at a scan rate of 5 mV s-1 in 1 M Na2SO4 electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.
Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan
2012-06-26
Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.
Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents;more » membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.« less
NASA Astrophysics Data System (ADS)
Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn
2017-04-01
Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ. In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage.
Ackerman, Joshua T.; Eagles-Smith, Collin A.
2010-01-01
Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ± 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ± 1.6 days and 1.9 ± 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ± 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ± 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates.
Ackerman, Joshua T.; Eagles-Smith, Collin A.
2010-01-01
Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ?? 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ?? 1.6 days and 1.9 ?? 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ?? 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ?? 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates. ?? The Cooper Ornithological Society 2010.
Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.
2009-01-01
We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.
Colloidal Particle Adsorption at Water-Water Interfaces with Ultralow Interfacial Tension
NASA Astrophysics Data System (ADS)
Keal, Louis; Colosqui, Carlos E.; Tromp, R. Hans; Monteux, Cécile
2018-05-01
Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers Δ F ˜γ Ad≫kBT induced by high interfacial tension (γ ˜10-2 N /m ) and nanoscale surface defects with characteristic areas Ad≃10 - 30 nm2 . For the studied water-water interface with ultralow surface tension (γ ˜10-4 N /m ) we are able to characterize the entire adsorption process and observe equilibrium states prescribed by a single equilibrium contact angle independent of the particle size. Notably, we observe crossovers from fast initial dynamics to slower kinetic regimes analytically predicted for large surface defects (Ad≃500 nm2). Moreover, particle trajectories reveal a position-independent damping coefficient that is unexpected given the large viscosity contrast between phases. These observations are attributed to the remarkably diffuse nature of the water-water interface and the adsorption and entanglement of polymer chains in the semidilute solutions. This work offers some first insights on the adsorption dynamics or kinetics of microparticles at water-water interfaces in biocolloidal systems.
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
Drownproofing and the Water Safety Spectrum.
ERIC Educational Resources Information Center
Smith, David S.
1982-01-01
Drowning has three major causes: (1) inability to swim and/or lack of a personal flotation device; (2) hypothermia; and (3) abuse of alcohol or drugs. Defenses against drowning include: (1) proper use of personal flotation devices; (2) learning swimming and flotation techniques; (3) understanding reduction of heat loss in cold water; and (4)…
Monitoring liquid and solid content in froth using conductivity
J.Y. Zhu; F. Tan; R. Gleisner
2005-01-01
This study reports the feasibility of monitoring liquid and fiber rejection during froth flotation of fiber suspensions through conductivity measurements of the rejected froth. The technique was demonstrated in laboratory flotation experiments using nylon and wood fiber suspensions in two laboratory flotation cells. We found that both the total wet rejection and the...
Production of brown and black pigments by using flotation waste from copper slag.
Ozel, Emel; Turan, Servet; Coruh, Semra; Ergun, Osman Nuri
2006-04-01
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.
Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations
NASA Astrophysics Data System (ADS)
Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna
2014-10-01
This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).
Leaching characteristics of copper flotation waste before and after vitrification.
Coruh, Semra; Ergun, Osman Nuri
2006-12-01
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.
Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long
2017-11-01
A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of bauxite tailing quality improvement by reverse flotation
NASA Astrophysics Data System (ADS)
Wulandari, W.; Purwasasmita, M.; Sanwani, E.; Malatsih, W.; Fadilla, F.
2018-01-01
The pre-treatment of bauxite ore from Tayan, West Kalimantan includes washing and screening fine bauxite particles (-2mm) prior as the feed to the Bayer process for producing alumina. These fine particles are believed to have high content of silica which is detrimental to the process. This washed bauxite tailing still has a significant amount of alumina content. Previous research has indicated that bauxite ore can be upgraded by applying reverse flotation method to reduce its silica content in the ore. Therefore, this study is aimed to utilize reverse flotation method to recover alumina content from washed bauxite tailing. The reverse flotation experiments were carried out at pH of 6 and 8; while the particle sizes were varied at - 140+270 mesh and -270 mesh, using a batch and circuit configuration. The result of this study shows that the batch reverse flotation can recover alumina in the tailing up to 81.4%, however the silica content is still significant. The complexity of silica-alumina minerals in the tailing prevents a complete separation of the ores by only using reverse flotation.
Flotation as a remediation technique for heavily polluted dredged material. 1. A feasibility study.
Cauwenberg, P; Verdonckt, F; Maes, A
1998-01-19
The flotation behaviour of highly polluted dredged material was investigated at different pH values by mechanical agitated (Denver) flotation. Up to 80% of cadmium, copper, lead and zinc could be concentrated in the froth layer which represented only 30% of the total mass. The maximum specificity for heavy metals, defined as the concentrating factor, was obtained at pH 8-9. The maximum recovery of heavy metals on the other hand was found to be reached at elevated pH values (pH 12). In addition the specificity of the flotation process for the transition metals could be assigned to their presence as metal sulphides in the dredged material. However, the interaction with organic matter is an important factor in determining their flotability. The carbonate fraction was irrelevant for the flotation behaviour of heavy metals.
Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.
Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Tsai, Pei-Wen; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Chen, Wen-Ming; Lee, Duu-Jong
2011-01-01
The Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks. The algae removal rate, surface charge, and hydrophobicity of algal cells, and fluorescence characteristics and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined during ozonation. Proteins released from tightly bound AOM are essential to modifying the hydrophobicity of bubble surfaces for easy cell attachment and to forming a top froth layer for collecting floating cells. Humic substances in the suspension scavenge dosed ozone that adversely affects ozone flotation efficiency of algal cells. Copyright © 2010 Elsevier Ltd. All rights reserved.
Reiter, M.E.; Andersen, D.E.
2008-01-01
Both egg flotation and egg candling have been used to estimate incubation day (often termed nest age) in nesting birds, but little is known about the relative accuracy of these two techniques. We used both egg flotation and egg candling to estimate incubation day for Canada Geese (Branta canadensis interior) nesting near Cape Churchill, Manitoba, from 2000 to 2007. We modeled variation in the difference between estimates of incubation day using each technique as a function of true incubation day, as well as, variation in error rates with each technique as a function of the true incubation day. We also evaluated the effect of error in the estimated incubation day on estimates of daily survival rate (DSR) and nest success using simulations. The mean difference between concurrent estimates of incubation day based on egg flotation minus egg candling at the same nest was 0.85 ?? 0.06 (SE) days. The positive difference in favor of egg flotation and the magnitude of the difference in estimates of incubation day did not vary as a function of true incubation day. Overall, both egg flotation and egg candling overestimated incubation day early in incubation and underestimated incubation day later in incubation. The average difference between true hatch date and estimated hatch date did not differ from zero (days) for egg flotation, but egg candling overestimated true hatch date by about 1 d (true - estimated; days). Our simulations suggested that error associated with estimating the incubation day of nests and subsequently exposure days using either egg candling or egg flotation would have minimal effects on estimates of DSR and nest success. Although egg flotation was slightly less biased, both methods provided comparable and accurate estimates of incubation day and subsequent estimates of hatch date and nest success throughout the entire incubation period. ?? 2008 Association of Field Ornithologists.
NASA Astrophysics Data System (ADS)
Lucchetti, G.; Carbone, C.; Consani, S.; Zotti, M.; Di Piazza, S.; Pozzolini, M.; Giovine, M.
2015-12-01
In Acid Mine Drainage (AMD) settings colloidal precipitates control the mobility of Potential Toxic Elements (PTEs). Mineral-contaminant relationships (i.e. adsorption, ion-exchange, desorption) are rarely pure abiotic processes. Microbes, mainly bacteria and microfungi, can catalyze several reactions modifying the element speciation, as well as the bioavailability of inorganic pollutants. Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a potential reservoir of extremophile bacteria and fungi exploitable for biotechnological purposes. Two different AMD related colloids, an ochraceous precipitate (deposited in weakly acidic conditions, composed by nanocrystalline goethite) and a greenish-blue precipitate (deposited at near-neutral pH, composed by allophane + woodwardite) were sampled. The aims of this work were to a) characterize the mycobiota present in these colloidal minerals by evaluating the presence of alive fungal propagules and extracting bacteria DNA; b) verify the fungal strains tolerance, and bioaccumulation capability on greenish-blue and ZnSO4 enriched media; c) evaluate potential impact of bacteria in the system geochemistry. The preliminary results show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains were isolated in pure culture. Among them, species belonging to Penicillium and Trichoderma genera were tested on both greenish-blue and ZnSO4 enriched media. The results show a significant tolerance and bioaccumulation capability to some PTEs. The same colloidal precipitates were processed to extract bacteria DNA by using a specific procedure developed for sediments. The results give a good yield of nucleic acids and a positive PCR amplification of 16S rDNA accomplished the first step for future metagenomic analyses.
