Sample records for colloidal based conducting

  1. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  2. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  3. Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals

    PubMed Central

    Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.

    2013-01-01

    Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292

  4. Analysis on laser plasma emission for characterization of colloids by video-based computer program

    NASA Astrophysics Data System (ADS)

    Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni

    2016-02-01

    Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.

  5. Thermodynamics of rough colloidal surfaces

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael

    1991-03-01

    In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.

  6. Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Navaneetham, Guru; Posner, Jonathan

    2007-11-01

    An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.

  7. MOBILIZATION AND CHARACTERIZATION OF COLLOIDS GENERATED FROM CEMENT LEACHATES MOVING THROUGH A SRS SANDY SEDIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Roberts, K.; Kaplan, D.

    Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release inmore » natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.« less

  8. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  9. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.

    PubMed

    Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise

    2006-10-01

    We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.

  10. In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions: effect of irrigation pattern.

    PubMed

    Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus

    2007-05-01

    Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.

  11. Colloid characterization and in situ release in shallow groundwater under different hydrogeology conditions.

    PubMed

    Zhou, Jingjing; Liu, Dan; Zhang, Wenjing; Chen, Xuequn; Huan, Ying; Yu, Xipeng

    2017-06-01

    Changes to groundwater hydrodynamics and chemistry can lead to colloid release that can have a major impact on the groundwater environment. To analyze the effects of colloid release caused by artificial groundwater recharge, field and laboratory tests on colloid characterization and colloid release were conducted. The field tests were carried out at an artificial recharge test site in Shandong Province. In the field investigation, one recharge water sample and five groundwater samples were collected and filtered through three levels of ultrafiltration membranes, with pore sizes of 0.45 μm, 100 kDa, and 50 kDa. The field results indicated that the colloid mass concentrations in groundwater retained between membranes with pore sizes of 100 kDa-0.45 μm and 50 kDa-100 kDa were 19 and 62 mg/L, respectively. In recharge water, the colloid mass concentrations retained by 100-kDa-0.45-μm and 50-kDa-100-kDa membranes were 3 and 99 mg/L, respectively. Colloids detected on the ultrafiltration membranes were mainly inorganic between 100 kDa and 0.45 μm, and mainly organic between 50 and 100 kDa. Based on the field colloid investigation results, the organic colloid was chosen in the laboratory experiments to reveal its release behavior under different conditions. Porous media diameter, flux, ionic strength (IS), and ion valence were changed to determine their influences on organic colloid concentration outflow from undisturbed porous media. The experiment's results indicate that decreasing the diameter, and increasing the flux, ionic strength, and the number of divalent cations, can promote organic colloid release. The organic colloid release rate in the early stage was high and is thus likely to affect the quality of groundwater. The results provide a useful scientific basis for minimizing changes to hydrodynamic and hydrochemical conditions during artificial recharge, thus safeguarding groundwater quality.

  12. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    NASA Astrophysics Data System (ADS)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  13. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  14. Mobilization of natural colloids from an iron oxide-coated sand aquifer--Effect of pH and ionic strength

    USGS Publications Warehouse

    Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem

    2002-01-01

    Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.

  15. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.

  16. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  17. Silica-coated titania and zirconia colloids for subsurface transport field experiments

    USGS Publications Warehouse

    Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.

    2000-01-01

    Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.

  18. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids. Published by Elsevier Ltd.

  19. Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands.

    PubMed

    Dai, Jinfei; Xi, Jun; Li, Lu; Zhao, JingFeng; Shi, Yifei; Zhang, Wenwen; Ran, Chenxin; Jiao, Bo; Hou, Xun; Duan, Xinhua; Wu, Zhaoxin

    2018-05-14

    Long alkyl-chain capping ligands are indispensable for preparing stable colloidal quantum dots. However, its insulating feature blocks efficient carrier transport among QDs, leading to inferior performance in light-emitting diodes (LEDs). The trade-off between conductivity and colloidal stability of QDs has now been overcome. Methylamine lead bromide (MAPbBr 3 ) QDs with a conjugated alkyl-amine, 3-phenyl-2-propen-1-amine (PPA), as ligands were prepared. Owing to electron cloud overlapping and the delocalization effect of conjugated molecules, the conductivity and carrier mobility of PPA-QDs films increased almost 22 times over that of OA-QD films without compromising colloidal stability and photoluminescence. PPA-QDs LEDs exhibit a maximum current efficiency of 9.08 cd A -1 , which is 8 times of that of OA-QDs LEDs (1.14 cd A -1 ). This work provides critical solution for the poor conductivity of QDs in applications of energy-related devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    PubMed

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of transport rates and calculation of overall tracer recovery. Preliminary results suggest that mobility of Ce as a solute is negligible, and in experiments conducted without bentonite colloids, the 2% of the Ce that was recovered during the experiments travelled as "intrinsic" colloids in the form of Ce2(CO3)3-6H2O precipitate. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and the carbonate precipitate colloids were injected. In addition, the maximum relative concentration (C/C0) of the Ce in the samples from the experiments conducted without bentonite colloids is about 0.002, whereas that of the experiments conducted in the presence of bentonite colloids reaches almost 0.2. This indicates that colloid presence does indeed markedly increase the mobility of radionuclides through fractured chalk matrices and should therefore be considered in models representing transport of radionuclide waste originating from nuclear repositories.

  2. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007417 (1 Dec. 2011) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  3. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007418 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  4. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007419 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  5. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  6. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    NASA Astrophysics Data System (ADS)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  7. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013240 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, conducts a session with the Binodal Colloidal Aggregation Test?4 (BCAT-4) in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  8. Light-emitting diodes based on colloidal silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren

    2018-06-01

    Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

  9. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    DOE PAGES

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L –1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10 –10 M 241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k f) of 0.01–0.02 h –1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h –1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids.« less

  10. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less

  11. Compensating for Electrode Polarization in Dielectric Spectroscopy Studies of Colloidal Suspensions: Theoretical Assessment of Existing Methods

    PubMed Central

    Chassagne, Claire; Dubois, Emmanuelle; Jiménez, María L.; van der Ploeg, J. P. M; van Turnhout, Jan

    2016-01-01

    Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles from which important interfacial electrokinetic properties, for instance their zeta potential, can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by electrode polarization (EP). In this article, we review several procedures to compensate for this effect. First EP in electrolyte solutions is described: the complex conductivity is derived as function of frequency, for two cell geometries (planar and cylindrical) with blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is given for each geometry. This equivalent circuit model is extended to suspensions. The complex conductivity of a suspension, in the presence of EP, is then calculated from the impedance. Different methods for compensating for EP are critically assessed, with the help of the theoretical findings. Their limit of validity is given in terms of characteristic frequencies. We can identify with one of these frequencies the frequency range within which data uncorrected for EP may be used to assess the dipole moment of colloidal particles. In order to extract this dipole moment from the measured data, two methods are reviewed: one is based on the use of existing models for the complex conductivity of suspensions, the other is the logarithmic derivative method. An extension to multiple relaxations of the logarithmic derivative method is proposed. PMID:27486575

  12. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  13. Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts.

    PubMed

    Zheng, Yun; Geng, Hongbo; Zhang, Yufei; Chen, Libao; Li, Cheng Chao

    2018-04-02

    In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol.

    PubMed

    Liu, Bing; Wang, Lingling; Tong, Bei; Zhang, Yan; Sheng, Wei; Pan, Mingfei; Wang, Shuo

    2016-11-15

    In this study, the three nanomaterials: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon were respectively labeled with the antibody against salbutamol (SAL). We aimed to develop immunochromatographic strips with these nanomaterial labels and determine their performance in visual detection of SAL. For the colloidal gold-based strip, the detection limit of SAL was 1.0µgL(-1) in standard solution and 5.0µgkg(-1) in meat samples. For the GPG- and colloidal carbon-based strips, the limit of detection was 2.0µgL(-1) in standard solution and 10µgkg(-1) in meat samples. The results obtained using the test strips were found to be highly consistent with those obtained using a commercial kit, indicating the high accuracy of these strips. The three strips were also found to be stable up to 18 weeks under laboratory conditions. In terms of sensitivity, the colloidal gold-based strip was slightly better than the other two. For the GPG- and colloidal carbon-based strips, the difference between the results obtained for different batches was small (high consistency), and the stability was much better than that of the colloidal gold-based one. Our results indicate that colloidal carbon can be used as a label in immunochromatographic tests; it can also help reduce the cost involved and scale-up the production. The use of immunochromatographic test strips labeled with colloidal carbon can be a rapid and inexpensive method for SAL assays in on-site applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Advanced Colloids Experiment-1 (ACE-1)

    NASA Image and Video Library

    2013-07-22

    ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  16. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.

  17. New collector efficiency equation for colloid filtration in both natural and engineered flow conditions

    NASA Astrophysics Data System (ADS)

    Nelson, Kirk E.; Ginn, Timothy R.

    2011-05-01

    A new equation for the collector efficiency (η) of the colloid filtration theory (CFT) is developed via nonlinear regression on the numerical data generated by a large number of Lagrangian simulations conducted in Happel's sphere-in-cell porous media model over a wide range of environmentally relevant conditions. The new equation expands the range of CFT's applicability in the natural subsurface primarily by accommodating departures from power law dependence of η on the Peclet and gravity numbers, a necessary but as of yet unavailable feature for applying CFT to large-scale field transport (e.g., of nanoparticles, radionuclides, or genetically modified organisms) under low groundwater velocity conditions. The new equation also departs from prior equations for colloids in the nanoparticle size range at all fluid velocities. These departures are particularly relevant to subsurface colloid and colloid-facilitated transport where low permeabilities and/or hydraulic gradients lead to low groundwater velocities and/or to nanoparticle fate and transport in porous media in general. We also note the importance of consistency in the conceptualization of particle flux through the single collector model on which most η equations are based for the purpose of attaining a mechanistic understanding of the transport and attachment steps of deposition. A lack of sufficient data for small particles and low velocities warrants further experiments to draw more definitive and comprehensive conclusions regarding the most significant discrepancies between the available equations.

  18. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076505 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  19. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076510 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  20. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076507 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  1. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  2. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  3. Better Resolved Low Frequency Dispersions by the Apt Use of Kramers-Kronig Relations, Differential Operators, and All-In-1 Modeling

    PubMed Central

    van Turnhout, J.

    2016-01-01

    The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. dispersion will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997

  4. Long-term Effects of Organic Waste Fertilizers on Soil Structure, Tracer Transport, and Leaching of Colloids.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob

    2017-07-01

    Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.

    PubMed

    Babiarz, C L; Hurley, J P; Hoffmann, S R; Andren, A W; Shafer, M M; Armstrong, D E

    2001-12-15

    Using tangential flow ultrafiltration, total mercury (HgT) and methylmercury (MeHg) concentrations in the colloidal phase (0.4 microm-10 kDa) were determined for 15 freshwaters located in the upper Midwest (Minnesota, Michigan, and Wisconsin) and the Southern United States (Georgia and Florida). Unfiltered concentrations were typical of those reported for freshwater and ranged from 0.9 to 27.1 ng L(-1) HgT and from 0.08 to 0.86 ng L(-1) MeHg. For some rivers, HgT and MeHg in the colloidal phase comprised up to 72% of the respective unfiltered concentration. On average, however, HgT and MeHg concentrations were evenly distributed between the particulate (>0.4 microm), colloidal, and dissolved (<10 kDa) phases. The pool of Hg in the colloidal phase decreased with increasing specific conductance. Results from experiments on freshwaters with artificially elevated specific conductance suggest that HgT and MeHg may partition to different subfractions of colloidal material. The colloidal-phase HgT correlation with filtered organic carbon (OC(F)) was generally poor (r2 < 0.14; p > 0.07), but the regression of MeHg with OC(F) was strong, especially in the upper Midwest (r2 = 0.78; p < 0.01). On a mass basis, colloidal-phase Hg concentrations were similar to those of unimpacted sediments in the Midwest. Mercury to carbon ratios averaged 352 pg of HgT/mg of C and 25 pg of MeHg/mg of C and were not correlated to ionic strength. The log of the partition coefficient (log K(D)) for HgT and MeHg ranged from 3.7 to 6.4 and was typical of freshwater values determined using a 0.4 microm cutoff between the particulate phase and the dissolved phase. Log K(D) calculated using the <10 kDa fraction as "dissolved" ranged from 4.3 to 6.6 and had a smaller standard deviation about the mean. In addition, our data support the "particle concentration effect" (PCE) hypothesis that the association of Hg with colloids in the filter-passing fraction can lower the observed log K(D). The similarity between colloidal and particulate-phase partition coefficients suggests that colloidal mass and not preferential colloidal partitioning drives the PCE.

  6. Redox active polymers and colloidal particles for flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPsmore » is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.« less

  7. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  8. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  9. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    USGS Publications Warehouse

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  10. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  11. A novel combination of silane-coated silica colloid with hybrid RNA extraction protocol and RNA enrichment for downstream applications of spermatozoal RNA.

    PubMed

    Vijayalakshmy, K; Kumar, P; Virmani, M; Pawaria, S; Lalaji, N S; Sharma, P; Rajendran, R; Yadav, P S; Kumar, D

    2018-05-14

    Spermatozoa are specialised cells with low RNA content as compared to somatic cells. The suitable sperm RNA extraction and enrichment protocols for downstream applications are available for human, cattle, stallion and mouse but not for buffalo spermatozoa. Therefore, the present work was conducted to find out suitable colloidal solution for sperm purification and appropriate protocol for sperm RNA extraction and enrichment/amplification of RNA. For purification, we used PVP-coated silica colloidal solution (PVP-Si), silane-coated silica colloidal solution (Silane-Si) and iodixanol. Sperm recovery rate, total sperm motility and progressive sperm motility were significantly improved after separation by Silane-Si and iodixanol compared to PVA-Si method. The combined guanidinium thiocyanate-phenol-chloroform (GTPC) with silica matrix (SM)-based RNA extraction yielded more quantity of RNA in compared to individual method. The hybrid of SM and GTPC into a single protocol yielded 360-450 ng RNA from 30 million buffalo spermatozoa. For the first time, we adopted new way to enrich sperm RNA that increased the RNA concentration 4-5 times that was sufficient for downstream applications. The linear amplification of sperm RNA increased RNA concentration around 27-45 times. In summary, Silane-Si colloid for sperm separation, hybrid SM and GTPC protocol for sperm RNA extraction followed by enrichment or amplification of RNA was found suitable for high-throughput analyses of buffalo sperm RNA. © 2018 Blackwell Verlag GmbH.

  12. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media

    USDA-ARS?s Scientific Manuscript database

    A balance of applied hydrodynamic (TH) and resisting adhesive (TA) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height hr to determine the fraction of the solid surface area that contributes to colloid immobilization (Sf*) under unfavorable a...

  13. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    PubMed

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  14. Active structuring of colloidal armour on liquid drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-06-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  15. Active structuring of colloidal armour on liquid drops.

    PubMed

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.

  16. A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols

    NASA Astrophysics Data System (ADS)

    Gen, Masao; Kakuta, Hideo; Kamimoto, Yoshihito; Wuled Lenggoro, I.

    2011-06-01

    A detection method based on the surface-enhanced Raman spectroscopy (SERS)-active substrate derived from aerosol nanoparticles and a colloidal suspension for detecting organic molecules of a model analyte (a pesticide) is proposed. This approach can detect the molecules of the derived from its solution with the concentration levels of ppb. For substrate fabrication, a gas-phase method is used to directly deposit Ag nanoparticles on to a silicon substrate having pyramidal structures. By mixing the target analyte with a suspension of Ag colloids purchased in advance, clotianidin analyte on Ag colloid can exist in junctions of co-aggregated Ag colloids. Using (i) a nanostructured substrate made from aerosol nanoparticles and (ii) colloidal suspension can increase the number of activity spots.

  17. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  18. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    PubMed

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface

    NASA Astrophysics Data System (ADS)

    Sirivithayapakorn, Sanya; Keller, Arturo

    2003-12-01

    We present results from pore-scale observations of colloid transport in an unsaturated physical micromodel. The experiments were conducted separately using three different sizes of carboxylate polystyrene latex spheres and Bacteriophage MS2 virus. The main focus was to investigate the pore-scale transport processes of colloids as they interact with the air-water interface (AWI) of trapped air bubbles in unsaturated porous media, as well as the release of colloids during imbibition. The colloids travel through the water phase but are attracted to the AWI by either collision or attractive forces and are accumulated at the AWI almost irreversibly, until the dissolution of the air bubble reduces or eliminates the AWI. Once the air bubbles are near the end of the dissolution process, the colloids can be transported by advective liquid flow, as colloidal clusters. The clusters can then attach to other AWI down-gradient or be trapped in pore throats that would have allowed them to pass through individually. We also observed small air bubbles with attached colloids that traveled through the porous medium during the gas dissolution process. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to help explain the observed results. The strength of the force that holds the colloids at the AWI was estimated, assuming that the capillary force is the major force that holds the colloids at the AWI. Our calculations indicate that the forces that hold the colloids at the AWI are larger than the energy barrier between the colloids. Therefore it is quite likely that the clusters of colloids are formed by the colloids attached at the AWI as they move closer at the end of the bubble dissolution process. Coagulation at the AWI may increase the overall filtration for colloids transported through the vadose zone. Just as important, colloids trapped in the AWI might be quite mobile when the air bubbles are released at the end of the dissolution process, resulting in increased breakthrough. These pore-scale mechanisms are likely to play a significant role in the macroscopic transport of colloids in unsaturated porous media.

  20. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  1. The influence of Na+ and Ca2+ on the migration of colloids or/and ammonia nitrogen in an unsaturated zone medium.

    PubMed

    Li, HaiMing; Wei, JinBu; Ge, YaChao; Wang, ZhanQuan; Wang, Ye; Li, YingLong

    2016-11-01

    This experiment was conducted with an indoor sand-column device, the migration of colloids with the presence of Na + and Ca 2+ and the migration of ammonia nitrogen with the presence of Na + , Ca 2+ or/and colloids was studied. The results showed that the migration of colloids was influenced by the ion valence state, different ions with different valence could block the migration of colloids. In addition, the blocking effect of bivalent ions was more obvious than that of monovalent ions. In the presence of Na + and Ca 2+ , the R d value of the ammonia-nitrogen migration process were 1.01 and 1.41, respectively, which indicated that bivalent ions have a greater blocking effect on ammonia-nitrogen migration than monovalent ions. Colloids could also block the ammonia-nitrogen migration, and R d value in the ammonia-nitrogen migration process was 1.17. Moreover, the presence of Na + /colloids and Ca 2+ /colloids could enhance the blocking effect on the ammonia-nitrogen migration, and resulting the R d values at 1.20 and 1.52, respectively. The cohesion of colloids caused by the compaction of its electric double layer with those ions added maybe the key causes of those blocking. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids

    NASA Astrophysics Data System (ADS)

    Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.

    2017-03-01

    Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.

  3. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids

    PubMed Central

    Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.

    2017-01-01

    Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell. PMID:28256635

  4. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids

    DOE PAGES

    Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; ...

    2017-03-03

    Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO 2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO 2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV)more » colloid. A comparative study of nanostructured PuO 2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO 2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO 2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO 2 cores and hydrolyzed Pu(IV) moieties at the surface shell.« less

  5. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants

    NASA Astrophysics Data System (ADS)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A.; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in iii-v and ii-vi nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  6. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    NASA Astrophysics Data System (ADS)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  7. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less

  8. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of magnetic colloids by means of magnetooptics.

    PubMed

    Baraban, L; Erbe, A; Leiderer, P

    2007-05-01

    A new, efficient method for the characterization of magnetic colloids based on the Faraday effect is proposed. According to the main principles of this technique, it is possible to detect the stray magnetic field of the colloidal particles induced inside the magnetooptical layer. The magnetic properties of individual particles can be determined providing measurements in a wide range of magnetic fields. The magnetization curves of capped colloids and paramagnetic colloids were measured by means of the proposed approach. The registration of the magnetooptical signals from each colloidal particle in an ensemble permits the use of this technique for testing the magnetic monodispersity of colloidal suspensions.

  10. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    PubMed

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Active structuring of colloidal armour on liquid drops

    PubMed Central

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716

  12. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic experiments by contacting this FFM with pure Grimsel groundwater for 7 days. A positive correlation of 242Pu, 232Th(IV) and 237Np was observed with the Zn and Ni concentrations in the desorption experiments indicating a remobilization of sorbed montmorillonite colloids. The results of the study in hand highlight (i) the novel use of structural labeled colloids to decrease the uncertainties in the determination of nanoparticle attachment providing more confidence in the derived radionuclide desorption rates. Moreover, the data illustrate (ii) the importance of radionuclide colloid desorption to be considered in the analysis and application of colloid facilitated transport both in laboratory or in-situ experiments and numerical model simulations and (iii) a possible remobilization of sorbed colloids and associated radionuclides by desorption from the matrix material (FFM) under non-equilibrium conditions.

  13. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  14. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  15. Colloid Transport in Saturated Porous Media: Elimination of Attachment Efficiency in a New Colloid Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.

    A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less

  16. Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.

    PubMed

    Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan

    2006-04-13

    We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.

  17. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and the experiment was powered on, the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period.

