Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction ismore » determined which is found to be equal to the lattice spacing of the crystal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aartee, E-mail: aartee.sharma08@gmail.com; Yadav, N.; Ghosh, S.
2015-07-31
A detailed study of the quantum modification of acousto-helicon wave spectra due to Bohm potential and Fermi degenerate pressure in colloids laden semiconductor plasma has been presented. We have used quantum hydrodynamic model of plasmas to arrive at most general dispersion relation in presence of magnetic field. This dispersion relation has been analyzed in three different velocity regimes and the expressions for gain constants have been obtained. From the present study it has been concluded that the quantum effect and the magnetic field significantly modify the wave characteristics particularly in high doping regime in semiconductor plasma medium in presence ofmore » colloids in it.« less
Fedin, Igor; Talapin, Dmitri V
2016-08-10
Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
Giansante, Carlo; Infante, Ivan
2017-10-19
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective
2017-01-01
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763
Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.
Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R
2016-08-24
Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.
Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.
Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A
2011-09-25
Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
NASA Astrophysics Data System (ADS)
Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.
2018-01-01
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
Lhuillier, Emmanuel; Pedetti, Silvia; Ithurria, Sandrine; Nadal, Brice; Heuclin, Hadrien; Dubertret, Benoit
2015-01-20
CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices. An important development that recently took place in the field of colloidal quantum dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets that appear as free-standing nanosheets. These 2D colloidal systems are the newborn in the family of shaped-controlled nanoparticles that started with spheres, was extended with rods and wires, continued with tetrapods, and now ends with platelets. From a physical point of view, these objects bring 1D-confined particles into the colloidal family. It is a notable addition, since these platelets can have a thickness that is controlled with atomic precision, so that no inhomogeneous broadening is observed. Because they have two large free interfaces, mirror charges play an important role, and the binding energy of the exciton is extremely large. These two effects almost perfectly compensate each other, it results in particles with unique spectroscopic properties such as fast fluorescent lifetimes and extreme color purity (narrow full width at half-maximum of their emission spectra). These nanoplatelets with extremely large confinement but very simple and well-defined chemistry are model systems to check and further develop, notably with the incorporation in the models of the organic/inorganic interface, various theoretical approaches used for colloidal particles. From a chemical point of view, these colloidal particles are a model system to study the role of ligands since they have precisely defined facets. In addition, the synthesis of these highly anisotropic objects triggered new research to understand at a mechanistic level how this strong anisotropy could be generated. Luckily, some of the chemical know-how built with the spherical and rod-shaped particles is being transferred, with some adaptation, to 2D systems, so that 2D core/shell and core/crown heterostructures have recently been introduced. These objects are very interesting because they suggest that multiple quantum wells could be grown in solution. From the application point of view, 2D colloidal nanoplatelets offer interesting perspectives when color purity, charge conductivity, or field tunable absorption are required. In this Account, we review the chemical synthesis, the physical properties, and the applications of colloidal semiconductor nanoplatelets with an emphasis on the zinc-blende nanoplatelets that were developed more specifically in our group.
Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan
2017-08-01
Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission
NASA Astrophysics Data System (ADS)
Asano, Hiroshi; Omata, Takahisa
2017-04-01
The size and composition dependence of the optical gap of colloidal alloyed quantum dots (QDs) of Zn(Te1-xSex) and Zn(Te1-xSx) were calculated by the finite-depth-well effective mass approximation method. QDs that exhibited red, green and blue emission were explored to develop cadmium-free II-VI chalcogenide-based QD-phosphors. We considered that highly monodisperse colloidal QDs with diameters of 3-6 nm are easy to synthesize and II-VI semiconductor QDs usually exhibit a Stokes shift ranging between 50 and 150 meV. We showed that Zn(Te1-xSex) QDs with 0.02≤x≤0.68, and 0≤x≤0.06, and 0.66≤x≤0.9 may be expected to exhibit green, and blue emission, respectively. Zn(Te1-xSx) QDs with 0.26≤x≤0.37, 0.01≤x≤0.2 and 0.45≤x≤0.61, 0≤x≤0.02, and 0.63≤x≤0.72, should give red, green and blue emission respectively. On the basis of our calculations, we showed that Zn(Te,Se) and Zn(Te,S) QDs are very promising cadmium-free II-VI chalcogenide semiconductor QD phosphors.
Modification of quantum dots with nucleic acids
NASA Astrophysics Data System (ADS)
Kocherginskaya, P. B.; Romanova, A. V.; Prokhorenko, I. A.; Itkis, Daniil M.; Korshun, V. A.; Goodilin, Eugene A.; Tretyakov, Yuri D.
2011-12-01
The key principles and modern approaches to targeted modification of semiconductor colloidal nanoparticles, quantum dots, which exhibit unique photophysical properties and are a promising class of luminescent markers, are discussed. Attention is given to the preparation of their bioconjugates with nucleic acids, promising tools for biological microchips and resonance energy transfer sensors. The bibliography includes 80 references.
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.
Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V
2016-09-14
The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.
Studies of mist deposition for the formation of quantum dot CdSe films
NASA Astrophysics Data System (ADS)
Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.
2009-10-01
Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2018-05-01
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology â quantum dot displays â employed, for example, in the newest generation of e-readers and video monitors.
Quantum Confined Semiconductors
2015-02-01
diodes [8-10], metamaterials [11-13], and solar cells [14,15]. As a consequence, the optical and electrical stability of colloidal quantum dots...PbS quantum dot solar cells with high fill factor,” ACS Nano, 4 (7), 3743–3752 (2010). [15] Gur, I., Fromer, N. A., Geier, M. L. and Alivisatos, A...P., “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Sci. 310, 462–465 (2005). [16] Dai, Q., Wang, Y. N., Zhang, Y
Solar cells using quantum funnels.
Kramer, Illan J; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H
2011-09-14
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.
Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals
Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos
2013-01-01
Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...
2017-05-16
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-01-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866
NASA Astrophysics Data System (ADS)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-05-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.
The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement
NASA Astrophysics Data System (ADS)
Osborn, Christopher Butler
Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.
Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics
NASA Astrophysics Data System (ADS)
Tisdale, William A., III
Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots. A TR-SHG study of these electronically-coupled quantum-dot films reveals temperature-activated cooling of hot charge carriers and coherent excitation of a previously-unidentified surface optical phonon. Finally, I report the first experimental observation of ultrafast electron transfer from the higher excited states of a colloidal quantum dot (PbSe) to delocalized conduction band states of a widely-used electron acceptor (TiO2). The electric field resulting from ultrafast (<50fs) separation of charge carriers across the PbSe/TiO2(110) interface excites coherent vibration of the TiO2 surface atoms, whose collective motions can be followed in real time.
NASA Astrophysics Data System (ADS)
Nozaka, Takahiro; Mukai, Kohki
2016-04-01
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.
NASA Astrophysics Data System (ADS)
Shi, Wenqin; Eijt, Stephan W. H.; Suchand Sandeep, C. S.; Siebbeles, Laurens D. A.; Houtepen, Arjan J.; Kinge, Sachin; Brück, Ekkes; Barbiellini, Bernardo; Bansil, Arun
2016-02-01
Positron Two Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) measurements reveal modifications of the electronic structure and composition at the surfaces of PbSe quantum dots (QDs), deposited as thin films, produced by various ligands containing either oxygen or nitrogen atoms. In particular, the 2D-ACAR measurements on thin films of colloidal PbSe QDs capped with oleic acid ligands yield an increased intensity in the electron momentum density (EMD) at high momenta compared to PbSe quantum dots capped with oleylamine. Moreover, the EMD of PbSe QDs is strongly affected by the small ethylenediamine ligands, since these molecules lead to small distances between QDs and favor neck formation between near neighbor QDs, inducing electronic coupling between neighboring QDs. The high sensitivity to the presence of oxygen atoms at the surface can be also exploited to monitor the surface oxidation of PbSe QDs upon exposure to air. Our study clearly demonstrates that positron annihilation spectroscopy applied to thin films can probe surface transformations of colloidal semiconductor QDs embedded in functional layers.
NASA Astrophysics Data System (ADS)
Chan, YinThai
2016-03-01
Colloidal semiconductor nanocrystals are ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications due to their high photostability, size-tunable color of emission and flexible surface chemistry. The relatively recent development of core-seeded semiconductor nanorods showed that the presence of a rod-like shell can confer even more advantageous physicochemical properties than their spherical counterparts, such as large multi-photon absorption cross-sections and facet-specific chemistry that can be exploited to deposit secondary nanoparticles. It may be envisaged that these highly fluorescent nanorods can be integrated with large scale integrated (LSI) microfluidic systems that allow miniaturization and integration of multiple biochemical processes in a single device at the nanoliter scale, resulting in a highly sensitive and automated detection platform. In this talk, I will describe a LSI microfluidic device that integrates RNA extraction, reverse transcription to cDNA, amplification and target pull-down to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic colloidal semiconductor nanorods (NRs) were used as the fluorescent readout, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multi-target diagnostics.
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol
2017-10-10
We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2 V -1 s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.
Surface preparation of substances for continuous convective assembly of fine particles
Rossi, Robert
2003-01-01
A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.
Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells
Jagielski, Jakub; Kumar, Sudhir; Wang, Mingchao; Scullion, Declan; Lawrence, Robert; Li, Yen-Ting; Yakunin, Sergii; Tian, Tian; Kovalenko, Maksym V.; Chiu, Yu-Cheng; Santos, Elton J. G.; Lin, Shangchao; Shih, Chih-Jen
2017-01-01
The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W−1 at 5000 cd m−2, which has never been reached in any nanomaterial assemblies by far. PMID:29282451
One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates
NASA Astrophysics Data System (ADS)
Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.
2013-12-01
Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.
Quantum Confined Semiconductors for High Efficiency Photovoltaics
NASA Astrophysics Data System (ADS)
Beard, Matthew
2014-03-01
Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.
Labelle, A J; Bonifazi, M; Tian, Y; Wong, C; Hoogland, S; Favraud, G; Walters, G; Sutherland, B; Liu, M; Li, Jun; Zhang, Xixiang; Kelley, S O; Sargent, E H; Fratalocchi, A
2017-02-15
The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large-scale energy-harvesting applications.
Towards zero-threshold optical gain using charged semiconductor quantum dots
Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon; ...
2017-10-16
Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Emerging technologies for high performance infrared detectors
NASA Astrophysics Data System (ADS)
Tan, Chee Leong; Mohseni, Hooman
2018-01-01
Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.
Towards zero-threshold optical gain using charged semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon
Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less
Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
NASA Astrophysics Data System (ADS)
Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato
2018-05-01
Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.
Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J
2011-11-09
Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.
de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom
2017-10-31
Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.
Building devices from colloidal quantum dots.
Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V
2016-08-26
The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. Copyright © 2016, American Association for the Advancement of Science.
Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays
NASA Astrophysics Data System (ADS)
Sibatov, R. T.
2011-08-01
A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.
Understanding chemically processed solar cells based on quantum dots
NASA Astrophysics Data System (ADS)
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-12-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Understanding chemically processed solar cells based on quantum dots.
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO 2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Synthesis of new nanocrystal materials
NASA Astrophysics Data System (ADS)
Hassan, Yasser Hassan Abd El-Fattah
Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).
Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals
Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.
2013-01-01
Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292
Hybrid organic semiconductor lasers for bio-molecular sensing.
Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas
2014-01-01
Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.
2012-01-01
Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352
Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, P.; Rustagi, K. C.; Vasa, P.
2015-05-15
Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less
Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; ...
2017-02-14
Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement withmore » the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Wen, Peng; Hoxie, Adam
Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM1.5G, 100 mW/cm 2) at a potential ofmore » 0 V vs. RHE (j 0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.« less
Li, Hui; Wen, Peng; Hoxie, Adam; ...
2018-04-30
Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM1.5G, 100 mW/cm 2) at a potential ofmore » 0 V vs. RHE (j 0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.« less
Li, Hui; Wen, Peng; Hoxie, Adam; Dun, Chaochao; Adhikari, Shiba; Li, Qi; Lu, Chang; Itanze, Dominique S; Jiang, Lin; Carroll, David; Lachgar, Abdou; Qiu, Yejun; Geyer, Scott M
2018-05-23
Colloidal semiconductor quantum dot (CQD)-based photocathodes for solar-driven hydrogen evolution have attracted significant attention because of their tunable size, nanostructured morphology, crystalline orientation, and band gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM-1.5G, 100 mW/cm 2 ) at a potential of 0 V versus reversible hydrogen electrode (RHE) ( j 0 ) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V versus RHE and long-term stability with negligible degradation. In the acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited because of photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared with 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge-transfer rate, and faster reaction kinetics. We believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.
Single-step colloidal quantum dot films for infrared solar harvesting
NASA Astrophysics Data System (ADS)
Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.
2016-10-01
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
Understanding chemically processed solar cells based on quantum dots
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Abstract Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum. PMID:28567179
Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors
Akselrod, Gleb M.; Ming, Tian; Argyropoulos, Christos; ...
2015-04-07
Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths–critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ~60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS 2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. Here, we observe a 2000-fold enhancement in the PLmore » intensity of MoS 2– which has intrinsically low absorption and small quantum yield–at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.« less
Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.
2014-03-15
The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less
Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.
Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W
2012-05-06
Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.
Manipulating semiconductor colloidal stability through doping.
Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N
2014-10-10
The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Emily A.
Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial chemistry controls the electronic structure and dynamics of the excitonic state of the QD. The program included two main projects; (1) investigation of the mechanisms by which organic surfactants control the quantum confinement of excitonic charge carriers; and (2) development of models for electron transfer between QDs and adsorbed molecules as a function of interfacial chemistry. This project was extremely successful in that our achievements in those two areas addressed the great majoritymore » of questions we outlined in the original proposal and answered questions I did not think to ask in that original proposal. Our work led to the discovery of “exciton delocalizing ligands”, which change the electronic structure of colloidal semiconductor nanocrystals by altering, with small synthetic modifications to their surfaces, their most defining characteristic – the quantum confinement of their excited states. It also led to detailed, quantitative descriptions of how the surface chemistry of a QD dictates, thermodynamically and kinetically, the probability of exchange of electrons between the QD and a small molecule. We used two of the three major techniques in the proposal (transient photoluminescence and transient absorption). Electrogenerated chemiluminescence was also proposed, but was too technically difficult with these systems to be useful. Instead, NMR spectroscopy emerged as a major analytical tool in our studies. With the fundamental advancements we made with this project, we believe that we can design QDs to be the next great class of visible-light photocatalysts.« less
Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures
Kershaw, Stephen V.; Rogach, Andrey L.