Heavy metal removal from waste waters by ion flotation.
Polat, H; Erdogan, D
2007-09-05
Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.
Yoon, R.H.; Adel, G.T.; Luttrell, G.H.
1991-01-01
A method and apparatus are disclosed for the microbubble flotation separation of very fine particles, especially coal, so as to produce a high purity and large recovery efficiently. This is accomplished through the use of a high aspect ratio flotation column, microbubbles, and a countercurrent use of wash water to gently wash the froth. Also, disclosed are unique processes and apparatus for generating microbubbles for flotation in a high efficient and inexpensive manner using either a porous tube or an in-line static generator. 23 figures.
Modelling and calculation of flotation process in one-dimensional formulation
NASA Astrophysics Data System (ADS)
Amanbaev, Tulegen; Tilleuov, Gamidulla; Tulegenova, Bibigul
2016-08-01
In the framework of the assumptions of the mechanics of the multiphase media is constructed a mathematical model of the flotation process in the dispersed mixture of liquid, solid and gas phases, taking into account the degree of mineralization of the surface of the bubbles. Application of the constructed model is demonstrated on the example of one-dimensional stationary flotation and it is shown that the equations describing the process of ascent of the bubbles are singularly perturbed ("rigid"). The effect of size and concentration of bubbles and the volumetric content of dispersed particles on the flotation process are analyzed.
Data book for 12.5-inch diameter SRB thermal model water flotation test - 14.7 psia, series P024
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Tests were conducted to determine how thermal conditions affect space shuttle solid rocket booster (SRB) flotation. Acceleration, pressure, and temperature data were recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Composition-dependent surface chemistry of colloidal Ba xSr 1-xTiO 3 perovskite nanocrystals
Margossian, Tigran; Culver, Sean P.; Larmier, Kim; ...
2016-11-01
Ba xSr 1-xTiO 3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO 2 as a function of the alkaline earth composition (Ba vs. Sr). Lastly, the difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.
Removal of cadmium (II) from simulated wastewater by ion flotation technique
2013-01-01
A separation technique which has recently received a sharp increase in research activities is “ion flotation”. This technique has four important advantages for treating wastewaters: low energy consumption, small space requirements, small volume of sludge and acting selectively. The present study aims to optimize parameters of ion flotation for cadmium removal in simulated wastewater at laboratory scale. It was obtained on the reaction between Cd2+ and sodium dodecylesulfate (SDS) collector followed by flotation with ethanol as frother. Test solution was prepared by combining the required amount of cadmium ion, SDS and necessary frother or sodium sulfate solution. All experiments were carried out in a flotation column at laboratory temperature (27°C), adjusted pH = 4 and 120 minutes. The different parameters (namely: flow rate, cadmium, SDS and frother concentrations and ionic strength) influencing the flotation process were examined. The best removal efficiency obtained at a collector-metal ratio of 3:1 in 60 min with flow rate of 150 mL/min was 84%. The maximum cadmium removal was 92.1% where ethanol was introduced at a concentration 0.4% to flotation column with above conditions. The obtained results were promising, as both cadmium and collector were effectively removed from wastewater. Hence, the application of ion flotation for metal ions removal from effluents seems to be efficient. PMID:23388386
Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.
Wang, Chong-Qing; Wang, Hui; Gu, Guo-Hua; Lin, Qing-Quan; Zhang, Ling-Ling; Huang, Luo-Luo; Zhao, Jun-Yao
2016-05-01
A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of three typical sulfide mineral flotation collectors on soil microbial activity.
Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue
2016-04-01
The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian
Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkalinemore » pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.« less
46 CFR 170.245 - Foam flotation material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Foam flotation material. 170.245 Section 170.245... REQUIREMENTS FOR ALL INSPECTED VESSELS Special Installations § 170.245 Foam flotation material. (a) Installation of foam must be approved by the OCMI. (b) If foam is used to comply with § 171.070(d), § 171.095(c...
46 CFR 170.245 - Foam flotation material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Foam flotation material. 170.245 Section 170.245... REQUIREMENTS FOR ALL INSPECTED VESSELS Special Installations § 170.245 Foam flotation material. (a) Installation of foam must be approved by the OCMI. (b) If foam is used to comply with § 171.070(d), § 171.095(c...
Translations on USSR Resources, Number 761
1977-12-27
the problem of obtaining pyrite concentrates will create the possibility of organizing their production from flotation tailings at the Kafanskaya...enrichment was improved at enriching factories. New high efficient flotation reagents were successfully developed and introduced, and collective...by means of collective-selectxve flotation arrangements using new reagents is over 90 percent xn the total volume of reprocessing. Since 1975 a
On fiber rejection loss in flotation deinking
J.Y. Zhu; Freya Tan
2005-04-01
Reducing fiber rejection loss in flotation deinking is very important to conserve natural resources and reduce the cost of secondary fibers in paper recycling. This study examined two aspects of the problem, fiber consistency in the rejection stream and rate of Froth (or wet stream) rejection. Flotation experiments were conducted using both nylon and wood fibers in...
Gomez-Gonzalez, Miguel A; Villalobos, Mario; Marco, Jose Francisco; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando
2018-04-01
Mine wastes from abandoned exploitations are sources of high concentrations of hazardous metal(oid)s. Although these contaminants can be attenuated by sorbing to secondary minerals, in this work we identified a mechanism for long-distance dispersion of arsenic and metals through their association to mobile colloids. We characterize the colloids and their sorbed contaminants using spectrometric and physicochemical fractionation techniques. Mechanical action through erosion may release and transport high concentrations of colloid-associated metal(oid)s towards nearby stream waters, promoting their dispersion from the contamination source. Poorly crystalline ferrihydrite acts as the principal As-sorbing mineral, but in this study we find that this nanomineral does not mobilize As independently, rather, it is transported as surface coatings bound to mineral particles, perhaps through electrostatic biding interactions due to opposing surface charges at acidic to circumneutral pH values. This association is very stable and effective in carrying along metal(oid)s in concentrations above regulatory levels. The unlimited source of toxic elements in mine residues causes ongoing, decades-long mobilization of toxic elements into stream waters. The ferrihydrite-clay colloidal composites and their high mobility limit the attenuating role that iron oxides alone show through adsorption of metal(oid)s and their immobilization in situ. This may have important implications for the potential bioavailability of these contaminants, as well as for the use of this water for human consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J
2018-02-27
The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.
Stojkov, J; Weary, D M; von Keyserlingk, M A G
2016-03-01
Cows that are unable or unwilling to stand and remain recumbent for ≥ 12 h are defined as nonambulatory. Care and management of nonambulatory cattle is considered a major animal welfare concern facing the livestock industry, particularly the dairy sector. Flotation therapy has gained interest as a means to promote recovery in nonambulatory cows and is based on the concept that by floating the cow in warm water, secondary pressure damage to muscles and nerves will be reduced. The objective of this study was to assess the physiological responses to stress related to the flotation therapy and to evaluate the effect of recumbency duration and nursing care on the outcome of the flotation therapy. The outcomes of 34 nonambulatory Holstein dairy cows were analyzed after they were subjected to flotation therapy. The duration of recumbency and quality of nursing care provided before initiation of the flotation treatment were assessed based on producer responses to survey questions, and from on-site observations by the researchers. A veterinarian examined all cows before flotation therapy began. The treatment was divided into 5 phases: baseline (before filling), manipulation (placing the cow into the tank), filling (the tank was filled with water), flotation (the cow was confined in the filled tank), and draining (water was removed from the tank). Stress responses to the procedure, excluding the manipulation portion, were assessed using heart rate variability. The high-frequency component (HF normalized units) decreased during the filling and draining phases (2.8 ± 0.2 and 3.1 ± 0.4, respectively) compared with the baseline and floating phase (5.1 ± 0.6 and 4.9 ± 0.3, [corrected] respectively). These results indicate that the stress related to the flotation therapy is greatest during the filling and draining phases of the treatment, when cows likely have to exert increased effort to transition to a standing position. The flotation therapy was less likely to be successful on cows that had been recumbent for longer periods (odds ratio=0.96; 95% CI=0.93-0.99, for every 1-h increase in time recumbent before the therapy began). Higher quality of nursing care provided to nonambulatory cows increased the chance of recovery. In conclusion, cows subjected to flotation therapy were more likely to recover if they were treated at early stage of recumbency and if good nursing care was provided while recumbent. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C. PMID:22629194
Coruh, Semra; Elevli, Sermin; Geyikçi, Feza
2012-01-01
Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.
Beneficiation of the gold bearing ore by gravity and flotation
NASA Astrophysics Data System (ADS)
Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven
2012-02-01
Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.