  18. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    PubMed

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  19. Dielectrophoresis and its application to biomedical diagnostics platforms

    NASA Astrophysics Data System (ADS)

    Basuray, Sagnik

    Novel pathogenic diagnostics and on field devices to attest their growth have been the current norm of scientific research and curiosity. Microfluidics and Nanofluidics have recently been on the forefront of the development of these devices for their inherent advantages of large surface to volume ratio and small diffusion times. With the advancement of soft lithographic techniques, the devices can be easily adapted for medical systems and bio-diagnostic devices to study mechanistic pathways of bio-molecules, bio-chemical reactions and as delivery modules for drug. However, the lack of better sensors, other than optics, to detect low bio-particle numbers in real samples have made the instruments bulky, expensive and not suitable for field use. Thus there is an urgent need to develop label-free, portable, inexpensive, rapid diagnostic devices. In order to achieve a viable device, researchers in these fields have been using dielectrophoresis as the mechanism of choice for a variety of tasks, from particle manipulation, to delivery, to movement of the particles through the fluid. However, the exact physical mechanism for not only the dielectrophoresis of the colloidal assembly is unclear, but the dielectrophoresis of single bio-particles/charged nano-colloids is not understood fully. In this thesis, I present a theory for charged nano-colloid dielectrophoresis taking into account the surface charge and Debye double layer effects. The exact mechanism of the origin of the Stern layer, through the surface conductance effect of a nano-colloid to form a collapsed diffuse layer that renders a nano-colloid conductive at sub-optical frequency has been formulated. This effect is utilized to optimize a nano-colloid assay to detect DNA hybridization. The collapsed diffuse layer kinetics with thick diffuse layer is solved, using spherical harmonics of the Bessel solution of the Poisson equation, to give a modified Clausius-Mosotti factor, that accounts for the size dependent monotonic rise in crossover frequency, unlike in classical theories. This effect is used to design molecular detection platform based on dielectrophoretic trapping of carbon nano-tube (CNT) in an inter-digitized microfluidics platform. The platform can distinguish the target DNA from a heterogeneous DNA mixture or from 3 base mismatched congenic species based on the different electrical impedance signatures (EIS). The open flow device uses shear enhanced discrimination to shear off the non-target biomolecules from CNT surface and also remove the parasitic double layer signal to high frequency for high resolution of the hybridization signal unlike batch processes. It is used to dielectrophoretically trap DNAs, RNAs and biomolecule from a flowing solution to the CNT surface to allow for very rapid, sensitive and selective detection. We designed a rapid, inexpensive, sensitive real time polymerase chain reaction detector; the nano-slot that used dielectrophoresis and EIS to concentrate the DNA molecules for real time detection near a nano-slot.

  20. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2017-01-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  1. Measurements needed for on-line control of retention and drainage

    Treesearch

    Allan M. Springer; Jeffrey S. Noe; T. H. Wegner

    1987-01-01

    In a retention and drainage control strategy, it is necessary to monitor the concentration of dissolved inorganic material and the concentration of dissolved and colloidal organic material. Conductivity is successful as a sensor to monitor inorganic material. We studied TOC as a means to monitor dissolved and colloidal organic material and found it to work well. Both...

  2. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

    PubMed

    Kanti Sen, Tushar; Khilar, Kartic C

    2006-02-28

    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.

  3. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  4. Feedback Controlled Colloidal Assembly at Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Bevan, Michael

    The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.

  5. Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.

  6. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  7. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.

    PubMed

    Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C

    2005-05-15

    Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.

  8. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  9. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  10. Chiral liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2018-01-01

    Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  11. Optical and Photothermal Behaviors of Colloidal and Self-Assembled Magnetic-Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    This dissertation is based on numerous efforts in exploring the capabilties of numerical simulation for investigating novel optical phenomena in different colloidal plasmonic systems. The dissertation includes five chapters. Chapter 1 contains a general introduction to the fundamentals of plasmonic behaviors in colloidal clusters and bottom-up self-assembly methods for manufacturing colloidal clusters which include magnetic based and DNA-assisted pathways. Chapter 2 presents a systematic comparison of optical and thermodynamic properties of near-infrared colloidal nanoparticles, including SiO2 Au core-shell, Au nanocage and Au nanorod, and an example of the nanobubble-based photothermal therapy application. In Chapter 3, a optical phenomenon named Fano resonance is demonstrated in a colloidal heptamer design which consists of seven Fe 3O4 Au core-shell nanoparticles. The incorporation of the magnetic core enables a magnetic-assisted self-assembly process which will be discussed after the photonic analysis. In Chapter 4, the optical behaviors in a 1D magnetic-plasmonic chain are explored. A demonstration of the magnetic-based self-assembly of this 1D chain is given. Chapter 5 is focused on the study of the chiral optical responses in a helical nanoscale system which follows a 3D helical arrangement of Fe3O4 Au core-shell nanoparticles.

  12. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    PubMed

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

  13. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles.

    PubMed

    Gharibshahi, Elham; Saion, Elias

    2012-11-12

    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.

  14. Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles

    PubMed Central

    Gharibshahi, Elham; Saion, Elias

    2012-01-01

    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size. PMID:23203091

  15. DHS Internship Summary-Crystal Assembly at Different Length Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, L

    2009-08-06

    I was part of a project in which in situ atomic force microscopy (AFM) was used to monitor growth and dissolution of atomic and colloidal crystals. At both length scales, the chemical environment of the system greatly altered crystal growth and dissolution. Calcium phosphate was used as a model system for atomic crystals. A dissolution-reprecipitation reaction was observed in this first system, involving the conversion of brushite (DCPD) to octacalcium phosphate (OCP). In the second system, polymeric colloidal crystals were dissolved in an ionic solvent, revealing the underlying structure of the crystal. The dissolved crystal was then regrown through anmore » evaporative step method. Recently, we have also found that colloids can be reversibly deposited in situ onto an ITO (indium tin oxide) substrate via an electrochemistry setup. The overall goal of this project was to develop an understanding of the mechanisms that control crystallization and order, so that these might be controlled during material synthesis. Controlled assembly of materials over a range of length scales from molecules to nanoparticles to colloids is critical for designing new materials. In particular, developing materials for sensor applications with tailorable properties and long range order is important. In this work, we examine two of these length scales: small molecule crystallization of calcium phosphate (whose crystal phases include DCPD, OCP, and HAP) and colloidal crystallization of Poly(methyl methacrylate) beads. Atomic Force Microscopy is ideal for this line of work because it allows for the possibility of observing non-conducting samples in fluid during growth with high resolution ({approx} 10 nm). In fact, during atomic crystal growth one can observe changes in atomic steps, and with colloidal crystals, one can monitor the individual building blocks of the crystal. Colloids and atoms crystallize under the influence of different forces acting at different length scales as seen in Table 1. In particular, molecular crystals, which are typically dominated by ionic and covalent bonding, are an order of magnitude more strongly bonded than colloidal crystals. In molecular crystals, ordering is driven by the interaction potentials between molecules. By contrast, colloidal assembly is a competition between the repulsive electrostatic forces that prevent aggregation in solution (due to surface charge), and short-range van der Waals and entropic forces that leads to ordering. Understanding atomic crystallization is fundamentally important for fabrication of tailorable crystalline materials, for example for biological or chemical sensors. The transformation of brushite to OCP not only serves as a model system for atomic crystal growth (applicable to many other crystal growth processes), but is also important in bone cements. Colloidal crystals have unique optical properties which respond to chemical and mechanical stimuli, making them very important for sensing applications. The mechanism of colloidal crystal assembly is thus fundamentally important. Our in situ dissolution and regrowth experiments are one good method of analyzing how these crystals pack under different conditions and how defect sites are formed and filled. In these experiments, a silica additive was used to strengthen the colloidal crystal during initial assembly (ex situ) and to increase domain size and long range order. Reversible electrodeposition of colloids onto a conductive substrate (ITO in our case) is another system which can further our knowledge of colloidal assembly. This experiment holds promise of allowing in situ observation of colloidal crystal growth and the influence of certain additives on crystal order. The ultimate goal would be to achieve long range order in these crystals by changing the surface charge or the growth environment.« less

  16. Movie of phase separation during physics of colloids in space experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  17. Phase separation during the Experiment on Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  18. Colloidal motion under the action of a thermophoretic force.

    PubMed

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-07

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  19. Colloidal motion under the action of a thermophoretic force

    NASA Astrophysics Data System (ADS)

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-01

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  20. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.

    2008-02-01

    We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.

  1. Incorporation of additives into polymers

    DOEpatents

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  2. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    PubMed

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  3. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.

  4. Revisiting the cape cod bacteria injection experiment using a stochastic modeling approach

    USGS Publications Warehouse

    Maxwell, R.M.; Welty, C.; Harvey, R.W.

    2007-01-01

    Bromide and resting-cell bacteria tracer tests conducted in a sandy aquifer at the U.S. Geological Survey Cape Cod site in 1987 were reinterpreted using a three-dimensional stochastic approach. Bacteria transport was coupled to colloid filtration theory through functional dependence of local-scale colloid transport parameters upon hydraulic conductivity and seepage velocity in a stochastic advection - dispersion/attachment - detachment model. Geostatistical information on the hydraulic conductivity (K) field that was unavailable at the time of the original test was utilized as input. Using geostatistical parameters, a groundwater flow and particle-tracking model of conservative solute transport was calibrated to the bromide-tracer breakthrough data. An optimization routine was employed over 100 realizations to adjust the mean and variance ofthe natural-logarithm of hydraulic conductivity (InK) field to achieve best fit of a simulated, average bromide breakthrough curve. A stochastic particle-tracking model for the bacteria was run without adjustments to the local-scale colloid transport parameters. Good predictions of mean bacteria breakthrough were achieved using several approaches for modeling components of the system. Simulations incorporating the recent Tufenkji and Elimelech (Environ. Sci. Technol. 2004, 38, 529-536) correlation equation for estimating single collector efficiency were compared to those using the older Rajagopalan and Tien (AIChE J. 1976, 22, 523-533) model. Both appeared to work equally well at predicting mean bacteria breakthrough using a constant mean bacteria diameter for this set of field conditions. Simulations using a distribution of bacterial cell diameters available from original field notes yielded a slight improvement in the model and data agreement compared to simulations using an average bacterial diameter. The stochastic approach based on estimates of local-scale parameters for the bacteria-transport process reasonably captured the mean bacteria transport behavior and calculated an envelope of uncertainty that bracketed the observations in most simulation cases. ?? 2007 American Chemical Society.

  5. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    PubMed

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.

  6. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds.

    PubMed

    Sadmani, A H M Anwar; Andrews, Robert C; Bagley, David M

    2014-12-01

    This study examined the rejection of selected pharmaceutically active (PhAC) and endocrine disrupting compounds (EDCs) when using nanofiltration as a function of naturally occurring dissolved organic matter (DOM), colloidal particles, cations and their interactions. Lake Ontario water served as a source of natural DOM and colloidal particles. PhAC/EDC rejection experiments were conducted using raw Lake Ontario water and Lake Ontario water that was pre-treated with either ultrafiltration to remove colloidal particles, or fluidized ion exchange resins to remove DOM. Additionally, the concentration of cations (Ca(2+), Mg(2+), and Na(+)) in the raw and pre-treated water matrices was varied. While ionic PhACs and EDCs exhibited high rejections from all the water matrices examined, neutral compounds were most effectively rejected in water containing DOM and no colloids, and least effectively rejected from colloid-containing water with increased cations but no DOM. The presence of DOM significantly improved compound rejection and the increase in cation concentration significantly decreased rejection. The presence of colloids had comparatively little effect except to mitigate the impact of increased cation concentration, apparently providing some cation-buffering capacity. The sequence in which constituents are removed from waters during treatment may significantly impact PhAC and EDC removal, especially of neutral compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fundamental Physics

    NASA Image and Video Library

    2003-01-22

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  8. Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Ralf; Benedetti, Marc F.; Andersson, Karen; Turner, David; Larsson, Tobias; Stolpe, Björn; Ingri, Johan

    2004-10-01

    A considerable amount of colloidally bound Ca has been detected in water samples from Amazonian rivers and the Kalix River, a sub-arctic boreal river. Fractionation experiments using several analytical techniques and processing tools were conducted in order to elucidate the matter. Results show that on average 84% of the total Ca concentration is present as free Ca. Particulate, colloidal and complexed Ca constitute the remaining 16%, of which the colloidal fraction is significant. Ultrafiltration experiments show that the colloidal fraction in the sampled Amazonian rivers and the Kalix River range between 1% and 25%. In both the Amazonian and the Kalix rivers the technique of cross-flow ultrafiltration was used to isolate particles and colloids. The difference in concentration measured with ICP-AES and a Ca ion-selective electrode in identical samples was used to define the free Ca concentration and thus indirectly the magnitude of the particulate, colloidal and complexed fractions. Results from the Kalix and Amazonian rivers are in excellent agreement. Furthermore, the results show that the colloidal concentrations of Ca can be greatly overestimated (up to 227%) when conventional analysis and calculation of ultrafiltration data is used due to retention of free Ca ions during the ultrafiltration process. Calculation methods for colloidal matter are presented in this work, using complementary data from ISE analysis. In the Kalix River temporal changes in the fractionation of Ca were studied before, during and after a spring-flood event. Changes in the size distribution of colloidally associated Ca was studied using FlFFF (Flow Field-Flow Fractionation) coupled on-line to a HR ICP-MS. The FlFFF-HR ICP-MS fractograms clearly show the colloidal component of Ca, supporting the ultrafiltration findings. During winter conditions the size distribution of colloidally associated Ca has a concentration maximum at ˜5 to 10 nm in diameter, shifting to smaller sizes (<5 nm) during and after the spring flood. This shift in size distribution follows a change in the river during this period from ironoxyhydroxy colloids being the most important colloidal carrier phase to humic substances during and after the spring flood. WHAM and NICA-Donnan models were used to calculate the amount of colloidally bound Ca. The results similar for both models, show that on average 16% of the Ca may be associated to a colloidal phase, which is in broad agreement with the measurements.

  9. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  10. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  11. Colloid-borne forms of tetravalent actinides: A brief review

    NASA Astrophysics Data System (ADS)

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.

  12. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-04

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  13. Electro-elastoviscous response of polyaniline functionalized nano-porous zeolite based colloidal dispersions.

    PubMed

    Chattopadhyay, Ankur; Rani, Poonam; Srivastava, Rajendra; Dhar, Purbarun

    2018-06-01

    The present article discusses the typical influence of grafted conducting polymers in the mesoscale pores of dielectric particles on the static and dynamic electrorheology and electro-viscoelastic behavior of corresponding colloids. Nanocrystalline meso-nanoporous zeolite has been prepared by chemical synthesis and subsequently polyaniline (PANI) coating has been implemented. Electrorheological (ER) suspensions have been formed by dispersing the nanoparticles in silicone oil and their viscoelastic behaviors are examined to understand the nature of such complex colloidal systems under electric fields. PANI-Zeolite ER fluids demonstrate higher static electroviscous effects and yield stress potential than untreated Zeolite, typically studied in literature. Transient electro-viscous characterizations show a stable and negligible hysteresis behavior when both the fluids are exposed to constant as well as time varying electric field intensities. Further oscillatory shear experiments of frequency and strain sweeps exhibit predominant elastic behavior in case of Zeolite based ER suspensions as compared to PANI systems. Detailed investigations reveal Zeolite based ER suspensions display enhanced relative yielding as well as electro-viscoelastic stability than the PANI-Zeolite. The steady state viscous behaviors are scaled against the non-dimensional Mason number to model the system behavior for both fluids. Experimental data of flow behaviors of both the ER fluids are compared with semi-classical models and it is found that the CCJ model possesses a closer proximity than traditional Bingham model, thereby revealing the fluids to be generic pseudo-linear fluids. The present article reveals that while the PANI based fluids are typically hailed superior in literature, it is only restricted to steady shear utilities. In case of dynamic and oscillatory systems, the traditional Zeolite based fluids exhibit superior ER caliber. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue.

    PubMed

    Donauerová, Alena; Bujdák, Juraj; Smolinská, Miroslava; Bujdáková, Helena

    2015-10-01

    Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Physics of Colloids in Space (PCS) Flight Hardware Developed

    NASA Technical Reports Server (NTRS)

    Koudelka, John M.

    2001-01-01

    investigation that will be located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack. The investigation will be conducted in the International Space Station U.S. laboratory, Destiny, over a period of approximately 10 months during the station assembly period from flight 6A through flight UF-2. This experiment will gather data on the basic physical properties of colloids by studying three different colloid systems with the objective of understanding how they grow and what structures they form. A colloidal suspension consists of fine particles (micrometer to submicrometer) suspended in a fluid for example, paints, milk, salad dressings, and aerosols. The long-term goal of this investigation is to learn how to steer the growth of colloidal suspensions to create new materials and new structures. This experiment is part of a two-stage investigation conceived by Professor David Weitz of Harvard University along with Professor Peter Pusey of the University of Edinburgh. The experiment hardware was developed by the NASA Glenn Research Center through contracts with Dynacs, Inc., and ZIN Technologies.

  16. Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    NASA Astrophysics Data System (ADS)

    Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd

    2018-03-01

    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.

  17. High-throughput fabrication of anti-counterfeiting colloid-based photoluminescent microtags using electrical nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Diaz, R.; Palleau, E.; Poirot, D.; Sangeetha, N. M.; Ressier, L.

    2014-08-01

    This work demonstrates the excellent capability of the recently developed electrical nanoimprint lithography (e-NIL) technique for quick, high-throughput production of well-defined colloid assemblies on surfaces. This is shown by fabricating micron-sized photoluminescent quick response (QR) codes based on the electrostatic directed trapping (so called nanoxerography process) of 28 nm colloidal lanthanide-doped upconverting NaYF4 nanocrystals. Influencing experimental parameters have been optimized and the contribution of triboelectrification in e-NIL was evidenced. Under the chosen conditions, more than 300 000 nanocrystal-based QR codes were fabricated on a 4 inch silicon wafer, in less than 15 min. These microtags were then transferred to transparent flexible films, to be easily integrated onto desired products. Invisible to the naked eye, they can be decoded and authenticated using an optical microscopy image of their specific photoluminescence mapping. Beyond this very promising application for product tracking and the anti-counterfeiting strategies, e-NIL nanoxerography, potentially applicable to any types of charged and/or polarizable colloids and pattern geometries opens up tremendous opportunities for industrial scale production of various other kinds of colloid-based devices and sensors.

  18. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  19. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Analytical theory of polymer-network-mediated interaction between colloidal particles

    PubMed Central

    Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika

    2012-01-01

    Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289

  1. High-Performance Low-Cost Portable Radiological and Nuclear Detectors Based on Colloidal Nanocrystals (TOPIC 07-B)

    DTIC Science & Technology

    2016-07-01

    concluded that more gamma interactions are occurring with the NCs, leading to more down- scattered photons. Conversely, that also means that there is a...15 6. Colloidal Synthesis of Lead -Based Scintillating Nanocrystals (Task 2)………..…………...15 6.A. Colloidal Synthesis of PbI2 Scintillating...LaF3 Nanocrystals Synthesized in Water………………………………………...……….………………………...27 8. Characterization of Lead -Based Scintillating

  2. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    NASA Astrophysics Data System (ADS)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  3. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  4. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  5. Tools and Functions of Reconfigurable Colloidal Assembly.

    PubMed

    Solomon, Michael J

    2018-02-19

    We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.

  6. Metal colloids employed in the SERS of biomolecules: activation when exciting in the visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. V.; Sánchez-Cortés, S.

    1997-03-01

    Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.

  7. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    DTIC Science & Technology

    2007-04-17

    field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in

  8. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    In the International Space Stations Destiny laboratory,NASA astronaut Karen Nyberg,Expedition 36 flight engineer,speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  9. Colloidal alloys with preassembled clusters and spheres.

    PubMed

    Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J

    2017-06-01

    Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

  10. Isochoric structural recovery in molecular glasses and its analog in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Banik, Sourya; McKenna, Gregory B.

    2018-06-01

    Concentrated colloidal dispersions have been regarded as models for molecular glasses. One of the many ways to compare the behavior in these two different systems is by comparing the structural recovery or the physical aging behavior. However, recent investigations from our group to examine structural recovery in thermosensitive colloidal dispersions have shown contrasting results between the colloidal and the molecular glasses. The differences in the behaviors of the two systems have led us to pose this question: Is structural recovery behavior in colloidal glasses truly distinct from that of molecular glasses or is the conventional experimental condition (isobaric temperature-jumps) in determining the structural recovery in molecular glasses different from the experimental condition in the colloidal experiments (concentration- or volume fraction-jumps); i.e., are colloidal glasses inherently different from molecular glasses or not? To address the question, we resort to model calculations of structural recovery in a molecular glass under constant volume (isochoric) conditions following temperature only- and simultaneous volume- and temperature-jumps, which are closer to the volume fraction-jump conditions used in the thermosensitive-colloidal experiments. The current model predictions are then compared with the signatures of structural recovery under the conventional isobaric state in a molecular glass and with structural recovery behavior in colloidal glasses following volume fraction-jumps. We show that the results obtained from the experiments conducted by our group were contrasting to classical molecular glass behavior because the basis of our comparisons were incorrect (the histories were not analogous). The present calculations (with analogous histories) are qualitatively closer to the colloidal behavior. The signatures of "intrinsic isotherms" and "asymmetry of approach" in the current isochoric model predictions are quite different from those in the classical isobaric conditions while the "memory" signatures remain essentially the same. While there are qualitative similarities between the current isochoric model predictions and results from colloidal glasses, it appears from the calculations that the origins of these are different. The isochoric histories in the molecular glasses have compensating effects of pressure and departure from equilibrium which determines the structure dependence on mobility of the molecules. On the other hand, in the colloids it simply appears that the volume fraction-jump conditions simply do not exhibit such structure mobility dependence. The determining interplay of thermodynamic phase variables in colloidal and molecular systems might be very different or at least their correlations are yet to be ascertained. This topic requires further investigation to bring the similarities and differences between molecular and colloidal glass formers into fuller clarity.

  11. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  12. Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.

    2005-01-01

    A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.

  13. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  14. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  15. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.

    PubMed

    Haque, Muhammad Emdadul; Shen, Chongyang; Li, Tiantian; Chu, Haoxue; Wang, Hong; Li, Zhen; Huang, Yuanfang

    2017-11-01

    Although the potential application of biochar in soil remediation has been recognized, the effect of biochar on the transport of clay colloids, and accordingly the fate of colloid-associated contaminants, is unclear to date. This study conducted saturated column experiments to systematically examine transport of clay colloids in biochar-amended sand porous media in different electrolytes at different ionic strengths. The obtained breakthrough curves were simulated by the convection-diffusion equation, which included a first-order deposition and release terms. The deposition mechanisms were interpreted by calculating Derjaguin-Landau-Verwey-Overbeek interaction energies. A linear relationship between the simulated deposition rate or the attachment efficiency and the fraction of biochar was observed ( ≥ 0.91), indicating more favorable deposition in biochar than in sand. The interaction energy calculations show that the greater deposition in biochar occurs because the half-tube-like cavities on the biochar surfaces favor deposition in secondary minima and the nanoscale physical and chemical heterogeneities on the biochar surfaces increase deposition in primary minima. The deposited clay colloids in NaCl can be released by reduction of ionic strength, whereas the presence of a bivalent cation (Ca) results in irreversible deposition due to the formation of cation bridging between the colloids and biochar surfaces. The deposition and release of clay colloids on or from biochar surfaces not only change their mobilizations in the soil but also influence the efficiency of the biochar for removal of pollutants. Therefore, the influence of biochar on clay colloid transport must be considered before application of the biochar in soil remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.