2017-01-01
Quantum confined semiconductor nanoparticles, such as colloidal quantum dots, nanorods and nanoplatelets have broad extended absorption spectra at energies above their bandgaps. This means that they can absorb light at high photon energies leading to the formation of hot excitons with finite excited state lifetimes. During their existence, the hot electron and hole that comprise the exciton may start to cool as they relax to the band edge by phonon mediated or Auger cooling processes or a combination of these. Alongside these cooling processes, there is the possibility that the hot exciton may split into two or more lower energy excitons in what is termed carrier multiplication (CM). The fission of the hot exciton to form lower energy multiexcitons is in direct competition with the cooling processes, with the timescales for multiplication and cooling often overlapping strongly in many materials. Once CM has been achieved, the next challenge is to preserve the multiexcitons long enough to make use of the bonus carriers in the face of another competing process, non-radiative Auger recombination. However, it has been found that Auger recombination and the several possible cooling processes can be manipulated and usefully suppressed or retarded by engineering the nanoparticle shape, size or composition and by the use of heterostructures, along with different choices of surface treatments. This review surveys some of the work that has led to an understanding of the rich carrier dynamics in semiconductor nanoparticles, and that has started to guide materials researchers to nanostructures that can tilt the balance in favour of efficient CM with sustained multiexciton lifetimes. PMID:28927007
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
NASA Astrophysics Data System (ADS)
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.
2018-01-01
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich
2017-11-20
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less
Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
NASA Astrophysics Data System (ADS)
Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.
2017-02-01
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
Energy-saving quality road lighting with colloidal quantum dot nanophosphors
NASA Astrophysics Data System (ADS)
Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan
2014-12-01
Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.
Coupling effects in the modal emission of colloidal quantum dot microdisk lasers.
NASA Astrophysics Data System (ADS)
Lafalce, Evan; Zheng, Qingji; Lin, Chunhao; Smith, Marcus; Malak, Sidney; Jung, Jaehan; Yoon, Young; Lin, Zhiqun; Tsukruk, Vladimir; Vardeny, Z. Valy
Solution-processed semiconductors such as colloidal quantum dots (CQD) are particularly suited materials for monolithic fabrication of laser microstructures because of their ease of fabrication and compatibility with conventional lithographic techniques. We use the functionality of core/alloyed-shell CQDs to fabricate microdisk lasers of variable size and study the resulting whispering-gallery mode laser emission. In particular we study the effects of near-field coupling on resonant modes of pairs of these lasers with sub-micrometer spacing. We demonstrate the occurrence of lasing modes that originate from the interaction between two such microdisks by means of varying the spatial distribution and magnitude of the gain and loss in the coupled-pair. The transition from emission of modes localized on a single disk to those of the interacting pair is accompanied by coalescence of eigen-frequencies and pump-induced turn-off of lasing, highlighting the role of parity-time symmetry and exceptional point physics. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
Enabling two-dimensional fourier transform electronic spectroscopy on quantum dots
NASA Astrophysics Data System (ADS)
Hill, Robert John, Jr.
Colloidal semiconductor nanocrystals exhibit unique properties not seen in their bulk counterparts. Quantum confinement of carriers causes a size-tunable bandgap, making them attractive candidates for solar cells. Fundamental understanding of their spectra and carrier dynamics is obscured by inhomogeneous broadening arising from the size distribution. Because quantum dots have long excited state lifetimes and are sensitive to both air and moisture, there are many potential artifacts in femtosecond experiments. Two-dimensional electronic spectroscopy promises insight into the photo-physics, but required key instrumental advances. Optics that can process a broad bandwidth without distortion are required for a two-dimensional optical spectrometer. To control pathlength differences for femtosecond time delays, hollow retro-reflectors are used on actively stabilized delay lines in interferometers. The fabrication of rigid, lightweight, precision hollow rooftop retroreflectors that allow beams to be stacked while preserving polarization is described. The rigidity and low mass enable active stabilization of an interferometer to within 0.6 nm rms displacement, while the return beam deviation is sufficient for Fourier transform spectroscopy with a frequency precision of better than 1 cm -1. Keeping samples oxygen and moisture free while providing fresh sample between laser shots is challenging in an interferometer. A low-vibration spinning sample cell was designed and built to keep samples oxygen free for days while allowing active stabilization of interferometer displacement to ˜1 nm. Combining these technologies has enabled 2D short-wave infrared spectroscopy on colloidal PbSe nanocrystals. 2D spectra demonstrate the advantages of this key instrumentation while providing valuable insight into the low-lying electronic states of colloidal quantum dots.
NASA Astrophysics Data System (ADS)
Murphy, Graham P.; Gough, John J.; Higgins, Luke J.; Karanikolas, Vasilios D.; Wilson, Keith M.; Garcia Coindreau, Jorge A.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Bradley, A. Louise
2017-03-01
Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ˜25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ˜21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.
Cyto-molecular Tuning of Quantum Dots
NASA Astrophysics Data System (ADS)
Lee, Bong; Suresh, Sindhuja; Ekpenyong, Andrew
Quantum dots (QDs) are semiconductor nanoparticles composed of groups II-VI or III-V elements, with physical dimensions smaller than the exciton Bohr radius, and between 1-10 nm. Their applications and promising myriad applications in photovoltaic cells, biomedical imaging, targeted drug delivery, quantum computing, etc, have led to much research on their interactions with other systems. For biological systems, research has focused on biocompatibility and cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems might be used to tune QDs. Here, we hypothesize that the photo-electronic properties of QDs can be tuned by biological macromolecules following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, we perform spectroscopic analysis of optically excited colloidal QDs with and without promyelocytic HL60 cells. Preliminary results show shifts in the emission spectra of the colloidal dispersions with and without cells. We will present results for activated HL60-derived cells where specific macromolecules produced by these cells perturb the electric dipole moments of the excited QDs and the associated electric fields, in ways that constitute what we describe as cyto-molecular tuning. Startup funds from the College of Arts and Sciences, Creighton University (to AEE).
Charge transport in strongly coupled quantum dot solids
NASA Astrophysics Data System (ADS)
Kagan, Cherie R.; Murray, Christopher B.
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Charge transport in strongly coupled quantum dot solids.
Kagan, Cherie R; Murray, Christopher B
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate
NASA Astrophysics Data System (ADS)
Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke
2018-04-01
We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.
Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups.
Nieto-Pescador, Jesus; Abraham, Baxter; Li, Jingjing; Batarseh, Alberto; Bartynski, Robert A; Galoppini, Elena; Gundlach, Lars
2016-01-14
Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO 2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO 2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S 2 -S 1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.
Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R
2015-11-24
Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.
Weidman, Mark C.; Seitz, Michael; Stranks, Samuel D.; ...
2016-07-29
Here, colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L 2[ABX 3] n-1BX 4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide),more » and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.« less
The Redox Potentials of n-type Colloidal Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Carroll, Gerard Michael
This thesis presents investigations for two related fields of semiconductor electrochemistry: redox potential determination of colloidal semiconductor nanocrystals, and mechanistic analysis of photoelectrochemical water oxidation with electrocatalyst modified mesostructured hematite photoanodes. Adapting electrochemical techniques to colloidal semiconductor nanocrystals (SC NC) is a long-standing challenge for this class of materials. Subject to a variety of complications, standard voltammetric techniques are not as straight forward for SC NCs as they are for small molecules. As a result, researchers have developed creative ways to side step these complications by coupling electrochemistry with NC spectroscopy. Chapter 1 discusses the fundamental electronic and spectroscopic properties of SC NCs at different redox states. We present a brief review of some of the notable studies employing SC NC spectroelectrochemistry that provide the theoretical and experimental context for the following chapters. Chapter 2 presents an investigation on NC redox potentials of photochemically reduced colloidal ZnO NCs using a solvated redox-indicator method. In the one electron limit, conduction band electrons show evidence of quantum confinement, but at higher electron concentrations, the NC Fermi-level becomes dependent on the electron density across all NC sizes. Chapter 3 outlines a poteniometric method for monitoring the NC redox potentials in situ. NC redox potentials for ZnO and CdSe are measured, and as predicted from these measurements, spontaneous electron transfer from CdSe to ZnO is demonstrated. Chapter 4 details the impact of the surface of CdSe NCs on the NC redox potentials. We find that the ratio of Cd2+:Se2- on the surface of CdSe NCs changes both the NC band edge potentials, as well as the maximum electron density achievable by photochemical reduction. These changes are proposed to arise from interfacial dipoles when CdSe has a Se2-rich surface. Chapters 5 and 6 examine the mechanistic pathways of solar water oxidation on Co-Pi modified alpha-Fe2O3 photoanodes. A rate constant analysis of water oxidation and electron-hole recombination paired with the identification of surface-morphology-dependent current-voltage characteristics reveal new insights into the role of the semiconductor/electrocatalyst interface on the overall solar water oxidation efficiency. These findings reconcile disparate observations from previous studies.
Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R
2018-05-09
Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.
Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots
NASA Astrophysics Data System (ADS)
Gonzales, Gavin P.; Alas, Gema; Senthil, Arjun; Withers, Nathan J.; Minetos, Christina; Sandoval, Alejandro; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Osiński, Marek
2018-02-01
Quantum dots (QDs) emitting in the visible are of interest for many biomedical applications, including bioimaging, biosensing, drug targeting, and photodynamic therapy. However, a significant limitation is that QDs typically contain cadmium, which makes prospects for their FDA approval very unlikely. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have also been shown to be cytotoxic. High-efficiency luminescent ZnTe-based QDs could be a reasonable alternative to Cd-containing QDs. In this paper, we present preliminary results of our recent studies of ZnTe-based QDs, including their synthesis, structural characterization, and optical properties.
Non-blinking quantum dot with a plasmonic nanoshell resonator
NASA Astrophysics Data System (ADS)
Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit
2015-02-01
Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.
Field-emission from quantum-dot-in-perovskite solids
García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward
2017-01-01
Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981
Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.; ...
2017-06-25
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
Photovoltage field-effect transistors
NASA Astrophysics Data System (ADS)
Adinolfi, Valerio; Sargent, Edward H.
2017-02-01
The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
Synthesis and applications of heterostructured semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Khon, Elena
Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their light emmision tunability. We reported a general strategy for the assembly of all-inorganic light-emitting nanocrystal films with an emission quantum yield in the 30-52% range. Our methodology relies on solution-processing of CdSe nanocrystals into a crystalline matrix of a wide band gap semiconductor (CdS, ZnS). As a result, we replace original organic ligands on nanocrystal surfaces with an inorganic medium which efficiently preserves the quantum confinement of electrical charges in CdSe NCs. In addition to strong emission, fabricated films demonstrated excellent thermal and chemical stability, and a large refractive index, which avails their integration into emerging solid-state nanocrystal devices. The ability to control size and shape of NCs is essential as it automatically affects the optoelectronic properties of the crystals. Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of NCs, but some nanoparticle morphologies require alternative processing strategies. We have shown that chemical etching of colloidal nanoparticles can facilitate the realization of desirable nanocrystal geometries. This methodology allows both CdSe and CdS composed semiconductor domains be exposed to the external environment, while maintaining a structural design that is highly desirable for catalytic applications. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers. We expect that the demonstrated application will become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticle architectures for applications in the areas of photocatalysis, photovoltaics, and light detection.
NASA Astrophysics Data System (ADS)
Pinaud, Fabien Florent
2007-12-01
A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.
Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xingsheng, E-mail: xsxu@semi.ac.cn
For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less
Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R
2015-12-09
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.
NASA Astrophysics Data System (ADS)
Tran, Phan T.; Goldman, Ellen R.; Mattoussi, Hedi M.; Anderson, George P.; Mauro, J. Matthew
2001-06-01
Colloidal semiconductor quantum dots (QDs) seem suitable for labeling certain biomolecules for use in fluorescent tagging applications, such as fluoro-immunoassays. Compared to organic dye labels, Qds are resistant to photo-degradation, and these luminescent nanoparticles have size-dependent emission spectra spanning a wide range of wavelengths in the visible and near IR. We previously described an electrostatic self-assembly approach for conjugating highly luminescent colloidal CdSe-ZnS core-shell Qds with engineered two-domain recombinant proteins. Here we describe the application of this approach to prepare QD conjugates with the (Beta) 2 immunoglobin G (IgG) binding domain of streptococcal protein G (PG) appended with a basic lucine zipper attachment domain (PG-zb). We also demonstrate that the QD/PG conjugates retain their ability to bind IgG antibodies, and that a specific antibody coupled to QD via the PG functional domain efficiently binds its antigen. These preliminary results indicate that electrostatically self-assembled QD/PG-zb/IgG bioconjugates can be used in fluoro-immunoassays.
Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids.
Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H
2017-02-01
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (V oc ) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V oc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
Synthesis of colloidal Zn(Te,Se) alloy quantum dots
NASA Astrophysics Data System (ADS)
Asano, H.; Arai, K.; Kita, M.; Omata, T.
2017-10-01
Colloidal Zn(Te1-x Se x ) quantum dots (QDs), which are highly mismatched semiconductor alloys, were synthesized by the hot injection of an organometallic solution, and the composition and size dependence of their optical gap were studied together with the theoretical calculation using the finite-depth-well effective mass approximation. The optical gaps exhibited considerable negative deviation from the mole fraction weighted mean optical gaps of ZnTe and ZnSe, i.e. a large optical gap bowing was observed, similar to the bulk and thin-film alloys. The composition and size dependence of optical gaps agreed well with theoretically calculated ones employing a bowing parameter similar to that of the bulk alloys; therefore, the extent of the optical gap bowing in these alloy QDs is concluded to be the same as that in bulk and thin-film alloys. The optical gaps of Zn(Te1-x Se x ) QDs with diameters of 3.5-5 nm, where x ~ 0.35, were close to the energy corresponding to green light, indicating that those QDs are very promising as green QD-phosphors.
Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy
NASA Astrophysics Data System (ADS)
Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.
2013-05-01
Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.
Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J
2018-02-14
To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.
Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong
2016-06-01
ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
Wu, Kaifeng; Zhu, Haiming; Lian, Tianquan
2015-03-17
Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.
Carroll, Gerard M; Schimpf, Alina M; Tsui, Emily Y; Gamelin, Daniel R
2015-09-02
Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.
NASA Astrophysics Data System (ADS)
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Ackerman, Paul J; Mundoor, Haridas; Smalyukh, Ivan I; van de Lagemaat, Jao
2015-12-22
We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect. We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, Paul J.; Mundoor, Haridas; Smalyukh, Ivan I.
2015-12-22
We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect.more » We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.« less
CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms
Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise
2011-01-01
Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686
Plasmonic enhancement of electroluminescence
NASA Astrophysics Data System (ADS)
Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.
2018-01-01
Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 < 1. The resulting plasmonic effect is independent of intrinsic emitter lifetime but is exclusively defined by the value of Q0, emission spectrum, NP diameter and emitter-metal spacing. For 0.1< Q0 < 0.25, Ag nanoparticles are shown to enhance LED/OLED intensity by several times over the whole visible whereas Au particles feature lower effect within the red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.
Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V
2014-05-01
Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.
2017-03-01
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L
2017-03-03
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
NASA Astrophysics Data System (ADS)
Zhang, Jiatao
2016-10-01
Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466, 91.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
Comparative photoluminescence study of close-packed and colloidal InP/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Thuy, Ung Thi Dieu; Thuy, Pham Thi; Liem, Nguyen Quang; Li, Liang; Reiss, Peter
2010-02-01
This letter reports on the comparative photoluminescence study of InP/ZnS quantum dots in the close-packed solid state and in colloidal solution. The steady-state photoluminescence spectrum of the close-packed InP/ZnS quantum dots peaks at a longer wavelength than that of the colloidal ones. Time-resolved photoluminescence shows that the close-packed quantum dots possess a shorter luminescence decay time and strongly increased spectral shift with the time delayed from the excitation moment in comparison with the colloidal ones. The observed behavior is discussed on the basis of energy transfer enabled by the short interparticle distance between the close-packed quantum dots.