Kjellgren, Anette; Bood, Sven-Åke; Norlander, Torsten
2009-01-01
Introduction The objective of this qualitative case report was to describe experiences of flotation-Restricted Environmental Stimulation Technique from the perspective of a woman with Attention Deficit Hyperactivity Disorder, Aspergers syndrome and experiences of depression and distress. Case presentation The respondent is a 36-year-old woman from Sweden, assessed and diagnosed by a neuropsychological multi-professional team in 2006. The 19-session flotation series prolonged during almost one year. Conclusion The positive development of arousal control, activity regulation, sensory integration and interpretation, cognitive functioning and emotional maturity created experiences of personal independence and quality of life. Flotation-restrictive environmental stimulation technique was experienced as a meaningful treatment. Additional studies of treatment for Attention Deficit Hyperactivity Disorder and comorbid disorders in adults using the flotation-restrictive environmental stimulation technique are strongly encouraged. PMID:19829887
Edebol, Hanna; Kjellgren, Anette; Bood, Sven-Ake; Norlander, Torsten
2009-07-07
The objective of this qualitative case report was to describe experiences of flotation-Restricted Environmental Stimulation Technique from the perspective of a woman with Attention Deficit Hyperactivity Disorder, Aspergers syndrome and experiences of depression and distress. The respondent is a 36-year-old woman from Sweden, assessed and diagnosed by a neuropsychological multi-professional team in 2006. The 19-session flotation series prolonged during almost one year. The positive development of arousal control, activity regulation, sensory integration and interpretation, cognitive functioning and emotional maturity created experiences of personal independence and quality of life. Flotation-restrictive environmental stimulation technique was experienced as a meaningful treatment. Additional studies of treatment for Attention Deficit Hyperactivity Disorder and comorbid disorders in adults using the flotation-restrictive environmental stimulation technique are strongly encouraged.
Thermodynamics of ultra-sonic cavitation bubbles in flotation ore processes
NASA Astrophysics Data System (ADS)
Royer, J. J.; Monnin, N.; Pailot-Bonnetat, N.; Filippov, L. O.; Filippova, I. V.; Lyubimova, T.
2017-07-01
Ultra-sonic enhanced flotation ore process is a more efficient technique for ore recovery than classical flotation method. A classical simplified analytical Navier-Stokes model is used to predict the effect of the ultrasonic waves on the cavitations bubble behaviour. Then, a thermodynamics approach estimates the temperature and pressure inside a bubble, and investigates the energy exchanges between flotation liquid and gas bubbles. Several gas models (including ideal gas, Soave-Redlich-Kwong, and Peng-Robinson) assuming polytropic transformations (from isothermal to adiabatic) are used to predict the evolution of the internal pressure and temperature inside the bubble during the ultrasonic treatment, together with the energy and heat exchanges between the gas and the surrounding fluid. Numerical simulation illustrates the suggest theory. If the theory is verified experimentally, it predicts an increase of the temperature and pressure inside the bubbles. Preliminary ultrasonic flotation results performed on a potash ore seem to confirm the theory.
Strong adsorption of random heteropolymers on protein surfaces
NASA Astrophysics Data System (ADS)
Nguyen, Trung; Qiao, Baofu; Panganiban, Brian; Delre, Christopher; Xu, Ting; Olvera de La Cruz, Monica
Rational design of copolymers for stablizing proteins' functionalities in unfavorable solvents and delivering nanoparticles through organic membranes demands a thorough understanding of how the proteins and colloids are encapsulated by a given type of copolymers. Random heteropolymers (RHPs), a special family of copolymers with random segment order, have long been recognized as a promising coating materials due to their biomimetic behaviors while allowing for much flexibility in the synthesis procedure. Of practical importance is the ability to predict the conditions under which a given family of random heteropolymers would provide optimal encapsulatio. Here we investigate the key factors that govern the adsorption of RHPs on the surface of a model protein. Using coarse-grained molecular simulation we identify the conditions under which the model protein is fully covered by the polymers. We have examined the nanometer-level details of the adsorbed polymer chains and found a clear connection between the surface coverage and adsorption strength, solvent selectivity and the volume fraction of adsorbing monomers. The results in this work set the stage for further investigation on engineering biomimetic RHPs for stabilizing and delivering functional proteins across multiple media.
Wegmann, Markus; Michen, Benjamin; Luxbacher, Thomas; Fritsch, Johannes; Graule, Thomas
2008-03-01
The purpose of this study was to test the feasibility of modifying commercial microporous ceramic bacteria filters to promote adsorption of viruses. The internal surface of the filter medium was coated with ZrO(2) nanopowder via dip-coating and heat-treatment in order to impart a filter surface charge opposite to that of the target viruses. Streaming potential measurements revealed a shift in the isoelectric point from pH <3 to between pH 5.5 and 9, respectively. While the base filter elements generally exhibited only 75% retention with respect to MS2 bacteriophages, the modified elements achieved a 7log removal (99.99999%) of these virus-like particles. The coating process also increased the specific surface area of the filters from approximately 2m(2)/g to between 12.5 and 25.5m(2)/g, thereby also potentially increasing their adsorption capacity. The results demonstrate that, given more development effort, the chosen manufacturing process has the potential to yield effective virus filters with throughputs superior to those of current virus filtration techniques.
Nelson, Yarrow M.; Lion, Leonard W.; Ghiorse, William C.; Shuler, Michael L.
1999-01-01
Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of ≥0.1 μM FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25°C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4.7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems. PMID:9872777
Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William
2012-01-01
Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515
Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William
2012-01-01
Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.
Universal Documentation System
2012-07-01
Follow preparation instructions in Section 5.2.1 for the entries ITEM NO. and REMARKS. FLOTATION DURATION: Enter flotation duration of the test unit...Teflon, carbon steel, copper and copper alloys, and stainless steel (martensitic, ferritic, austenitic). • Quantity: Enter the quantity of components...DESCRIPTION 1470 ITEM NO.: FLOTATION DURATION: ELECTRONIC AIDS • TYPE: • POWER OUT (WATTS): • FREQUENCY (MHz): C-22 • MODULATION
Froth conductivity for in situ monitoring of fiber (solid) and wet rejects in flotation deinking
J. Y. Zhu; M. Fleischmann; R. Gleisner
2006-01-01
Reduced fiber rejection in flotation deinking is very important to reduce the cost of secondary fibers in paper recycling and to conserve natural resources. Online monitoring of fiber rejection is a prerequisite to achieving process control for the reduction of fiber rejection in flotation deinking. It also can improve understanding of the effects of various operating...
Data book for 12.5-inch diameter SRB thermal model water flotation test; 1.29 psia, series P022
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation at a scaled pressure of 1.29 psia are presented. Included are acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB. Nineteen valid tests were conducted. These thermal tests indicated the following basic differences relative to the ambient temperature and pressure model tests: (1) more water was taken on board during penetration and (2) model flotation/sinking was temperature sensitive.
Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Immobilization of copper flotation waste using red mud and clinoptilolite.
Coruh, Semra
2008-10-01
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.
Evaluation of flotation for purification of pyrite for use in thermal batteries
NASA Astrophysics Data System (ADS)
Guidotti, R. A.; Reinhardt, F. W.
1992-07-01
The purification of pyrite (FeS2) used in Li-alloy/FeS2 thermal batteries by the physical process of flotation was evaluated for reduction of the quartz impurity. The process was compared to the standard process of leaching with concentrated hydrofluoric acid. Flotation was an attractive alternative because it avoided many of the safety and environmental concerns posed by the use of concentrated HF. The effects of particle size and initial purity of the pyrite feed material upon the final purity and yield of the product concentrate were examined for batch sizes from 3.5 to 921 kg. Feed materials as coarse as 8 mm and as fine as -325 mesh were treated; the coarse pyrite was ground wet in a rod mill or dry in a vibratory mill to -230 mesh prior to flotation. Both the HF-leached and the flotation-treated pyrite were leached with HCI (1:1 v/v) to remove acid-soluble impurities. The flotation-purified pyrite concentrates were formulated into catholytes; their electrochemical performance was evaluated in both single cells and 5-cell batteries for comparison to data generated under the same discharge conditions for catholytes formulated with HF/HCI purified pyrite.
Self-assembled Gemini surfactant film-mediated dispersion stability.
Rabinovich, Y I; Kanicky, J R; Pandey, S; Oskarsson, H; Holmberg, K; Moudgil, B M; Shah, D O
2005-08-15
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).