    PubMed

    Lee, Seyong; Han, Seunghee; Gill, Gary A

    2011-06-01

    Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.

  17. Dielectric relaxation behavior of colloidal suspensions of palladium nanoparticle chains dispersed in PVP/EG solution.

    PubMed

    Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong

    2007-04-28

    Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.

  18. Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs.

    PubMed

    Maity, Amit Ranjan; Chakraborty, Atanu; Mondal, Avijit; Jana, Nikhil R

    2014-03-07

    Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs.

  19. Dynamics of Fractal Cluster Gels with Embedded Active Colloids

    NASA Astrophysics Data System (ADS)

    Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.

    2017-08-01

    We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.

  20. A temperature-induced and shear-reversible assembly of latanoprost-loaded amphiphilic chitosan colloids: characterization and in vivo glaucoma treatment.

    PubMed

    Hsiao, Meng-Hsuan; Chiou, Shih-Hwa; Larsson, Mikael; Hung, Kuo-Hsuan; Wang, Yi-Ling; Liu, Catherine Jui-Ling; Liu, Dean-Mo

    2014-07-01

    Hydrogels composed of assembled colloids is a material class that is currently receiving much interest and shows great promise for use in biomedical applications. This emerging material class presents unique properties derived from the combination of nanosized domains in the form of colloidal particles with a continuous gel network and an interspersed liquid phase. Here we developed an amphiphilic chitosan-based, thermogelling, shear-reversible colloidal gel system for improved glaucoma treatment and addressed how preparation procedures and loading with the anti-glaucoma drug latanoprost and commonly used preservative benzalkonium chloride influenced the mechanical properties of and drug release from the colloidal gels. The results highlight that incorporated substances and preparation procedures have effects both on mechanical properties and drug release, but that the release of drug loaded in the colloidal carriers is mainly limited by transport out of the carriers, rather than by diffusion within the gel. The developed colloidal chitosan based gels hold outstanding biomedical potential, as confirmed by the ease of preparation and administration, low cytotoxicity in MTT assay, excellent biocompatibility and lowering of intraocular pressure for 40 days in a rabbit glaucoma model. The findings clearly justify further investigations towards clinical use in the treatment of glaucoma. Furthermore, the use of this shear-reversible colloidal gel could easily be extended to localized treatment of a number of critical conditions, from chronic disorders to cancer, potentially resulting in a number of new therapeutics with improved clinical performance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  2. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes

    PubMed Central

    2017-01-01

    We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800

  3. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019760 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  4. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    NASA Astrophysics Data System (ADS)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  5. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.

    PubMed

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.

  6. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity

    PubMed Central

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728

  7. Repairing Nanoparticle Surface Defects.

    PubMed

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    PubMed

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  10. The role of silica colloids on facilitated cesium transport through glass bead columns and modeling

    NASA Astrophysics Data System (ADS)

    Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.

    1998-05-01

    Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.

  11. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.

    PubMed

    Liu, Xiangkai; Zhao, Shuangyi; Gu, Wei; Zhang, Yuting; Qiao, Xvsheng; Ni, Zhenyi; Pi, Xiaodong; Yang, Deren

    2018-02-14

    Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm 2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.

  13. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions.

    PubMed

    Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin

    2017-02-01

    Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using Android-Based Educational Game for Learning Colloid Material

    NASA Astrophysics Data System (ADS)

    Sari, S.; Anjani, R.; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This research is based on the importance of the development of student’s chemical literacy on Colloid material using Android-based educational game media. Educational game products are developed through research and development design. In the analysis phase, material analysis is performed to generate concept maps, determine chemical literacy indicators, game strategies and set game paths. In the design phase, product packaging is carried out, then validation and feasibility test are performed. Research produces educational game based on Android that has the characteristics that is: Colloid material presented in 12 levels of game in the form of questions and challenges, presents visualization of discourse, images and animation contextually to develop the process of thinking and attitude. Based on the analysis of validation and trial results, the product is considered feasible to use.

  15. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  16. Ultra-thin layer chromatography with integrated silver colloid-based SERS detection.

    PubMed

    Wallace, Ryan A; Lavrik, Nickolay V; Sepaniak, Michael J

    2017-01-01

    Simplified lab-on-a-chip techniques are desirable for quick and efficient detection of analytes of interest in the field. The following work involves the use of deterministic pillar arrays on the micro-scale as a platform to separate compounds, and the use of Ag colloid within the arrays as a source of increased signal via surface enhanced Raman spectroscopy (SERS). One problem traditionally seen with SERS surfaces containing Ag colloid is oxidation; however, our platforms are superhydrophobic, reducing the amount of oxidation taking place on the surface of the Ag colloid. This work includes the successful separation and SERS detection of a fluorescent dye compounds (resorufin and sulforhodamine 640), fluorescent anti-tumor drugs (Adriamycin and Daunomycin), and purine and pyrimidine bases (adenine, cytosine, guanine, hypoxanthine, and thymine). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bimetallic clustered thin films with variable electro-optical properties

    NASA Astrophysics Data System (ADS)

    Antipov, A.; Bukharov, D.; Arakelyan, S.; Osipov, A.; Lelekova, A.

    2018-01-01

    The drop deposition of colloidal nanoparticles was performed from water-based colloidal solutions. The proposed procedure is based on the agglomeration of colloidal particles in laser-assisted evaporation processes. The evaporation process was resulted in the formation of clustered thin films on a glass substrate. In the experiments with bimetallic Au:Ag solutions, the clustered films are grown, the formation of the clustered films with the average height of 100 nm was achieved. Optical properties of the deposited structures were investigated experimentally. It is shown that the obtained films may become transparent and its properties are defined by its morphology.

  18. Colloids Versus Albumin in Large Volume Paracentesis to Prevent Circulatory Dysfunction: Evidence-based Case Report.

    PubMed

    Widjaja, Felix F; Khairan, Paramita; Kamelia, Telly; Hasan, Irsan

    2016-04-01

    Large volume paracentesis may cause paracentesis induced circulatory dysfunction (PICD). Albumin is recommended to prevent this abnormality. Meanwhile, the price of albumin is too expensive and there should be another alternative that may prevent PICD. This report aimed to compare albumin to colloids in preventing PICD. Search strategy was done using PubMed, Scopus, Proquest, dan Academic Health Complete from EBSCO with keywords of "ascites", "albumin", "colloid", "dextran", "hydroxyethyl starch", "gelatin", and "paracentesis induced circulatory dysfunction". Articles was limited to randomized clinical trial and meta-analysis with clinical question of "In hepatic cirrhotic patient undergone large volume paracentesis, whether colloids were similar to albumin to prevent PICD". We found one meta-analysis and four randomized clinical trials (RCT). A meta analysis showed that albumin was still superior of which odds ratio 0.34 (0.23-0.51). Three RCTs showed the same results and one RCT showed albumin was not superior than colloids. We conclude that colloids could not constitute albumin to prevent PICD, but colloids still have a role in patient who undergone paracentesis less than five liters.

  19. Dynamic self-assembly and directed flow of rotating colloids in microchannels

    NASA Astrophysics Data System (ADS)

    Götze, Ingo O.; Gompper, Gerhard

    2011-09-01

    Nonequilibrium structure formation and dynamics in suspensions of superparamagnetic colloids driven by an external rotating magnetic field are studied by particle-based mesoscale hydrodynamics simulations in confined geometry. We address the fundamental question how the rotation of the colloids about their own axes can be converted into a translational motion by breaking the symmetry of the confining geometry. We study a two-dimensional system of colloids with short-range repulsive interactions, which mimics flow in shallow microchannels. In straight channels, we observe a two-way traffic but—for symmetry reasons—no net transport. However, by keeping some colloids fixed near one of the two walls, net transport can be achieved. This approach allows the control and switchability of the flow in complex microchannel networks. A minimal geometry that fulfills the requirement of broken symmetry are ring channels. We determine the translational velocity of the spinning colloids and study its dependence on the channel width for various median radii. We conclude that spinning colloids present a promising alternative for flow generation and control in microfluidic devices.

  20. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019830 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  2. Characterizing natural colloidal/particulate-protein interactions using fluorescence-based techniques and principal component analysis.

    PubMed

    Peiris, Ramila H; Ignagni, Nicholas; Budman, Hector; Moresoli, Christine; Legge, Raymond L

    2012-09-15

    Characterization of the interactions between natural colloidal/particulate- and protein-like matter is important for understanding their contribution to different physiochemical phenomena like membrane fouling, adsorption of bacteria onto surfaces and various applications of nanoparticles in nanomedicine and nanotoxicology. Precise interpretation of the extent of such interactions is however hindered due to the limitations of most characterization methods to allow rapid, sensitive and accurate measurements. Here we report on a fluorescence-based excitation-emission matrix (EEM) approach in combination with principal component analysis (PCA) to extract information related to the interaction between natural colloidal/particulate- and protein-like matter. Surface plasmon resonance (SPR) analysis and fiber-optic probe based surface fluorescence measurements were used to confirm that the proposed approach can be used to characterize colloidal/particulate-protein interactions at the physical level. This method has potential to be a fundamental measurement of these interactions with the advantage that it can be performed rapidly and with high sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.

    PubMed

    Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I

    2014-06-01

    We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.

  4. Plutonium partitioning in three-phase systems with water, granite grains, and different colloids.

    PubMed

    Xie, Jinchuan; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei; Zhou, Guoqing

    2014-01-01

    Low-solubility contaminants with high affinity for colloid surfaces may form colloid-associated species. The mobile characteristics of this species are, however, ignored by the traditional sorption/distribution experiments in which colloidal species contributed to the immobile fraction of the contaminants retained on the solids as a result of centrifugation or ultrafiltration procedures. The mobility of the contaminants in subsurface environments might be underestimated accordingly. Our results show that colloidal species of (239)Pu in three-phase systems remained the highest percentages in comparison to both the dissolved species and the immobile species retained on the granite grains (solid phase), although the relative fraction of these three species depended on the colloid types. The real solid/liquid distribution coefficients (K s/d) experimentally determined were generally smaller than the traditional K s/d (i.e., the K s+c/d in this study) by ~1,000 mL/g for the three-phase systems with the mineral colloids (granite particle, soil colloid, or kaolinite colloid). For the humic acid system, the traditional K s/d was 140 mL/g, whereas the real K s/d was approximately zero. The deviations from the real solid/liquid K s/d were caused by the artificially increased immobile fraction of Pu. One has to be cautious in using K s/d-based transport models to predict the fate and transport of Pu in the environment.

  5. 99M-Technetium labeled tin colloid radiopharmaceuticals

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  6. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  7. Switchable vanadium dioxide (VO2) metamaterials fabricated from tungsten doped vanadia-based colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher

    2013-03-01

    We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.

  8. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  9. Using data from colloid transport experiments to parameterize filtration model parameters for favorable conditions

    NASA Astrophysics Data System (ADS)

    Kamai, Tamir; Nassar, Mohamed K.; Nelson, Kirk E.; Ginn, Timothy R.

    2017-04-01

    Colloid filtration in porous media spans across many disciplines and includes scenarios such as in-situ bioremediation, colloid-facilitated transport, water treatment of suspended particles and pathogenic bacteria, and transport of natural and engineered nanoparticles in the environment. Transport and deposition of colloid particles in porous media are determined by a combination of complex processes and forces. Given the convoluted physical, chemical, and biological processes involved, and the complexity of porous media in natural settings, it should not come as surprise that colloid filtration theory does not always sufficiently predict colloidal transport, and that there is still a pressing need for improved predictive capabilities. Here, instead of developing the macroscopic equation from pore-scale models, we parametrize the different terms in the macroscopic collection equation through fitting it to experimental data, by optimizing the parameters in the different terms of the equation. This way we combine a mechanistically-based filtration-equation with empirical evidence. The impact of different properties of colloids and porous media are studied by comparing experimental properties with different terms of the correlation equation. This comparison enables insight about different processes that occur during colloid transport and retention under in porous media under favorable conditions, and provides directions for future theoretical developments.

  10. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    DOE PAGES

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...

    2018-03-31

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less

  11. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less

  12. An evaluation of acute toxicity of colloidal silver nanoparticles.

    PubMed

    Maneewattanapinyo, Pattwat; Banlunara, Wijit; Thammacharoen, Chuchaat; Ekgasit, Sanong; Kaewamatawong, Theerayuth

    2011-11-01

    Tests for acute oral toxicity, eye irritation, corrosion and dermal toxicity of colloidal silver nanoparticles (AgNPs) were conducted in laboratory animals following OECD guidelines. Oral administration of AgNPs at a limited dose of 5,000 mg/kg produced neither mortality nor acute toxic signs throughout the observation period. Percentage of body weight gain of the mice showed no significant difference between control and treatment groups. In the hematological analysis, there was no significant difference between mice treated with AgNPs and controls. Blood chemistry analysis also showed no differences in any of the parameter examined. There was neither any gross lesion nor histopathological change observed in various organs. The results indicated that the LD(50) of colloidal AgNPs is greater than 5,000 mg/kg body weight. In acute eye irritation and corrosion study, no mortality and toxic signs were observed when various doses of colloidal AgNPs were instilled in guinea pig eyes during 72 hr observation period. However, the instillation of AgNPs at 5,000 ppm produced transient eye irritation during early 24 hr observation time. No any gross abnormality was noted in the skins of the guinea pigs exposed to various doses of colloidal AgNPs. In addition, no significant AgNPs exposure relating to dermal tissue changes was observed microscopically. In summary, these findings of all toxicity tests in this study suggest that colloidal AgNPs could be relatively safe when administered to oral, eye and skin of the animal models for short periods of time.

  13. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  14. Weaving colloidal webs around droplets: spontaneous assembly of extended colloidal networks encasing microfluidic droplet ensembles.

    PubMed

    Zheng, Lu; Ho, Leon Yoon; Khan, Saif A

    2016-10-26

    The ability to form transient, self-assembling solid networks that 'cocoon' emulsion droplets on-demand allows new possibilities in the rapidly expanding area of microfluidic droplet-based materials science. In this communication, we demonstrate the spontaneous formation of extended colloidal networks that encase large microfluidic droplet ensembles, thus completely arresting droplet motion and effectively isolating each droplet from others in the ensemble. To do this, we employ molecular inclusion complexes of β-cyclodextrin, which spontaneously form and assemble into colloidal solids at the droplet interface and beyond, via the outward diffusion of a guest molecule (dichloromethane) from the droplets. We illustrate the advantage of such transient network-based droplet stabilization in the area of pharmaceutical crystallization, where we are able to fabricate monodisperse spherical crystalline microgranules of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), a model hydrophobic drug, with a dramatic enhancement of particle properties compared to conventional methods.

  15. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.

    PubMed

    Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou

    2014-08-01

    Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure

    PubMed Central

    Al Mamun, Md Abdullaha; Bhattacharjee, Subir; Pernitsky, David; Sadrzadeh, Mohtada

    2017-01-01

    Fouling of nanofiltration (NF) membranes is the most significant obstacle to the development of a sustainable and energy-efficient NF process. Colloidal fouling and performance decline in NF processes is complex due to the combination of cake formation and salt concentration polarization effects, which are influenced by the properties of the colloids and the membrane, the operating conditions of the test, and the solution chemistry. Although numerous studies have been conducted to investigate the influence of these parameters on the performance of the NF process, the importance of membrane preconditioning (e.g., compaction and equilibrating with salt water), as well as the determination of key parameters (e.g., critical flux and trans-membrane osmotic pressure) before the fouling experiment have not been reported in detail. The aim of this paper is to present a standard experimental and data analysis protocol for NF colloidal fouling experiments. The developed methodology covers preparation and characterization of water samples and colloidal particles, pre-test membrane compaction and critical flux determination, measurement of experimental data during the fouling test, and the analysis of that data to determine the relative importance of various fouling mechanisms. The standard protocol is illustrated with data from a series of flat sheet, bench-scale experiments. PMID:28106775

  17. The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China.

    PubMed

    Ren, Huimin; Liu, Huijuan; Qu, Jiuhui; Berg, Michael; Qi, Weixiao; Xu, Wei

    2010-01-01

    The role of colloids in estuarine and marine systems has been studied extensively in recent years, whereas less is known about the polluted freshwater system. Yongdingxin River is one of the major recipients of industrial effluents in Tianjin. This article evaluates the role of colloids in controlling geochemical behavior of Cu, Zn, Fe, Mn, Hg and Cr at the confluences between Yongdingxin River and its major tributaries Beijing Drainage River, Jinzhong River and Beitang Drainage River. Based on the distribution of metal partitioning among particulate (>0.22mum), colloidal (1kDa to 0.22mum) and truly dissolved (<1kDa) fractions, the metals can be assigned to the following groups: Group 1 - organic colloidal pool-borne elements Cu and Cr; Group 2 - inorganic colloidal pool-borne metals Fe and Mn; Group 3 - Zn and Hg characterized by varying complexation patterns. The distribution of metal partitioning among particulate, colloidal and truly dissolved fractions was influenced by anthropogenic input. In addition, the theoretical concentrations of elements in case of conservative mixing between the waters of Yongdingxin River and the waters of its tributaries were compared with the measured values to evaluate the geochemical role of colloids. The result showed that all of the metals presented a non-conservative mixing behavior. Addition of colloids resulted in the removal of metals from the water column to bed sediment during river water mixing, which was furthermore confirmed by the similar partition coefficient of metal concentration between colloid and sediment. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  19. Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media

    PubMed Central

    Mays, David C.; Hunt, James R.

    2008-01-01

    Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes one order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay. PMID:17874771

  20. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media.

    PubMed

    Mays, David C; Hunt, James R

    2007-08-15

    Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes 1 order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady-state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay.

  1. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    PubMed

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  2. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using these different crosslinking molecules, we have assembled colloidal materials from different-sized colloidal particles, A and B. In the first sets of experiment, we used high densities of adhesion molecules, and 0.96 micron (A) and 5.5 micron (B) diameter particles. The high density of adhesion molecules means that the structures are kinetically trapped in nonequilibrium configurations. The structure of the suspension can be varied by changing the number ratio of the two types of colloidal particles, NA and NB, where A is the smaller particle. With carbohydrate-selectin or avidin-biotin interactions, large NA/NB leads to the formation of colloidal micelles, with the large center B particle surrounded by many smaller A particles. As the ratio NA/NB decreases, the structures become more extended, approaching the formation of macro-Rouse polymers - extended linear chains where A beads are connected with intervening small B linkers.

  3. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a conservative dissolved species under these conditions, and little retardation through sorption onto the surrounding rock matrix is predicted. Cs is expected to undergo more sorption, though U(VI) presence may have a mobilizing effect.

  4. Dynamical studies of confined fluids and polymers

    NASA Astrophysics Data System (ADS)

    Grabowski, Christopher A.

    Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.

  5. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media.

    PubMed

    Bradford, Scott A; Torkzaban, Saeed; Shapiro, Alexander

    2013-06-11

    A balance of applied hydrodynamic (T(H)) and resisting adhesive (T(A)) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height h(r) to determine the fraction of the solid surface area that contributes to colloid immobilization (S(f)*) under unfavorable attachment conditions. This model considers resistance due to deformation and the horizontal component of the adhesive force (F(AT)), spatial variations in the pore scale velocity distribution, and the influence of hr on lever arms for T(H) and T(A). Values of S(f)* were calculated for a wide range of physicochemical properties to gain insight into mechanisms and factors influencing colloid immobilization. Colloid attachment processes were demonstrated to depend on solution ionic strength (IS), the colloid radius (r(c)), the Young's modulus (K), the amount of chemical heterogeneity (P+), and the Darcy velocity (q). Colloid immobilization was also demonstrated to occur on a rough surface in the absence of attachment. In this case, S(f)* depended on IS, r(c), the roughness fraction (f0), h(r), and q. Roughness tended to enhance T(A) and diminish T(H). Consequently, the effect of IS on S(f)* was enhanced by h(r) relative to attachment. In contrast, the effects of r(c) and q on S(f)* were diminished by hr in comparison to attachment. Colloid immobilization adjacent to macroscopic roughness locations shares many similarities to grain-grain contact points and may be viewed as a type of straining process. In general, attachment was more important for higher IS and variance in the secondary minimum, and for smaller r(c), q, and K, but diffusion decreased these values. Conversely, straining was dominant for the opposite conditions. Discrepancies in the literature on mechanisms of colloid retention are likely due to a lack of consideration of all of these factors.

  6. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    PubMed

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  7. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  8. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  9. Nonaqueous polypyrrole colloids

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1991-01-01

    Processable conductive polymers including an oxidized, polymerized aromatic heterocyclic monomer, e.g., pyrrole, an stabilizing effective amount of a poly(vinyl acetate) and dopant anions, and a process of preparing said processable conductive polymers directly in a nonaqueous medium such as methyl acetate, methyl formate, ethyl formate, and propyl formate are disclosed.

  10. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of <10%, while the peak at 1573 cm(-1) has a RSD of >or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  11. Palm oil based nanofluids for enhancing heat transfer and rheological properties

    NASA Astrophysics Data System (ADS)

    Hussein, A. M.; Lingenthiran; Kadirgamma, K.; Noor, M. M.; Aik, L. K.

    2018-04-01

    Colloidal suspensions of nanomaterials size not more than 100 nm in basefluid are defined as nanofluids. The thermal and rheological properties study of oil based nanofluid is conducted to develop stable transformers palm oil based nanofluid. This paper describes the analysis techniques to determine the enhancement of thermal properties of nanofluids. Titanium dioxide (TiO2) has dispersed in the palm oil to prepare nanofluids with volume concentration (0.01-0.09) percentage. Both thermal conductivity and viscosity of nanofluid have measured by using the hot wire method and viscometer equipment respectively. Results indicate that the stable nanofluids improve the thermal properties as compared to palm oil. Results showed that the friction factor decreases as the Reynolds number increases and increases as the volume concentration increases. Additionally, the Nusselt number increases as the Reynolds number and volume concentration of the nanofluid increases.

  12. Magnetic assembly and annealing of colloidal lattices and superlattices.

    PubMed

    Tierno, Pietro

    2014-07-08

    The ability to assemble mesoscopic colloidal lattices above a surface is important for fundamental studies related with nucleation and crystallization but also for a variety of technological applications in photonics and microengineering. Current techniques based on particle sedimentation above a lithographic template are limited by a slow deposition process and by the use of static templates, which make difficult to implement fast annealing procedures. Here it is demonstrated a method to realize and anneal a series of colloidal lattices displaying triangular, honeycomb, or kagome-like symmetry above a structure magnetic substrate. By using a binary mixture of particles, superlattices can be realized increasing further the variety and complexity of the colloidal patterns which can be produced.