NASA Astrophysics Data System (ADS)
Kemp, Kyle Wayne
With growing global energy demand there will be an increased need for sources of renewable energy such as solar cells. To make these photovoltaic technologies more competitive with conventional energy sources such as coal and natural gas requires further reduction in manufacturing costs that can be realized by solution processing and roll-to-roll printing. Colloidal quantum dots are a bandgap tunable, solution processible, semiconductor material which may offer a path forward to efficient, inexpensive photovoltaics. Despite impressive progress in performance with these materials, there remain limitations in photocarrier collection that must be overcome. This dissertation focuses on the characterization of charge recombination and transport in colloidal quantum dot photovoltaics, and the application of this knowledge to the development of new and better materials. Core-shell, PbS-CdS, quantum dots were investigated in an attempt to achieve better surface passivation and reduce electronic defects which can limit performance. Optimization of this material led to improved open circuit voltage, exceeding 0.6 V for the first time, and record published performance of 6% efficiency. Using temperature-dependent and transient photovoltage measurements we explored the significance of interface recombination on the operation of these devices. Careful engineering of the electrode using atomic layer deposition of ZnO helped lead to better TiO2 substrate materials and allowed us to realize a nearly two-fold reduction in recombination rate and an enhancement upwards of 50 mV in open circuit voltage. Carrier extraction efficiency was studied in these devices using intensity dependent current-voltage data of an operational solar cell. By developing an analytical model to describe recombination loss within the active layer of the device we were able to accurately determine transport lengths ranging up to 90 nm. Transient absorption and photoconductivity techniques were used to study charge dynamics by identifying states in these quantum dot materials which facilitate carrier transport. Thermal activation energies for transport of 60 meV or lower were measured for different PbS quantum dot bandgaps, representing a relatively small barrier for carrier transport. From these measurements a dark, quantum confined energy level was attributed to the electronic bandedge of these materials which serves to govern their optoelectronic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yijun; Rowland, Clare E; Schaller, Richard D
2014-08-26
Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch comparedmore » with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.« less
Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Pach, Gregory F.
Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which details the synthesis of PbS/CdS heterostructures in which the PbS and CdS domains exist on opposite sides of the nanocrystal and are termed "Janus particles". Transient absorption spectroscopy shows MEG quantum yields above unity very the thermodynamic limit of 2Eg for PbS/CdS Janus particles. We further explain a mechanism for enhanced MEG using photoluminescence studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less
Weiss, Emily A
2013-11-19
In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this Account, I describe the varied roles of organic molecules in controlling the structure and properties of colloidal quantum dots. Molecules serve as surfactant that determines the mechanism and rate of nucleation and growth and the final size and surface structure of a quantum dot. Anionic surfactant in the reaction mixture allows precise control over the size of the quantum dot core but also drives cation enrichment and structural disordering of the quantum dot surface. Molecules serve as chemisorbed ligands that dictate the energetic distribution of surface states. These states can then serve as thermodynamic traps for excitonic charge carriers or couple to delocalized states of the quantum dot core to change the confinement energy of excitonic carriers. Ligands, therefore, in some cases, dramatically shift the ground state absorption and photoluminescence spectra of quantum dots. Molecules also act as protective layers that determine the probability of redox processes between quantum dots and other molecules. How much the ligand shell insulates the quantum dot from electron exchange with a molecular redox partner depends less on the length or degree of conjugation of the native ligand and more on the density and packing structure of the adlayer and the size and adsorption mode of the molecular redox partner. Control of quantum dot properties in these examples demonstrates that nanoscale interfaces, while complex, can be rationally designed to enhance or specify the functionality of a nanostructured system.
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
Geißler, Daniel; Hildebrandt, Niko
2016-07-01
The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.
Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Akins, Brian A.; Plumley, John B.; Rivera, Antonio C.; Withers, Nathan J.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osińki, Marek
2013-03-01
Colloidal quantum dots (QDs) are of interest for a variety of biomedical applications, including bioimaging, drug targeting, and photodynamic therapy. However, a significant limitation is that highly efficient photoluminescent QDs available commercially contain cadmium. Recent research has focused on cadmium-free QDs, which are anticipated to exhibit significantly lower cytotoxicity. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have been shown to be cytotoxic. Recently, we have synthesized high quantum efficiency (exceeding 90%), color tunable MnSe/ZnSeS nanoparticles, as potentially attractive QDs for biomedical applications. Additionally, the manganese imparts magnetic properties on the QDs, which are important for magnetic field-guided transport, hyperthermia, and potentially magnetic resonance imaging (MRI). The QDs can be further biofunctionalized via conjugation to a ligand or a biomarker of disease, allowing combination of drug delivery with visual verification and colocalization due to the color tunability of the QDs.
3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots.
Ushakova, Elena V; Cherevkov, Sergei A; Litvin, Aleksandr P; Parfenov, Peter S; Kasatkin, Igor A; Fedorov, Anatoly V; Gun'ko, Yurii K; Baranov, Alexander V
2018-05-03
We report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution. Formation of the superstructures is discussed in terms of a model describing the lyotropic crystal formation by micelles from three-phase mixtures. The results show that the organic molecules possessing surfactant properties and capable of forming micelles with nanoparticles as a micelle core can be utilized as building blocks for the creation of novel metamaterials based on a highly ordered 3D network of semiconductors, metals or magnetic nanoparticles.
Role of confinements on the melting of Wigner molecules in quantum dots
NASA Astrophysics Data System (ADS)
Bhattacharya, Dyuti; Filinov, Alexei V.; Ghosal, Amit; Bonitz, Michael
2016-03-01
We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.
NASA Astrophysics Data System (ADS)
Shen, Yaoming
Quantum dots (QDs)and Nano-crystals (NCs) have been studies for decades. Because of the nanoscale quantum confinement, delta shape like energy density states and narrowband emitters properties, they hold great promise for numerous optoelectronics and photonics applications. They could be used for tunable lasers, white LED, Nano-OLED, non-volatile memory and solar cells. They are also the most promising candidates for the quantum computing. The benefits for NCs over QDs is that NCs can be incorporated into a variety of polymers as well as thin films of bulk semiconductors. These exceptional flexibility and structural control distinguish NCs from the more traditional QD structures fabricated using epitaxial growth techniques. In my research of work, I studied the photoluminescence (PL) and absorption character of ensemble NCs incorporated in Polymethyl methacrylate (PMMA). To understand the behavior of the NCs in PMMA, it is important to measure a singe NC to avoid the inhomogenous broading of many NCs. So I particularly studied the behavior of a single NC in PMMA matrix. A microphotoluminescence setup to optically isolate a single nanocrystal is used. Random spectral shift and blinking behavior (on and off) are found. Addition to that, two color spectral shifting, is a major phenomena found in the system. Other interesting results such as PL intensity changes (decreasing or increasing with time) and quenching effect are observed and explained too. From the correlation function, we can distinguish the phonon replicas. The energy of these phonons can be calculated very accurately from the experiment result. The Huang-Rhys factors can be estimated too. Self-assembled semiconductor quantum dots (QDs), from highly strained-layer heteroepitaxy in the Stranski-Krastanow (S-K) growth mode, have been intensively studied because of the delta-function-like density of states, which is significant for optoelectronic applications. Spontaneous formation of semiconductor quantum-dot molecules (QDMs), which are clusters of a few QDs, has attracted attention as a possible implementation of future quantum devices such as quantum cellular antomata. With the advances in crystal growth techniques, the fabrication methods for nanostructures have been improved continuously. Lateral QDMs have been achieved. As a side topic, lateral QDMs have been studied and the result is presented in the last chapter.
Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties
NASA Technical Reports Server (NTRS)
Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher
1995-01-01
One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.
NASA Astrophysics Data System (ADS)
Moroz, Pavel
Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or matrix-encapsulated PbS nanocrystal films containing a tunable fraction of insulating ZnS domains, we uniquely distinguish the dynamics of charge scattering on defects from other processes of exciton dissociation. The measured times are subsequently used to estimate the diffusion length and the carrier mobility for each film type within hopping transport regime. It is demonstrated that nanocrystal films encapsulated into semiconductor matrices exhibit a lower probability of charge scattering than nanocrystal solids cross-linked with either 3-mercaptopropionic acid or 1,2-ethanedithiol molecular linkers. The suppression of carrier scattering in matrix-encapsulated nanocrystal films is attributed to a relatively low density of surface defects at nanocrystal/matrix interfaces. High stability and low density of defects made it possible to fabricate infrared-emitting nanocrystal solids. Presently, an important challenge facing the development of nanocrystal infrared emitters concerns the fact that both the emission quantum yield and the stability of colloidal nanoparticles become compromised when nanoparticle solutions are processed into solids. Here, we address this issue by developing an assembly technique that encapsulates infrared-emitting PbS NCs into crystalline CdS matrices, designed to preserve NC emission characteristics upon film processing. Here, the morphology of these matrices was designed to suppress the nonradiative carrier decay, whereby increasing the exciton lifetime up to 1 mus, and boosting the emission quantum yield to an unprecedented 3.7% for inorganically encapsulated PbS NC solids.
Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk
Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towardsmore » dense integration of photonic components on the mainstream complementary metal–oxide–semiconductor platform.« less
NASA Astrophysics Data System (ADS)
Komoto, Atsushi; Maenosono, Shinya
2006-09-01
The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.
Komoto, Atsushi; Maenosono, Shinya
2006-09-21
The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.
Rice, W. D.; Liu, W.; Pinchetti, V.; ...
2017-04-07
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, W. D.; Liu, W.; Pinchetti, V.
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan
2013-08-15
Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.
Mendes, Manuel J; Hernández, Estela; López, Esther; García-Linares, Pablo; Ramiro, Iñigo; Artacho, Irene; Antolín, Elisa; Tobías, Ignacio; Martí, Antonio; Luque, Antonio
2013-08-30
A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude.In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance.The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.
Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H
2015-06-03
Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
NASA Astrophysics Data System (ADS)
Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.
2018-03-01
The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.
Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan
2013-01-01
Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.
NASA Astrophysics Data System (ADS)
Taylor, Robert A.
2010-09-01
These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford
Magnetic Polarons in Anisotropic Quantum Dots
NASA Astrophysics Data System (ADS)
Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor
2010-03-01
Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).
Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.
Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won
2012-09-07
The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.
Single colloidal quantum dots as sources of single photons for quantum cryptography
NASA Astrophysics Data System (ADS)
Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo
2011-02-01
Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.
Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.
Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V
2018-04-19
Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.
Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods
NASA Astrophysics Data System (ADS)
Simon, Thomas; Bouchonville, Nicolas; Berr, Maximilian J.; Vaneski, Aleksandar; Adrović, Asmir; Volbers, David; Wyrwich, Regina; Döblinger, Markus; Susha, Andrei S.; Rogach, Andrey L.; Jäckel, Frank; Stolarczyk, Jacek K.; Feldmann, Jochen
2014-11-01
Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g-1 h-1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.
Strelow, Christian; Theuerholz, T Sverre; Schmidtke, Christian; Richter, Marten; Merkl, Jan-Philip; Kloust, Hauke; Ye, Ziliang; Weller, Horst; Heinz, Tony F; Knorr, Andreas; Lange, Holger
2016-08-10
Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects.
Soenen, Stefaan J; Montenegro, José-Maria; Abdelmonem, Abuelmagd M; Manshian, Bella B; Doak, Shareen H; Parak, Wolfgang J; De Smedt, Stefaan C; Braeckmans, Kevin
2014-02-01
Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain a hot research topic and several questions such as possible intracellular degradation of quantum dots and the effect thereof on both cell viability and particle functionality remain unresolved. In the present work, amphiphilic polymer [corrected] coated CdSe/ZnS quantum dots were synthesized and characterized, after which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data revealed that comparing different particles in terms of their applied dose is challenging, likely due to difficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of their biological functionality enables an easy and straightforward comparison. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Energy and charge transfer in nanoscale hybrid materials.
Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup
2015-06-01
Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang
2017-06-01
The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.
Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability.
Tamang, Sudarsan; Beaune, Grégory; Texier, Isabelle; Reiss, Peter
2011-12-27
Small thiol-containing amino acids such as cysteine are appealing surface ligands for transferring semiconductor quantum dots (QDs) from organic solvents to the aqueous phase. They provide a compact hydrodynamic diameter and low nonspecific binding in biological environment. However, cysteine-capped QDs generally exhibit modest colloidal stability in water and their fluorescence quantum yield (QY) is significantly reduced as compared to organics. We demonstrate that during phase transfer the deprotonation of the thiol group by carefully adjusting the pH is of crucial importance for increasing the binding strength of cysteine to the QD surface. As a result, the colloidal stability of cysteine-capped InP/ZnS core/shell QDs is extended from less than one day to several months. The developed method is of very general character and can be used also with other hydrophilic thiols and various other types of QDs, e.g., CdSe/CdS/ZnS and CuInS(2)/ZnS QDs as well as CdSe and CdSe/CdS nanorods. We show that the observed decrease of QY upon phase transfer with cysteine is related to the generation of cysteine dimer, cystine. This side-reaction implies the formation of disulfide bonds, which efficiently trap photogenerated holes and inhibit radiative recombination. On the other hand, this process is not irreversible. By addition of an appropriate reducing agent, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the QY can be partially recovered. When TCEP is already added during the phase transfer, the QY of cysteine-capped InP/ZnS QDs can be maintained almost quantitatively. Finally, we show that penicillamine is a promising alternative to cysteine for the phase transfer of QDs, as it is much less prone to disulfide formation.
Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
Melnychuk, Christopher; Guyot-Sionnest, Philippe
2018-05-03
The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L
2017-03-21
The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.
Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V
2016-06-28
Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.
Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng
2015-12-30
We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.
Zero-reabsorption doped-nanocrystal luminescent solar concentrators.
Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L
2014-04-22
Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-01-01
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-07-28
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Automated setup for spray assisted layer-by-layer deposition.
Mundra, Paul; Otto, Tobias; Gaponik, Nikolai; Eychmüller, Alexander
2013-07-01
The design for a setup allowing the layer-by-layer (LbL) assembly of thin films consisting of various colloidal materials is presented. The proposed system utilizes the spray-assisted LbL approach and is capable of autonomously producing films. It provides advantages to existing LbL procedures in terms of process speed and applicability. The setup offers several features that are advantageous for routine operation like an actuated sample holder, stainless steel spraying nozzles, or an optical liquid detection system. The applicability is demonstrated by the preparation of films containing semiconductor nanoparticles, namely, CdSe∕CdS quantum dots and a polyelectolyte. The films of this type are of potential interest for applications in optoelectronic devices such as light-emitting diodes or solar cells.