Li, Chun-xiang; Chen, Ting-yu; Yan, Yong-sheng
2007-10-01
In the present paper, the use of 8-hydroxyquinoline(oxine, HQ) complexs in precipitate flotation to separate and preconcentrate Cu and Mn, using SDBS as collector, followed by AAS spectrophotometric determination is proposed. The optimum conditions of precipitate flotation were studied. The effects of several parameters of flotation processes condition on single metal ions precipitation-flotation and multi-metal ions coprecipitation-flotation of Cu and Mn at pH 9 were investigated. The experimental results show that the flotation rate of Cu is supreme with pH 9. Under the condition of pH 9 and changing the ratio of concentration, when Mn/Cu> or =8, the recovery rate of Cu is less than 90%. This method is simple, rapid, accurate, sensitive and precise and avoids using the virulent organic solvent. The linear range of Cu is 0.5-5.0 microg x mL(-1) with the correlative coefficient of 0.9996, detection limit of this method was found to be 1.59 x 10(-3) microg x mL(-1), the linear range of Mn is 0.5-5.0 microg x mL(-1) with the correlative coefficient of 0.9987, and the detection limit of this method was found to be 3.52 x 10(-3) microg x mL(-1). The method was applied to the determination of Cu and Mn in foodstuff, and the recovery is 87.6%-100.7%. The result was satisfactory.
Exploration and exploitation of water in colloidal crystals.
Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe
2015-05-06
Water on solid surfaces is ubiquitously found in nature, in most cases due to mere adsorption from ambient moisture. Because porous structures have large surfaces, water may significantly affect their characteristics. This is particularly obvious in systems formed by separate particles, whose interactions are strongly influenced by small amounts of liquid. Water/solid phenomena, like adsorption, condensation, capillary forces, or interparticle cohesion, have typically been studied at relatively large scales down to the microscale, like in wet granular media. However, much less is known about how water is confined and acts at the nanoscale, for example, in the interstices of divided systems, something of utmost importance in many areas of materials science nowadays. With novel approaches, in-depth investigations as to where and how water is placed in the nanometer-sized pores of self-assembled colloidal crystals have been made, which are employed as a well-defined, versatile model system with useful optical properties. In this Progress Report, knowledge gained in the last few years about water distribution in such nanoconfinements is gathered, along with how it can be controlled and the consequences it brings about to extract new or enhance existing material functionalities. New methods developed and new capabilities of standard techniques are described, and the water interplay with the optical, chemical, and mechanical properties of the ensemble are discussed. Some lines for applicability are also highlighted and aspects to be addressed in the near future are critically summarized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apollo experience report: Command module uprighting system
NASA Technical Reports Server (NTRS)
White, R. D.
1973-01-01
A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.
Dynamics of nanoparticles in complex fluids
NASA Astrophysics Data System (ADS)
Omari, Rami A.
Soft matter is a subfield of condensed matter including polymers, colloidal dispersions, surfactants, and liquid crystals. These materials are familiar from our everyday life- glues, paints, soaps, and plastics are examples of soft materials. Many phenomena in these systems have the same underlying physical mechanics. Moreover, it has been recognized that combinations of these systems, like for example polymers and colloids, exhibit new properties which are not found in each system separately. These mixed systems have a higher degree of complexity than the separate systems. In order to understand their behavior, knowledge from each subfields of soft matter has to be put together. One of these complex systems is the mixture of nanoparticles with macromolecules such as polymers, proteins, etc. Understanding the interactions in these systems is essential for solving various problems in technological and medical fields, such as developing high performance polymeric materials, chromatography, and drug delivery vehicles. The author of this dissertation investigates fundemental soft matter systems, including colloid dispersions in polymer solutions and binary mixture. The diffusion of gold nanoparticles in semidilute and entangled solutions of polystyrene (PS) in toluene were studied using fluorescence correlation spectroscopy (FCS). In our experiments, the particle radius (R ≈ 2.5 nm) was much smaller compared to the radius of gyration of the chain but comparable to the average mesh size of the fluctuating polymer network. The diffusion coefficient (D) of the particles decreased monotonically with polymer concentration and it can be fitted with a stretched exponential function. At high concentration of the polymer, a clear subdiffusive motion of the particles was observed. The results were compared with the diffusion of free dyes, which showed normal diffusive behavior for all concentrations. In another polymer solution, poly ethylene glycol (PEG) in water, the diffusion of the gold nanoparticles depends on the dimentionless length scale R/zeta, where R is the radius of the nanoparticle and zeta is the average mesh size of the fluctuating polymer network. FCS were used to study the critical adsorption on curved surfaces by utilizing spherical nanoparticles immersed in a critical binary liquid mixture of 2,6 lutidine + water. The temperature dependence of the adsorbed film thickness and excess adsorption was determined from FCS measurements of the enlarged effective hydrodynamic radius of the particles. Our results indicated that the adsorbed film thickness is of the order of correlation length associated with concentration fluctuations. The excess adsorption per unit area increases following a power law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk susceptibility exponent. The kinetics of adsorption of gold nanoparticles in polymer solutions on silicon substrate was studied using ellipsometry by measuring the thickness of the adsorbed layer versus time. The data showed an exponential growth with relaxation time constants, which is proportional to the diffusion of the gold nanoparticles in polymer solution.
[Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].
Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan
2016-02-01
In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL. Besides, colloidal gold type core-shell molecularly imprinted polymers have looser surface, more cavities in the surface compared with ordinary molecularly imprinted polymers, which increased the effective area of adsorption to target molecules. So it have better performance in adsorption. Based on the principle that these cavities can specificly recognize and combine with target molecule in the test sample, and the excellent ability of colloidal gold core-shell molecularly imprinted polymers, the development of novel methods for fast determination of SAL based on the molecular imprinting technology can be expected in the near future.
NASA Astrophysics Data System (ADS)
Marques, J. F.; Lima, A. B.; Araújo, N. A. M.; Cadilhe, A.
2012-06-01
We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, i.e., the minimum and maximum particle radii, are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up to 20% of the average radius using a physically motivated, truncated, Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a nonmonotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii, particularly at high polydispersity.
DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J; Bhargava, Rohit
2015-05-21
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.
DeVetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit
2015-01-01
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min 1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. PMID:25905515
Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation
NASA Astrophysics Data System (ADS)
Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei
2017-09-01
A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.
Stainthorpe, A C
1989-02-05
The biological molecule responsible for the suppression of pyritic sulfur in fine coal simulated froth flotation treated with bacteria was identified. Protein was found to be the most effective agent in pyrite suppression of the three cell components (protein, lipid, and carbohydrate) assayed. Coal recovery and ash removal of the flotation process were only slightly reduced by this treatment. Other protein-containing materials were evaluated for their ability to suppress pyrite flotation. Whey was found to be the most cost-effective flotation additive of those assayed. The sulfur content of the whey-treated float was reduced by 84.0% in a synthetically prepared fractionated coal (10.7% sulfur), by a raw whey dosage of 20 microL/g coal. The inorganic sulfur component of a natural high sulfur coal fraction (10.9%) was completely depressed by this whey addition. The effect of particle size and pulp density upon the process were investigated.
Test of a mosquito eggshell isolation method and subsampling procedure.
Turner, P A; Streever, W J
1997-03-01
Production of Aedes vigilax, the common salt-marsh mosquito, can be assessed by determining eggshell densities found in soil. In this study, 14 field-collected eggshell samples were used to test a subsampling technique and compare eggshell counts obtained with a flotation method to those obtained by direct examination of sediment (DES). Relative precision of the subsampling technique was assessed by determining the minimum number of subsamples required to estimate the true mean and confidence interval of a sample at a predetermined confidence level. A regression line was fitted to cube-root transformed eggshell counts obtained from flotation and DES and found to be significant (P < 0.001, r2 = 0.97). The flotation method allowed processing of samples in about one-third of the time required by DES, but recovered an average of 44% of the eggshells present. Eggshells obtained with the flotation method can be used to predict those from DES using the following equation: DES count = [1.386 x (flotation count)0.33 - 0.01]3.
Slime coating of kaolinite on chalcopyrite in saline water flotation
NASA Astrophysics Data System (ADS)
Li, Zhi-li; Rao, Feng; Song, Shao-xian; Li, Yan-mei; Liu, Wen-biao
2018-05-01
In saline water flotation, the salinity can cause a distinguishable slime coating of clay minerals on chalcopyrite particles through its effect on their electrical double layers in aqueous solutions. In this work, kaolinite was used as a representative clay mineral for studying slime coating during chalcopyrite flotation. The flotation of chalcopyrite in the presence and absence of kaolinite in tap water, seawater, and gypsum-saturated water and the stability of chalcopyrite and kaolinite particles in slurries are presented. Zeta-potential distributions and scanning electron microscopy images were used to characterize and explain the different slime coating degrees and the different flotation performances. Kaolinite particles induced slime coating on chalcopyrite surfaces and reduced chalcopyrite floatability to the greatest extent when the pH value was in the alkaline range. At 0.24wt% of kaolinite, the chalcopyrite floatability was depressed by more than 10% at alkaline pH levels in tap water. Salinity in seawater and gypsum-saturated water compressed the electrical double layers and resulted in extensive slime coating.
Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel
2010-05-24
Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.