  13. Weak correlations between local density and dynamics near the glass transition.

    PubMed

    Conrad, J C; Starr, F W; Weitz, D A

    2005-11-17

    We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.

  14. Endoscopic colloid cyst excision: surgical techniques and nuances.

    PubMed

    Azab, Waleed Abdelfattah; Najibullah, Mustafa; Yosef, Waleed

    2017-06-01

    Endoscopic excision of colloid cysts is currently well established as a minimally invasive and highly effective technique that is associated with less morbidity in comparison to microsurgical resection. Operative charts and videos of patients undergoing endoscopic colloid cyst excision were retrieved from the senior author's database of endoscopic procedures and reviewed. This revealed nine trans-foraminal and three trans-septal procedures. Description of the surgical techniques was then formulated. Variation of the technique is based on the specific patho-anatomical features of the colloid cyst being resected. For the trans-foraminal approach, we think that the rotational technique is associated with a more complete removal of the cyst wall and consequently lower recurrence rate.

  15. Orbitals for classical arbitrary anisotropic colloidal potentials

    NASA Astrophysics Data System (ADS)

    Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera

    2017-11-01

    Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.

  16. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  17. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019783 (24 June 2013) --- In the International Space Station’s Destiny laboratory, a fisheye lens attached to an electronic still camera was used to capture this image of NASA astronaut Karen Nyberg, Expedition 36 flight engineer, as she conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  18. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: An international cross-sectional study

    PubMed Central

    Hammond, Naomi E.; Taylor, Colman; An, YouZhong; Cavalcanti, Alexandre Biasi; Du, Bin; McIntryre, Lauralyn; Saxena, Manoj; Schortgen, Frédérique; Watts, Nicola R.; Myburgh, John

    2017-01-01

    Background In 2007, the Saline versus Albumin Fluid Evaluation—Translation of Research Into Practice Study (SAFE-TRIPS) reported that 0.9% sodium chloride (saline) and hydroxyethyl starch (HES) were the most commonly used resuscitation fluids in intensive care unit (ICU) patients. Evidence has emerged since 2007 that these fluids are associated with adverse patient-centred outcomes. Based on the published evidence since 2007, we sought to determine the current type of fluid resuscitation used in clinical practice and the predictors of fluid choice and determine whether these have changed between 2007 and 2014. Methods In 2014, an international, cross-sectional study was conducted (Fluid-TRIPS) to document current patterns of intravenous resuscitation fluid use and determine factors associated with fluid choice. We examined univariate and multivariate associations between patients and prescriber characteristics, geographical region and fluid type. Additionally, we report secular trends of resuscitation fluid use in a cohort of ICUs that participated in both the 2007 and 2014 studies. Regression analysis were conducted to determine changes in the administration of crystalloid or colloid between 2007 and 2014. Findings In 2014, a total of 426 ICUs in 27 countries participated. Over the 24 hour study day, 1456/6707 (21.7%) patients received resuscitation fluid during 2716 resuscitation episodes. Crystalloids were administered to 1227/1456 (84.3%) patients during 2208/2716 (81.3%) episodes and colloids to 394/1456 (27.1%) patients during 581/2716 (21.4%) episodes. In multivariate analyses, practice significantly varied between geographical regions. Additionally, patients with a traumatic brain injury were less likely to receive colloid when compared to patients with no trauma (adjusted OR 0.24; 95% CI 0.1 to 0.62; p = 0.003). Patients in the ICU for one or more days where more likely to receive colloid compared to patients in the ICU on their admission date (adjusted OR 1.75; 95% CI 1.27 to 2.41; p = <0.001). For secular trends in fluid resuscitation, 84 ICUs in 17 countries contributed data. In 2007, 527/1663 (31.7%) patients received fluid resuscitation during 1167 episodes compared to 491/1763 (27.9%) patients during 960 episodes in 2014. The use of crystalloids increased from 498/1167 (42.7%) in 2007 to 694/960 (72.3%) in 2014 (odds ratio (OR) 3.75, 95% confidence interval (CI) 2.95 to 4.77; p = <0.001), primarily due to a significant increase in the use of buffered salt solutions. The use of colloids decreased from 724/1167 (62.0%) in 2007 to 297/960 (30.9%) in 2014 (OR 0.29, 95% CI 0.19 to 0.43; p = <0.001), primarily due to a decrease in the use of HES, but an overall increase in the use of albumin. Conclusions Clinical practices of intravenous fluid resuscitation have changed between 2007 and 2014. Geographical location remains a strong predictor of the type of fluid administered for fluid resuscitation. Overall, there is a preferential use of crystalloids, specifically buffered salt solutions, over colloids. There is now an imperative to conduct a trial determining the safety and efficacy of these fluids on patient-centred outcomes. Trial registration Clinicaltrials.gov: Fluid-Translation of research into practice study (Fluid-TRIPS) NCT02002013 PMID:28498856

  19. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background.

    PubMed

    Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu

    2017-07-01

    Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.

    PubMed

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-14

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  1. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  2. Colloidal chitin stained with Remazol Brilliant Blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases.

    PubMed

    Gómez Ramírez, M; Rojas Avelizapa, L I; Rojas Avelizapa, N G; Cruz Camarillo, R

    2004-02-01

    A simple and sensitive method based on the use of colloidal chitin stained with Remazol Brilliant Blue R (RBB) is proposed to evaluate chitinase activity. If this colloidal-stained substrate is included as a carbon source in a liquid medium, this technique allows the selection or the comparison of chitinolytic microorganisms. The colloidal substrate is proportionally solubilized and the dye released is spectrophotometrically quantified at 595 nm. The procedures used for the staining and fixing of RBB in the colloidal chitin, and a comparison with the commercial substrate chitin-azure, are presented. The influence of several physicochemical and enzymatic parameters on the release of dyes is also shown. Both stained substrates were used for studying the effect of pH, substrate concentration, temperature and time on the chitinase reaction of Bacillus thuringiensis Bt-107.

  3. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    NASA Astrophysics Data System (ADS)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.

  4. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  5. ThinPrep versus conventional smear cytologic preparations in the analysis of thyroid fine-needle aspiration specimens.

    PubMed

    Biscotti, C V; Hollow, J A; Toddy, S M; Easley, K A

    1995-08-01

    Paired fine-needle aspiration specimens were analyzed from 41 surgically resected thyroid nodules, to compare diagnostic accuracy, amount (absent, mild, moderate, or marked) and pattern (diffuse, droplets, or both) of colloid, nuclear detail (poor, satisfactory, or excellent) and cytoplasmic detail (intact or disrupted) in ThinPrep (TP) (Cytyc, Marlborough, MA) versus conventional smear (CS) cytologic preparations. The 41 surgical specimens included 25 colloid nodules, 6 papillary carcinomas, 4 follicular adenomas, 2 minimally invasive (encapsulated) follicular carcinomas, 3 Hashimoto's thyroiditis, and 1 Grave's disease. Both techniques identified seven of the eight carcinomas with the minimally invasive follicular carcinomas categorized as hypercellular follicular nodule, possibly malignant (HCFN). One papillary carcinoma was classified as a HCFN by both TP and CS techniques. The four follicular adenomas were classified as HCFN based on the TP slides. One oxyphilic follicular adenoma, associated with focal lymphocytic thyroiditis, was misinterpreted as Hashimoto's thyroiditis on a conventional smear. Three colloid nodules were interpreted as HCFN based on the TP slides. Two of these were similarly classified based on the conventional smear. ThinPrep slides contained less colloid and the colloid occurred as droplets rather than a diffuse pattern. TP slides had better nuclear detail but more often disrupted cytoplasm. In conclusion, the TP process does alter some cellular features; however, we experienced similar diagnostic accuracy with the TP and conventional smear preparations.

  6. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  7. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  8. Physical-Chemical Treatment of Metals and Radionuclides in the Saturated Zone Using Colloidal Buffers - 12515

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Yenjung; Borden, Robert C.; Alperin, Ed

    There are numerous acidic plumes throughout the DOE complex and the nation as a whole. Low aquifer pH is a major concern since many important radionuclides (Pu, Ra, Sr, Tc) and metals (Cd, Co, Cs, Mn, Ni, Pb, Zn) strongly sorb to iron hydroxides and aluminosilicates under neutral to alkaline conditions, but are mobile in acidic plumes. To effectively use natural and enhanced attenuation (NEA) for management of these contaminants, we must be able to raise aquifer pH and maintain it at background levels until the external acid loading to the aquifer has dissipated. Geochemical modeling showed that a permeablemore » reactive barrier (PRB) formed by injection of colloidal Mg(OH){sub 2} would last much longer than colloidal Ca(OH){sub 2} due to the much lower solubility of Mg(OH){sub 2}. Assuming a 1,000 meq/L suspension of colloidal Mg(OH)2 could be effectively distributed, the PRB could last over twenty years before rejuvenation was required. Preliminary bench-scale treatability studies were conducted to demonstrate the efficacy of increasing the aquifer pH using a colloidal pH buffer. Laboratory studies demonstrated that three different colloidal Mg(OH){sub 2} suspensions (concentration varied from 1,000 to 1,250 meq/L) could be transported through the columns packed with aquifer sand without significant permeability loss. The time before suspension breakthrough into the column effluent varied with surface treatment, indicating the Mg(OH)2 retention and PRB longevity could be controlled by varying the suspension surface treatment. (authors)« less

  9. Characterization of particulate and dissolved phosphorus in tile and nearby riverine systems

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Arai, Y.; David, M.; Gentry, L.

    2017-12-01

    In the Midwestern U.S., the drainage of agricultural land is predominantly managed by the tile drain system because of its poorly drain properties of clay rich indigenous soils. An accelerated subsurface flow of phosphorus (P) has recently been documented as a primary P transport path in contrast to the typical surface runoff events observed in the Eastern U.S. Recent studies suggested the important role of particulate P (PP) load in agricultural tile drainage water during high flow events. It was hypothesized that PP in the tile water is transported to riverine system contributing to the negative environmental impacts in the Midwestern U.S. In this study, correlation assessment of physicochemical properties of PP in agricultural tile drainage and nearby river samples after a storm event was conducted using a combination of 31P-nuclear magnetic resonance spectroscopy, P K-edge X-ray absorption near edge structure spectroscopy, X-ray diffraction, zetasizer, and transmission electron microscopy. Results show that significantly more colloidal (i.e. 1 nm- 2 µm) and silt-sized (i.e. > 2 µm) particles as well as higher dissolved total P (DTP) and dissolved reactive P (DRP) concentrations existed in river samples than tile samples. Tile and river samples showed similar zeta potential in each particle-size fraction and similar element distributions on colloidal fraction. However, colloidal P concentration and distribution are slightly different between tile and river samples: more colloidal total P and organic P existed in tile colloids than river colloids. The results of P speciation and mineralogical assessment will also be discussed.

  10. BCAT Setup

    NASA Image and Video Library

    2011-10-24

    ISS029-E-032412 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  11. BCAT Setup

    NASA Image and Video Library

    2011-10-24

    ISS029-E-032414 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  12. BCAT Setup

    NASA Image and Video Library

    2011-10-24

    ISS029-E-032422 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  13. BCAT Setup

    NASA Image and Video Library

    2011-10-24

    ISS029-E-032410 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  14. Gold nanostar synthesis with a silver seed mediated growth method.

    PubMed

    Kereselidze, Zurab; Romero, Victor H; Peralta, Xomalin G; Santamaria, Fidel

    2012-01-15

    The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications. Gold is particularly used because of its low toxicity. A property of metal nano-colloids is that they can have a strong surface plasmon resonance. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal. We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles or nanostars. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.

  15. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    PubMed Central

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function. PMID:28400730

  16. Yielding in colloidal gels due to nonlinear microstructure bending mechanics.

    PubMed

    Furst, Eric M; Pantina, John P

    2007-05-01

    We report measurements of the nonlinear micromechanics of strongly flocculated model colloidal aggregates. Linear aggregates directly assembled using laser tweezers are subjected to bending loads until a critical bending moment is reached, which is identified by a stictionlike rearrangement of a single colloidal bond. This nanoscale phenomenon provides a quantitative basis for understanding the macroscopic shear yield stresses of strongly flocculated polystyrene latex gels, based on the maximum bending moment exceeding the critical moment of the constituent colloidal bonds of the gel microstructure. These mechanics are consistent with the local bending moment overcoming the static friction force between neighboring adhesive particles. This results in a direct relationship between the rheology of these gels and the boundary friction between Brownian particles.

  17. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    PubMed

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  18. Entropy favours open colloidal lattices

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  19. Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.

    PubMed

    Bürger, Vincent; Briesen, Heiko

    2016-10-05

    For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.

  20. Light Microscopy Module: On-Orbit Microscope Planned for the Fluids Integrated Rack on the International Space Station

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.

  1. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  2. BCAT setup in Kibo

    NASA Image and Video Library

    2014-06-03

    ISS040-E-006891 (3 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment in the Kibo laboratory of the International Space Station.

  3. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications

    NASA Astrophysics Data System (ADS)

    Yeap, Swee Pin; Lim, JitKang; Ooi, Boon Seng; Ahmad, Abdul Latif

    2017-11-01

    Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings. [Figure not available: see fulltext.

  4. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  5. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system.

    PubMed

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2013-04-18

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.

  6. Performance Improvement of the One-Dot Lateral Flow Immunoassay for Aflatoxin B1 by Using a Smartphone-Based Reading System

    PubMed Central

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2013-01-01

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis. PMID:23598499

  7. Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses.

    PubMed

    Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao

    2017-10-01

    In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.

  8. iss028e036517

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036517 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  9. Reid BCAT Experiment

    NASA Image and Video Library

    2014-06-17

    ISS040-E-013856 (17 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment at a workstation in the Harmony node of the International Space Station.

  10. iss028e036580

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036580 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  11. Experiment on infrared radiation characteristic of colloid Fe/Al thermite

    NASA Astrophysics Data System (ADS)

    Zhen, Jian-wei; Li, Jin-ming; Guo, Meng-meng; Liu, Guo-qing; Wang, Guo-dong

    2016-01-01

    The Fe/Al thermite was made as bulk material. Mixed proportion with liquid energetic colloid, the Fe/Al thermite was made to be collid Fe/Al thermite combustible agent. Then, combustion test sample was got. The combustion process and the infrared radiation characteristic of colloid Fe/Al thermite was experiment by thermal infrared imager. It was showed that collid Fe/Al thermite combustible agent had better infrared radiation characteristic. It could be as based agentia of infrared decoy with the characteristic of persistent and wide spectral range.

  12. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  13. Nanoscale Seebeck effect at hot metal nanostructures

    NASA Astrophysics Data System (ADS)

    Ly, Aboubakry; Majee, Arghya; Würger, Alois

    2018-02-01

    We theoretically study the electrolyte Seebeck effect in the vicinity of a heated metal nanostructure, such as the cap of an active Janus colloid in an electrolyte, or gold-coated interfaces in optofluidic devices. The thermocharge accumulated at the surface varies with the local temperature, thus modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform temperature, the isopotential condition imposes a significant polarization charge within the metal. Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered swimming, extending to microseconds after switching on the heating.

  14. Soft and flexible PEDOT/PSS films for applications to soft actuators

    NASA Astrophysics Data System (ADS)

    Li, Yuechen; Tanigawa, Ryo; Okuzaki, Hidenori

    2014-07-01

    Stretchable and highly conductive PEDOT/PSS/Xyl films were prepared by casting an aqueous dispersion of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) as colloidal gel particles containing xylitol (Xyl) and subsequent heating. The electrical conductivity of the PEDOT/PSS/Xyl film containing 50 wt% of xylitol significantly increased from 115 S cm-1 to 407 S cm-1 by heating at 140 °C in air for 1 h. It was found that the xylitol had two functions as (i) a plasticizer to weaken hydrogen bonds between PSS of colloidal particles by replacing with that between xylitol and PSS and (ii) the additional capability of increasing the mobility of charge carriers between the colloidal particles. The transparent ionic liquid/polyurethane (IL/PU) gels were fabricated by dissolving thermoplastic polyurethane and ionic liquid of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. By increasing the IL content from 0 wt% to 70 wt%, both ionic conductivity and electric-double-layer capacitance under an electric field increased, while Young’s modulus, strength and elongation at break decreased. The IL/PU/PEDOT/PSS/Xyl composites were fabricated by sandwiching the IL/PU gel between two soft and flexible PEDOT/PSS/Xyl films. Upon application of 2 V, the IL/PU/PEDOT/PSS/Xyl composite (IL = 70%) showed quick and intensive bending toward anode, where the bending displacement at 0.1 Hz attained 2.9 mm, corresponding to the strain of 0.15%, and still worked at frequencies higher than 50 Hz.

  15. Paper-Based Inkjet-Printed Flexible Electronic Circuits.

    PubMed

    Wang, Yan; Guo, Hong; Chen, Jin-Ju; Sowade, Enrico; Wang, Yu; Liang, Kun; Marcus, Kyle; Baumann, Reinhard R; Feng, Zhe-Sheng

    2016-10-05

    Printed flexible electronics have been widely studied for their potential use in various applications. In this paper, a simple, low-cost method of fabricating flexible electronic circuits with high conductivity of 4.0 × 10 7 S·m -1 (about 70% of the conductivity of bulk copper) is demonstrated. Teslin paper substrate is treated with stannous chloride (SnCl 2 ) colloidal solution to reduce the high ink absorption rate, and then the catalyst ink is inkjet-printed on its surface, followed by electroless deposition of copper at low temperature. In spite of the decrease in conductance to some extent, electronic circuits fabricated by this method can maintain function even under various folding angles or after repeated folding. This developed technology has great potential in a variety of applications, such as three-dimensional devices and disposable RFID tags.

  16. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form them.

  17. Characterization of Nano-scale Aluminum Oxide Transport through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.

    2011-12-01

    Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for facilitated transport of toxins through the subsurface and into our surface and groundwater bodies.

  18. Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Doherty, Michael P.

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for instrument calibration.

  19. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals.

    PubMed

    Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J

    2011-11-09

    Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.

  20. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  1. Experimental Studies of the Brownian Diffusion of Boomerang Colloidal Particle in a Confined Geometry

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo

    2011-03-01

    Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.

  2. Microbial effects on colloidal agglomeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared tomore » sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.« less

  3. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    NASA Astrophysics Data System (ADS)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  4. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.

    PubMed

    Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid

    2015-06-15

    Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  6. Microwave-Assisted Size Control of Colloidal Nickel Nanocrystals for Colloidal Nanocrystals-Based Non-volatile Memory Devices

    NASA Astrophysics Data System (ADS)

    Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit

    2018-03-01

    Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.

  7. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow

    NASA Astrophysics Data System (ADS)

    Gerloff, Sascha; Klapp, Sabine H. L.

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  8. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    PubMed

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.

  9. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    PubMed

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  10. Electron transfer between colloidal ZnO nanocrystals.

    PubMed

    Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M

    2011-03-30

    Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.

  11. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.

    PubMed

    Furukawa, Akira; Tateno, Michio; Tanaka, Hajime

    2018-05-16

    Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.

  12. Colloidal synthesis of biocompatible iron disulphide nanocrystals.

    PubMed

    Santos-Cruz, J; Nuñez-Anita, R E; Mayén-Hernández, S A; Martínez-Alvarez, O; Acosta-Torres, L S; de la Fuente-Hernández, J; Campos-González, E; Vega-González, M; Arenas-Arrocena, M C

    2018-08-01

    The aim of this research was to synthesis biocompatible iron disulphide nanocrystals at different reaction temperatures using the colloidal synthesis methodology. Synthesis was conducted at the 220-240 °C range of reaction temperatures at intervals of 5 °C in an inert argon atmosphere. The toxicity of iron disulphide nanocrystals was evaluated in vitro using mouse fibroblast cell line. Two complementary assays were conducted: the first to evaluate cell viability of the fibroblast via an MTT assay and the second to determine the preservation of fibroblast nuclei integrity through DAPI staining, which labels nuclear DNA in fluorescence microscopes. Through TEM and HRTEM, we observed a cubic morphology of pyrite iron disulphide nanocrystals ranging in sizes 25-50 nm (225 °C), 50-70 nm (230 °C) and >70 nm (235 °C). Through X-ray diffraction, we observed a mixture of pyrite and pyrrohotite in the samples synthesized at 225 °C and 240 °C, showing the best photocatalytic activity at 80% and 65%, respectively, for the degradation of methylene blue after 120 minutes. In all experimental groups, iron disulphide nanocrystals were biocompatible, i.e. no statistically significant differences were observed between experimental groups as shown in a one-way ANOVA and Tukey's test. Based on all of these results, we recommend non-cytotoxic semiconductor iron sulphide nanocrystals for biomedical applications.

  13. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  14. In situ recording of particle network formation in liquids by ion conductivity measurements.

    PubMed

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  15. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    PubMed

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-04-01

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  16. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

    USDA-ARS?s Scientific Manuscript database

    Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...

  17. Detection system for concentration quantization of colloidal-gold test strips based on embedded and image technology

    USDA-ARS?s Scientific Manuscript database

    Facing the increasing food safety issues, Chinese government has been carrying out compulsory tests on food to meet the requirements of domestic and foreign markets. Colloidal-gold test strips using the colorimetric principle are widely used for rapid qualitative detection of harmful residues in fo...

  18. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  19. Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids.

    PubMed

    Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V

    2012-08-22

    Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.

  20. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    PubMed Central

    Panniello, Annamaria; Ingrosso, Chiara; Coupillaud, Paul; Tamborra, Michela; Binetti, Enrico; Curri, Maria Lucia; Agostiano, Angela; Taton, Daniel; Striccoli, Marinella

    2014-01-01

    Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. PMID:28788477

  1. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability.