NASA Astrophysics Data System (ADS)
Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai
2017-09-01
The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.
NASA Astrophysics Data System (ADS)
Vaxenburg, Roman; Lifshitz, Efrat
2012-02-01
Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.
Photoelectrochromism in Tungsten Trioxide Colloidal Solutions
ERIC Educational Resources Information Center
Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan
2004-01-01
Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.
Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.
Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas
NASA Astrophysics Data System (ADS)
Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.
2018-01-01
We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films
Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.
2015-01-01
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185
Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio
2015-01-01
Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499
Single-mode light source fabrication based on colloidal quantum dots
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.
2009-02-01
There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.
DNA Conjugation and DNA Directed Self-Assembly of Quantum Dots for Nanophotonic Applications
NASA Astrophysics Data System (ADS)
Samanta, Anirban
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2--20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. QDs that are functionalized with DNA can potentially be organized with nanometer precision by DNA directed self-assembly, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb 1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing the photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by a cluster of larger plasmonic nanoparticles.
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5′-triphosphate-induced [Ca2+]i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles. PMID:29270011
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5'-triphosphate-induced [Ca 2+ ] i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles.
Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P
2017-04-25
Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor
NASA Astrophysics Data System (ADS)
Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan
2018-07-01
We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diroll, Benjamin T.; Talapin, Dmitri V.; Schaller, Richard D.
Amplified spontaneous emission (ASE) and lasing from solution-processed materials are demonstrated in the challenging violet-to-blue (430–490 nm) spectral region for colloidal nanoplatelets of CdS and newly synthesized core/shell CdS/ZnS nanoplatelets. Despite modest band-edge photoluminescence quantum yields of 2% or less for single excitons, which we show results from hole trapping, the samples exhibit low ASE thresholds. Furthermore, four-monolayer CdS samples show ASE at shorter wavelengths than any reported film of colloidal quantum-confined material. This work underlines that low quantum yields for single excitons do not necessarily lead to a poor gain medium. The low ASE thresholds originate from negligible dispersionmore » in thickness, large absorption cross sections of 2.8 × 10–14 cm–2, and rather slow (150 to 300 ps) biexciton recombination. We show that under higher-fluence excitation, ASE can kinetically outcompete hole trapping. Using nanoplatelets as the gain medium, lasing is observed in a linear optical cavity. This work confirms the fundamental advantages of colloidal quantum well structures as gain media, even in the absence of high photoluminescence efficiency.« less
Erbium-implanted silica colloids with 80% luminescence quantum efficiency
NASA Astrophysics Data System (ADS)
Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.
2000-06-01
Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.
Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.
Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh
2016-10-14
Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.
Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production
NASA Astrophysics Data System (ADS)
Cogan, Nicole M. B.; Liu, Cunming; Qiu, Fen; Burke, Rebeckah; Krauss, Todd D.
2017-05-01
Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L
2012-02-13
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Liu, Cunming
Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.
Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.
2000-01-01
A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.
Gain in three-dimensional metamaterials utilizing semiconductor quantum structures
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan
2011-10-01
We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.
Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie
2017-05-19
We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.
Effect of interface roughness on Auger recombination in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson
2017-03-01
Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2011-10-11
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2012-08-07
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.
Guzelturk, Burak; Demir, Hilmi Volkan
2015-06-18
Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.
Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals
Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana
2012-01-01
The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781
Evans, Christopher M; Love, Alyssa M; Weiss, Emily A
2012-10-17
This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.
Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots
NASA Astrophysics Data System (ADS)
Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo
We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.
An Investigation of Quantum Dot Super Lattice Use in Nonvolatile Memory and Transistors
NASA Astrophysics Data System (ADS)
Mirdha, P.; Parthasarathy, B.; Kondo, J.; Chan, P.-Y.; Heller, E.; Jain, F. C.
2018-02-01
Site-specific self-assembled colloidal quantum dots (QDs) will deposit in two layers only on p-type substrate to form a QD superlattice (QDSL). The QDSL structure has been integrated into the floating gate of a nonvolatile memory component and has demonstrated promising results in multi-bit storage, ease of fabrication, and memory retention. Additionally, multi-valued logic devices and circuits have been created by using QDSL structures which demonstrated ternary and quaternary logic. With increasing use of site-specific self-assembled QDSLs, fundamental understanding of silicon and germanium QDSL charge storage capability, self-assembly on specific surfaces, uniform distribution, and mini-band formation has to be understood for successful implementation in devices. In this work, we investigate the differences in electron charge storage by building metal-oxide semiconductor (MOS) capacitors and using capacitance and voltage measurements to quantify the storage capabilities. The self-assembly process and distribution density of the QDSL is done by obtaining atomic force microscopy (AFM) results on line samples. Additionally, we present a summary of the theoretical density of states in each of the QDSLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vela Becerra, Javier; Ruberu, T. Purnima A.
A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.
Superlattice photoelectrodes for photoelectrochemical cells
Nozik, Arthur J.
1987-01-01
A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo
2017-07-25
Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.
All-inorganic colloidal upconversion quantum dots (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oron, Dan; Teitelboim, Ayelet
2017-02-01
Upconversion (UC) is a nonlinear process in which two, or more, long wavelength photons are converted to a shorter wavelength photon. This process is based on sequential absorption of two or more photons, involving metastable, long lived intermediate energy states, thus is not restricted to ultrashort pulsed excitation. Hence, requirements for UC processes are long lived excited states, a ladder like arrangement of energy levels and a mechanism inhibiting cooling of the hot charge carrier. UC holds great promise for bioimaging, enabling to perform multiphoton imaging in scattering specimen at very low powers. Rare-earth-doped nanocrystals, the most commonly used ones for UC, typically require a minimal particle diameter of several tens of nanometers and have a limited action spectrum. Here, we present a novel luminescence upconversion nano-system based on colloidal semiconductor double quantum dots, consisting of a NIR-absorbing component and a visible emitting component separated by a tunneling barrier in a spherical onion-like geometry. These dual near-infrared and visible core/shell/shell PbSe/CdSe/CdS nanocrystals are shown to efficiently upconvert a broad range of NIR wavelengths up to 1.2 microns to visible emission at room temperature, covering a spectral range where there are practically no alternative upconversion systems. The particle diameter is less than ten nanometers, and the synthesis enables versatility and tunability of both the visible emission color and the NIR absorption edge. The physical mechanism for upconversion in this type of structures, as well as potential advances and extensions on this system will be discussed.
2014-01-01
Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644
Visible light water splitting using dye-sensitized oxide semiconductors.
Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E
2009-12-21
Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.
Exciton absorption of entangled photons in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.
2012-01-01
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794
Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids
NASA Astrophysics Data System (ADS)
Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.
2017-11-01
We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
Integrated photonics using colloidal quantum dots
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.
2009-11-01
Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.
Photonic emitters and circuits based on colloidal quantum dot composites
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew
2009-02-01
We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.
Mapping the exciton diffusion in semiconductor nanocrystal solids.
Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail
2015-03-24
Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.
Engineering of Semiconductor Nanocrystals for Light Emitting Applications
Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato
2016-01-01
Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794
Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin
1981-01-01
The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095
Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurmikko, Arto V.; Dang, Cuong
The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.
Nanoparticle Solutions for Printed Electronics
2013-09-19
the printed semiconductor materials and their nanoparticle and colloidal precursors. Without this basic knowledge, further development and the...titania, silica ) were investigated in the production of complementary inks for complex devices. These were either obtained commercially in...layers were also deposited on borosilicate glass and silicon wafers. In the photovoltaic program, hybrid inorganic-organic semiconductor combinations
Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J
2017-05-16
The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high-throughput parametric screening of metal chalcogenides (CdSe, PbS, PbSe, CdSeTe), ternary and core/shell heavy metal-free quantum dots (CuInS 2 , CuInS 2 /ZnS), and all-inorganic perovskite nanocrystals (CsPbX 3 , X = Cl, Br, I) syntheses. Critically, concurrent absorption and photoluminescence measurements on millisecond to second time scales allow the extraction of basic parameters governing nanocrystal formation. Moreover, experimental data obtained from such microfluidic platforms can be directly supported by theoretical models of nucleation and growth. To this end, we also describe the use of metamodeling algorithms able to accurately predict optimized conditions of CdSe synthesis using a minimal number of sample parameters. Importantly, we discuss future challenges that must be addressed before microfluidic technologies are in a position to be widely adopted for the on-demand formation of nanocrystals. From a technology perspective, these challenges include the development of novel engineering platforms for the formation of complex architectures, the integration of monitoring systems able to harvest photophysical and structural information, the incorporation of continuous purification systems, and the application of optimization algorithms to multicomponent quantum dot systems.
Fabrication of Metallic Hollow Nanoparticles
NASA Technical Reports Server (NTRS)
Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2016-01-01
Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors
NASA Astrophysics Data System (ADS)
Bicanic, Kristopher T.
This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.
Colloidal 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots in a Low Boiling Point Solvent.
Reinhart, Chase C; Johansson, Erik
2017-04-26
Colloidal 3-mercaptopropionic acid (3-MPA) capped lead sulfide quantum dots were prepared in a variety of organic solvents stabilized with a quaternary ammonium halide salt. The stabilized colloids' optical properties were studied through optical absorption and emission spectroscopy and found to be dependent on both the concentration of a new ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through a combination of 1 H NMR and two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) which revealed full displacement of the original oleate ligand to form a dynamically exchanging ligand shell. The colloids were studied optically and via NMR as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic acid to its dimer, dithiodipropionic acid (dTdPA).
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta
The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.
Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots
NASA Astrophysics Data System (ADS)
Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia
2014-11-01
We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.
PREFACE: Euro-TMCS I: Theory, Modelling and Computational Methods for Semiconductors
NASA Astrophysics Data System (ADS)
Gómez-Campos, F. M.; Rodríguez-Bolívar, S.; Tomić, S.
2015-05-01
The present issue contains a selection of the best contributed works presented at the first Euro-TMCS conference (Theory, Modelling and Computational Methods for Semiconductors, European Session). The conference was held at Faculty of Sciences, Universidad de Granada, Spain on 28st-30st January 2015. This conference is the first European edition of the TMCS conference series which started in 2008 at the University of Manchester and has always been held in the United Kingdom. Four previous conferences have been previously carried out (Manchester 2008, York 2010, Leeds 2012 and Salford 2014). Euro-TMCS is run for three days; the first one devoted to giving invited tutorials, aimed particularly at students, on recent development of theoretical methods. On this occasion the session was focused on the presentation of widely-used computational methods for the modelling of physical processes in semiconductor materials. Freely available simulation software (SIESTA, Quantum Espresso and Yambo) as well as commercial software (TiberCad and MedeA) were presented in the conference by members of their development team, offering to the audience an overview of their capabilities for research. The second part of the conference showcased prestigious invited and contributed oral presentations, alongside poster sessions, in which direct discussion with authors was promoted. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology. Theoretical approaches represented in this meeting included: Density Functional Theory, Semi-empirical Electronic Structure Methods, Multi-scale Approaches, Modelling of PV devices, Electron Transport, and Graphene. Topics included, but were not limited to: Optical Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Photonic Structures, and Electronic Devices. The Editors Acknowledgments: We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from Universidad de Granada, the CECAM UK-Hartree Node, project TEC2013-47283-R of Ministerio de Economía y Competitividad, and the company Materials Design (distributors of MedeA Software). Conference Organising Committee: Francisco M. Gómez-Campos (Co-chair, Universidad de Granada) Salvador Rodríguez-Bolívar (Co-chair, Universidad de Granada) Stanko Tomić (Co-chair, University of Salford)
Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping
2015-04-28
Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.
High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives
NASA Astrophysics Data System (ADS)
Sablon, Kimberly A.; Sergeev, Andrei; Najmaei, Sina; Dubey, Madan
2017-03-01
Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs) with graphene or two-dimensional (2D) semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D
2017-01-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
NASA Astrophysics Data System (ADS)
Pavlopoulos, Nicholas George
This dissertation contains six chapters detailing recent advances that have been made in the synthesis and characterization of metal-semiconductor hybrid nanocrystals (HNCs), and the applications of these materials. Primarily focused on the synthesis of well-defined II-VI semiconductor nanorod (NR) and tetrapod (TP) based constructs of interest for photocatalytic and solar energy applications, the research described herein discusses progress towards the realization of key design rules for the synthesis of functional semiconductor nanocrystals (NCs). As such, a blend of novel synthesis, advanced characterization, and direct application of heterostructured nanoparticles are presented. The first chapter is a review summarizing the design, synthesis, properties, and applications of multicomponent nanomaterials composed of disparate semiconductor and metal domains. By coupling two compositionally distinct materials onto a single nanocrystal, synergistic properties can arise that are not present in the isolated components, ranging from self-assembly to photocatalysis. For semiconductor nanomaterials, this was first realized in the ability to tune nanomaterial dimensions from 0-D quantum dot (QD) structures to cylindrical (NR) and branched (TP) structures by exploitation of advanced colloidal synthesis techniques and understandings of NC facet reactivities. The second chapter is focused on the synthesis and characterization of well-defined CdSe-seeded-CdS (CdSe CdS) NR systems synthesized by overcoating of wurtzite (W) CdSe quantum dots with W-CdS shells. 1-dimensional NRs have been interesting constructs for applications such as solar concentrators, optical gains, and photocatalysis. Through synthetic control over CdSe CdS NR systems, materials with small and large CdSe seeds were prepared, and for each seed size, multiple NR lengths were prepared. Through transient absorption studies, it was found that band alignment did not affect the efficiency of charge localization in the CdSe core, whereas NR length had a profound effect. This work indicated that longer NRs resulted in poor exciton localization efficiencies owing to ultrafast trapping of photoexcited excitons generated in the CdS NR. The third chapter describes the synthesis of Au-tipped CdSe NRs and studies of the effects of selective metal nanoparticle deposition on the band edge energetics of these model photocatalytic systems. Previous studies had demonstrated ultrafast localization of photoexcited electrons in Au nanoparticles (AuNP) (and PtNP) deposited at the termini of CdSe and CdSe CdS NR constructs. Also, for similar systems, the hydrogen evolution reaction (HER) had been studied, for which it was found that noble metal nanoparticle tips were necessary to extract photoexcited electrons from the NR constructs and drive catalytic reactions. However, in these studies, energetic trap states, generally ascribed to surface defects on the NC surface, are often cited as contributing to loss of catalytic efficiency. Through a combination of ultraviolet photoelectron spectroscopy and waveguide based spectroelectrochemistry on films of 40 nm long CdSe NRs before and after AuNP functionalization, we found that metal deposition resulted in the formation of mid-gap energy states, which were assigned as metal-semiconductor interface states. The fourth chapter transitions from NR constructs to highly absorbing CdSe CdS TP materials, for which a single zincblende (ZB) CdSe NC is used to seed the growth of four identical CdS arms. These arms act as highly efficient light absorbers, resulting in absorption cross sections an order of magnitude greater than for comparable NR systems. In the past, many studies have been published on the striking properties of TP nanocrystals, such as dual wavelength fluorescence, multiple exciton generation, and inherent self-assembly owing to their unique geometry. Nonetheless, these materials have not been exploited for photocatalysis, primarily owing to challenges in preparing TP from ultrasmall ZB-CdSe seed size, thus preventing access to quasi-type II structures necessary for efficient photocatalysis. In this study, we successfully break through the type I/quasi-type II barrier for TP NCs, reclaiming lost ground in this field and demonstrating for the first time quasi-type II behavior in CdSe CdS TPs through transient absorption measurements. The fifth chapter continues with the study of CdSe CdS TPs, and elaborates on a new method for the selective functionalization of the highly symmetrical TP construct. TP materials have been notoriously difficult to selectively functionalize, owing to their symmetric nature. Using a novel photoinduced electrochemical Ostwald ripening process, we found that initially randomly deposited AuNPs could be ripened to a single, large AuNP tip at the end of one arm of a type I CdSe CdS TP with 40 nm arms. The sixth chapter elaborates further on the preparation of colloidal polymers, further extending the analogy between molecular and colloidal levels of synthetic control. One challenge in the field of colloidal science is the realization of new modes of self-assemble for compositionally distinct nanoparticles. In this work, it was found that Au Co nanoparticle dipole strength could be systematically varied by tuning of AuNP size on CdSe CdS nanorods/tetrapods. (Abstract shortened by ProQuest.).
Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas
NASA Astrophysics Data System (ADS)
Yifat, Yuval; Ackerman, Matthew; Guyot-Sionnest, Philippe
2017-01-01
We report the fabrication of a colloidal quantum dot based photodetector designed for the 3-5 μm mid infrared wavelength range incorporated with optical nano-antenna arrays to enhance the photocurrent. The fabricated arrays exhibit a resonant behavior dependent on the length of the nano-antenna rods, in good agreement with numerical simulation. The device exhibits a three-fold increase in the spectral photoresponse compared to a photodetector device without antennas, and the resonance is polarized parallel to the antenna orientation. We numerically estimate the device quantum efficiency and investigate its bias dependence.
Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots
NASA Astrophysics Data System (ADS)
Eliseev, S. P.; Kurochkin, N. S.; Vergeles, S. S.; Sychev, V. V.; Chubich, D. A.; Argyrakis, P.; Kolymagin, D. A.; Vitukhnovskii, A. G.
2017-05-01
A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S.; Shapiro, B. I.
2015-03-15
The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots ismore » explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.« less
Electronic structure of CdSe-ZnS 2D nanoplatelets
NASA Astrophysics Data System (ADS)
Cruguel, Hervé; Livache, Clément; Martinez, Bertille; Pedetti, Silvia; Pierucci, Debora; Izquierdo, Eva; Dufour, Marion; Ithurria, Sandrine; Aubin, Hervé; Ouerghi, Abdelkarim; Lacaze, Emmanuelle; Silly, Mathieu G.; Dubertret, Benoit; Lhuillier, Emmanuel
2017-04-01
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of cadmium chalcogenides have led to especially well controlled optical features. However, the growth of core shell heterostructures has so far been mostly focused on CdS shells, while more confined materials will be more promising to decouple the emitting quantum states of the core from their external environment. Using k.p simulation, we demonstrate that a ZnS shell reduces by a factor 10 the leakage of the wavefunction into the surrounding medium. Using X-ray photoemission (XPS), we confirm that the CdSe active layer is indeed unoxidized. Finally, we build an effective electronic spectrum for these CdSe/ZnS NPLs on an absolute energy scale which is a critical set of parameters for the future integration of this material into optoelectronic devices. We determine the work function (WF) to be 4.47 eV while the material is behaving as an n-type semiconductor.
Perspective on the prospects of a carrier multiplication nanocrystal solar cell.
Nair, Gautham; Chang, Liang-Yi; Geyer, Scott M; Bawendi, Moungi G
2011-05-11
This article presents a perspective on the experimental and theoretical work to date on the efficiency of carrier multiplication (CM) in colloidal semiconductor nanocrystals (NCs). Early reports on CM in NCs suggested large CM efficiency enhancements. However, recent experiments have shown that CM in nanocrystalline samples is not significantly stronger, and often is weaker, than in the parent bulk when compared on an absolute photon energy basis. This finding is supported by theoretical consideration of the CM process and the competing intraband relaxation. We discuss the experimental artifacts that may have led to the apparently strong CM estimated in early reports. The finding of bulklike CM in NCs suggests that the main promise of quantum confinement is to boost the photovoltage at which carriers can be extracted. With this in mind, we discuss research directions that may result in effective use of CM in a solar cell.
Lu, Haipeng; Brutchey, Richard L.
2017-01-23
Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Haipeng; Brutchey, Richard L.
Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less
NASA Astrophysics Data System (ADS)
Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.
2015-07-01
Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.
Patty, Kira; Sadeghi, Seyed M; Campbell, Quinn; Hamilton, Nathan; West, Robert G; Mao, Chuanbin
2014-09-21
We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.
Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin
2014-01-01
We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide. PMID:25316953
InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.
Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D
2016-10-05
Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.
Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
Liu, Xiangkai; Zhao, Shuangyi; Gu, Wei; Zhang, Yuting; Qiao, Xvsheng; Ni, Zhenyi; Pi, Xiaodong; Yang, Deren
2018-02-14
Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm 2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.
Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna
2018-06-01
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.
Semiconductor quantum wells: old technology or new device functionalities
NASA Astrophysics Data System (ADS)
Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.
2009-08-01
The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.
NASA Astrophysics Data System (ADS)
Kolarczik, Mirco; Ulbrich, Christian; Geiregat, Pieter; Zhu, Yunpeng; Sagar, Laxmi Kishore; Singh, Akshay; Herzog, Bastian; Achtstein, Alexander W.; Li, Xiaoqin; van Thourhout, Dries; Hens, Zeger; Owschimikow, Nina; Woggon, Ulrike
2018-01-01
For possible applications of colloidal nanocrystals in optoelectronics and nanophotonics, it is of high interest to study their response at low excitation intensity with high repetition rates, as switching energies in the pJ/bit to sub-pJ/bit range are targeted. We develop a sensitive pump-probe method to study the carrier dynamics in colloidal PbS/CdS quantum dots deposited on a silicon nitride waveguide after excitation by laser pulses with an average energy of few pJ/pulse. We combine an amplitude modulation of the pump pulse with phase-sensitive heterodyne detection. This approach permits to use co-linearly propagating co-polarized pulses. The method allows resolving transmission changes of the order of 10-5 and phase changes of arcseconds. We find a modulation on a sub-nanosecond time scale caused by Auger processes and biexciton decay in the quantum dots. With ground state lifetimes exceeding 1 μs, these processes become important for possible realizations of opto-electronic switching and modulation based on colloidal quantum dots emitting in the telecommunication wavelength regime.
Stimulated emission and lasing from all-inorganic perovskite quantum dots
NASA Astrophysics Data System (ADS)
Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng
We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.
NASA Astrophysics Data System (ADS)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin
2015-11-01
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.
XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.
2013-04-01
The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rath, Arup K.; Lasanta, Tania; Bernechea, Maria
2014-02-10
Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties,more » carrier lifetime, and mobility, in a facile way.« less
Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I.
2017-07-19
Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdSmore » QDs with two distinct core/shell interfacial profiles (“sharp” versus “smooth”). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. Furthermore, by comparing the measurements on the QDs with the “sharp” versus “smooth” interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. Our findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.« less
Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I
2017-08-22
Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.
Optothermal Manipulations of Colloidal Particles and Living Cells.
Lin, Linhan; Hill, Eric H; Peng, Xiaolei; Zheng, Yuebing
2018-05-25
Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.
NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |
and quantum size effects in semiconductors and carrier dynamics in semiconductor quantum dots and using hot carrier effects, size quantization, and superlattice concepts that could, in principle, enable
Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong
2018-06-19
Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.
Castelli, Andrea; Meinardi, Francesco; Pasini, Mariacecilia; Galeotti, Francesco; Pinchetti, Valerio; Lorenzon, Monica; Manna, Liberato; Moreels, Iwan; Giovanella, Umberto; Brovelli, Sergio
2015-08-12
Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.
Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B
2014-04-18
We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
1999-02-01
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.
A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
Kress, Stephan J. P.; Cui, Jian; Rohner, Patrik; Kim, David K.; Antolinez, Felipe V.; Zaininger, Karl-Augustin; Jayanti, Sriharsha V.; Richner, Patrizia; McPeak, Kevin M.; Poulikakos, Dimos; Norris, David J.
2017-01-01
Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. PMID:28948219
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.
Modular synthesis of a dual metal-dual semiconductor nano-heterostructure
Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; ...
2015-04-29
Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
A Novel Quantum Dots-Based Point of Care Test for Syphilis
NASA Astrophysics Data System (ADS)
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-05-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.
Hole-cyclotron instability in semiconductor quantum plasmas
NASA Astrophysics Data System (ADS)
Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.
2018-01-01
The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.
2016-03-01
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
NASA Astrophysics Data System (ADS)
Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla
2018-02-01
In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
NASA Astrophysics Data System (ADS)
Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng
2017-05-01
This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.
Epitaxy of advanced nanowire quantum devices
NASA Astrophysics Data System (ADS)
Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.
2017-08-01
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
Akselrod, Gleb M.; Weidman, Mark C.; Li, Ying; ...
2016-09-13
Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emissionmore » lifetime is accompanied by high antenna quantum efficiency and directionality. Lastly, this nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.« less
Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu
2018-01-31
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patty, Kira; Campbell, Quinn; Hamilton, Nathan
We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggestsmore » the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.« less
Semiconductor quantum dot scintillation under gamma-ray irradiation.
Létant, S E; Wang, T-F
2006-12-01
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
NASA Astrophysics Data System (ADS)
Tolba, R. E.; El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.
2016-01-01
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com
2016-01-15
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2013-03-01
Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng
2003-01-01
Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.
Navarro-Pardo, Fabiola; Zhao, Haiguang; Wang, Zhiming M; Rosei, Federico
2018-03-20
Semiconductor nanocrystals exhibit size-tunable absorption and emission ranging from the ultraviolet (UV) to the near-infrared (NIR) spectral range, high absorption coefficient, and high photoluminescence quantum yield. Effective surface passivation of these so-called quantum dots (QDs) may be achieved by growing a shell of another semiconductor material. The resulting core/shell QDs can be considered as a model system to study and optimize structure/property relations. A special case consists in growing thick shells (1.5 up to few tens of nanometers) to produce "giant" QDs (g-QDs). Tailoring the chemical composition and structure of CdSe/CdS and PbS/CdS g-QDs is a promising approach to widen the spectral separation of absorption and emission spectra (i.e., the Stokes shift), improve the isolation of photogenerated carriers from surface defects and enhance charge carrier lifetime and mobility. However, most stable systems are limited by a thick CdS shell, which strongly absorbs radiation below 500 nm, covering the UV and part of the visible range. Modification of the interfacial region between the core and shell of g-QDs or tuning their doping with narrow band gap semiconductors are effective approaches to circumvent this challenge. In addition, the synthesis of g-QDs composed of environmentally friendly elements (e.g., CuInSe 2 /CuInS 2 ) represents an alternative to extend their absorption into the NIR range. Additionally, the band gap and band alignment of g-QDs can be engineered by proper selection of the constituents according to their band edge positions and by tuning their stoichiometry during wet chemical synthesis. In most cases, the quasi-type II localization regime of electrons and holes is achieved. In this type of g-QDs, electrons can leak into the shell region, while the holes remain confined within the core region. This electron-hole spatial distribution is advantageous for optoelectronic devices, resulting in efficient electron-hole separation while maintaining good stability. This Account provides an overview of emerging engineering strategies that can be adopted to optimize structure/property relations in colloidal g-QDs for efficient photon management or charge separation/transfer. In particular, we focus on our recent contributions to this rapidly expanding field of research. We summarize the design and synthesis of a variety of colloidal g-QDs with the aim of tuning the optical properties, such as absorption/emission in a wide region of the solar spectrum, which allows enlargement of their Stokes shift. We also describe the band alignment within these systems, charge carrier dynamics, and charge transfer from g-QDs into semiconducting oxides. We show how these tailored g-QDs may be used as active components in luminescent solar concentrators, photoelectrochemical cells for hydrogen generation, QD-sensitized solar cells and optical nanothermometers. In each case, we aim at providing insights on structure/property relationships and on how to optimize them toward improving device performance. Finally, we describe perspectives for future work, sketching new directions and opportunities in this field of research at the intersection between chemistry, physics, materials science and engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation.more » The most significant value of two-photon absorption cross section σ{sub 2} for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ{sub 2}Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.« less
The donor-supply electrode enhances performance in colloidal quantum dot solar cells.
Maraghechi, Pouya; Labelle, André J; Kirmani, Ahmad R; Lan, Xinzheng; Adachi, Michael M; Thon, Susanna M; Hoogland, Sjoerd; Lee, Anna; Ning, Zhijun; Fischer, Armin; Amassian, Aram; Sargent, Edward H
2013-07-23
Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95
NASA Technical Reports Server (NTRS)
Hoffmann, Monica T.
2000-01-01
The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.
Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells
2006-12-31
measurements were made using a BOMEM Fourier-transform infrared spectrometer in conjunction with a continuous flow cryostat. A low- noise current...infrared photodetector ( QWIP ). Quantum well infrared photodetectors are designed from wide bandgap (III-V) semiconductor materials in such a way where...quantum confinement is created. Unlike HgCdTe which utilizes electronic transitions across the fundamental bandgap, QWIPs relies on transitions between
Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.
Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan
2016-01-01
Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2017-02-01
MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I
Dai, Jinfei; Xi, Jun; Li, Lu; Zhao, JingFeng; Shi, Yifei; Zhang, Wenwen; Ran, Chenxin; Jiao, Bo; Hou, Xun; Duan, Xinhua; Wu, Zhaoxin
2018-05-14
Long alkyl-chain capping ligands are indispensable for preparing stable colloidal quantum dots. However, its insulating feature blocks efficient carrier transport among QDs, leading to inferior performance in light-emitting diodes (LEDs). The trade-off between conductivity and colloidal stability of QDs has now been overcome. Methylamine lead bromide (MAPbBr 3 ) QDs with a conjugated alkyl-amine, 3-phenyl-2-propen-1-amine (PPA), as ligands were prepared. Owing to electron cloud overlapping and the delocalization effect of conjugated molecules, the conductivity and carrier mobility of PPA-QDs films increased almost 22 times over that of OA-QD films without compromising colloidal stability and photoluminescence. PPA-QDs LEDs exhibit a maximum current efficiency of 9.08 cd A -1 , which is 8 times of that of OA-QDs LEDs (1.14 cd A -1 ). This work provides critical solution for the poor conductivity of QDs in applications of energy-related devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Michael; Gibson, Ricky; Zandbergen, Sander
Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less
Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...
2016-02-01
Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less
Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.
2016-07-01
The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.
Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...
2015-12-15
Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less
Observation of entanglement between a quantum dot spin and a single photon.
Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A
2012-11-15
Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
Yuan, Mingjian; Voznyy, Oleksandr; Zhitomirsky, David; Kanjanaboos, Pongsakorn; Sargent, Edward H
2015-02-04
The spatial location of the predominant source of performance-limiting recombination in today's best colloidal quantum dot (CQD) cells is identified, pinpointing the TiO2:CQD junction; then, a highly n-doped PCBM layer is introduced at the CQD:TiO2 heterointerface. An n-doped PCBM layer is essential to maintain the depletion region and allow for efficient current extraction, thereby producing a record 8.9% in overall power conversion efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Colloidal quantum dot active layers for light emitting diodes
NASA Astrophysics Data System (ADS)
Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark
2006-07-01
In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.
Optical devices featuring nonpolar textured semiconductor layers
Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua
2013-11-26
A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.
Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N
2016-12-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-10-01
Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.
Electronegativity estimation of electronic polarizabilities of semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn
2010-03-15
On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.
NASA Astrophysics Data System (ADS)
Nötzel, Richard
2009-07-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers that were presented at the special symposium K at the EMRS 2009 Spring Meeting held 8-12 June in Strasbourg, France, which was entitled 'Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II'. Thanks to the broad interest a large variety of quantum dots and quantum wires and related nanostructures and their application in devices could be covered. There was significant progress in the epitaxial growth of semiconductor quantum dots seen in the operation of high-power, as well as mode locked laser diodes and the lateral positioning of quantum dots on patterned substrates or by selective area growth for future single quantum dot based optoelectronic and electronic devices. In the field of semiconductor nanowires high quality, almost twin free structures are now available together with a new degree of freedom for band structure engineering based on alternation of the crystal structure. In the search for Si based light emitting structures, nanocrystals and miniband-related near infrared luminescence of Si/Ge quantum dot superlattices with high quantum efficiency were reported. These highlights, among others, and the engaged discussions of the scientists, engineers and students brought together at the symposium emphasize how active the field of semiconductor nanostructures and their applications in devices is, so that we can look forward to the progress to come. Guest Editor Richard Nötzel COBRA Research Institute Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands Tel.: +31 40 247 2047; fax: +31 40 246 1339 E-mail address: r.noetzel@tue.nl
2011-01-01
Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells. PMID:21711811
Single photon sources with single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei
2014-04-01
In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)
NASA Astrophysics Data System (ADS)
Califano, Marco; Migliorato, Max; Probert, Matt
2012-05-01
These conference proceedings contain the written papers of the contributions presented at the 3rd International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK on 18-20 January 2012. The previous conferences in this series took place in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Tight Binding, Semiempirical Pseudopotential Methods, Effective Mass Models, Empirical Potential Methods and Multiscale Approaches. Topics included, but were not limited to: Optical and Transport Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Graphene, Lasers, Photonic Structures, Photovoltaic and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognised experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several contributions also from representatives of renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Italy, Poland, Denmark, Sweden, Serbia, Greece, etc.), as well as Asia (India) and Africa (Algeria, Tunisia and South Africa). We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Computational Physics group and Semiconductor Physics group), and QuantumWise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Marco Califano (University of Leeds) Max Migliorato (University of Manchester) Matt Probert (University of York) Programme Committee: Stewart Clark (University of Durham) Aldo Di Carlo (University of Rome 'Tor Vergata', Italy) Ben Hourahine (University of Strathclyde) Lev Kantorovich (King's College London) Risto Nieminen (Helsinki University of Technology, Finland) Eoin O'Reilly (Tyndall Institute Cork, Republic of Ireland) Mauro Pereira (Sheffield Hallam University) John Robertson (University of Cambridge) Mervin Roy (University of Leicester) Stanko Tomic (University of Salford) David Whittaker (University of Sheffield) The proceedings were edited and compiled by Marco Califano, Max Migliorato and Matt Probert.
The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Coto-García, Ana María; Fernández-Argüelles, María T.; Costa-Fernández, José M.; Sanz-Medel, Alfredo; Valledor, Marta; Campo, Juan C.; Ferrero, Francisco J.
2013-01-01
It is well-known that ligands coating the surface of luminescent semiconductor nanocrystals (quantum dots [QDs]) play an important role in the preparation, stability and physical properties of the colloidal QDs in both organic and aqueous media. Here we report on the synthesis and characterization of core (CdSe QDs) and core-shell structured QDs (CdSe/ZnS QDs), both of them stabilized in aqueous medium through different mechanisms of modification of their surface chemistry. The approaches evaluated for QDs transfer to aqueous media were ligand exchange and polymer coating. Experiments were performed using two typical thioalkyl acids as ligands, namely mercaptoacetic acid (QDs-MAA) and 2-mercaptoethanesulphonic acid (QDs-MES), and an amphiphilic polymer (PQDs) based on poly(maleic anhydride) functional groups. The effects of pH (buffer solution), illumination and the presence of ions in the QD environment on the spectroscopic properties of the different synthesized QDs are reported. The stability of the prepared QDs has been comparatively evaluated aimed to elucidate which surface chemistry provides the suitable properties to be employed as fluorescence labels in distinct types of applications. The experimental results and conclusions will be useful for the development of sensitive sensors or assays adopting QDs as fluorescence labels.
An All-Solution-Based Hybrid CMOS-Like Quantum Dot/Carbon Nanotube Inverter.
Shulga, Artem G; Derenskyi, Vladimir; Salazar-Rios, Jorge Mario; Dirin, Dmitry N; Fritsch, Martin; Kovalenko, Maksym V; Scherf, Ullrich; Loi, Maria A
2017-09-01
The development of low-cost, flexible electronic devices is subordinated to the advancement in solution-based and low-temperature-processable semiconducting materials, such as colloidal quantum dots (QDs) and single-walled carbon nanotubes (SWCNTs). Here, excellent compatibility of QDs and SWCNTs as a complementary pair of semiconducting materials for fabrication of high-performance complementary metal-oxide-semiconductor (CMOS)-like inverters is demonstrated. The n-type field effect transistors (FETs) based on I - capped PbS QDs (V th = 0.2 V, on/off = 10 5 , S S-th = 114 mV dec -1 , µ e = 0.22 cm 2 V -1 s -1 ) and the p-type FETs with tailored parameters based on low-density random network of SWCNTs (V th = -0.2 V, on/off > 10 5 , S S-th = 63 mV dec -1 , µ h = 0.04 cm 2 V -1 s -1 ) are integrated on the same substrate in order to obtain high-performance hybrid inverters. The inverters operate in the sub-1 V range (0.9 V) and have high gain (76 V/V), large maximum-equal-criteria noise margins (80%), and peak power consumption of 3 nW, in combination with low hysteresis (10 mV). © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-09-01
MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection by Fred
Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G
2018-05-09
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
2011-01-01
Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films
Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.
2013-01-01
Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282
Zhang, Yaohong; Wu, Guohua; Ding, Chao; Liu, Feng; Yao, Yingfang; Zhou, Yong; Wu, Congping; Nakazawa, Naoki; Huang, Qingxun; Toyoda, Taro; Wang, Ruixiang; Hayase, Shuzi; Zou, Zhigang; Shen, Qing
2018-06-18
Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( V oc ) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI 2 -capped PbSe (PbSe-PbI 2 ) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI 2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm 2 ) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a V oc of 0.616 V, which is the highest V oc among PbSe CQDSCs reported to date.
A dual-colored bio-marker made of doped ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.
2008-08-01
Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.
Directional Emission from Dielectric Leaky-Wave Nanoantennas
NASA Astrophysics Data System (ADS)
Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan
2017-07-01
An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.
2014-01-01
We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877
Near-unity quantum yields from chloride treated CdTe colloidal quantum dots
Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...
2014-10-27
Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Toshihiro, E-mail: nakamura@el.gunma-u.ac.jp; Watanabe, Kanta; Adachi, Sadao
2016-01-11
We reported the preparation of bright and multicolor luminescent colloidal Si nanocrystal (Si-nc) by pulsed UV laser irradiation to porous Si (PSi) in an organic solvent. The different-luminescence-color (different-sized) colloidal Si-nc was produced by the pulsed laser-induced fragmentation of different-sized porous nanostructures. The colloidal Si-nc samples were found to have higher photoluminescence quantum efficiencies (20%–23%) than the PSi samples (1%–3%). The brighter emission of the colloidal Si-nc was attributed to an enhanced radiative band-to-band transition rate due to the presence of a surface organic layer formed by UV laser-induced hydrosilylation.
Size-dependent optical properties of colloidal PbS quantum dots.
Moreels, Iwan; Lambert, Karel; Smeets, Dries; De Muynck, David; Nollet, Tom; Martins, José C; Vanhaecke, Frank; Vantomme, André; Delerue, Christophe; Allan, Guy; Hens, Zeger
2009-10-27
We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems.
Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar
2015-09-15
Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottkymore » diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.« less
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
Semiconductor quantum dot-sensitized solar cells.
Tian, Jianjun; Cao, Guozhong
2013-10-31
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.
Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang
2017-03-08
Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.
NASA Astrophysics Data System (ADS)
Liu, Xiangming; Tomita, Yasuo; Oshima, Juro; Chikama, Katsumi; Matsubara, Koutatsu; Nakashima, Takuya; Kawai, Tsuyoshi
2009-12-01
We report on the fabrication of centimeter-size transmission Bragg gratings in semiconductor CdSe quantum dots dispersed 50 μm thick photopolymer films. This was done by holographic assembly of CdSe quantum dots in a photopolymerizable monomer blend. Periodic patterning of CdSe quantum dots in polymer was confirmed by a fluorescence microscope and confocal Raman imaging. The diffraction efficiency from the grating of 1 μm spacing was near 100% in the green with 0.34 vol % CdSe quantum dots, giving the refractive index modulation as large as 5.1×10-3.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials
NASA Astrophysics Data System (ADS)
Saha, Bivas; Shakouri, Ali; Sands, Timothy D.
2018-06-01
Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.
GaN/NbN epitaxial semiconductor/superconductor heterostructures.
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep
2018-03-07
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
Pavlopoulos, Nicholas G.; Dubose, Jeffrey T.; Hartnett, Erin D.; ...
2016-07-26
We report on a versatile synthetic m-shell nanoparticles (NPs) in the backbone, along with semiconductor CdSe@CdS nanorod (NR), or tetrapod (TP) side chain groups. A seven-step colloidal total synthesis enabled the synthesis of well-defined colloidal comonomers composed of a dipolar Au@CoNP attached to a single CdSe@CdS NR, or TP, where magnetic dipolar associations between Au@CoNP units promoted the formation of colloidal co- or terpolymers. The key step in this synthesis was the ability to photodeposit a single AuNP tip onto CdSe@CdS NR or TP that enables selective seeding of a dipolar CoNP onto the AuNP seed. In conclusion, we showmore » that the variation of the AuNP size directly controlled the size and dipolar character of the CoNP tip, where the size modulation of the Au and Au@CoNP tips is analogous to control of comonomer reactivity ratios in classical copolymerization processes.« less
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...
2016-02-16
Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II–VI nanocrystals.« less
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.
Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W
2015-01-01
Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.
Tuneable photonic device including an array of metamaterial resonators
Brener, Igal; Wanke, Michael; Benz, Alexander
2017-03-14
A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.
NASA Astrophysics Data System (ADS)
Hussain, S.; Mahmood, S.
2018-01-01
Low frequency magnetosonic wave excitations are investigated in semiconductor hole-electron plasmas. The quantum mechanical effects such as Fermi pressure, quantum tunneling, and exchange-correlation of holes and electrons in the presence of the magnetic field are considered. The two fluid quantum magnetohydrodynamic model is used to study magnetosonic wave dynamics, while electric and magnetic fields are coupled via Maxwell equations. The dispersion relation of the magnetosonic wave in electron-hole semiconductor plasma propagating in the perpendicular direction of the magnetic field is obtained, and its dispersion effects are discussed. The Korteweg-de Vries equation (KdV) for magnetosonic solitons is derived by employing the reductive perturbation method. For numerical analysis, the plasma parameters are taken from the semiconductors such as GaAs, GaSb, GaN, and InP already existing in the literature. It is found that the phase velocity of the magnetosonic wave is increased with the inclusion of exchange-correlation force in the model. The soliton dip structures of the magnetosonic wave in GaN semiconductor plasma are obtained, which satisfy the quantum plasma conditions for electron and hole fluids. The magnetosonic soliton dip structures move with speed less than the magnetosonic wave phase speed in the lab frame. The effects of exchange-correlation force in the model and variations of magnetic field intensity and electron/hole density on the magnetosonic wave dip structures are also investigated numerically for illustration.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke
2016-03-01
The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.
Sculpting oscillators with light within a nonlinear quantum fluid
NASA Astrophysics Data System (ADS)
Tosi, G.; Christmann, G.; Berloff, N. G.; Tsotsis, P.; Gao, T.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.
2012-03-01
Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into quantum fluids, producing rich physical phenomena as well as proven potential for interferometric devices. However, direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid-state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room-temperature quantum states that exhibit superfluid behaviour. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualize the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially separated pump spots. Although oscillating at tunable THz frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid-state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton-condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.
Direct photonic coupling of a semiconductor quantum dot and a trapped ion.
Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M
2015-03-27
Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.
Fine structure and optical pumping of spins in individual semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.
2008-11-01
We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.
Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Shape-shifting colloids via stimulated dewetting
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-01-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418
Shape-shifting colloids via stimulated dewetting
NASA Astrophysics Data System (ADS)
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-07-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
NASA Astrophysics Data System (ADS)
Bayramov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Sprung, C.; Lipsanen, H. K.; Bairamov, B. Kh.
2018-01-01
Results of studying nanocrystalline nc-Si/SiO2 quantum dots (QDs) functionalized by short oligonucleotides show that complexes of isolated crystalline semiconductor QDs are unique objects for detecting the manifestation of new quantum confinement phenomena. It is established that narrow lines observed in high-resolution spectra of inelastic light scattering can be used for determining the characteristic time scale of vibrational excitations of separate nucleotide molecules and for studying structural-dynamic properties of fast oscillatory processes in biomacromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in; Kaur, Gurvir
2015-08-28
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
Synthesis and Characterization of Quantum Dots: A Case Study Using PbS
ERIC Educational Resources Information Center
Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.
2015-01-01
A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…
Electric currents induced by twisted light in Quantum Rings.
Quinteiro, G F; Berakdar, J
2009-10-26
We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.
Interpretation of quantum yields exceeding unity in photoelectrochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarczyk, M.; Allen, R.E.
1986-10-20
In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
The initial pump-probe polarization anisotropy of colloidal PbS quantum dots
Park, Samuel; Baranov, Dmitry; Ryu, Jisu; ...
2016-07-20
Pump-probe polarization anisotropy measurements with 15 fs pulses are employed to investigate the electronic structure of PbS quantum dots. Here, the initial anisotropy at the bandgap is anomalously low (<0.1) and suggests large electronic couplings.
Wavelength-resonant surface-emitting semiconductor laser
Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.
1989-01-01
A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.
Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J
2009-09-22
Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.
Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.
Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A
2014-04-01
Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.
Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans
2014-11-12
A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.