A theoretical study of colloidal forces near an amphiphilic polymer brush
NASA Astrophysics Data System (ADS)
Wu, Jianzhong
2011-03-01
Polymer-based ``non-stick'' coatings are promising as the next generation of effective, environmentally-friendly marine antifouling systems that minimize nonspecific adsorption of extracellular polymeric substances (EPS). However, design and development of such systems are impeded by the poor knowledge of polymer-mediated interactions of biomacromolecules with the protected substrate. In this work, a polymer density functional theory (DFT) is used to predict the potential of mean force between spherical biomacromolecules and amphiphilic copolymer brushes within a coarse-grained model that captures essential nonspecific interactions such as the molecular excluded volume effects and the hydrophobic energies. The relevance of theoretical results for practical control of the EPS adsorption is discussed in terms of the efficiency of different brush configurations to prevent biofouling. It is shown that the most effective antifouling surface may be accomplished by using amphiphilic brushes with a long hydrophilic backbone and a hydrophobic end at moderate grafting density.
Charge reversal at a planar boundary between two dielectrics.
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Charge reversal at a planar boundary between two dielectrics
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Modified binders on the basis of flotation tailings
NASA Astrophysics Data System (ADS)
Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.
2018-03-01
The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.
Ten Years Development of Metallurgical Research and Technology in Communist China
1960-01-15
milling problems. The methods are magnetic separa- tion combined with flotation , roasting followed by magnetic separation in S’GteS -. ..o . *tPeca...combination with flotation , and reverse flotation . In each process, the iron concentrate made contains 60 Fe or better, recovery is more than 80", and...extracted. For example, from tungsten ores, we are recovering molybdaniti, bismuthinite, chalcopyrite, cassiter- ite, scheelite, pyrite , and other useful
Investigation of foam flotation and phase partitioning techniques
NASA Technical Reports Server (NTRS)
Currin, B. L.
1985-01-01
The present status of foam flotation as a separation process is evaluated and limitations for cells and proteins are determined. Possible applications of foam flotation to separations in microgravity are discussed. Application of the fluid mechanical aspects of foam separation techniques is made to phase partitioning in order to investigate the viscous drag forces that may effect the partitioning of cells in a two phase poly(ethylene glycol) and dextran system.
Ghazy, S E; Mahmoud, I A; Ragab, A H
2006-01-01
Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.
Influence of electrical double-layer interaction on coal flotation.
Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M
2002-06-15
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.
Effects of flotation-REST on muscle tension pain.
Kjellgren, A; Sundequist, U; Norlander, T; Archer, T
2001-01-01
The purpose of the present study was to investigate whether the floating form of the restricted environmental stimulation technique (REST) may be applied within the field of pain relief. Flotation-REST consists of a procedure whereby an individual is immersed in a tank filled with water of an extremely high salt concentration. Thirty-seven patients (14 men and 23 women) suffering from chronic pain consisting of aching muscles in the neck and back area participated in the study. They were randomly assigned to either a control group (17 participants) or an experimental group (20 participants). The experimental group received nine opportunities to use the flotation-REST technique in the water tank over a three-week period. The results indicated that the most severe perceived pain intensity was significantly reduced, whereas low perceived pain intensity was not influenced by the floating technique. Further, the results indicated that circulating levels of the noradrenaline metabolite 3-methoxy-4-hydroxyphenylethyleneglycol were reduced significantly in the experimental group but not in the control group following treatment, whereas endorphin levels were not affected by flotation. Flotation-REST treatment also elevated the participants' optimism and reduced the degree of anxiety or depression; at nighttime, patients who underwent flotation fell asleep more easily. The present findings describe possible changes, for the better, in patients presenting with chronic pain complaints.
Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan
2014-06-10
The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.
Beneficiation of limestone plant rejects for value addition.
Jena, M S; Sahu, P; Dash, P; Mohanty, J K
2013-11-15
Investigations were carried out on lime stone rejects (-1mm) generated at a lime stone washing plant in southern India. These rejects contain 12.09% CaO, 2.95% MgO, 10.73% Al2O3, 4.99% Fe2O3, 43.05% SiO2 and 24.92% LOI. Mineralogical studies including SEM-EDAX, XRD, FTIR and TGA were conducted to confirm relative distribution of minerals in the flotation feed and products. These studies revealed that feed sample consists of quartz and calcite as the major minerals with minor amounts of montmorillonite and dolomite whereas flotation concentrate dominantly consists of calcite, and tailings mostly of quartz and montmorillonite. A commercial grade sodium silicate, oleic acid and MIBC were used as depressant, collector and frother respectively in flotation studies. The effects of different operating parameters were evaluated for both conventional and column flotation. Two stage conventional cell flotation results indicate that a cleaner concentrate of 42.50% lime (CaO) content could be obtained at a yield of 15.65%. The lime (CaO) content of the concentrate was further enhanced up to 44.23% at 20.73% yield using single stage column flotation. The column flotation is more efficient in comparison to the conventional cell for treating this sample. A process flowsheet was developed to treat these rejects based on the studies carried out. This process can minimize the waste generation and the concentrate generated during this process can be directly utilized in the Indian cement industries. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina
2002-05-01
The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.
Removal of arsenopyrite from complex sulfide minerals by froth flotation
NASA Astrophysics Data System (ADS)
Choi, Jin-young; Kim, Yang-soo; Kim, Dong-gyu; Han, Oh-hyung; Park, Chul-hyun
2016-04-01
Arsenic (As) is one of hazardous materials and a penalty element in metal concentrates and so metal concentrates containing arsenic of over 0.5% has been currently restricted in import and export trade. It also corrodes a smelting furnace as well as shortens its life cycle. In korea, Janggun mine that produces galena (PbS) /sphalerite (ZnS) concentrate containing arsenic of 1.78% charges a penalty of US 2/ton to LS-Nikko smelter. Hence in this work, flotation tests for removal of arsenopyrite (FeAsS) from sulfide mineral concentrates were carried out using lab scale flotation cell, which maintain grade and recovery of PbS and ZnS in comparison to flotation plant. Particularly, this study was focused on investigating the combination of several chemical reagents (depressant, collector, activator and etc.) that affect flotation performance. In the straight differential flotation for PbS, a PbS grade of 75.80% and a recovery of 90.12% could be obtained with FeAsS removal of 84.1% (0.2% As) under the conditions of 20% feed solids concentration, pH 8.5, 50g/t frother (AF65), 40g/t collector (AP242) and 800g/t As depressant (NaHSO3) and 600g/t Zn depressant (ZnSO4). In the ZnS flotation, the maximum separation achievable for ZnS using froth flotation has been shown to be a grade of 72.57% and a recovery of 95.43%. At this time, FeAsS removal of 87.8% (0.16% As) could be successfully accomplished under pH 11, and 800g/t Zn activator (CuSO4), 75g/t frother (AF65), 60g/t collector (AP211) and 600g/t As depressant (NaHSO3). Acknowledgments This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea
Adsorption of surfactants and polymers at interfaces
NASA Astrophysics Data System (ADS)
Rojas, Orlando Jose
Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.
1980-01-15
coth(KH/2) - 1] (5) 16 Similarly, Hamaker has shown that the potential energy of in- teraction due to van der Waals-London attractive forces between...two flat plates of thickness t is given by AIVA 121r [=H0 (Ho0’+2t)-" (Ho0+t)/z (6 where A is the Hamaker constant for interaction of the particles. It...deflocculation by adsorption of montmorillonite particles. K I1 - 54 - Key to Symbols A Hamaker constant VA attractive energy A area in eq. (44) V
NASA Astrophysics Data System (ADS)
Oleinikova, Olga; Drozdova, Olga; Shirokova, Liudmila; Lapitskiy, Sergey; Bychkov, Andrew; Pokrovsky, Oleg
2017-04-01
Two of the main factors of carbon balance in high latitudes, known to govern the CO2 flux from the lakes and rivers to the atmosphere, are bacterial mineralization (respiration) of allochthonous dissolved organic matter (DOM) and photochemical degradation of DOM. Yet, in contrast to large numbers of experimental and field studies on these factors impact on the utilization of DOM of different origin, the fate of metals bound to colloids during bacterial processing of DOM and behavior of trace element (TE) during photodegradation of DOM remains poorly constrained. This is especially important in view of essentially organic and organo-mineral colloidal status of TE in most boreal waters. To answer this questions, a monoculture of Pseudomonas saponiphila from a boreal creek in NW Karelia (Russia) was separated and allowed to interact with boreal peat leachate in nutrient-free media. We quantified colloidal transformation of the peat leachate during 5-days activity of live bacteria using 3 kDa, 50 kDa Amicon® centrifugal filtration and 0.45 µm syringe filtration. The total net decrease of the concentration of Dissolved Organic Carbon (DOC) over 93 h of exposure was within 5% of the initial value for all fractions except low molecular weight one (< 3 kDa), which yielded a 16%-decrease due to long-term bio-uptake or coagulation. Elements most affected by bacterial presence were Al, Mn, (Ni), Cu, Ga, REEs, Y, U which exhibited essentially the adsorption at the cell surface over first hrs of reaction, and Fe, Ti, (Zr), and Nb showing short-term adsorption and long-term assimilation. Towards a better understanding of concentration, size fractionation and speciation change of TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water from pristine zone of Northern Karelia (Russian subarctic). After 5 days of exposure, the DOM in stream photodegraded in a much smaller degree than that in the bog water with 25 and 60% removal of initial DOC, respectively. Specific UV absorption (SUVA254) decreased by a factor of 1.75 and 5 over 200 h of exposure in stream and bog water, respectively. The removal of Fe and Al occurred only in the bog water (90 % and 50% respectively, over 5 days of reaction), whereas no detectable decrease of Al and Fe concentration (< 0.22 µm) was observed in the boreal stream. The majority of colloidal constituents including DOC, Fe, Al, metal micronutrients are weakly affected by heterotrophic bacterial activity and as such the stability of peat soil colloids in boreal waters is expected to be high. In contrast to this, in bog waters, alkali, alkaline-earth metals and divalent metal micornutrients, present in the form of organic complexes (50-80%), may be completely degraded over a week of sunlight exposure. We acknowledge support from a RFBR research projects №№ 16-55-150002 HЦHИ_a, 15-05-05000_a, 14-05-00430_a, 16-05-00542_a. Experimental study was supported by RSF № 14-50-00029.