    PubMed

    Wang, Ronghua; Xu, Chaohe; Du, Meng; Sun, Jing; Gao, Lian; Zhang, Peng; Yao, Heliang; Lin, Chucheng

    2014-06-12

    A novel solvothermal-induced self-assembly approach, using colloid sol as precursor, is developed to construct monolithic 3D metal oxide/GS (graphene sheets) aerogels. During the solvothermal process, graphene oxide (GO) is highly reduced to GS and self-assembles into 3D macroscopic hydrogels, accompanying with in situ transformation of colloid sol to metal oxides. As a proof of concept, Fe2 O3 /GS aerogels are synthesized based on Fe(OH)3 sol, in which GS self-assemble into an interconnected macroporous framework and Fe2 O3 nanocrystals (20-50 nm) uniformly deposit on GS. Benefitting from the integration of macroporous structures, large surface area, high electrical conductivity, and good electrode homogeneity, the hybrid electrode manifests a superior rate capability (930, 660 and 520 mAh g(-1) at 500, 2000 and 4000 mA g(-1), respectively) and excellent prolonged cycling stability at high rates (733 mAh g(-1) during 1000 charge/discharge cycles at 2000 mA g(-1)), demonstrating its great potential for application in high performance lithium ion batteries. The work described here provides a versatile pathway to construct various graphene-based hybrid aerogels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.

    2018-01-01

    We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.

  3. In-situ small angle x-ray scattering investigation on nucleation and growth of silica colloids

    NASA Astrophysics Data System (ADS)

    Bahadur, J.; Tripathi, B. M.; Prakash, J.; Das, Avik; Sen, D.; Mazumder, S.

    2018-04-01

    The nucleation and growth of silica colloids has been studied using real time small-angle X-ray scattering measurements. The ammonium fluorosilicate was used as precursor and both weak (NH3) and strong base (NaOH) has been used as reducing agent for the precursor. It is observed that nucleation, growth and aggregation phenomenon occur simultaneously. The kinetics of the nucleation and growth of silica colloids depends on the strength of the reducing agent as well on its concentration. The kinetics is slow for NH3 but is very fast for higher concentration of NaOH.

  4. BCAT-C1 Session in the JPM

    NASA Image and Video Library

    2012-08-08

    ISS032-E-014593 (6 Aug. 2012) --- NASA astronaut Joe Acaba, Expedition 32 flight engineer, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  5. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis

    PubMed Central

    Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik

    2017-01-01

    One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply ‘pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production. PMID:28497791

  6. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik

    2017-05-01

    One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply `pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production.

  7. Contribution of Surface Chemistry to the Shear Thickening of Silica Nanoparticle Suspensions.

    PubMed

    Yang, Wufang; Wu, Yang; Pei, Xiaowei; Zhou, Feng; Xue, Qunji

    2017-01-31

    Shear thickening is a general process crucial for many processed products ranging from food and personal care to pharmaceuticals. Theoretical calculations and mathematical simulations of hydrodynamic interactions and granular-like contacts have proved that contact forces between suspended particles dominate the rheological characteristic of colloidal suspensions. However, relevant experimental studies are very rare. This study was conducted to reveal the influence of nanoparticle (NP) interactions on the rheological behavior of shear-thickening fluids (STFs) by changing the colloidal surface chemistries. Silica NPs with various surface chemical compositions are fabricated and used to prepare dense suspensions. Rheological experiments are conducted to determine the influence of NP interactions on corresponding dense suspension systems. The results suggest that the surface chemistries of silica NPs determine the rheological behavior of dense suspensions, including shear-thickening behavior, onset stress, critical volume fraction, and jamming volume fraction. This study provides useful reference for designing effective STFs and regulating their characteristics.

  8. Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.

    2017-02-22

    Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less

  9. Mesoscale Particle-Based Model of Electrophoresis

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2015-07-31

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  10. Mesoscale Particle-Based Model of Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  11. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.

  12. Effect of Natural Abiotic Colloids on the Transport of Lindane (gamma-hexachlorocyclohexane) through Saturated Porous Media: Laboratory Experiments and Model-Based Analysis

    NASA Astrophysics Data System (ADS)

    Ngueleu Kamangou, S.; Cirpka, O. A.; Grathwohl, P.

    2012-04-01

    In many developing countries, the hygienic situation has improved by changing from surface-water bodies to groundwater as drinking water resource. However, failures have frequently been reported, presumably caused by wrong design of groundwater extraction (e.g., wells too close to open-water bodies, landfill leachates or agricultural areas). Moreover threat to groundwater pollution is enhanced when colloidal particles in the subsurface can act as carriers for adsorbing contaminants such as hydrophobic chlorinated organic contaminants. In this study, the main objective was to investigate the influence of particles in the size range of colloids on the subsurface transport of pesticides which are known to cause severe health problems. The model pesticide was gamma-hexachlorocyclohexane, a representative hydrophobic insecticide which is still used mainly in tropical countries. Colloid-facilitated transport was carried out by considering a first case where the adsorption of the contaminant to the particles is at equilibrium before getting simultaneously transported, and a second case where this equilibrium was not reached before their transport. Another focus besides colloid-facilitated transport was placed on the release of the contaminant from trapped colloids. Data analysis was done with the help of numerical modeling and the minimum model complexity needed to simulate such transports was examined.

  13. Charge transport in metal oxide nanocrystal-based materials

    NASA Astrophysics Data System (ADS)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).

  14. Changes in colloid solution sales in Nordic countries.

    PubMed

    Kongsgaard, U E; Holtan, A; Perner, A

    2018-04-01

    Administration of resuscitation fluid is a common intervention in the treatment of critically ill patients, but the right choice of fluid is still a matter of debate. Changes in medical practice are based on new evidence and guidelines as well as traditions and personal preferences. Official warnings against the use of hydroxyl-ethyl-starch (HES) solutions have been issued. Nordic guidelines have issued several strong recommendations favouring crystalloids over colloids in all patient groups. Our objective was to describe the patterns of colloid use in Nordic countries from 2012 to 2016. The data were obtained from companies that provide pharmaceutical statistics in different countries. The data are sales figures from pharmaceutical companies to pharmacies and health institutions. We found a 56% reduction in the total sales of all colloids in Nordic countries over a 5-year period. These findings were mainly related to a 92% reduction in the sales of HES solutions. A reduction in sales of other synthetic colloids has also occurred. During the same period, we found a 46% increase in albumin sales, but these numbers varied between Nordic countries. The general reduction in colloid sales likely reflects the recommendation that colloids should be used only in special circumstances. The dramatic reduction in the sales of HES solutions was expected given evidence of harm and the official warnings. The steady increase in albumin sales and the notable differences between the five Nordic countries cannot be explained. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.

    PubMed

    Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B

    2016-11-14

    Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.

  16. Colloidal crystal grain boundary formation and motion

    PubMed Central

    Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.

    2014-01-01

    The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760

  17. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  18. Burbank during session with BCAT-6 Experiment in the JPM

    NASA Image and Video Library

    2012-02-08

    ISS030-E-063961 (8 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  19. Burbank during session with BCAT-6 Experiment in the JPM

    NASA Image and Video Library

    2012-02-08

    ISS030-E-063957 (8 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  20. Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Mozaffari, Hossein

    2017-10-01

    In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).

  1. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    PubMed

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK. The occurrence and phase association of selected pharmaceuticals propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid in contrasting aquatic environments (river, sewage effluent, and groundwater) were studied. Colloids were isolated by cross-flow ultrafiltration (CFUF). Water samples were extracted by solid-phase extraction (SPE), while SPM was extracted by microwave. All sample extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring. Five compounds propranolol, sulfamethoxazole, carbamazepine, indomethacine, and diclofenac were detected in all samples, with carbamazepine showing the highest concentrations in all phases. The highest concentrations of these compounds were detected in STW effluents, confirming STW as a key source of these compounds in the aquatic environments. The calculation of partition coefficients of pharmaceuticals between SPM and filtrate (observed partition coefficients, Kobsp, Kobsoc), between SPM and soluble phase (intrinsic partition coefficients, Kintp, Kintoc), and between colloids and soluble phase (Kcoc) showed that intrinsic partition coefficients (Kintp, Kintoc) are between 25% and 96%, and between 18% and 82% higher than relevant observed partition coefficients values, and are much less variable. Secondly, Kcoc values are 3-4 orders of magnitude greater than Kintoc values, indicating that aquatic colloids are substantially more powerful sorbents for accumulating pharmaceuticals than sediments. Furthermore, mass balance calculations of pharmaceutical concentrations demonstrate that between 23% and 70% of propranolol, 17-62% of sulfamethoxazole, 7-58% of carbamazepine, 19-84% of indomethacine, and 9-74% of diclofenac are present in the colloidal phase. The results provide direct evidence that sorption to colloids provides an important sink for the pharmaceuticals in the aquatic environment. Such strong pharmaceutical/colloid interactions may provide a long-term storage of pharmaceuticals, hence, increasing their persistence while reducing their bioavailability in the environment. Pharmaceutical compounds have been detected not only in the aqueous phase but also in suspended particles; it is important, therefore, to have a holistic approach in future environmental fate investigation of pharmaceuticals. For example, more research is needed to assess the storage and long-term record of pharmaceutical residues in aquatic sediments by which benthic organisms will be most affected. Aquatic colloids have been shown to account for the accumulation of major fractions of total pharmaceutical concentrations in the aquatic environment, demonstrating unequivocally the importance of aquatic colloids as a sink for such residues in the aquatic systems. As aquatic colloids are abundant, ubiquitous, and highly powerful sorbents, they are expected to influence the bioavailability and bioaccumulation of such chemicals by aquatic organisms. It is therefore critical for colloids to be incorporated into water quality models for prediction and risk assessment purposes.

  2. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2014-09-01

    High-Efficiency Solar - Cell Based on Dye-Sensitized Colloidal TiO2 Films,” a DSSC consists of four main components: a photoanode, a counter... solar cell modules. 2. Experiment and Calculations 2.1 Materials Commercial TiO2 paste was purchased from Dyesol, and additional nanophase TiO2 ...B.; Grätzel, M. A Low-Cost, High Efficiency Solar Cell Based on Dye_Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. 2. Snaith, H. J

  3. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    NASA Astrophysics Data System (ADS)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.

  4. Colloidal Particles at Fluid Interfaces and the Interface of Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    McGorty, Ryan

    Holographic microscopy is a unifying theme in the different projects discussed in this thesis. The technique allows one to observe microscopic objects, like colloids and droplets, in a three-dimensional (3D) volume. Unlike scanning 3D optical techniques, holography captures a sample's 3D information in a single image: the hologram. Therefore, one can capture 3D information at video frame rates. The price for such speed is paid in computation time. The 3D information must be extracted from the image by methods such as reconstruction or fitting the hologram to scattering calculations. Using holography, we observe a single colloidal particle approach, penetrate and then slowly equilibrate at an oil--water interface. Because the particle moves along the optical axis (z-axis) and perpendicular to the interface holography is used to determine its position. We are able to locate the particle's z-position to within a few nanometers with a time resolution below a millisecond. We find that the capillary force pulling the particle into the interface is not balanced by a hydrodynamic force. Rather, a larger-than-viscous dissipation associated with the three-phase contact-line slipping over the particle's surface results in equilibration on time scales orders of magnitude longer than the minute time scales over which our setup allows us to examine. A separate project discussed here also examines colloidal particles and fluid-fluid interfaces. But the fluids involved are composed of colloids. With a colloid and polymer water-based mixture we study the phase separation of the colloid-rich (or liquid) and colloid-poor (or gas) region. In comparison to the oil--water interface in the previously mentioned project, the interface between the colloidal liquid and gas phases has a surface tension nearly six orders of magnitude smaller. So interfacial fluctuations are observable under microscopy. We also use holographic microscopy to study this system but not to track particles with great time and spatial resolution. Rather, holography allows us to observe nucleation of the liquid phase occurring throughout our sample volume.

  5. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flury, Markus

    2003-09-14

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring duringmore » leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel).« less

  6. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  7. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    NASA Astrophysics Data System (ADS)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  8. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).

  9. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate.

    PubMed

    Loehr, Johannes; Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-10-14

    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.

  10. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  11. Electrophoresis of fd-virus particles: experiments and an analysis of the effect of finite rod lengths.

    PubMed

    Buitenhuis, Johan

    2012-09-18

    The electrophoretic mobility of rodlike fd viruses is measured and compared to theory, with the theoretical calculations performed according to Stigter (Stigter, D. Charged Colloidal Cylinder with a Gouy Double-Layer. J. Colloid Interface Sci. 1975, 53, 296-306. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt- Solutions. 1. Mobility in Transverse Field. J. Phys. Chem. 1978, 82, 1417-1423. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt Solutions. 2. Random Orientation in External Field and Application to Polyelectrolytes. J. Phys. Chem. 1978, 82, 1424-1429. Stigter, D. Theory of Conductance of Colloidal Electrolytes in Univalent Salt Solutions. J. Phys. Chem. 1979, 83, 1663-1670), who describes the electrophoretic mobility of infinite cylinders including relaxation effects. Using the dissociation constants of the ionizable groups on the surfaces of the fd viruses, we can calculate the mobility without any adjustable parameter (apart from the possible Stern layer thickness). In addition, the approximation in the theoretical description of Stigter (and others) of using a model of infinitely long cylinders, which consequently is independent of the aspect ratio, is examined by performing more elaborate numerical calculations for finite cylinders. It is shown that, although the electrophoretic mobility of cylindrical particles in the limit of low ionic strength depends on the aspect ratio much more than "end effects", at moderate and high ionic strengths the finite and infinite cylinder models differ only to a degree that can be attributed to end effects. Furthermore, the range of validity of the Stokes regime is systematically calculated.

  12. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    PubMed

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  13. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  14. Equilibrium, kinetic, and reactive transport models for plutonium

    NASA Astrophysics Data System (ADS)

    Schwantes, Jon Michael

    Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive transport model; (2) a simulation of the effects of dissolution of PuO2 solid and radiolysis on the behavior of Pu diffusing out of a confined pore space; and (3) application of a steady-state three phase reactive transport model to groundwater at the Nevada Test Site.

  15. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications.

    PubMed

    Zarrintaj, Payam; Urbanska, Aleksandra M; Gholizadeh, Saman Seyed; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mozafari, Masoud

    2018-04-15

    An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 -5  S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Impact of nZVI stability on mobility in porous media.

    PubMed

    Kocur, Chris M; O'Carroll, Denis M; Sleep, Brent E

    2013-02-01

    Nano-scale zero valent iron (nZVI) has received significant attention because of its potential to rapidly reduce a number of priority source zone contaminants. In order to effectively deliver nZVI to the source zone the nZVI particles must be stable. Previous laboratory studies have demonstrated the mobility of polymer modified suspensions of low concentration nZVI. More recently studies have shown potential for higher concentration nZVI suspensions to be transmitted through porous media. However, with increasing nZVI concentration aggregation is accelerated, reducing the available time for injection before nZVI settles. In this study the colloidal stability and mobility of nZVI concurrently synthesized and stabilized in the presence of carboxy-methyl-cellulose (CMC) are evaluated in one-dimensional column experiments. Low pore water velocity nZVI injections (4, 2, and 0.25 m/day) conducted over periods as long as 80 h with no mixing of the influent reservoir were used to investigate the effects of prolonged aggregation and settling of colloids on transport. A numerical simulator, based on colloid filtration theory, but accounting for particle aggregation and settling was used to evaluate the contributions of aggregation and settling on nZVI mobility. Results suggest that the prediction of nZVI sticking efficiency in column experiments becomes increasingly influenced by aggregation and settling in the influent reservoir as the period of injection increases. Consideration of nZVI stability is required for the prediction of nZVI mobility at the field scale and for the design of successful nZVI remediation plans. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Optimal Navigation of Self-Propelled Colloids in Microstructured Mazes

    NASA Astrophysics Data System (ADS)

    Yang, Yuguang; Bevan, Michael

    Controlling navigation of self-propelled microscopic `robots' subject to random Brownian motion in complex microstructured environments (e.g., porous media, tumor vasculature) is important to many emerging applications (e.g., enhanced oil recovery, drug delivery). In this work, we design an optimal feedback policy to navigate an active self-propelled colloidal rod in complex mazes with various obstacle types. Actuation of the rods is modelled based on a light-controlled osmotic flow mechanism, which produces different propulsion velocities along the rod's long axis. Actuator-parameterized Langevin equations, with soft rod-obstacle repulsive interactions, are developed to describe the system dynamics. A Markov decision process (MDP) framework is used for optimal policy calculations with design goals of colloidal rods reaching target end points in minimum time. Simulations show that optimal MDP-based policies are able to control rod trajectories to reach target regions order-of-magnitudes faster than uncontrolled rods, which diverges as maze complexity increases. An efficient multi-graph based implementation for MDP is also presented, which scales linearly with the maze dimension.

  18. Pectin-based nanocomposite aerogels for potential insulated food packaging application.

    PubMed

    Nešić, Aleksandra; Gordić, Milan; Davidović, Sladjana; Radovanović, Željko; Nedeljković, Jovan; Smirnova, Irina; Gurikov, Pavel

    2018-09-01

    Environmental-friendly pectin-TiO 2 nanocomposite aerogels were prepared via sol-gel process and subsequent drying under supercritical conditions. The first step includes dissolution of pectin in water, addition of proper amount of TiO 2 colloid and crosslinking reaction induced in the presence of tert-butanol and zinc ions. Then, the gels are subjected to the solvent exchange and supercritical CO 2 drying. The influence of TiO 2 nanoparticles on the textural, mechanical, thermal and antibacterial properties of aerogels was investigated. Results indicate that in the presence of TiO 2 nanoparticles (NPs) mechanical, thermal and antimicrobial properties of pectin-based aerogels are improved in comparison to the control pectin aerogels. It should be emphasized that the thermal conductivity of pectin-based aerogels (0.022-0.025 W m -1  K -1 ) is lower than the thermal conductivity of air. Generally, the results propose that the pectin-TiO 2 nanocomposite aerogels, as bio-based material, might have potential application for the storage of temperature-sensitive food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2017-08-01

    Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.

  20. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  1. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-07-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  2. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.

    PubMed

    Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B

    2014-05-05

    Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions.

  3. Redox Active Colloids as Discrete Energy Storage Carriers.

    PubMed

    Montoto, Elena C; Nagarjuna, Gavvalapalli; Hui, Jingshu; Burgess, Mark; Sekerak, Nina M; Hernández-Burgos, Kenneth; Wei, Teng-Sing; Kneer, Marissa; Grolman, Joshua; Cheng, Kevin J; Lewis, Jennifer A; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-10-12

    Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

  4. Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation.

    PubMed

    Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin

    2017-06-28

    Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.

  5. Mesoscale Particle-Based Model of Electrophoretic Deposition

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2016-12-20

    In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less

  6. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media

    NASA Astrophysics Data System (ADS)

    Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie

    2016-10-01

    Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.

  7. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media

    PubMed Central

    Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie

    2016-01-01

    Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948

  8. Microwave-assisted one-step patterning of aqueous colloidal silver.

    PubMed

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  9. Effect of polishing process on corrosion behavior of 308L stainless steel in high temperature water

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Han, En-Hou; Peng, Qunjia; Ke, Wei

    2018-06-01

    Effect of change in surface composition and roughness by different polishing processes on corrosion of 308L stainless steel in high temperature water was investigated. The investigation was conducted by comparing the corrosion behavior of electropolished specimens with that of the 40 nm-colloidal silica slurry polished specimens. The result revealed that the electropolished specimens had a higher corrosion rate than the colloidal silica slurry polished specimens, which was attributed to formation of an amount of chromium hydroxide and higher roughness of the electropolished surface. Moreover, the ferrite in 308L stainless steel was found to have a higher resistance to corrosion than the austenite matrix.

  10. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

    PubMed Central

    Park, Sung Hee; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products. PMID:26761891

  11. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.

    PubMed

    Lee, Eung Seok; Olson, Pamela R; Gupta, Neha; Solpuker, Utku; Schwartz, Franklin W; Kim, Yongje

    2014-02-01

    Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  13. Near-field interaction of colloid near wavy walls

    NASA Astrophysics Data System (ADS)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  14. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation.

    PubMed

    Grayfer, Ekaterina D; Kozlova, Mariia N; Fedorov, Vladimir E

    2017-07-01

    This review focuses on the exfoliation of transition metal dichalcogenides MQ 2 (TMD, M=Mo, W, etc., Q=S, Se, Te) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS 2 , MoSe 2 , WS 2 and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine, etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS 2 and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation, etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS 2 with solvents evidence that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS 2 layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ 2 into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ 2 nanosheets, a special and different approach, consisting in the functionalization of MQ 2 surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS 3 , VS 4 , Mo 2 S 3 , etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS 2 and its related materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In-situ chemical barrier and method of making

    DOEpatents

    Cantrell, K.J.; Kaplan, D.I.

    1999-01-12

    A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.

  16. In-situ chemical barrier and method of making

    DOEpatents

    Cantrell, Kirk J.; Kaplan, Daniel I.

    1999-01-01

    A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.

  17. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    NASA Astrophysics Data System (ADS)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite nanoparticles are therefore very promising elements to further advance the colloidal solution approach in the implementation of low cost and high performance coated conductors for high magnetic field applications.

  18. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications.

    PubMed

    Xu, Yong; Chen, Lei; Wang, Xuchun; Yao, Weitang; Zhang, Qiao

    2015-06-28

    This Review article provides a report on progress in the synthesis, properties and catalytic applications of noble metal based composite nanomaterials. We begin with a brief discussion on the categories of various composite materials. We then present some important colloidal synthetic approaches to the composite nanostructures; here, major attention has been paid to bimetallic nanoparticles. We also introduce some important physiochemical properties that are beneficial from composite nanomaterials. Finally, we highlight the catalytic applications of such composite nanoparticles and conclude with remarks on prospective future directions.

  19. Nickel-silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts.

    PubMed

    Baudouin, David; Szeto, Kaï Chung; Laurent, Pierre; De Mallmann, Aimery; Fenet, Bernard; Veyre, Laurent; Rodemerck, Uwe; Copéret, Christophe; Thieuleux, Chloé

    2012-12-26

    Preparing highly active and stable non-noble-metal-based dry reforming catalysts remains a challenge today. In this context, supported nickel nanoparticles with sizes of 1.3 ± 0.2 and 2.1 ± 0.2 nm were synthesized on silica and ceria, respectively, via a two-step colloidal approach. First, 2-nm nickel-silicide colloids were synthesized from Ni(COD)(2) and octylsilane at low temperature; they were subsequently dispersed onto supports prior to reduction under H(2). The resulting catalysts display high activity in dry reforming compared to their analogues prepared using conventional approaches, ceria providing greatly improved catalyst stability.

  20. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  1. Colloid-facilitated metal transport in peat filters.

    PubMed

    Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin

    2010-06-01

    The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.