Diamagnetic excitons and exciton magnetopolaritons in semiconductors
NASA Astrophysics Data System (ADS)
Seisyan, R. P.
2012-05-01
Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.
Stable colloids in molten inorganic salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.
2017-02-15
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solventsmore » with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.« less
Experimental researches on quantum transport in semiconductor two-dimensional electron systems
Kawaji, Shinji
2008-01-01
The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299
GaN/NbN epitaxial semiconductor/superconductor heterostructures
NASA Astrophysics Data System (ADS)
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep
2018-03-01
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
Growth of MPS-capped ZnS quantum dots in self-assembled thin films: Influence of heat treatment
NASA Astrophysics Data System (ADS)
Koç, Kenan; Tepehan, Fatma Zehra; Tepehan, Galip Gültekin
2015-12-01
The colloidal ZnS quantum dots (QDs) were prepared using 3-mercaptopropyltrimethoxysilane (MPS) molecules. Sol-gel spin coating method was used to deposit the colloidal nanoparticles on a glass substrate. Several features of the MPS were made use to produce self assembled thin films of ZnS quantum dots in a SiO2 network. Produced films were heat treated in between 225 °C and 325 °C to investigate their growth kinetics. The result showed that their size changed approximately from 3 nm to 4 nm and the first excitation peak position changed from 4.6 eV to 4.1 eV in this temperature interval. The activation energy of the nanoparticles for the Ostwald ripening process was found to be 59 kJ/mol.
Synthesis and characterization of surface-modified colloidal CdTe Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajh, T.; Micic, O.I.; Nozik, A.J.
1993-11-18
The controlled synthesis of quantized colloidal CdTe nanocrystals (in aqueous solutions) with narrow size distributions and stabilized against rapid oxidation was achieved by capping the quantum dot particles with 3-mercapto-1,2-propanediol. Nanocrystals (i.e., quantum dots) with mean diameters of 20, 25, 35, and 40 A were produced. Optical absorption spectra showed strong excitonic peaks at the smallest size; the absorption coefficient was shown to follow an inverse cube dependence on particle diameter, while the extinction coefficient per particle remained constant. The quantum yield for photoluminescence increased with decreasing particle size and reached 20% at 20 A. The valence band edges ofmore » the CdTe quantum dots were determined by pulse radiolysis experiments (hole injection from oxidizing radicals); the bandgaps were estimated from pulse radiolysis data (redox potentials of hole and electron injecting radicals) and from the optical spectra. The dependence of the CdTe bandgap on quantum dot size was found to be much weaker than predicted by the effective mass approximation; this result is consistent with recently published theoretical calculations by several groups. 36 refs., 5 figs., 1 tab.« less
Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki
2016-10-02
Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
NASA Astrophysics Data System (ADS)
Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit
2018-03-01
Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.
Wu, Hao; Li, Ming; Zhong, Li; Luo, Yuan Yuan; Li, Guang Hai
2016-12-05
Amorphous VO 2 (a-VO 2 ) colloids were synthesized by electrochemical anodic oxidation of metallic vanadium. It was found that the a-VO 2 colloids have a cotton-like morphology composed of very small clusters, and that the crystallization temperature of the a-VO 2 colloids can be adjusted either by the electrolyte of the anodic oxidation or/and the dispersion agent of the colloids. VO 2 (M) nanoparticles (NPs) (and a NP film) with an average size of about 50 nm can be obtained by a rapid thermal annealing of the a-VO 2 colloids at 310 °C under air, which is beneficial for practical applications. The VO 2 (M) NP film shows an obvious metal-semiconductor transition with a resistance less than 10 Ω in the metallic state. An integral visible transmittance of 40.7 %, a solar transmittance modulation of 9.4 %, and a resistance modulation in the order of 5×10 4 were realized in the VO 2 (M) NP film. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications.
Nanda, Sitansu Sekhar; Kim, Min Jik; Kim, Kwangmeyung; Papaefthymiou, Georgia C; Selvan, Subramanian Tamil; Yi, Dong Kee
2017-11-01
Quantum confinement in inorganic semiconductor nanocrystals produces brightly luminescent nanoparticles endowed with unique photo-physical properties, such as tunable optical properties. These have found widespread applications in nanotechnology. The ability to render such nanostructures biocompatible, while maintaining their tunable radiation in the visible range of the electromagnetic spectrum, renders them appropriate for bio-applications. Promising in vitro and in vivo diagnostic applications have been demonstrated, such as fluorescence-based detection of biological interactions, single molecule tracking, multiplexing and immunoassaying. In particular, these fluorescent inorganic semiconductor nanocrystals, generally known as quantum dots, have the potential of remarkable immunobiological applications. This review focuses on the current status of biocompatible quantum dots and their applications in immunobiology - immunosensing, immunofluorescent imaging and immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Infrared emitting device and method
Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.
1997-04-29
The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.
Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi
2009-02-05
We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.
PREFACE: 4th Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIV)
NASA Astrophysics Data System (ADS)
Tomić, Stanko; Probert, Matt; Migliorato, Max; Pal, Joydeep
2014-06-01
These conference proceedings contain the written papers of the contributions presented at the 4th International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the MediaCityUK, University of Salford, Manchester, UK on 22-24 January 2014. The previous conferences in this series took place in 2012 at the University of Leeds, in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-performance computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Semi-empirical Electronic Structure Methods, Multi-scale Approaches, Modelling of PV devices, Electron Transport, and Graphene. Topics included, but were not limited to: Optical Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Photonic Structures, and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognized experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several contributions also from representatives of renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Switzerland, Luxemburg, Norway, Italy, Poland, Denmark, Sweden, Serbia, etc.), as well as Asia (Iran, Japan) and USA. We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Semiconductor Physics Group and Computational Physics Group), EPSRC-UK, the CECAM UK-Hartree Node, CCP9, and Quantum Wise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Stanko Tomić (Chair, University of Salford) Matt Probert (University of York) Max Migliorato (University of Manchester) Joydeep Pal (University of Manchester) Programme Committee: David Whittaker (University of Sheffield, UK) John Robertson (University of Cambridge, UK) Risto Nieminen (Helsinki University of Technology Finland) Eoin O'Reilly (Tyndall Institute Cork Republic of Ireland) Marco Califano (University of Leeds, UK) Stewart Clark (University of Durham, UK) Stanko Tomić (University of Salford, UK) Mauro Pereira (Sheffield Hallam University, UK) Aldo Di Carlo (University of Rome ''Tor Vergata,'' Italy) Lev Kantorovich (King's College London, UK) Mervin Roy (University of Leicester, UK) Ben Hourahine (University of Strathclyde, UK) Rita Magri (University of Modena and Reggio Emilia, Italy) Zoran Ikonic (University of Leeds) John Barker (University of Glasgow) The proceedings were edited and compiled by Joydeep Pal, Max Migliorato and Stanko Tomić.
NASA Astrophysics Data System (ADS)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas
2009-08-01
The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.
Theory of few photon dynamics in light emitting quantum dot devices
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas
2009-10-01
We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.
NASA Astrophysics Data System (ADS)
Ivanov, Alexei L.
2004-09-01
The EU Research Training Network `Photon-Mediated Phenomena in Semiconductor Nanostructures' (HPRN-CT-2002-00298) comprises seven teams from across Europe: Cambridge, Cardiff, Dortmund, Heraklion, Grenoble, Lund and Paderborn (for details see the Network website http://www.astro.cardiff.ac.uk/research/PMPnetwork/index.html). The first workshop of the Network was held at Gregynog Hall, a conference centre in the beautiful countryside of mid-Wales. There were 44 participants who attended the meeting (7 from France, 2 from Japan, 3 from Germany, 1 from Greece, 2 from Russia, 3 from Sweden, 23 from UK and 3 from USA). Of these, 57% were students and young postdoctoral research associates. The talks presented at the meeting were mainly devoted to linear and nonlinear optics of semiconductor nanostructures. Thus the review and research papers included in this special issue of Journal of Physics: Condensed Matter deal with the exciton-mediated optical phenomena in semiconductor quantum wires, quantum wells, planar and spherical microcavities and self-assembled quantum dots. The specific topics covered by the proceedings are exciton-mediated optics, including lasing, of semiconductor quantum wires Bose-Einstein condensation of excitons and microcavity polaritons diffusion, thermalization and photoluminescence of free carriers and excitons in GaAs coupled quantum wells polaritons in semiconductor microcavities exciton-mediated optics of semiconductor photonic dots optical nonlinearities of biexciton waves optics of self-assembled quantum dots photosensitive metal oxides films On the first day of the workshop, a special session on presentation skills, lead by Mike Edmunds, was organized for the young researchers. The meeting concluded with a round-table discussion at which key questions on research, organization and management of the Network were identified and discussed. The second workshop of the Network, organized and chaired by George Kiriakidis, took place at Hersonissos (Crete, Greece) in October 2003. The forthcoming third workshop, organized by Detlef Schikora and Ulrike Woggon, will be held in Paderborn (conference part) and Dortmund (training part) from 4 October 4 through 7 October 2004 (for details visit the Network website). Finally, I would like to thank my colleagues, Celestino Creatore, Nikolay Nikolaev, Lois Smallwood and Andrew Smith, for their help with preparation of the Proceedings.
High-performance semiconductor quantum-dot single-photon sources
NASA Astrophysics Data System (ADS)
Senellart, Pascale; Solomon, Glenn; White, Andrew
2017-11-01
Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.
Quantum weak turbulence with applications to semiconductor lasers
NASA Astrophysics Data System (ADS)
Lvov, Yuri Victorovich
Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.
Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Beberwyck, Brandon James
Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be made for its adoption as a routine synthetic approach.
Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots
Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan; ...
2018-05-07
Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less
Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan
Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less
Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants
NASA Astrophysics Data System (ADS)
Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A.; Brovelli, Sergio
2018-02-01
Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in iii-v and ii-vi nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.
Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.
Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E
2004-04-09
We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots
NASA Astrophysics Data System (ADS)
Mongin, Cédric; Moroz, Pavel; Zamkov, Mikhail; Castellano, Felix N.
2018-02-01
The generation and transfer of triplet excitons across semiconductor nanomaterial-molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet-triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state 'reservoir' that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet-triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot-molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.
Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Fan, Hongyou; Brener, Igal
2015-09-01
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. Duringmore » the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.« less
Charge regulation at semiconductor-electrolyte interfaces.
Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N
2015-07-01
The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.
Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel
2018-04-25
Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.
Colloidal inorganic nanocrystals: Nucleation, growth and biological applications
NASA Astrophysics Data System (ADS)
Lynch, Jared James
Colloidal inorganic nanocrystals are a class of material whose size ranges from a few nanometers to a hundred nanometers in dimension. These nanocrystals have size dependent properties that differ significantly from the bulk material counterparts. Due to their unique physical properties colloidal inorganic nanocrystals have several promising applications in a diverse range of areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents the study of the formation of iron oxide nanocrystals under the influence of solvent and Ar gas bubbles, the phase transfer of metal oxide nanocrystals into water using inorganic ions, and the doping of semiconductor CdS/ZnS core/shell nanocrystals with copper and silver ions. First, the formation of iron oxide nanocrystals is investigated in the presence of boiling solvent or Ar bubbles. Using a non-injection based synthesis method, the thermal decomposition of iron oleate was studied under various reaction conditions, and the role of the bubbles on the nucleation and growth of iron oxide nanocrystals was determined. Kinetics studies were used to elucidate how latent heat transfer from the bubbles allows for "active monomers" to form preferentially from exothermic reactions taking place during nucleation. General insights into colloidal inorganic nanocrystal formation are discussed. Second, a non-injection based synthesis for CdS/ZnS core/shell nanocrystals is used to make high quality semiconductor particles which are intentionally doped with Cu or Ag ions. The Ag ions effect on the optical properties of the CdS/ZnS nanocrystals is investigated. The absorption and fluorescence of the samples is measured as a function of time and temperature. Proposed mechanisms for the observations are given and thoroughly discussed. Comparisons between previous results for Cu doped CdS/ZnS nanocrystals are also made to further understand how doping of semiconductor nanocrystals can be realized. Finally, a novel phase transfer process is demonstrated using inorganic salts, such as sodium arsenite, to make water soluble metal oxide nanocrystals. The water soluble iron oxide nanocrystals are fully characterized by several complementary techniques and then used in cellular studies. The arsenite-coated iron oxide composite nanocrystals (AICN) are shown to be effective cancer therapy agents.
Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes
NASA Astrophysics Data System (ADS)
Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.
Narrowband Light Detection via Internal Quantum Efficiency Manipulation of Organic Photodiodes
Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; ...
2015-02-01
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (inputmore » filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors.« less
Hybrid quantum-classical modeling of quantum dot devices
NASA Astrophysics Data System (ADS)
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
NASA Astrophysics Data System (ADS)
Lee, Woojin; Park, Seongho; Murayama, Akihiro; Lee, Jong-soo; Kyhm, Kwangseuk
2018-06-01
We have synthesized ZnSe/CdS core/shell type-II colloidal quantum dots, where an electron and a hole are separated in the CdS shell and the ZnSe core, respectively. Our theoretical model has revealed that absorbance spectrum of bare ZnSe quantum dots in 2 nm radius becomes broadened with a large redshift (∼1.15 eV) when the electron in ZnSe core is separated by 3.2 nm CdS shell. Also, we found that our type-II QDs are insensitive to an external magnetic field up to 5 T in terms of central emission energy, degree of polarization, and photoluminescence decay time. This can be attributed to the electron–hole charge separation in a type-II structure, whereby the suppressed exchange interaction gives rise to a magnetic insensitivity with a small energy difference between the bright and dark exciton states.
Development of transition metal dichalcogenide based quantum dots for light emitting diodes
NASA Astrophysics Data System (ADS)
Seth, Subhashree; Sharma, S. K.
2018-05-01
Photoluminescent quantum dots (QDs) were synthesized by facile colloidal chemical route. Its properties were characterized and analysed by utilizing Fluorescence, FTIR and UV-Vis spectrophotometers. The resultant MoS2 QD exhibits fluorescence at 470 nm for excitation wavelength 400 nm. The as prepared sample exhibits excitation dependent emission due to polydispersion of MoS2 in the dispersive medium which is the characteristics of colloidal synthesis. It is also observed that resultant MoS2 QDs show size tunable emission in the visible region. The FTIR spectrum confirms the attachment of oleic acid on the surface of MoS2. Absorption spectrum shows a band at 346 nm and a shoulder band at 400 nm. The band gap of quantum dots was obtained as 3.5 eV. CIE diagram indicates the shifting of colour coordinates towards green region with increasing excitation wavelength.
NASA Astrophysics Data System (ADS)
Mansur, Alexandra A. P.; Mansur, Herman S.; Caires, Anderson J.; Mansur, Rafael L.; Oliveira, Luiz C.
2017-07-01
Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal laser scanning fluorescence microscopy. Moreover, these conjugates presented photocatalytic activity for photodegradation of methylene blue used as model organic industrial pollutant in water. Hence, composition-tunable optical properties of ternary Zn x Cd1 - x S ( x = 0-1) fluorescent alloyed QDs was achieved using a facile eco-friendly aqueous processing route, which can offer promising alternatives for developing innovative nanomaterials for applications in nanomedicine and environmental science and technology.