The Central Role of the Matrix Protein in Nipah Virus Assembly and Morphogenesis
2007-03-23
as determined by sucrose density gradient flotation and immunoprecipitation analysis. However, co-expression of F and G along with M revealed a...total protein detected (total lysate + supernatant). Experiments described in Chapter 4 did not 35 include a flotation step. Rather, following...culture supernatant were prepared as described above except the top 1.4 ml of the flotation gradient was mixed with 3 ml of PBS and centrifuged for an
Processing of metallurgical residues by flotation - bench-scale studies on two industrial products.
Rao, S R; Finch, J A
2006-01-01
Resource recovery from two metallurgical residues by flotation was investigated applying an electrostatic model to select initial conditions. The first, a sulphation roast/water leach residue, was processed to float lead sulphate, comparing dodecylamine and xanthate collectors. From the second, a neutralization residue, gypsum, was recovered by reverse flotation of ferric hydroxide, comparing oleate and sulphonate collectors. In both cases, further upgrading by acid leaching was considered.
Plasma Modification of Graphite Fibers and Its Effect on Composite Properties.
1983-08-01
liquids have been difficult to measure with adequate accuracy. As a result, critical surface energy data are not readily available. A flotation method...tension of the fiber surface. However, the fiber density must always exceed the density of the flotation liquid. Although this is a very useful...technioue, it is inanplicable to graphite fiber due to its irregular surface structure, small filament diameter and small difference in density with flotation
NASA Astrophysics Data System (ADS)
Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.
2018-06-01
The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.
2012-08-30
In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less
NASA Astrophysics Data System (ADS)
Chen, Yufeng; Yang, Jin; Li, Zonglong; Li, Ran; Ruan, Weidong; Zhuang, Zhiping; Zhao, Bing
2016-01-01
Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5 × 10- 7 mol · L- 1 was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-04-01
*The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.
Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui
2018-06-15
The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Desulfurization of coal by microbial column flotation.
Ohmura, N; Saiki, H
1994-06-05
Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.
Removal of arsenic in flotation of galena and sphalerite
NASA Astrophysics Data System (ADS)
Yu, Dae-hwan; Kim, Min-kyu; Han, Oh-hyung; Park, Chul-hyun
2017-04-01
In Korea, Janggun mine that produces the concentrate of galena (PbS) /sphalerite (ZnS) containing arsenic of 1.3% charges a penalty of US 3/ton to LS-Nikko smelter. Hence in this work, flotation tests for removal of arsenopyrite (FeAsS) from sulfide minerals were carried out using lab scale flotation cell, which maintain grade and recovery of PbS and ZnS in comparison to flotation plant. Particularly, this study was focused on investigating the combination of several chemical reagents such as depressant, collector, activator and etc. that affect flotation performance. In the straight differential flotation for PbS, a PbS grade of 67.80% and a recovery of 80.2% could be obtained with FeAsS removal of 84.1% (0.2% As) under the conditions of 20% feed solids concentration, pH 8.5, 50g/t frother (AF65), 50g/t collector (AP242) and 600g/t As depressant (NaHSO3) and 600g/t Zn depressant (ZnSO4). In the ZnS flotation, the maximum separation achievable for ZnS has been shown to be a grade of 50.27% and a recovery of 88.7%. At this time, FeAsS removal of 87.8% (0.16% As) could be successfully accomplished under pH 11, and 1.2kg/t Zn activator (CuSO4), 100g/t frother (AF65), 100g/t collector (AP211) and 400g/t As depressant (NaHSO3). Acknowledgments This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea
The Action of a Magnetic Field on Water,
The effect of a low intensity magnetic field on water as a flotation medium with the enrichment of coal and dressing of copper sulfied ore is studied...magnetic field with flotation is expressed. The imposition of an external magnetic field disturbs the energy state of water, which leads to a change in...intermolecular interaction, stability of hydrogen bonds, deterioration in the wettability of rigid surfaces, and a change in the technological indices of flotation enrichment. (Author)
Cross flow cyclonic flotation column for coal and minerals beneficiation
Lai, Ralph W.; Patton, Robert A.
2000-01-01
An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.
Foam flotation as a separation process
NASA Technical Reports Server (NTRS)
Currin, B. L.
1986-01-01
The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.
Chelation and flotation in endodontic practice: an update.
Stewart, G G
1986-10-01
The removal of broken instruments and silver points, as well as pulp tissue, may be accomplished by careful instrumentation, irrigation, and flotation. Flotation and recapitulation with smaller instruments and irrigation with copious amounts of sodium hypochlorite can clean out microorganisms and the organic matter from the tubular structure which provides a more ideal surface for sealing the root canal system. A sterile environment was obtained by removing the substrate and creating a more ideal environment for better healing.
A new microcolumn flotation cell for determining the wettability and floatability of minerals.
Ozkan, A; Yekeler, M
2003-05-15
Flotation is one of the most important physicochemical processes for mineral separations and other recovery operations. Flotation machines have been developed since the beginning of the 19th century and are still under intensive research and development. The cell we devised is a combination of the Canadian column flotation cell and the Partridge-Smith cell. The materials used for the construction of the new cell are cheap and use available laboratory accessories and aquarium materials. The cell functions well in terms of its scale, control, and sample requirement. It can be used both in the laboratory for research and in classrooms for demonstrations of experiments. Some of the data obtained by the flotation method using this cell are in good agreement with data measured independently on the same minerals by the contact angles method. The critical values of surface tension of wetting (gamma(c)) for talc, sulfur, and chemically treated surfaces of calcite and barite obtained by the contact angle measurements were 31, 26, 30.5, and 31.2 mN/m, respectively. On the other hand, the gamma(c) values of those minerals, obtained using our new designed flotation cell, were 30, 28, 31.4, and 34.5 mN/m, respectively. The measurements obtained in our experiment are also comparable to those previously published for the same minerals.
Drones for Provision of Flotation Support in Simulated Drowning.
Bäckman, Anders; Hollenberg, Jacob; Svensson, Leif; Ringh, Mattias; Nordberg, Per; Djärv, Therese; Forsberg, Sune; Hernborg, Olof; Claesson, Andreas
The feasibility and potential of using drones for providing flotation devices in cases of drowning have not yet been assessed. We hypothesize that a drone carrying an inflatable life buoy is a faster way to provide flotation compared with traditional methods. The purpose of this study is to explore the feasibility and efficiency of using a drone for delivering and providing flotation support to conscious simulated drowning victims. A simulation study was performed with a simulated drowning victim 100 m from the shore. A drone (DJI Phantom 4; dji, Shenzhen, China) equipped with an inflatable life buoy of 60 N was compared with traditional surf rescue swimming for providing flotation. The primary outcome was delay (minutes:seconds). A total number of 30 rescues were performed with a median time to delivery of the floating device of 30 seconds (interquartile range [IQR] = 24-32 seconds) for the drone compared with 65 seconds (IQR = 60-77 seconds) with traditional rescue swimming (P < .001). The drone had an accuracy of 100% in dropping the inflatable life buoy < 5 m from the victim, with a median of 1 m (IQR = 1-2 m). Using drones to deliver inflatable life buoys is safe and may be a faster method to provide early flotation devices to conscious drowning victims compared with rescue swimming. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu
2014-08-15
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.