  2. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels.

    PubMed

    Seraji, Mohamad Mehdi; Sameri, Ghasem; Davarpanah, Jamal; Bahramian, Ahmad Reza

    2017-05-01

    Phenol-formaldehyde/silica hybrid aerogels with different degree of hydrophobicity were successfully synthesized via high temperature sol-gel polymerization. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursor and co-precursor of the hydrophobic silica-based phase, respectively. The hydrolysis step of silica based sols were conducted by acid catalyzed reactions and HCl was used as hydrolysis catalyst. The chemical structure of prepared hybrid aerogels was characterized by Fourier Transform Infrared spectroscopy (FT-IR). The effect of MTES/TEOS proportion and catalyst content on the morphology and microstructure of samples were investigated by FE-SEM and C, Si mapping analysis. The acid catalyzed hydrolysis of TEOS and MTES sols leads to formation of a sol with primarily silica particles in the organic-inorganic hybrid sol and varying colloid growth mechanisms were occurred with change in MTES and HCl molar ratio. With the increasing of MTES content, the microstructure of samples changed from uniform colloidal network, core-shell structure to polymeric structure with a huge phase separation. The increasing of HCl mole fraction leads to smaller particle size. Moreover, the shrinkage of samples was decreased and water contact angles of the resulted aerogels were increased from 40 to 156.8° with the increases of MTES content. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.

    PubMed

    Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H

    2015-01-27

    The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  4. Satellite auxiliary-propulsion selection techniques. Addendum: A survey of auxiliary electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1971-01-01

    A review of electric thrusters for satellite auxiliary propulsion was conducted at JPL during the past year. Comparisons of the various thrusters for attitude propulsion and east-west and north-south stationkeeping were made based upon performance, mass, power, and demonstrated life. Reliability and cost are also discussed. The method of electrical acceleration of propellant served to divide the thruster systems into two groups: electrostatic and electromagnetic. Ion and colloid thrusters fall within the electrostatically accelerated group while MPD and pulsed plasma thrusters comprise the electromagnetically accelerated group. The survey was confined to research in the United States with accent on flight and flight prototype systems.

  5. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of manure-related DOM on sulfonamide transport in arable soils

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  7. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in “background” wells, colloid-size distributions, ground-water geochemistry, and colloid surface characteristics.

  8. Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity.

    PubMed

    Morales-Covarrubias, María Soledad; García-Aguilar, Noemí; Bolan-Mejía, María Del; Puello-Cruz, Ana Carmela

    2016-11-22

    In shrimp aquaculture, reduction in the use of synthetic antibiotics is a priority due to the high incidence of resistant bacteria (Vibrio) in the white shrimp Litopenaeus vannamei. An increasing number of studies show bactericidal activity of natural treatments in aquaculture. The effectiveness of neem (Azadirachta indica) and oregano (Lippia berlandieri) aqueous extracts and colloidal silver against V. parahaemolyticus were evaluated in low salinity shrimp culture. Results show that aqueous extracts of oregano and neem each present a minimum inhibitory concentration (MIC) of 62.50 mg ml-1 and inhibitory halos of 12.0 to 19.0 mm. Colloidal silver gave a MIC of 2 mg ml-1, and the inhibitory halos were found to be between 11.8 and 18.8 mm, depending on treatment concentrations. An in vivo challenge test was conducted on white shrimp postlarvae cultured at low salinity (5 practical salinity units, PSU), and a significant increase (p < 0.05) in survival was demonstrated in the presence of the aqueous extracts (oregano 64%, neem 76% and colloidal silver 90%), when compared to the control (0%) in the challenge test. However, no significant differences were observed between treatments, suggesting that they all act as alternative bactericidal source agents against V. parahaemolyticus infections for L. vannamei postlarvae when cultured at 5 PSU.

  9. Does water content or flow rate control colloid transport in unsaturated porous media?

    PubMed

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  10. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications.

    PubMed

    Lhuillier, Emmanuel; Pedetti, Silvia; Ithurria, Sandrine; Nadal, Brice; Heuclin, Hadrien; Dubertret, Benoit

    2015-01-20

    CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices. An important development that recently took place in the field of colloidal quantum dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets that appear as free-standing nanosheets. These 2D colloidal systems are the newborn in the family of shaped-controlled nanoparticles that started with spheres, was extended with rods and wires, continued with tetrapods, and now ends with platelets. From a physical point of view, these objects bring 1D-confined particles into the colloidal family. It is a notable addition, since these platelets can have a thickness that is controlled with atomic precision, so that no inhomogeneous broadening is observed. Because they have two large free interfaces, mirror charges play an important role, and the binding energy of the exciton is extremely large. These two effects almost perfectly compensate each other, it results in particles with unique spectroscopic properties such as fast fluorescent lifetimes and extreme color purity (narrow full width at half-maximum of their emission spectra). These nanoplatelets with extremely large confinement but very simple and well-defined chemistry are model systems to check and further develop, notably with the incorporation in the models of the organic/inorganic interface, various theoretical approaches used for colloidal particles. From a chemical point of view, these colloidal particles are a model system to study the role of ligands since they have precisely defined facets. In addition, the synthesis of these highly anisotropic objects triggered new research to understand at a mechanistic level how this strong anisotropy could be generated. Luckily, some of the chemical know-how built with the spherical and rod-shaped particles is being transferred, with some adaptation, to 2D systems, so that 2D core/shell and core/crown heterostructures have recently been introduced. These objects are very interesting because they suggest that multiple quantum wells could be grown in solution. From the application point of view, 2D colloidal nanoplatelets offer interesting perspectives when color purity, charge conductivity, or field tunable absorption are required. In this Account, we review the chemical synthesis, the physical properties, and the applications of colloidal semiconductor nanoplatelets with an emphasis on the zinc-blende nanoplatelets that were developed more specifically in our group.

  11. Synthesis and Study of Silver Nanoparticles

    ERIC Educational Resources Information Center

    Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine

    2007-01-01

    A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.

  12. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-07

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.

  13. Crystalloid versus Colloid for Intraoperative Goal-directed Fluid Therapy Using a Closed-loop System: A Randomized, Double-blinded, Controlled Trial in Major Abdominal Surgery.

    PubMed

    Joosten, Alexandre; Delaporte, Amelie; Ickx, Brigitte; Touihri, Karim; Stany, Ida; Barvais, Luc; Van Obbergh, Luc; Loi, Patricia; Rinehart, Joseph; Cannesson, Maxime; Van der Linden, Philippe

    2018-01-01

    The type of fluid and volume regimen given intraoperatively both can impact patient outcome after major surgery. This two-arm, parallel, randomized controlled, double-blind, bi-center superiority study tested the hypothesis that when using closed-loop assisted goal-directed fluid therapy, balanced colloids are associated with fewer postoperative complications compared to balanced crystalloids in patients having major elective abdominal surgery. One hundred and sixty patients were enrolled in the protocol. All patients had maintenance-balanced crystalloid administration of 3 ml · kg · h. A closed-loop system delivered additional 100-ml fluid boluses (patients were randomized to receive either a balanced-crystalloid or colloid solution) according to a predefined goal-directed strategy, using a stroke volume and stroke volume variation monitor. All patients were included in the analysis. The primary outcome was the Post-Operative Morbidity Survey score, a nine-domain scale, at day 2 postsurgery. Secondary outcomes included all postoperative complications. Patients randomized in the colloid group had a lower Post-Operative Morbidity Survey score (median [interquartile range] of 2 [1 to 3] vs. 3 [1 to 4], difference -1 [95% CI, -1 to 0]; P < 0.001) and a lower incidence of postoperative complications. Total volume of fluid administered intraoperatively and net fluid balance were significantly lower in the colloid group. Under our study conditions, a colloid-based goal-directed fluid therapy was associated with fewer postoperative complications than a crystalloid one. This beneficial effect may be related to a lower intraoperative fluid balance when a balanced colloid was used. However, given the study design, the mechanism for the difference cannot be determined with certainty.

  14. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Adamo, Giuseppe, E-mail: giuseppe.dadamo@sissa.it; Pelissetto, Andrea, E-mail: andrea.pelissetto@roma1.infn.it; Pierleoni, Carlo, E-mail: carlo.pierleoni@aquila.infn.it

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmannmore » inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.« less

  15. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.

    PubMed

    Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang

    2011-06-28

    The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.

  16. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  17. Impact of manure-related DOM on sulfonamide transport in arable soils.

    PubMed

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Gardner, Brint; Razali, Wan Aizuddin W.; Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Goldys, Ewa M.; Herrmann, Jan; Zvyagin, Andrei

    2017-11-01

    The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering (DLS), which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution (PSD) and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative PSD of a colloidal suspension. The work presents an approach to account for PSDs achieved by DLS which, due to the underlying model, may not be representative of the true sample PSD. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.

  19. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics.

    PubMed

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.

  20. Radiosynovectomy of Proximal Interphalangeal Joint Synovitis in Rheumatoid Arthritis Treated with Rhenium-188 Labeled Tin-colloid and Imaging with Single-photon Emission Computerized Tomography/Computed Tomography: A First Case Report.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajamani, Venkataraman; Krishnan, Boopathi; Mallia, Madhav; Kalarikal, Radhakrishnan; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic disease that is mainly characterized by the asymmetric erosive synovitis, particularly affecting peripheral joints. Radiation synovectomy or radiosynovectomy (RSV), also known as radiosynoviorthesis was first described in 1950's as an adjuvant treatment for RA. RSV is based on the irradiation of the joint synovium by the intra-articular administration of various β-emitting radiopharmaceuticals. As a generator-produced β-emitting radionuclide, the importance of rhenium-188 (Re-188) for radionuclide therapy is increasing rapidly. There are previous reports which used Re-188 tin colloid in knee joint synovitis, but use of Re-188 tin colloid in small joint is not yet reported. We describe the use of Re-188 tin colloid in a 45-year-old female who presented with right 4(th) proximal interphalangeal joint synovitis due to rheumatoid arthritis.

  1. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands.

    PubMed

    Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V

    2011-07-13

    All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.

  2. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.

    PubMed

    Yang, Weiwei; Qiu, Zhaofu; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian; Gu, Xiaogang

    2017-01-01

    Controlled-release permanganate (CRP) is a relatively new technology used to treat contaminated groundwater. This study tested the encapsulation of permanganate using stearic acid to realize controlled-release properties. Batch experiments were conducted to investigate the performance of manganese oxides (MnO 2 ) in the reaction between CRP and the contaminant of interest: tetrachloroethylene (PCE). The results showed that higher ionic strengths (I = 0.1 mol/L) cause earlier precipitation of MnO 2 colloids. Using CRP to degrade PCE could decrease the amount of MnO 2 colloids produced and postpone precipitation compared to raw potassium permanganate (KMnO 4 ) under high ionic strength conditions by controlling the KMnO 4 concentration in the solution. The amount of MnO 2 colloids produced and the time of precipitation depended more on the CRP grain size than on the CRP mass ratio. Controlling the KMnO 4 concentration used in the reaction could control the formation of MnO 2 precipitates in the premise of guarantee the removal rate of PCE.

  3. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals

    PubMed Central

    Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos

    2013-01-01

    Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520

  4. Installation Restoration Program Records Search for Bergstrom Air Force Base, Texas.

    DTIC Science & Technology

    1983-07-01

    August 1981. "Pilot Plant Study of Copper , Zinc, and Trivalent Chromium Removal by Adsorbing Colloid Foam Flotation ." M.S. Thesis, Vanderbilt...graduate school and one of his activities included researching the removal of heavy metals, including copper , zinc and trivalent chromium, using a large...scale adsorbing colloid foam flotation pilot plant. Professional Registration Engineer-In-Training, Florida % -7. GREGORY T. MCINTYRE Membership in

  5. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites.

    PubMed

    Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane

    2014-08-08

    Environmentally friendly silver nanocomposite films were prepared by an ex situ method consisting firstly in the preparation of colloidal silver dispersions and secondly in the dispersion of the as-prepared nanoparticles in a potato starch/glycerol matrix, keeping a green chemistry process all along the synthesis steps. In the first step concerned with the preparation of the colloidal silver dispersions, water, glucose and soluble starch were used as solvent, reducing agent and stabilizing agent, respectively. The influences of the glucose amount and reaction time were investigated on the size and size distribution of the silver nanoparticles. Two distinct silver nanoparticle populations in size (diameter around 5 nm size for the first one and from 20 to 50 nm for the second one) were distinguished and still highlighted in the potato starch/glycerol based nanocomposite films. It was remarkable that lower nanoparticle mean sizes were evidenced by both TEM and UV-vis analyses in the nanocomposites in comparison to the respective colloidal silver dispersions. A dispersion mechanism based on the potential interactions developed between the nanoparticles and the polymer matrix and on the polymer chain lengths was proposed to explain this morphology. These nanocomposite film series can be viewed as a promising candidate for many applications in antimicrobial packaging, biomedicines and sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. High-Sensitivity Surface-Enhanced Raman Scattering (SERS) Substrate Based on a Gold Colloid Solution with a pH Change for Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution.

    PubMed

    Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng

    2015-05-01

    In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.

  7. A Novel Quantum Dots-Based Point of Care Test for Syphilis

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang

    2010-05-01

    One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.

  8. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    PubMed

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  9. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  10. Colloids from the aqueous corrosion of uranium nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  11. Phases transitions and interfaces in temperature-sensitive colloidal systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Schall, Peter

    2013-03-01

    Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.

  12. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications

    PubMed Central

    Zaiats, Gary; Yanover, Diana; Vaxenburg, Roman; Tilchin, Jenya; Sashchiuk, Aldona; Lifshitz, Efrat

    2014-01-01

    Lead-based (IV–VI) colloidal quantum dots (QDs) are of widespread scientific and technological interest owing to their size-tunable band-gap energy in the near-infrared optical region. This article reviews the synthesis of PbSe-based heterostructures and their structural and optical investigations at various temperatures. The review focuses on the structures consisting of a PbSe core coated with a PbSexS1–x (0 ≤ x ≤ 1) or CdSe shell. The former-type shells were epitaxially grown on the PbSe core, while the latter-type shells were synthesized using partial cation-exchange. The influence of the QD composition and the ambient conditions, i.e., exposure to oxygen, on the QD optical properties, such as radiative lifetime, Stokes shift, and other temperature-dependent characteristics, was investigated. The study revealed unique properties of core/shell heterostructures of various compositions, which offer the opportunity of fine-tuning the QD electronic structure by changing their architecture. A theoretical model of the QD electronic band structure was developed and correlated with the results of the optical studies. The review also outlines the challenges related to potential applications of colloidal PbSe-based heterostructures. PMID:28788244

  13. Progress Report on FY15 Crystalline Experiments M4FT-15LL0807052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, M.; Zhao, P.; Joseph, C.

    2015-08-13

    Colloid-facilitated plutonium transport is expected to be the dominant mechanism in its migration through the environment. The forms of Pu colloids (intrinsic versus pseudo-colloid) and their stabilities control temporal and spatial scales of Pu transport in the environment. In the present study, we examine the stability of Pu intrinsic colloids freshly prepared in alkaline solution relative to Pu-montmorillonite pseudo-colloids using a dialysis device and modeling approaches. Intrinsic colloids prepared under alkaline conditions were found to be unstable over a timescale of months. The kinetics of multiple processes, including hydrolysis/precipitation of Pu(IV), dissolution of intrinsic colloids in the absence and presencemore » of the clay colloids, transport of dissolved Pu species across the dialysis membrane, and formation of pseudo-colloids were examined. The dissolution of intrinsic colloids was the rate-limiting process in most cases. The apparent intrinsic colloid dissolution rate constants range from 6×10 -7 to 1×10 - 6 mol·m -2·day -1 and 4×10 -6 to 8×10 -6 mol·m -2·day -1 at 25 and 80°C, respectively, while the apparent diffusion rate constants for Pu ions crossing the dialysis membrane are >200 times higher. Elevated temperatures enhance dissolution of Pu colloids and the activation energy for the process is estimated to be 28 kJ mol -1. The sorption of Pu to montmorillonite appears to be endothermic as the affinity of Pu for the clay increases with increasing temperature. Our results provide an in-depth understanding of how intrinsic and pseudo-colloids interact with each other kinetically. Although the fact that intrinsic colloids tend to dissolve in the presence of montmorillonite and transform into pseudo-colloids may limit the migration of intrinsic colloids, the thermodynamically more stable pseudo-colloids may play an important role in Pu transport in the environment over significant temporal and spatial scales.« less

  14. Colloid transport in porous media: impact of hyper-saline solutions.

    PubMed

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.

    PubMed

    Melnychuk, Christopher; Guyot-Sionnest, Philippe

    2018-05-03

    The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.

  16. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  17. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu, E-mail: tatsuma@iis.u-tokyo.ac.jp

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  18. Aqueous Black Colloids of Reticular Nanostructured Gold

    NASA Astrophysics Data System (ADS)

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

  19. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  20. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities.

    PubMed

    Saito, Shuntaro; Hasegawa, Jun; Kobayashi, Naoki; Tomitsuka, Toshiaki; Uchiyama, Susumu; Fukui, Kiichi

    2013-05-01

    To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B 2) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. Similar B 2 values were obtained at 20°C and 40°C, implying little dependence on temperature. B 2 correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.

  1. Nucleation in food colloids

    NASA Astrophysics Data System (ADS)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  2. Early Dynamics and Stabilization Mechanisms of Oil-in-Water Emulsions Containing Colloidal Particles Modified with Short Amphiphiles: A Numerical Study.

    PubMed

    Cerbelaud, Manuella; Videcoq, Arnaud; Alison, Lauriane; Tervoort, Elena; Studart, André R

    2017-12-19

    Emulsions stabilized by mixtures of particles and amphiphilic molecules are relevant for a wide range of applications, but their dynamics and stabilization mechanisms on the colloidal level are poorly understood. Given the challenges to experimentally probe the early dynamics and mechanisms of droplet stabilization, Brownian dynamics simulations are developed here to study the behavior of oil-in-water emulsions stabilized by colloidal particles modified with short amphiphiles. Simulation parameters are based on an experimental system that consists of emulsions obtained with octane as the oil phase and a suspension of alumina colloidal particles modified with short carboxylic acids as the continuous aqueous medium. The numerical results show that attractive forces between the colloidal particles favor the formation of closely packed clusters on the droplet surface or of a percolating network of particles throughout the continuous phase, depending on the amphiphile concentration. Simulations also reveal the importance of a strong adsorption of particles at the liquid interface to prevent their depletion from the droplet surface when another droplet approaches. Strongly adsorbed particles remain immobile on the droplet surface, generating an effective steric barrier against droplet coalescence. These findings provide new insights into the early dynamics and mechanisms of stabilization of emulsions using particles and amphiphilic molecules.

  3. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  4. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  5. Thermophoretic torque in colloidal particles with mass asymmetry

    NASA Astrophysics Data System (ADS)

    Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando

    2018-05-01

    We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.

  6. Direct and inverted nematic dispersions for soft matter photonics.

    PubMed

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  7. An explanation for differences in the process of colloid adsorption in batch and column studies

    USDA-ARS?s Scientific Manuscript database

    It is essential to understand the mechanisms that control virus and bacteria removal in the subsurface environment to assess the risk of groundwater contamination with fecal microorganisms. This study was conducted to explicitly provide a critical and systematic comparison between batch and column e...

  8. FIR sample change

    NASA Image and Video Library

    2011-10-11

    ISS029-E-025108 (11 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works on the Fluids Integrated Rack/Fluids and Combustion Facility (FIR/FCF), conducting another session with the Preliminary Advanced Colloids Experiment (PACE). Fossum is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  9. Colloidal interactions and fouling of NF and RO membranes: a review.

    PubMed

    Tang, Chuyang Y; Chong, T H; Fane, Anthony G

    2011-05-11

    Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter≪100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Characterization of submicrometer aqueous iron(III) colloids formed in the presence of phosphate by sedimentation field flow fractionation with multiangle laser light scattering detection.

    PubMed

    Magnuson, M L; Lytle, D A; Frietch, C M; Kelty, C A

    2001-10-15

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in water pipes. In this study, sedimentation field flow fractionation (SdFFF) is coupled on-line with multiangle laser light scattering (MALLS) detection to characterize these iron colloids formed following the oxygenation of iron(II) in the presence of phosphate. The SdFFF-MALLS data were used to calculate the hydrodynamic diameter, density, and particle size distribution of these submicrometer colloids. The system was first verified with standard polystyrene beads, and the results compared well with certified values. Iron(III) colloids were formed in the presence of phosphate at a variety of pH conditions. The colloids' hydrodynamic diameters, which ranged from 218 +/- 3 (pH 7) to 208 +/- 4 nm (pH 10), did not change significantly within the 95% confidence limit. Colloid density did increase significantly from 1.12 +/- 0.01 (pH 7) to 1.36 +/- 0.02 g/mL (pH 10). Iron(III) colloids formed at pH 10 in the presence of phosphate were compared to iron(III) colloids formed without phosphate and also to iron(III) colloids formed with silicate. The iron(III) colloids formed without phosphate or silicate were 0.46 g/mL more dense than any other colloids and were >6 times more narrowly distributed than the other colloids. The data suggest competitive incorporation of respective anions into the colloid during formation.

  11. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  12. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles

    PubMed Central

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns. PMID:18203427

  13. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    NASA Astrophysics Data System (ADS)

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-01

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  14. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory.

    PubMed

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  15. Molecular theory for self assembling mixtures of patchy colloids and colloids with spherically symmetric attractions: The single patch case

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.; Chapman, Walter G.

    2013-09-01

    In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.

  16. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    PubMed

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  17. Colloid-Mediated Transport of PPCPs through Porous Media

    NASA Astrophysics Data System (ADS)

    Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie

    2017-04-01

    Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.

  18. Lipid vesicles and other colloids as drug carriers on the skin.

    PubMed

    Cevc, Gregor

    2004-03-27

    Colloids from an aqueous suspension can cross the skin barrier only through hydrophilic pathways. Various colloids have a different ability to do this by penetrating narrow pores of fixed size in the skin, or the relevant nano-pores in barriers modelling the skin. Such ability is governed by colloid adaptability, which must be high enough to allow penetrant deformation to the size of a pore in such barrier: for a 100 nm colloid trespassing the skin this means at least 5-fold deformation/elongation. (Lipid) Bilayer vesicles are normally more adaptable than the comparably large (lipid coated) fluid droplets. One of the reasons for this, and an essential condition for achieving a high bilayer adaptability and pore penetration, is a high bilayer membrane elasticity. The other reason is the relaxation of changing colloid's volume-to-surface constraint during pore penetration; it stands to reason that such relaxation requires a concurrent, but only transient and local, bilayer permeabilisation. Both these phenomena are reflected in bilayer composition sensitivity, which implies non-linear pressure dependency of the apparent barrier penetrability, for example. Amphipats that acceptably weaken a membrane (surfactants, (co)solvents, such as certain alcohols, etc.) consequently facilitate controlled, local bilayer destabilisation and increase lipid bilayer flexibility. When used in the right quantity, such additives thus lower the energetic expense for elastic bilayer deformation, associated with pore penetration. Another prerequisite for aggregate transport through the skin is the colloid-induced opening of the originally very narrow ( approximately 0.4 nm) gaps between cells in the barrier to pores with diameter above 30 nm. Colloids incapable of enforcing such widening-and simultaneously of self-adapting to the size of 20-30 nm without destruction-are confined to the skin surface. All relatively compact colloids seem to fall in this latter category. This includes mixed lipid micelles, solid (nano)particles, nano-droplets, biphasic vesicles, etc. Such colloids, therefore, merely enter the skin through the rare wide gaps between groups of skin cells near the organ surface. Transdermal drug delivery systems based on corresponding drug formulations, therefore, rely on simple drug diffusion through the skin; the colloid then, at best, can modulate drug transport through the barrier. In contrast, the adaptability-and stability-optimised mixed lipid vesicles (Transfersomes, a trademark of IDEA AG) can trespass much narrower pathways between most cells in the skin; such highly adaptable colloids thus mediate drug transport through the skin. Sufficiently stable ultra-adaptable carriers, therefore, can ensure targeted drug delivery deep below the application site. This has already been shown in numerous preclinical tests and several phase I and phase II clinical studies. Drug delivery by means of highly adaptable drug carriers, moreover, allows highly efficient and well-tolerated drug targeting into the skin proper. Sustained drug release through the skin into systemic blood circulation is another field of ultradeformable drug carrier application.

  19. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    NASA Astrophysics Data System (ADS)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  20. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    PubMed

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  1. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.

    PubMed

    Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau

    2017-09-01

    Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

  2. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  3. Integration of colloids into a semi-flexible network of fibrin.

    PubMed

    Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H

    2017-02-15

    Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.

  4. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    PubMed

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  6. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    NASA Astrophysics Data System (ADS)

    Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha

    2012-12-01

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody-colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.

  7. Goethite colloid enhanced Pu transport through a single saturated fracture in granite.

    PubMed

    Lin, Jianfeng; Dang, Haijun; Xie, Jinchuan; Li, Mei; Zhou, Guoqing; Zhang, Jihong; Zhang, Haitao; Yi, Xiaowei

    2014-08-01

    α-FeOOH, a stable iron oxide in nature, can strongly absorb the low-solubility plutonium (Pu) in aquifers. However, whether Pu transports though a single saturated fracture can be enhanced in the presence of α-FeOOH colloids remains unknown. Experimental studies were carried out to evaluate Pu mobilization at different water flow velocity, as affected by goethite colloids with various concentrations. Goethite nanorods were used to prepare (α-FeOOH)-associated Pu suspensions with α-FeOOH concentration of (0-150) mgL(-1). The work experimentally evidenced that α-FeOOH colloid does enhance transport of Pu through fractured granites. The fraction of mobile (239)Pu (RPu, m=41.5%) associated with the α-FeOOH of an extremely low colloid concentration (0.2mgL(-1)) is much larger than that in absence of α-FeOOH (RPu, m=6.98%). However, plutonium mobility began to decrease when α-FeOOH concentration was increased to 1.0mgL(-1). On the other hand, the fraction of mobile Pu increased gradually with the water flow velocity. Based on the experimental data, the mechanisms underlying the (α-FeOOH)-associated plutonium transport are comprehensively discussed in view of its dynamic deposition onto the granite surfaces, which is decided mainly by the relative interaction between the colloid particle and the immobile surface. This interaction is a balance of electrostatic force (may be repulsive or attractive), the van der Walls force, and the shear stress of flow. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nonequilibrium free diffusion in seed leachate

    NASA Astrophysics Data System (ADS)

    Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.

    2013-11-01

    In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.

  9. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called “lossy surface waves” which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore–metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology. PMID:15691498

  10. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  11. Microscopic Behavior Of Colloidal Particles Under The Effect Of Acoustic Stimulations In The Ultrasonic To Megasonic Range

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Amr I.; Roberts, Peter M.

    2006-05-01

    It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.

  12. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    PubMed

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.

  13. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  14. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  15. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  16. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    PubMed

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  17. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide-colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.

  18. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  19. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects

    NASA Astrophysics Data System (ADS)

    Rodríguez-Arco, Laura; Li, Mei; Mann, Stephen

    2017-08-01

    The spontaneous assembly of micro-compartmentalized colloidal objects capable of controlled interactions offers a step towards rudimentary forms of collective behaviour in communities of artificial cell-like entities (synthetic protocells). Here we report a primitive form of artificial phagocytosis in a binary community of synthetic protocells in which multiple silica colloidosomes are selectively ingested by self-propelled magnetic Pickering emulsion (MPE) droplets comprising particle-free fatty acid-stabilized apertures. Engulfment of the colloidosomes enables selective delivery and release of water-soluble payloads, and can be coupled to enzyme activity within the MPE droplets. Our results highlight opportunities for the development of new materials based on consortia of colloidal objects, and provide a novel microscale engineering approach to inducing higher-order behaviour in mixed populations of synthetic protocells.

  20. In situ enhancement of the blue photoluminescence of colloidal Ga2O3 nanocrystals by promotion of defect formation in reducing conditions.

    PubMed

    Wang, Ting; Radovanovic, Pavle V

    2011-07-07

    We demonstrate redox control of defect-based photoluminescence efficiency of colloidal γ-Ga(2)O(3) nanocrystals. Reducing environment leads to an increase in photoluminescence intensity by enhancing the concentration of oxygen vacancies, while the blue emission is suppressed in oxidative conditions. These results enable optimization of nanocrystal properties by in situ defect manipulation. This journal is © The Royal Society of Chemistry 2011

  1. Colloidal paradigm in supercapattery electrode systems

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  2. Experimental investigation on a colloidal damper rendered controllable under the variable magnetic field generated by moving permanent magnets

    NASA Astrophysics Data System (ADS)

    Suciu, B.

    2016-09-01

    In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.

  3. Two-dimensional patterning of colloidal crystals by means of lateral autocloning in edge-patterned cells

    NASA Astrophysics Data System (ADS)

    Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2009-06-01

    We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.

  4. Mechanics and stability of vesicles and droplets in confined spaces

    PubMed Central

    Benet, Eduard; Vernerey, Franck J.

    2017-01-01

    The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314

  5. Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals.

    PubMed

    Berestok, Taisiia; Guardia, Pablo; Portals, Javier Blanco; Estradé, Sònia; Llorca, Jordi; Peiró, Francesca; Cabot, Andreu; Brock, Stephanie L

    2018-06-05

    Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In 2 S 3 , both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.

  6. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  7. Effect of gold nanoparticles on the fluorescence excitation spectrum of α-fetoprotein: Local environment dependent fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Li, Jian-jun; Chen, Yu; Wang, A.-qing; Zhu, Jian; Zhao, Jun-wu

    2011-01-01

    The effect of colloid gold nanoparticles (AuNPs) on the fluorescence excitation spectrum of α-fetoprotein (AFP) has been investigated experimentally. The excitation spectral peaks of AFP with low concentration from 0.01 ng ml -1 to 12 ng ml -1 increase monotonically with increasing of AFP concentration. When some gold colloids were added to the AFP solution, the excitation peak at 285 nm decreases distinctly. By comparing the excitation peak intensity of AFP solution with gold colloids and without gold colloids at different AFP concentrations, the quenching effect from gold nanoparticle was more effective at lower AFP concentration. So the range of concentration from 0.01 ng ml -1 to 0.09 ng ml -1 will be the potential range of applications because of the higher sensitivity. The physical origin based on local field effect was investigated to illuminate this local environment dependent fluorescence quenching. The changing extent of quenching with different AFP concentrations can be attributed to the nonlinear decreasing of the local field factor of gold nanoparticles as a function of environmental dielectric constant.

  8. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution

    PubMed Central

    Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai

    2015-01-01

    Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry–Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10−14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm−2 under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950

  9. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.

    PubMed

    Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael

    2010-06-02

    Sustainable hydrogen production through photoelectrochemical water splitting using hematite (alpha-Fe(2)O(3)) is a promising approach for the chemical storage of solar energy, but is complicated by the material's nonoptimal optoelectronic properties. Nanostructuring approaches have been shown to increase the performance of hematite, but the ideal nanostructure giving high efficiencies for all absorbed light wavelengths remains elusive. Here, we report for the first time mesoporous hematite photoelectodes prepared by a solution-based colloidal method which yield water-splitting photocurrents of 0.56 mA cm(-2) under standard conditions (AM 1.5G 100 mW cm(-2), 1.23 V vs reversible hydrogen electrode, RHE) and over 1.0 mA cm(-2) before the dark current onset (1.55 V vs RHE). The sintering temperature is found to increase the average particle size, and have a drastic effect on the photoactivity. X-ray photoelectron spectroscopy and magnetic measurements using a SQUID magnetometer link this effect to the diffusion and incorporation of dopant atoms from the transparent conducting substrate. In addition, examining the optical properties of the films reveals a considerable change in the absorption coefficient and onset properties, critical aspects for hematite as a solar energy converter, as a function of the sintering temperature. A detailed investigation into hematite's crystal structure using powder X-ray diffraction with Rietveld refinement to account for these effects correlates an increase in a C(3v)-type crystal lattice distortion to the improved optical properties.

  10. Colloid-Interface-Assisted Laser Irradiation of Nanocrystals Superlattices to be Scalable Plasmonic Superstructures with Novel Activities.

    PubMed

    Huang, Liu; Wan, Xiaodong; Rong, Hongpan; Yao, Yuan; Xu, Meng; Liu, Jia; Ji, Muwei; Liu, Jiajia; Jiang, Lan; Zhang, Jiatao

    2018-04-01

    High-efficient charge and energy transfer between nanocrystals (NCs) in a bottom-up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film-scale NCs superlattices at solid-liquid interfaces. Owing to the Au-based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68-13.37 W cm -2 ), to control Au-based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale-up and formation at solid-liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near-infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)-active substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On colloid retention in saturated porous media in the presence of energy barriers: The failure of α, and opportunities to predict η

    NASA Astrophysics Data System (ADS)

    Johnson, William P.; Tong, Meiping; Li, Xiqing

    2007-12-01

    This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under environmental conditions, where repulsion exists between colloids and surfaces. This failure cannot be blamed solely on the complexities of the subsurface, since colloid filtration theory (CFT) works well in the absence of colloid-collector repulsion despite its idealization of porous media as consisting of spherical grains completely surrounded by fluid envelopes. Rather, the failure of CFT stems from failure to incorporate the correct mechanisms of retention when repulsion exists. Recent observations implicate wedging in grain-to-grain contacts and retention in secondary energy minima as dominant mechanisms of colloid retention in the presence of an energy barrier. Mechanistic simulations in unit cells containing grain-to-grain contacts corroborate these mechanisms of colloid retention. The resulting concept for colloid retention in the presence of an energy barrier involves translation of colloids across the collector surfaces until they become wedged within grain-to-grain contacts, or are retained via secondary energy minima (without attachment) in zones where the balance of fluid drag, diffusion, gravitational, and colloid-collector interaction forces allow retention. The above findings highlight the pore domain geometry as a dominant governor of colloid retention in so far as the geometry gives rise to grain-to-grain contacts and zones of relatively low fluid drag.

  12. Colloid mobilization and seasonal variability in a semiarid headwater stream

    USGS Publications Warehouse

    Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.

    2017-01-01

    Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the <0.45-µm fraction in the stream. Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.

  13. The characteristic of carbon-coated LiFePO{sub 4} as cathode material for lithium ion battery synthesized by sol-gel process in one step heating and varied pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triwibowo, J., E-mail: joko.triwibowo@lipi.go.id; Yuniarti, E.; Suharyadi, E.

    2014-09-25

    This research has been done on the synthesis of carbon coated LiFePO{sub 4} through sol-gel process. Carbon layer serves for improving electronic conductivity, while the variation of pH in the sol-gel process is intended to obtain the morphology of the material that may improve battery performance. LiFePO{sub 4}/C precursors are Li{sub 2}CO{sub 3}, NH{sub 4}H{sub 2}PO{sub 4} and FeC{sub 2}O{sub 4}.H{sub 2}O and citric acid. In the synthesis process, consisting of a colloidal suspension FeC{sub 2}O{sub 4}.H{sub 2}O and distilled water mixed with a colloidal suspension consisting of NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3}, and distilled water. Variations additionmore » of citric acid is used to control the pH of the gel formed by mixing two colloidal suspensions. Sol in this study had a pH of 5, 5.4 and 5.8. The obtained wet gel is further dried in the oven and then sintered at a temperature 700°C for 10 hours. The resulting material is further characterized by XRD to determine the phases formed. The resulting powder morphology is observed through SEM. Specific surface area of the powder was tested by BET, while the electronic conductivity characterized with EIS.« less

  14. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    PubMed

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  15. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater.

    PubMed

    Kalmykova, Yuliya; Björklund, Karin; Strömvall, Ann-Margret; Blom, Lena

    2013-03-01

    Partitioning of organic pollutants is essential to their fate, mobility and removal from water and soil. To study the partitioning behavior of selected alkylphenols, bisphenol A, phthalates and polycyclic aromatic hydrocarbons (PAHs), a method for separating the truly dissolved and colloidal phase of organic pollutants was developed, verified and applied to samples of landfill leachate and stormwater from urban areas and waste-sorting sites. Alkylphenols, bisphenol A, phthalates and PAHs were detected in all the untreated samples (total concentrations), most of the filtered samples and frequently in the colloid-bound phase. Concentrations of alkylphenols and PAHs in urban stormwater were one order of magnitude lower than in the landfill leachates and stormwater from waste-sorting sites. The difference between total, dissolved and colloid-bound concentrations in the water samples was not statistically significant for any phenols or phthalates, but for three of the PAHs; naphthalene (mostly dissolved), phenanthrene and fluoranthene (mostly particulate). These results indicate that in landfill leachates and stormwaters, organic pollutants are predominantly attached to colloids and/or truly dissolved in contrast to their expected strong sorption to particulate matter. Occurrence and concentrations of pollutants in dissolved and colloid-bound phases correlated negatively with the K(OW). However, even highly hydrophobic compounds were frequently detected in filtered samples, i.e. the dissolved phases, and it is suggested that the organic content in the colloids decreases the compounds' partition to particles. The results confirm that the K(OW) values of specific organic pollutants well describe the compounds partition-binding process to dissolved organic carbon (DOC) colloids. Our findings call for a re-assessment of the organic pollutants' mobility and associated risks. This knowledge can also serve as a base for selecting efficient treatment methods for stormwater and landfill leachates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Iwata, Masahiro; Katsuno, Junichi

    2017-06-01

    Spherical Ge nanoparticles with diameters of 20-80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

  17. Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.

    PubMed

    Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D

    2016-03-03

    Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers.

    PubMed

    Castelli, Andrea; Meinardi, Francesco; Pasini, Mariacecilia; Galeotti, Francesco; Pinchetti, Valerio; Lorenzon, Monica; Manna, Liberato; Moreels, Iwan; Giovanella, Umberto; Brovelli, Sergio

    2015-08-12

    Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.

  19. Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids

    PubMed Central

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-01-01

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239

  20. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    PubMed

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  1. pH-driven colloidal transformations based on the vasoactive drug nicergoline.

    PubMed

    Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J

    2014-12-16

    The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.

  2. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  3. On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability.

    PubMed

    Missana; Adell

    2000-10-01

    The stability behavior of Na-montmorillonite colloids has been studied by combining the analysis of their surface charge properties and time-resolved dynamic light scattering experiments. The chemical surface model for several types of clays, including montmorillonite, has to take into account the double surface charge contribution due to their permanent structural charge and to their pH-dependent charge, which is developed at the edge sites, therefore, these stability studies were carried out as a function of both ionic strength and pH. DLVO theory is largely applied for the prediction of the stability of many colloidal systems, including the natural ones. This work shows that the stability behavior of Na-montmorillonite colloids cannot be satisfactorily reproduced by DLVO theory, using the surface parameters experimentally obtained. Particularly, this theory is unable to explain their pH-dependent stability behavior caused by the small charge at the edge sites. Based on these results, a literature review of DLVO stability prediction of clay colloids was performed. It confirmed that this theory is not capable of taking into account the double contribution to the total surface charge and, at the same time, pointed out the main uncertainties related to the appropriate use of the input parameters for the calculation as, for example, the Hamaker constant or the surface potential. Copyright 2000 Academic Press.

  4. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    PubMed

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  5. Gravitational collapse of colloidal gels: Origins of the tipping point

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Zia, Roseanna

    2016-11-01

    Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.

  6. Pentoxifylline fails to improve organ dysfunction and survival when used in the resuscitation of a porcine model of haemorrhage and abdominal sepsis.

    PubMed

    Parker, S J; Brown, D; Kenward, C E; Watkins, P E

    2000-03-01

    Pentoxifylline is a phosphodiesterase inhibitor, known to suppress tumour necrosis factor-alpha production and improve cardiopulmonary parameters and survival in animal models of sepsis. Using a porcine model of abdominal trauma resulting from the combined insults of haemorrhage and infection, a randomised placebo-controlled trial was conducted of pentoxifylline (20 mg/kg bolus followed by 20 mg/kg infusion over 1 h) administered in addition to a colloid resuscitation regimen. Female Large White pigs (45-60 kg) were bled 40% of their blood volume and peritonitis was induced using E. coli (O18: K1: H7) in an autoclaved faecal suspension. Animals were resuscitated with either colloid alone (n=5) or colloid plus pentoxifylline (n=5). Pentoxifylline attenuated increases in mean arterial and pulmonary artery pressures and reduced both systemic and pulmonary vascular resistance. It worsened the lactic acidosis associated with 'septic shock' and failed to reduce serum TNF-alpha levels. Pentoxifylline, in the high doses used in this study, does not have a role as an adjunct to resuscitation in this clinically relevant model of trauma.

  7. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking

    DOE PAGES

    Liang, Mengning; Harder, Ross; Robinson, Ian K.

    2014-04-14

    Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT) to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves butmore » also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.« less

  8. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  9. Internal Structure and Preferential Protein Binding of Colloidal Aggregates.

    PubMed

    Duan, Da; Torosyan, Hayarpi; Elnatan, Daniel; McLaughlin, Christopher K; Logie, Jennifer; Shoichet, Molly S; Agard, David A; Shoichet, Brian K

    2017-01-20

    Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.

  10. Microgravity

    NASA Image and Video Library

    2001-01-24

    Close-up view of the Binary Colloidal Alloy Test during an experiment run aboard the Russian Mir space station. BCAT is part of an extensive series of experiments plarned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals, which may have many unique properties that may form the basis of new classes of light switches, displays, and optical devices that can fuel the evolution of the next generation of computer and communication technologies. This Slow Growth hardware consisted of a 35-mm camera aimed toward a module which contained 10 separate colloid samples. To begin the experiment, one of the astronauts would mix the samples to disperse the colloidal particles. Then the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period. The investigation proved that gravity plays a central role in the formation and stability of these types of colloidal crystal structures. The investigation also helped identify the optimum conditions for the formation of colloidal crystals, which will be used for optimizing future microgravity experiments in the study of colloidal physics. Dr. David Weitz of the University of Pennsylvania and Dr. Peter Pusey of the University of Edinburgh, United Kingdom, are the principal investigators.

  11. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe2O3) colloids and Suwannee River fulvic acid.

    PubMed

    Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A

    2016-12-01

    Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.

    PubMed

    Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong

    2018-05-31

    Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.

  13. Cyclodextrin based nanosponges for pharmaceutical use: a review.

    PubMed

    Tejashri, Gursalkar; Amrita, Bajaj; Darshana, Jain

    2013-09-01

    Nanosponges are a novel class of hyper-crosslinked polymer based colloidal structures consisting of solid nanoparticles with colloidal sizes and nanosized cavities. These nano-sized colloidal carriers have been recently developed and proposed for drug delivery, since their use can solubilize poorly water-soluble drugs and provide prolonged release as well as improve a drug's bioavailability by modifying the pharmacokinetic parameters of actives. Development of nanosponges as drug delivery systems, with special reference to cyclodextrin based nanosponges, is presented in this article. In the current review, attempts have been made to illustrate the features of cyclodextrin based nanosponges and their applications in pharmaceutical formulations. Special emphasis has been placed on discussing the methods of preparation, characterization techniques and applications of these novel drug delivery carriers for therapeutic purposes. Nanosponges can be referred to as solid porous particles having a capacity to load drugs and other actives into their nanocavity; they can be formulated as oral, parenteral, topical or inhalation dosage forms. Nanosponges offer high drug loading compared to other nanocarriers and are thus suitable for solving issues related to stability, solubility and delayed release of actives. Controlled release of the loaded actives and solubility enhancement of poorly water-soluble drugs are major advantages of nanosponge drug delivery systems.

  14. The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement

    NASA Astrophysics Data System (ADS)

    Osborn, Christopher Butler

    Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.

  15. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Park, Hyun Gyu

    2005-04-01

    PVP-protected silver colloids were prepared by γ-irradiation and chemical reduction method. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by γ-irradiation were recorded. The SERS spectra of sodium benzoate were successfully recorded in Ag colloids, whereas the Raman spectra did not appear without Ag colloids. The Raman spectra of 4-picoline were not detected without Ag colloids, while the SERS spectra of 4-picoline were increased by adding Ag colloids. The carboxylate group of sodium benzoate and N donor of 4-picoline were adsorbed on the surface of Ag nanoparticles.

  16. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.

    PubMed

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C

    2012-03-06

    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.

  17. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.

  18. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.