Inês, Elizabete De Jesus; Pacheco, Flavia Thamiris Figueiredo; Pinto, Milena Carneiro; Mendes, Patrícia Silva de Almeida; Da Costa-Ribeiro, Hugo; Soares, Neci Matos; Teixeira, Márcia Cristina Aquino
2016-12-01
The diagnosis of intestinal parasitic infections depends on the parasite load, the specific gravity density of the parasite eggs, oocysts or cysts, and the density and viscosity of flotation or sedimentation medium where faeces are processed. To evaluate the concordance between zinc sulphate flotation and centrifugal sedimentation in the recovery of parasites in faecal samples of children. Faecal samples of 330 children from day care centers were evaluated by zinc sulphate flotation and centrifugal sedimentation techniques. The frequencies of detection of parasites by each method were determined and the agreement between the diagnostic techniques was evaluated using the kappa index, with 95% confidence intervals. The faecal flotation in zinc sulphate diagnosed significantly more cases of Trichuris trichiura infection when compared to centrifugal sedimentation (39/330; 11.8% vs. 13/330; 3.9%, p<0.001), with low diagnostic concordance between methods (kappa=0.264; 95% CI: 0.102-0.427). Moreover, all positive samples for Enterobius vermicularis eggs (n=5) and Strongyloides stercoralis larvae (n=3) were diagnosed only by zinc sulphate. No statistical differences were observed between methods for protozoa identification. The results showed that centrifugal flotation in zinc sulphate solution was significantly more likely to detect light helminths eggs such as those of T. trichiura and E. vermicularis in faeces than the centrifugal sedimentation process.
Spatially controlled carbon sponge for targeting internalized radioactive materials in human body.
Hong, Jin-Yong; Oh, Wan-Kyu; Shin, Keun-Young; Kwon, Oh Seok; Son, Suim; Jang, Jyongsik
2012-07-01
Carbon sponge, an adsorbent with spatially controlled structure is demonstrated for targeting internalized radiocesium and other radionuclides in human body. Three dimensionally ordered macroporous (3DOM) carbons derived from inverse opal replicas of colloidal-crystal template exhibit large surface area and high porosity, resulting in highly efficient adsorbents for radionuclides. It is also possible to enhance binding affinity and selectivity to radionuclide targets by decoration of 3DOM carbon surfaces with Prussian blue (PB) nanoparticles, and synthesized PB nanoparticles reveal low toxicity toward macrophage cells with potential advantages over oral administration. It is noteworthy that the maximum (133)Cs adsorption capacity of PB-decorated 3DOM carbons is 40.07 mmol g(-1) which is ca. 30 and 200 times higher than that of commercialized medicine Radiogardase(®) and bulk PB, respectively. Further, adsorption kinetics study indicates that the PB-decorated 3DOM carbons have the homogenous surface for (133)Cs ion adsorption and all sites have equal adsorption energies in terms of ion exchange between the cyano groups of the PB-decorated 3DOM carbons and radionuclides. As a concept of the oral-administrable "carbon sponge", the PB-decorated 3DOM carbons offer useful implications in the separation science of radioactive materials and important insight for designing novel materials for treatment of patients or suspected internal contamination with radioactive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy
2014-05-27
We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.
Fluorescent carbon nanoparticles from Citrus sinensis as efficient sorbents for pollutant dyes.
Adedokun, Oluwaseun; Roy, Anurag; Awodugba, Ayodeji O; Devi, P Sujatha
2017-02-01
Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low-temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large-scale production of aqueous CPs dispersions without any additives and post-treatment processes. The as-prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λ max = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as-prepared CPs were analyzed using various spectroscopic techniques such as X-ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As-prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Xiao, Wei; Ke, Shuo; Quan, Nannan; Zhou, Limin; Wang, Jun; Zhang, Lijuan; Dong, Yaming; Qin, Wenqing; Qiu, Guanzhou; Hu, Jun
2018-05-29
Dissolved air flotation (DAF) is broadly applied in wastewater treatment, especially for the recovery of organic pollution with low concentration. However, the mechanism of interaction between nanoscale gas bubbles and nanoparticles in the process of DAF remains unclear. Here, we investigated the role of nanobubbles in the precipitation of styryl phosphoric acid (SPA)-Pb particles and recovering organic phosphine containined in beneficiation wastewater by UV-vis (ultraviolet-visible) spectra, microflotation tests, nanoparticle tracking analysis, dynamic light scattering, and atomic force microscopy measurements. As suggested from the results, nanobubbles can inhibit the crystallization of SPA-Pb precipitation, which makes the sediment flotation recovery below 20%. After the precipitation crystallization is completed, nanobubbles can flocculate precipitated particles, which can promote the flotation recovery of precipitated particles to 90%. On the basis of the results, we proposed a model to explain the different roles of nanobubbles in the process of precipitation and flotation of SPA-Pb particles. This study will be helpful to understand the interaction between nanobubbles and nanoparticles in the application of flotation.
Wang, Chong-Qing; Wang, Hui; Liu, You-Nian
2015-01-01
Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Neyts, Kristiaan; Beunis, Filip
2015-06-01
We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 μg/ml) while at concentrations of several μg/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.
Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS
NASA Astrophysics Data System (ADS)
Chryssoulis, S. L.; Dimov, S. S.
2004-06-01
This work describes a comprehensive characterization of the factors controlling the floatability of free gold from flotation test using reagents (collectors) at plant concentration levels. A relationship between the collectors loadings on gold particles and their surface composition has been established. The findings of this study show that silver activates gold flotation and there is a strong correlation between the surface concentration of silver and the loading of certain collectors. The organic surface analysis was done by ToF-SIMS while the inorganic surface analysis was carried out by time-of-flight laser ionization mass spectrometry (ToF-LIMS). The developed testing protocol based on ToF-LIMS and ToF-SIMS complementary surface analysis allows for optimization of the flotation scheme and hence improved gold recovery.
Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.
1999-01-01
Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.
Selected trace elements in the Sacramento River, California: occurrence and distribution.
Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P
2012-05-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Selected trace elements in the Sacramento River, California: Occurrence and distribution
Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.
2012-01-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Kiuru, H J
2001-01-01
This paper gives a brief description of the development of dissolved air flotation DAF (or so-called high pressure flotation) as an unit operation for removal of solids in water and wastewater treatment during the last 80 years up to this time. The first DAF-systems used in the water industry were the ADKA and Sveen-Pedersen ones from the 1920s. Some of these are still in use. The tanks in which the flotation phenomenon takes place in these systems are very shallow and narrow as well as rather long. The flow rate of water is some 2-3 m/h (at most less than 5 m/h only) and there is a very thin micro-bubble blanket below the water surface between the dry sludge blanket on that and the clarified water which flows almost horizontally below the bubble blanket toward the end of the tanks to be taken out there from near the bottom. The second generation of DAF was introduced in the 1960s and these units are widely in use today. Their tanks are almost square ones having usually a little bit more length than breadth. They are rather deep, too. There is an under-flow wall in front of the back wall of the units having a narrow horizontal gap on the bottom of the tanks for letting out the clarified water from the flotation space. The flow rate of water is usually 5-7 m/h or at most less than 10 m/h. The direction of flow is 30-45 degrees below the horizontal. There is a rather thick micro-bubble bed at the beginning of the tank below the dry sludge blanket. This bubble-bed becomes clearly thinner, when going toward the end of the tank. There are also round DAF tanks which are based on the same hydraulic principles as the rectangular ones presented above. A special application of DAF called the flotation filter was invented at the very end of the 1960s. It is a combination of flotation and rapid sand filtration, both of those being placed in the same tank. Flotation takes place in the upper part of the tank and the filter has been placed in the lower part of it. The direction of water flow is now vertically down from the free surface of water in the tank toward the deep-bed filter. This controls the direction of flow in the flotation space of the tank above the filter bed. The flow rate of water in flotation filters may be 10-15 m/h, but the flow conditions are still laminar. It is the threat that the head-loss of filters would grow too rapidly which in practice is limiting the hydraulic flow rate of flotation filters in this area. The third generation of DAF has been developed at the end of the 1990s. The operational idea is based on that of the flotation filter. The filter bed on the bottom of the tank has been replaced by a thin stiff plate with plenty of round orifices throughout the plate. This plate, having a very much lower flowing resistance than a sand filter can have, controls the vertical flow of water in the flotation space above the plate and distributes it evenly throughout the horizontal cross-section of the tank. The flotation tank is almost square seen from above and its depth is clearly more than the length and breadth of it. This kind of flotation unit can be operated with flow rates of water in the range 25-40 m/l. Even a flow rate of more than 60 m/h has been reported from this kind of DAF-units. There is no risk of clogging of the plate by suspended solids which could limit the flow rate. This is to say that it is possible to operate DAF also in turbulent flow conditions. The depth of the micro-bubble bed below the surface of water can be 1.5-2.5 m. There actually is a continuously regenerated micro-bubble bed in the tank filtering water which is going through this bed. The lower surface of the micro-bubble bed is really a horizontal one a little bit above the plate controlling the flow in the flotation space. The clarified water below the micro-bubble bed is totally clear. It can be said that in this case the removal of suspended solids takes place much more by filtering water by a deep-bed micro-bubble filter than by attaching micro-bubbles onto solids, when both of these are mixed with each other in the inlet shaft of the flotation unit, because the retention time of water in the inlet shaft is very short indeed.