    PubMed

    Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F

    2016-08-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Soil colloidal behavior

    USDA-ARS?s Scientific Manuscript database

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  20. Micro/Nanoscale Parallel Patterning of Functional Biomolecules, Organic Fluorophores and Colloidal Nanocrystals

    PubMed Central

    2009-01-01

    We describe the design and optimization of a reliable strategy that combines self-assembly and lithographic techniques, leading to very precise micro-/nanopositioning of biomolecules for the realization of micro- and nanoarrays of functional DNA and antibodies. Moreover, based on the covalent immobilization of stable and versatile SAMs of programmable chemical reactivity, this approach constitutes a general platform for the parallel site-specific deposition of a wide range of molecules such as organic fluorophores and water-soluble colloidal nanocrystals. PMID:20596482

  1. Active colloidal molecules

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2018-03-01

    Like ordinary molecules are composed of atoms, colloidal molecules consist of several species of colloidal particles tightly bound together. If one of these components is self-propelled or swimming, novel “active colloidal molecules” emerge. Active colloidal molecules exist on various levels such as “homonuclear”, “heteronuclear” and “polymeric” and possess a dynamical function moving as propellers, spinners or rotors. Self-assembly of such active complexes has been studied a lot recently and this perspective article summarizes recent progress and gives an outlook to future developments in the rapidly expanding field of active colloidal molecules.

  2. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials.

    PubMed

    Oh, Dahyun; Dang, Xiangnan; Yi, Hyunjung; Allen, Mark A; Xu, Kang; Lee, Yun Jung; Belcher, Angela M

    2012-04-10

    Utilization of the material-specific peptide-substrate interactions of M13 virus broadens colloidal stability window of graphene. The homogeneous distribution of graphene is maintained in weak acids and increased ionic strengths by complexing with virus. This graphene/virus conducting template is utilized in the synthesis of energy-storage materials to increase the conductivity of the composite electrode. Successful formation of the hybrid biological template is demonstrated by the mineralization of bismuth oxyfluoride as a cathode material for lithium-ion batteries, with increased loading and improved electronic conductivity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electroerosion of metal in aqueous solution for sample introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Reinfelds, Gundars

    2003-07-01

    When high current (1-10 A cm -2) is applied between two conductive samples (metals) in aqueous solution, electroerosion occurs on the surface as a result of electrolysis and possibly collisions of dissolved ions with the metal surface. The power supply for the electroerosion apparatus in this work was a modified spark source unit. Current could be varied in intervals of 2.5, 5 and 10 A in either half-wave (unipolar) or full-wave (bipolar) output. The electroeroded metal forms a colloidal suspension in aqueous solution with particle sizes of the order of 1-10 μm and possibly larger. The suspension is readily dissolved using a small amount (100 μl) of concentrated acid (HCl or HNO 3) prior to analysis. Electroerosion of steel and brass in aqueous solution is described both for rapid sample dissolution and as a solid sampling approach for ICP-MS. Some of the electroerosion properties described in this paper include rates of erosion as a function of gap between the conductive samples and solution conductivity. Rates of electroerosion decreased from 120 to 30 μg s -1 as the gap was increased from 2 to 5 mm. Rates of electroerosion also increased significantly from 200 to 1000 μg s -1 as the conductivity of the electroerosion solution increased from 0.01 to 0.05 M NaCl. Interfacing the electroerosion apparatus to an ICP-MS was straight forward, as no special equipment was required. Therefore, the electroerosion apparatus can be used for rapid 'on-line' sample dissolution prior to introduction into an ICP. ICP-MS time profiles of selected metals in stainless steel 308L illustrate the behavior of 52Cr +, 55Mn + and 60Ni + during a typical electroerosion cycle. Aspiration of the colloidal suspension into the ICP did not appear to load the plasma significantly, however, all of the metals produced noisy signals (±10%). A glass concentric nebulizer was used without clogging, so it is likely that the heterogeneous nature of the colloidal suspension caused this effect.

  4. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    PubMed

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  5. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  6. Tracking liquid in drying colloidal fluids with polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook

    2014-11-01

    When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  7. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  8. Pattern formation in binary colloidal assemblies: hidden symmetries in a kaleidoscope of structures.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2018-06-10

    In this study we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of non-preservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology in order to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are precious for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor physical properties of colloidal assemblies.

  9. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model

    NASA Astrophysics Data System (ADS)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin

    2018-03-01

    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  10. Predicting colloid transport through saturated porous media: A critical review

    NASA Astrophysics Data System (ADS)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities include improving mechanistic descriptions, and subsequent correlation equations, for nanoparticle (i.e., Brownian particle) transport through soil, developing mechanistic descriptions of colloid retention in so-called "unfavorable" conditions via methods such as the "discrete heterogeneity" approach, and employing imaging techniques such as X-ray tomography to develop realistic expressions for grain topology and mineral distribution that can aid the development of these mechanistic approaches.

  11. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility.

    PubMed

    Missong, Anna; Holzmann, Stefan; Bol, Roland; Nischwitz, Volker; Puhlmann, Heike; V Wilpert, Klaus; Siemens, Jan; Klumpp, Erwin

    2018-09-01

    The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; C org : 3-17%; Al: <4%; Si, Ca, Mn: all <2%). The proportion of colloid-associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  13. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Rasmuson, Anna; Johnson, William P.

    2017-07-01

    Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.

  14. Extracting maximum power from active colloidal heat engines

    NASA Astrophysics Data System (ADS)

    Martin, D.; Nardini, C.; Cates, M. E.; Fodor, É.

    2018-03-01

    Colloidal heat engines extract power out of a fluctuating bath by manipulating a confined tracer. Considering a self-propelled tracer surrounded by a bath of passive colloids, we optimize the engine performances based on the maximum available power. Our approach relies on an adiabatic mean-field treatment of the bath particles which reduces the many-body description into an effective tracer dynamics. It leads us to reveal that, when operated at constant activity, an engine can only produce less maximum power than its passive counterpart. In contrast, the output power of an isothermal engine, operating with cyclic variations of the self-propulsion without any passive equivalent, exhibits an optimum in terms of confinement and activity. Direct numerical simulations of the microscopic dynamics support the validity of these results even beyond the mean-field regime, with potential relevance to the design of experimental engines.

  15. Topological Switching and Orbiting Dynamics of Colloidal Spheres Dressed with Chiral Nematic Solitons

    PubMed Central

    Porenta, T.; Čopar, S.; Ackerman, P. J.; Pandey, M. B.; Varney, M. C. M.; Smalyukh, I. I.; Žumer, S.

    2014-01-01

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that “dress” the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed. PMID:25477195

  16. Topological switching and orbiting dynamics of colloidal spheres dressed with chiral nematic solitons.

    PubMed

    Porenta, T; Copar, S; Ackerman, P J; Pandey, M B; Varney, M C M; Smalyukh, I I; Žumer, S

    2014-12-05

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that "dress" the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed.

  17. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  19. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  20. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. Thismore » value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.« less

  1. Measurements of the Diameter and Velocity Distributions of Atomized Tablet-Coating Solutions for Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Osterday, Kathryn; Aliseda, Alberto; Lasheras, Juan

    2009-11-01

    The atomization of colloidal suspensions is of particular interest to the manufacturing of tablets and pills used as drug delivery systems by the pharmaceutical industry. At various stages in the manufacturing process, the tablets are coated with a spray of droplets produced by co-axial atomizers. The mechanisms of droplet size and spray formation in these types of atomizers are dominated by Kelvin-Helmholtz and Raleigh-Taylor instabilities for both low[1] and high[2] Ohnesorge numbers. We present detailed phase Doppler measurements of the Sauter Mean Diameter of the droplets produced by co-axial spray atomizers using water-based colloidal suspensions with solid concentrations ranging from fifteen to twenty percent and acetone-based colloidal suspensions with solid concentrations ranging from five to ten percent. Our results compare favorably with predictions by Aliseda's model. This suggests that the final size distribution is mainly determined by the instabilities caused by the sudden acceleration of the liquid interface. [1]Varga, C. M., et al. (2003) J. Fluid Mech. 497:405-434 [2]Aliseda, A. et al. (2008). J. Int. J. Multiphase Flow, 34(2), 161-175.

  2. STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI

    PubMed Central

    Greenberg, David M.; Schmidt, Carl L. A.

    1924-01-01

    1. The results of conductivity experiments with alkali caseinate solutions are given and a graphical method of extrapolation, which gives a straight line, is described. The results of the conductivity experiments are shown to be in accord with the results of the previous transference experiments. 2. The change of conductivity of the alkali caseinate solutions with temperature is shown to follow a straight line relationship. 3. The high value of the mobility which was obtained for the casein ion and the high temperature gradient are discussed in relation to McBain's theory of colloidal electrolytes. PMID:19872136

  3. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.

  4. Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids

    NASA Astrophysics Data System (ADS)

    Bymaster, Adam

    Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any association scheme. Theoretical results elucidate how reversible bonding governs the structure of a fluid near a surface and in confined environments, the molecular connectivity (formation of supramolecules, star polymers, etc.) and the phase behavior of the system. Finally, the DFT is extended to predict the inter- and intramolecular correlation functions of polymeric fluids. A theory capable of providing such local structure is important to understanding how local chemistry, branching, and bond flexibility affect the thermodynamic properties of polymers.

  5. Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system

    PubMed Central

    Calo, Joseph M.; Madhavan, Lakshmi; Kirchner, Johannes; Bain, Euan J.

    2012-01-01

    The description and operation of a novel, hybrid spouted vessel/fixed bed filter system for the removal of arsenic from water are presented. The system utilizes zero-valent iron (ZVI) particles circulating in a spouted vessel that continuously generates active colloidal iron corrosion products via the “self-polishing” action between ZVI source particles rolling in the moving bed that forms on the conical bottom of the spouted vessel. This action also serves as a “surface renewal” mechanism for the particles that provides for maximum utilization of the ZVI material. (Results of batch experiments conducted to examine this mechanism are also presented.) The colloidal material produced in this fashion is continuously captured and concentrated in a fixed bed filter located within the spouted vessel reservoir wherein arsenic complexation occurs. It is demonstrated that this system is very effective for arsenic removal in the microgram per liter arsenic concentration (i.e., drinking water treatment) range, reducing 100 μg/L of arsenic to below detectable levels (≪10 μg/L) in less than an hour. A mechanistic analysis of arsenic behavior in the system is presented, identifying the principal components of the population of active colloidal material for arsenic removal that explains the experimental observations and working principles of the system. It is concluded that the apparent kinetic behavior of arsenic in systems where colloidal (i.e., micro/nano) iron corrosion products are dominant can be complex and may not be explained by simple first or zeroth order kinetics. PMID:22539917

  6. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  7. Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.

    USGS Publications Warehouse

    Rees, T.F.; Ranville, J.F.

    1990-01-01

    Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.

  8. Enrichment of marine sediment colloids with polychlorinated biphenyls: Trends resulting from PCB solubility and chlorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, R.M.; McKinney, R.A.; Brown, W.A.

    1996-08-01

    In this study, the three phase distributions (i.e., dissolved, colloidal, and particulate) of approximately 75 PCB congeners were measured in a marine sediment core from New Bedford Harbor, M.A. These distributions are the first report of colloid-PCB interactions in an environmentally contaminated sediment. Colloids <1.2 {mu}m in size were isolated from interstitial waters using reverse-phase chromatography with size-selected C{sub 18}. Regardless of solubility or chlorination, the majority of PCBs were associated with the particulate phase. PCBs were distributed in filtered interstitial waters between colloidal and dissolved phases as a function of solubility and degree of chlorination. Interstitial dissolved PCB concentrationsmore » generally agreed with literature-reported solubilities. The magnitude of colloid-PCB interactions increased with decreasing PCB solubility and increasing PCB chlorination. Di- and trichlorinated PCBs were approximately 40% and 65% colloidally bound, respectively, while tetra-, penta-, hexa-, hepta-, and octachlorinated PCBs were about 80% colloidally bound. As core depth increased, the magnitude of PCB-colloid interactions also increased. The relationships of organic carbon-normalized colloidal partitioning coefficient(K{sub coc}) to K{sub ow} for several PCB congeners were not linear and suggest that interstitial waters were not equilibrated. 62 refs., 8 figs., 3 tabs.« less

  9. Organic colloids and their influence on low-pressure membrane filtration.

    PubMed

    Laabs, C; Amy, G; Jekel, M

    2004-01-01

    Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.

  10. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.

  11. Zinc and copper behaviour at the soil-river interface: New insights by Zn and Cu isotopes in the organic-rich Rio Negro basin

    NASA Astrophysics Data System (ADS)

    Guinoiseau, Damien; Gélabert, Alexandre; Allard, Thierry; Louvat, Pascale; Moreira-Turcq, Patricia; Benedetti, Marc F.

    2017-09-01

    The complex behaviour of Zn and Cu at the soil-river interface was investigated in soil and riverine water samples from the Rio Negro basin, a secondary tributary of the Rio Amazonas, using their stable isotope compositions. This acidic and organic river drains two types of intensely weathered terrains: podzols in its upstream part, and lateritic soils downstream. Bulk soil particles, suspended particulate matter (SPM) as well as colloidal fractions were sampled across the whole basin during low and high water stages. In the basin, Zn and Cu are mostly exported from lateritic soils and transported by organic colloids where significant losses are observed in the downstream part of the river. The use of δ66Zn and δ65Cu measurements reveals distinct stories for these two metals in suspended sediments and colloids. In the colloids, the constant δ66Zncoll across the basin is induced by the same weak association mode between Zn and organic ligands, regardless of the origin of the water. By contrast, in SPM, the speciation of Zn and thus δ66ZnSPM differ according to the type of drained soils. Zn is associated with organic complexes in particles exported with water draining podzol whereas Zn2+ is incorporated in the structure of the remaining kaolinite clays in lateritic output. The stronger reactivity of Cu than Zn with organic ligands induces its complete complexation. Copper is controlled by refractory particulate organic matter (POM) and by reactive colloidal organic matter; the latter being enriched in 65Cu due to stronger binding interactions than in POM. While the Cu content remains constant in the upstream part of the Rio Negro, downstream, the decrease of SPM and colloidal Cu fluxes is associated with a constant δ65CuSPM and with an increase of δ65Cucoll at the Rio Negro outlet. Geochemical mass balance modelling, based on SPM, Cu and Zn fluxes in SPM and their associated isotopic signatures, confirms distinct host phases for Zn and Cu, and identifies the most probable places where losses of these two metals occur. In colloids, the observed Cu isotope fractionation (from 0.24 to 0.45‰) superimposed on the significant Cucoll loss is assumed to result from a new isotopic equilibrium in a low velocity and high productivity zone: Cu-rich colloids enriched in 63Cu aggregate and settle down, whereas the remaining heavy Cu is partially complexed on strong organic ligands secreted by phytoplankton, forming new Cu-colloids.

  12. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of phase transitions in condensed matter systems that can be tracked with single particle resolution. Compared with other research on colloidal crystal formation, my research has focused on multi-component colloidal systems of magnetic and non-magnetic colloids immersed in a ferrofluid. Initially, I studied the types of patterns that form as a function of the concentrations of the different particles and ferrofluid, and I discovered a wide variety of chains, rings and crystals forming in bi-component and tri-component systems. Based on these results, I narrowed my focus to one specific crystal structure (checkerboard lattice) as a model of phase transformations in alloy. Liquid/solid phase transitions were studied by slowly adjusting the magnetic field strength, which serves to control particle-particle interactions in a manner similar to controlling the physical temperature of the fluid. These studies were used to determine the optimal conditions for forming large single crystal structures, and paved the way for my later work on solid/solid phase transitions when the angle of the external field was shifted away from the normal direction. The magnetostriction coefficient of these crystals was measured in low tilt angle of the applied field. At high tilt angles, I observed a variety of martensitic transformations, which followed different pathways depending on the crystal direction relative to the in-plane field. In the last part of my doctoral studies, I investigated colloidal patterns formed in a superimposed acoustic and magnetic field. In this approach, the magnetic field mimics "temperature", while the acoustic field mimics "pressure". The ability to simultaneously tune both temperature and pressure allows for more efficient exploration of phase space. With this technique I demonstrated a large class of particle structures ranging from discrete molecule-like clusters to well ordered crystal phases. Additionally, I demonstrated a crosslinking strategy based on photoacids, which stabilized the structures after the external field was removed. This approach has potential applications in the fabrication of advanced materials. My thesis is arranged as follows. In Chapter 1, I present a brief background of general pattern formation and why I chose to investigate patterns formed in colloidal systems. I also provide a brief review of field-assisted manipulation techniques in order to motivate why I selected magnetic and acoustic field to study colloidal patterns. In chapter 2, I present the theoretical background of magnetic manipulation, which is the main technique used in my research. In this chapter, I will introduce the basic knowledge on magnetic materials and theories behind magnetic manipulation. The underlining thermodynamic mechanisms and theoretical/computational approaches in colloidal pattern formation are also briefly reviewed. In Chapter 3, I focus on using these concepts to study adhesion forces between particle and surfaces. In Chapter 4, I focus on exploring the ground states of colloidal patterns formed from the anti-ferromagnetic interactions of mixtures of particles, as a function of the particle volume fractions. In Chapter 5, I discuss my research on phase transformations of the well-ordered checkerboard phase formed from the equimolar mixture of magnetic and non-magnetic beads in ferrofluid, and I focus mainly on phase transformations in a slowly varying magnetic field. In Chapter 6, I discuss my work on the superimposed magnetic and acoustic field to study patterns formed from monocomponent colloidal suspensions under vertical confinement. Finally, I conclude my thesis in Chapter 7 and discuss future directions and open questions that can be explored in magnetic field directed self-organization in colloidal systems.

  13. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  14. Colloidal mode of transport in the Potomac River watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, I.L.; Foster, G.D.

    1995-12-31

    Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less

  15. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOEpatents

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  16. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.

    PubMed

    Karathanasis, A D; Johnson, D M C; Matocha, C J

    2005-01-01

    Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.

  17. Kinetic control of the coverage of oil droplets by DNA-functionalized colloids

    PubMed Central

    Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika

    2016-01-01

    We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053

  18. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2008-01-01

    and determination of transport rates, dispersion and interfacial flux of solutes and colloidal material. Participating Scientists and students ...Scientists and students participating in this work are Dr. Markus Huettel (PI), Dr. Parthasarathi Chakraborty (Postdoc), Sucharita Chakraborty (graduate... student ), Veronica Cruz (undergraduate student ) and Allison Rau (undergraduate student ). WORK COMPLETED Two field campaigns were conducted, the

  20. Self-Assembly at the Colloidal Scale

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao

    The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.

  1. Colloid transport in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  2. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.

    PubMed

    Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning

    2015-10-01

    The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published by Elsevier Ltd.

  4. SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)

    NASA Image and Video Library

    2011-10-17

    ISS029-E-027431 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.

  5. SERS Technique for Rapid Bacterial Screening

    USDA-ARS?s Scientific Manuscript database

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...

  6. SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)

    NASA Image and Video Library

    2011-10-17

    ISS029-E-027435 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.

  7. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    USDA-ARS?s Scientific Manuscript database

    Expressions were presented to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binary nanoscale roughness and chemical heterogeneity. The influence of heterogeneity type, roughness para...

  8. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  9. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    PubMed

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  11. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study.

    PubMed

    Gonzalo, Soledad; Llaneza, Veronica; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.

  12. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    PubMed

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  13. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  14. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    PubMed

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  15. A Colloidal Singularity Reveals the Crucial Role of Colloidal Stability for Nanomaterials In-Vitro Toxicity Testing: nZVI-Microalgae Colloidal System as a Case Study

    PubMed Central

    Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs. PMID:25340509

  16. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.

    PubMed

    Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R

    2018-05-25

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  17. Biogeochemical Factors Influencing the Transport and Fate of Colloids and Colloid-Associated Contaminants in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.

    2016-12-01

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.

  18. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    NASA Astrophysics Data System (ADS)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  19. Size and XAD fractionations of trihalomethane precursors from soils.

    PubMed

    Chow, Alex T; Guo, Fengmao; Gao, Suduan; Breuer, Richard S

    2006-03-01

    Soil organic matter is an important source of allochthonous dissolved organic matter inputs to the Sacramento-San Joaquin Delta waterways, which is a drinking water source for 22 million people in California, USA. Knowledge of trihalomethane (THM) formation potential of soil-derived organic carbon is important for developing effective strategies for organic carbon removal in drinking water treatment. In this study, soil organic carbon was extracted with electrolytes (deionized H2O and Na- or Ca-based electrolytes) of electrical conductivity bracketing those found in Delta leaching and runoff conditions. The extracts were physically and chemically separated into different fractions: colloidal organic carbon (0.45-0.1 microm), fine colloidal organic carbon (0.1-0.025 microm), and dissolved organic carbon (DOC) (<0.025 microm); hydrophobic acid (HPOA), transphilic acid, and hydrophilic acid. Two representative Delta soils, Rindge Muck (a peat soil) and Scribner Clay Loam (a mineral soil) were examined. Results showed that less than 2% of soil organic carbon was electrolyte-extractable and heterogeneous organic fractions with distinct THM reactivity existed. Regardless of soil and electrolytes, DOC and HPOA fractions were dominant in terms of total concentration and THMFP. The amounts of extractable organic carbon and THMFP were dependent on the cation and to a lesser extent on electrical conductivity of electrolytes. Along with our previous study on temperature and moisture effects on DOC production, we propose a conceptual model to describe the impacts of agricultural practices on DOC production in the Delta. DOC is mainly produced in the surface peat soils during the summer and is immobilized by accumulated salt in the soils. DOC is leached from soils to drainage ditches and finally to the Delta channels during winter salt leaching practices.

  20. Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals

    DOE PAGES

    Diroll, Benjamin T.; Guo, Peijun; Chang, Robert P. H.; ...

    2016-10-18

    Here, epsilon-near-zero materials may be synthesized as colloidal nanocrystals which display large magnitude subpicosecond switching of infrared localized surface plasmon resonances. Such nanocrystals offer a solution-processable, scalable source of tunable metamaterials compatible with arbitrary substrates. Under intraband excitation, these nanocrystals display a red-shift of the plasmon feature arising from the low electron heat capacities and conduction band nonparabolicity of the oxide. Under interband pumping, they show in an ultrafast blueshift of the plasmon resonance due to transient increases in the carrier density. Combined with their high-quality factor, large changes in relative transmittance (+86%) and index of refraction (+85%) at modestmore » control fluences (<5 mJ/cm 2) suggest that these materials offer great promise for all-optical switching, wavefront engineering, and beam steering operating at terahertz switching frequencies.« less

Top