Development of Technology for Enrichment of Silver Containing Ores
NASA Astrophysics Data System (ADS)
Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka
2016-10-01
The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re-purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.
Bioflocculation of mesophilic and thermophilic activated sludge.
Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G
2005-01-01
Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.
Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams
1997-06-01
the channel, 4 through erosion and flotation of emergent and riparian trees (Hogan, 1987) (Figuie 2.1). Fetherston et al. (1995) suggest that debris...the CEM or is actively meandering. Jams tend to form where the key debris elements fall into the river and, hence, ar,- commonly located at bend apices ... flotation force due to the pressure on the under surface of a submerged or partially submerged body is given by: Ff - p•,gLA (5.1) where, Ft. - flotation
Cheng, Dengmiao; Liu, Xinhui; Li, Jinpeng; Feng, Yao; Wang, Juan; Li, Zhaojun
2018-06-11
Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 μm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65-1.0 μm), F2 (100 kD-0.65 μm), F3 (10-100 kD) and F4 (1-10 kD) by cross-flow ultrafiltration (CFUF), and the photochemical kinetics and mechanisms of ofloxacin (OFL) and enrofloxacin (ENR) were investigated in the presence of those particles under simulated sunlight. Results showed that OFL and ENR underwent both direct and indirect photolysis in F1-F4 solutions, and the observed pseudo first-order rate constants (k obs ) for target compounds differed depending on the size of NCPs. Direct photolysis accounted for >50% of the degradation in all cases and was the dominant degradation pathway for the two target antibiotics with the exception of OFL in F1 solution. Except for ENR in both F3 and F4 solutions, nearly all NCPs enhanced the degradation of both target compounds by indirect photolytic pathways, especially in F1 solution that showed the largest reactivity for OFL and ENR, promoting the reactions by 63% and 41%, respectively. The excited state colloidal organic matter ( 3 COM ∗ ) plays a significant role in the indirect photolysis, and the adsorptions of OFL and ENR to NCPs were likely to have a pronounced effect in the photochemistry process. Pearson's correlations analysis showed that the k obs(OFL) was significant positive correlated with binding of Fe (r = 0.963, P < 0.05), and the k obs(ENR) was significant positive correlated with the adsorption percentage of OFL (r = 0.999, P < 0.01). This paper has demonstrated that different size NCPs showed the different photochemical contribution to the reaction rate for OFL and ENR. Copyright © 2018. Published by Elsevier Ltd.
Separation of plastics by froth flotation. The role of size, shape and density of the particles.
Pita, Fernando; Castilho, Ana
2017-02-01
Over the last few years, new methods for plastic separation in mining have been developed. Froth flotation is one of these techniques, which is based on hydrophobicity differences between particles. Unlike minerals, most of the plastics are naturally hydrophobic, thus requiring the addition of chemicals that promote the selective wettability of one of its components, for a flotation separation. The floatability of six granulated post-consumer plastic - Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D) - in the presence of tannic acid (wetting agent), and the performance of the flotation separation of five bi-component plastic mixtures - PS/PMMA, PS/PET-S, PS/PET-D, PS/PVC-M and PS/PVC-D - were evaluated. Moreover, the effect of the contact angle, density, size and shape of the particles was also analysed. Results showed that all plastics were naturally hydrophobic, with PS exhibiting the highest floatability. The contact angle and the flotation recovery of six plastics decreased with increasing tannic acid concentration, occurring depression of plastics at very low concentrations. Floatability differed also with the size and shape of plastic particles. For regular-shaped plastics (PS, PMMA and PVC-D) floatability decreased with the increase of particle size, while for lamellar-shaped particles (PET-D) floatability was slightly greater for coarser particles. Thus, plastic particles with small size, lamellar shape and low density present a greater floatability. The quality of separation varied with the mixture type, depending not only on the plastics hydrophobicity, but also on the size, density and shape of the particles, i.e. the particle weight. Flotation separation of plastics can be enhanced by differences in hydrophobicity. In addition, flotation separation improves if the most hydrophobic plastic, that floats, has a lamellar shape and lower density and if the most hydrophilic plastic, that sinks, has a regular shape and higher density. The results obtained show that froth flotation is a potential method for plastics separation, in particular for plastics with particle size greater than 2.0mm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon
2017-03-29
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.
Flotation and survival equipment studies.
DOT National Transportation Integrated Search
1978-01-01
This report is a collection of various studies, conducted over 15 years, of flotation and survival equipment used or proposed for aviation application, including developmental and prototype designs. Results of these studies were presented at scientif...
Flotation of metal-loaded clay anion exchangers. Part II: the case of arsenates.
Lazaridis, N K; Hourzemanoglou, A; Matis, K A
2002-04-01
Hydrotalcite-like materials, or otherwise termed layered double hydroxides, are clays with an ability to remove anions. As they usually are in powder form, these sorbents often present appreciable problems in the solid/liquid separation process following the sorption stage. Sorptive flotation of metal-loaded particles was investigated in this paper, as an alternative two-stage process. In the sorption process, satisfactory removals of arsenic(V) were obtained onto synthetic hydrotalcite particles from water. The effect of some parameters, like the solution ionic strength, concentrations, temperature, etc. was examined. During the second stage of the process, hydrotalcite fine particles were removed from the liquid phase by dispersed-air flotation; various surfactants were tested in relation to the ionic strength of the solution. The combined process of sorptive flotation provides promising results for arsenic removal.
Removal of heavy metals from Missouri lead mill tailings by froth flotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benn, F.W.; Cornell, W.L.
Froth flotation techniques to remove heavy metals (Pb, Cu, and Zn) from southeast Missouri lead mill tailings were investigated. It has been estimated that southeast Missouri contains between 200 and 300 million st of Pb tailings stored above ground. The tailings were classified as two distinct types: (1) pre-1968 tailings from the Old Lead Belt (some more than 100 years old) and (2) post-1968 tailings from the New Lead Belt. The objectives of the investigation were to reduce the Pb remaining in the tailings to < 500 ppm (< 0.05 pct Pb) and to attempt to recover a marketable concentratemore » to offset a portion of the remediation costs. The remaining dolomite-limestone would then be used as mining backfill or agricultural limestone. Bench-scale froth flotation removed, in percent, 95 Pb, 84 Cu, and 54 Zn, leaving 94 pct of the original weight containing, in parts per million, 400 Pb, 40 Cu, and 300 Zn from the Old Lead Belt tailings. Separate flotation tests also removed, in percent, 85 Pb, 84 Cu, and 80 Zn, leaving 75 pct of the original weight containing, in parts per million, 400 Pb, 200 Cu, and 500 Zn from the New Lead Belt tailings. Concentrates recovered from the Old Lead Belt were retreated to produce a final Pb concentrate containing 72 pct Pb with a cleaner flotation recovery of 79 pct. Froth flotation proved to be a viable method to remove the heavy metals.« less
Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee
2010-08-11
Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance. Copyright 2010 Elsevier B.V. All rights reserved.
Bood, Sven A; Sundequist, Ulf; Kjellgren, Anette; Nordstrom, Gun; Norlander, Torsten
2005-01-01
The purpose of the present study was to examine the potential effects of attention-placebo on flotation tank therapy. Flotation-restricted environmental stimulation technique is a method whereby an individual lies in a floating tank and all stimuli are reduced to a minimum. Thirty-two patients were diagnosed as having stress-related muscular pain. In addition, 16 of the participants had received the diagnosis of burnout depression. The patients were treated with flotation-restricted environmental stimulation technique for six weeks. One-half of the patients were also given special attention for 12 weeks (high attention), while the remainder received attention for only six weeks (normal attention). The participants exhibited lowered blood pressure, reduced pain, anxiety, depression, stress and negative affectivity, as well as increased optimism, energy and positive affectivity. The results were largely unaffected by the degree of attention-placebo or diagnosis. It was concluded that flotation therapy is an effective, noninvasive method for treating stress-related pain, and that the method is not more affected by placebo than by other methods currently used in pain treatment. The treatment of both burnout depression and pain related to muscle tension constitutes a major challenge for the patient as well as the care provider, an area in which great gains can be made if the treatment is effective. Flotation therapy may constitute an integral part of such treatment.
Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan
2017-09-26
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.