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju
2017-08-21
Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.
Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu
2014-04-01
A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.
MURI Center for Photonic Quantum Information Systems
2009-10-16
conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity
Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye
2013-10-11
One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonequilibrium Langevin approach to quantum optics in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Portolan, S.; di Stefano, O.; Savasta, S.; Rossi, F.; Girlanda, R.
2008-01-01
Recently, the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here, we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the nonequilibrium quantum Langevin approach for open systems applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multitime correlation functions which are key quantities in quantum optics. As a first application, we analyze the buildup of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon-induced scattering.
NASA Astrophysics Data System (ADS)
Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo
2018-07-01
More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V
2011-07-13
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.
Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles
2014-11-07
Theoretical studies of spin- photon entangled complementarity”. Mr. Anderson Hayes in physics finished B.S. degree in May 2013 with a capstone thesis entitled...working on “Semiconductor quantum dots and photon entanglement ”. Mr. Quinn Allen Hailes, undergraduate student in physics completed B.S. degree in...great interests for the Department of Defense’s (DoD) photonic applications. Our research focused on developing and characterizing advanced optical
Quantum Dots Based Rad-Hard Computing and Sensors
NASA Technical Reports Server (NTRS)
Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.
2001-01-01
Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.
2017-06-01
Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.
Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.
Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet
2011-04-26
Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Gate-controlled electromechanical backaction induced by a quantum dot
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi
2016-04-01
Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng
2017-09-26
Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.
Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices
NASA Astrophysics Data System (ADS)
Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.
2012-06-01
In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Infrared emitting device and method
Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.
1997-01-01
An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
NASA Astrophysics Data System (ADS)
Ma, Nan; Jena, Debdeep
2015-03-01
In this work, the consequence of the high band-edge density of states on the carrier statistics and quantum capacitance in transition metal dichalcogenide two-dimensional semiconductor devices is explored. The study questions the validity of commonly used expressions for extracting carrier densities and field-effect mobilities from the transfer characteristics of transistors with such channel materials. By comparison to experimental data, a new method for the accurate extraction of carrier densities and mobilities is outlined. The work thus highlights a fundamental difference between these materials and traditional semiconductors that must be considered in future experimental measurements.
NASA Astrophysics Data System (ADS)
Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico
2017-06-01
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency range of a silicon complementary metal-oxide-semiconductor quantum processor to be within 1 and 100 GHz. Such constraint limits the feasibility of fault-tolerant quantum information processing with complementary metal-oxide-semiconductor technology only to the most advanced nodes. The compatibility with classical complementary metal-oxide-semiconductor control circuitry is discussed, focusing on the cryogenic complementary metal-oxide-semiconductor operation required to bring the classical controller as close as possible to the quantum processor and to enable interfacing thousands of qubits on the same chip via time-division, frequency-division, and space-division multiplexing. The operation time range prospected for cryogenic control electronics is found to be compatible with the operation time expected for qubits. By combining the forecast of the development of scaled technology nodes with operation time and classical circuitry constraints, we derive a maximum quantum information density for logical qubits of 2.8 and 4 Mqb/cm2 for the 10 and 7-nm technology nodes, respectively, for the Steane code. The density is one and two orders of magnitude less for surface codes and for concatenated codes, respectively. Such values provide a benchmark for the development of fault-tolerant quantum algorithms by circuital quantum information based on silicon platforms and a guideline for other technologies in general.
NASA Astrophysics Data System (ADS)
Ovchinnikov, O. V.; Smirnov, M. S.; Shapiro, B. I.; Dedikova, A. O.; Shatskikh, T. S.
2015-11-01
We have found spectroscopic manifestations of hybrid association in mixtures of CdS colloidal quantum dots with an average size of 2.5-4.2 nm with J-aggregates of pyridinium salt of the 3,3'-di-(γ- sulfopropyl)-9-ethyl-4,5,4',5'-dibenzo-thiacarbocyanine betaine dye that were prepared by the sol-gel method in gelatin. Observed changes of the spectral properties of J-aggregates of dye molecules due to their hybrid association with CdS quantum dots are ensured by steric transformations of dye molecules, which lead to the formation of luminescent trans-J-aggregates. The hybrid association is accompanied by the quenching of the recombination luminescence band of CdS quantum dots (540-640 nm) and by an increase in the luminescence intensity of J-aggregates of dye molecules (670-680 nm). This regularity becomes enhanced with an increase in the ratio of the number of dye molecules to the number of quantum dots [ n dye]: [ n QD] and in the degree of overlap between the luminescence spectrum of quantum dots and the absorption spectrum of J-aggregates, which indicates that there is a resonant nonradiative transfer of the electronic excitation energy from recombination luminescence centers in CdS quantum dots to trans-J-aggregates of dye molecules conjugated to them.
Colloidal quantum dot solar cells exploiting hierarchical structuring.
Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H
2015-02-11
Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.
Efficient Carrier Multiplication in Colloidal Silicon Nanorods
Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...
2017-08-01
In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)
2006-01-01
Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.
Surface plasmon oscillations in a semi-bounded semiconductor plasma
NASA Astrophysics Data System (ADS)
M, SHAHMANSOURI; A, P. MISRA
2018-02-01
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.
Copper oxide thin films anchored on glass substrate by sol gel spin coating technique
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha
2018-05-01
Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.
Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas
2016-02-17
Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.
NASA Astrophysics Data System (ADS)
Smalyukh, Ivan I.
2018-03-01
Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.
Semiconductor devices for entangled photon pair generation: a review
NASA Astrophysics Data System (ADS)
Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara
2017-07-01
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
Fabrication of large binary colloidal crystals with a NaCl structure
Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.
2009-01-01
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259
Lasing from colloidal InP/ZnS quantum dots.
Gao, Shuai; Zhang, Chunfeng; Liu, Yanjun; Su, Huaipeng; Wei, Lai; Huang, Tony; Dellas, Nicholas; Shang, Shuzhen; Mohney, Suzanne E; Wang, Jingkang; Xu, Jian
2011-03-14
High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size over a broad range of the spectrum. Moreover, the optical gain profile of InP/ZnS NQDs was matched to the second order feedback of holographic polymer-dispersed liquid crystal gratings, leading to the very first demonstration of an optically-pumped, nanocrystal laser based on InP/ZnS core-shell NQDs.
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on
Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)
2013-01-01
resonant modulation of semiconductor lasers beyond relaxation oscillation frequency,” Appl. Phys. Lett., 63, 1459–1461 (1993). [26] J. Helms and K. Petermann ...5, 4–6 (1993). [28] K. Petermann , “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Elec- tron., 1, 480–489
Electron gas grid semiconductor radiation detectors
Lee, Edwin Y.; James, Ralph B.
2002-01-01
An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.
Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots
NASA Astrophysics Data System (ADS)
Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri
2015-11-01
Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a
Luminescence and transient lifetime studies for energy transfer of PbS QD films
NASA Astrophysics Data System (ADS)
Wang, Joanna S.; Ullrich, Bruno; Dass, Chandriker K.; Das, Anirban; Wai, Chien M.; Brown, Gail J.; Hendrickson, Joshua R.
2017-08-01
Quantum confined semiconductor materials in colloidal form have drawn great attention in scientific communities due to the size-tunability, which controls their optical properties. PbS quantum dots (QDs) are exciting candidates for quantum optics, particularly due to the control of the QD sizes during the synthetic process enabling the realization of precisely tunable emission properties in the near-infrared region. Differently sized pairs of PbS QDs were deposited onto glass substrates to form thin films using supercritical CO2 (sc-CO2) deposition and solvent deposition methods (SDM). The fluorescence and photoluminescence (PL) spectra obtained from these closely packed films prepared by the sc-CO2 method reveal effective Förster resonance energy transfer (FRET) between two different sized dots, while the films composed of three different QD sizes show an even more effective FRET from the smallest to the largest ones. Energy transfer can be observed more directly by temporally resolved PL decay of mixed dots. By means of transient lifetime measurements, a mixed PbS film with 3.1 and 4.7 nm QDs was studied for FRET by time correlated single photon counting. The PL peak of the 3.1 nm QDs is quenched with respect to the emission of the 4.7 nm QDs and decays faster, and the best fit for the lifetime (decay constant)-1 is a biexponential decay mode. The long wavelength decay (4.7 nm QDs) is best fit by a mono-exponential equation. More theoretical and experimental work is required for a thorough understanding of the radiative lifetimes of PbS QDs in mixed QD systems.
interdisciplinary fields of photoelectrochemistry, semiconductor-molecule interfaces, quantum size effects, electron photoelectrochemistry (hot carrier effects, size quantization effects, superlattice electrodes, quantum dot solar cells
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
Reduction of CO2 to C1 products and fuel
Mill, T.; Ross, D.
2002-01-01
Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.
Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2017-06-22
A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.
Semiconductor Quantum Dots with Photoresponsive Ligands.
Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume
2016-10-01
Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.
Microwave-Driven Coherent Operation of a Semiconductor Quantum Dot Charge Qubit
2015-02-16
indicating that understanding high frequency charge noise as well as charge relaxation at the sweet spot will be important for further development. The...Microwave-driven coherent operation of a semiconductor quantum dot charge qubit Dohun Kim,1 D. R. Ward,1 C. B. Simmons,1 John King Gamble,2 Robin...University of Wisconsin-Madison, Madison, WI 53706, USA A most intuitive realization of a qubit is a sin- gle electron charge sitting at two well -defined
Computational models for the berry phase in semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.
2014-10-06
By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.
NASA Astrophysics Data System (ADS)
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
2013-02-01
edge-emitting strained InxGa1−xSb/AlyGa1−ySb quantum well struc- tures using solid-source molecular beam epitaxy (MBE) with varying barrier heights...intersubband quantum wells. The most common high-power edge-emitting semiconductor lasers suffter from poor beam quality, due primarily to the linewidth...reduces the power scalability of semiconductor lasers. In vertical cavity surface emitting lasers ( VCSELs ), light propagates parallel to the growth
Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures
NASA Astrophysics Data System (ADS)
Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep
2017-08-01
Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals
2010-01-01
Solution-processed semiconductors are seen as a promising route to reducing the cost of the photovoltaic device manufacture. We are reporting a single-layer Schottky photovoltaic device that was fabricated by spin-coating intrinsic silicon nanocrystals (Si NCs) from colloidal suspension. The thin-film formation process was based on Si NCs without any ligand attachment, exchange, or removal reactions. The Schottky junction device showed a photovoltaic response with a power conversion efficiency of 0.02%, a fill factor of 0.26, short circuit-current density of 0.148 mA/cm2, and open-circuit voltage of 0.51 V. PMID:20676200
Unbound states in quantum heterostructures
Bastard, G
2006-01-01
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Topological protection of multiparticle dissipative transport
NASA Astrophysics Data System (ADS)
Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.
2016-06-01
Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.
NASA Technical Reports Server (NTRS)
Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.
2000-01-01
Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.
NASA Astrophysics Data System (ADS)
Magaryan, K. A.; Eremchev, I. Y.; Karimullin, K. R.; Knyazev, M. V.; Mikhailov, M. A.; Vasilieva, I. A.; Klimusheva, G. V.
2015-09-01
Luminescence spectra of the colloidal solution of CdSe quantum dots (in toluene) were studied in a wide range of low temperatures. Samples were synthesized in the liquid crystal matrix of cadmium octanoate (CdC8). A comparative analysis of the obtained data with previous results was performed.
Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.
Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike
2015-08-12
We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.
Quantum ballistic transport in strained epitaxial germanium
NASA Astrophysics Data System (ADS)
Gul, Y.; Holmes, S. N.; Newton, P. J.; Ellis, D. J. P.; Morrison, C.; Pepper, M.; Barnes, C. H. W.; Myronov, M.
2017-12-01
Large scale fabrication using Complementary Metal Oxide Semiconductor compatible technology of semiconductor nanostructures that operate on the principles of quantum transport is an exciting possibility now due to the recent development of ultra-high mobility hole gases in epitaxial germanium grown on standard silicon substrates. We present here a ballistic transport study of patterned surface gates on strained Ge quantum wells with SiGe barriers, which confirms the quantum characteristics of the Ge heavy hole valence band structure in 1-dimension. Quantised conductance at multiples of 2e2/h is a universal feature of hole transport in Ge up to 10 × (2e2/h). The behaviour of ballistic plateaus with finite source-drain bias and applied magnetic field is elucidated. In addition, a reordering of the ground state is observed.
Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique
Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N
2006-01-01
An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.
NASA Astrophysics Data System (ADS)
Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark
2017-10-01
Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.
NASA Astrophysics Data System (ADS)
Saha, Dipika; Negi, Devendra P. S.
2018-01-01
The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application
NASA Astrophysics Data System (ADS)
Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini
2018-02-01
High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.
Min, Kyungtaek; Jung, Hyunho; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Hwang, Sung Woo; Jeon, Heonsu
2017-06-29
Phosphors, long-known color-converting photonic agents, are gaining increasing attention owing to the interest in white LEDs and related applications. Conventional material-based approaches to phosphors focus on obtaining the desired absorption/emission wavelengths and/or improving quantum efficiency. Here, we report a novel approach for enhancing the performance of phosphors: structural modification of phosphors. We incorporated inorganic colloidal quantum dots (CQDs) into a lateral one-dimensional (1D) photonic crystal (PhC) thin-film structure, with its photonic band-edge (PBE) modes matching the energy of 'excitation photons' (rather than 'emitted photons', as in most other PBE application devices). At resonance, we observed an approximately 4-fold enhancement of fluorescence over the reference bulk phosphor, which reflects an improved absorption of the excitation photons. This nano-structural engineering approach is a paradigm shift in the phosphor research area and may help to develop next-generation higher efficiency phosphors with novel characteristics.
Zhong, Haizheng; Bai, Zelong; Zou, Bingsuo
2012-11-01
In the past 5 years, colloidal I-III-VI nanocrystals such as CuInS2, CuInSe2, and AgInS2 have been intensively investigated for the potential to replace commonly available colloidal nanocrystals containing toxic elements in light-emitting and solar-harvesting applications. Many researchers from different disciplines are working on developing new synthetic protocols, performing spectroscopic studies to understand the luminescence mechanisms, and exploring various applications. To achieve enhanced performance, it is very desirable to obtain high-quality materials with tunable luminescence properties. In this Perspective, we highlight the current progress on tuning the luminescence properties of I-III-VI nanocrystals, especially focusing on the advances in the synthesis, spectroscopic properties, as well as the primary applications in light-emitting devices and bioimaging techniques. Finally, we outline the challenges concerning luminescent I-III-VI NCs and list a few important research tasks in this field.
Nanoparticle assembly on patterned "plus/minus" surfaces from electrospray of colloidal dispersion.
Lenggoro, I Wuled; Lee, Hye Moon; Okuyama, Kikuo
2006-11-01
Selective deposition of metal (Au) and oxide (SiO2) nanoparticles with a size range of 10-30 nm on patterned silicon-silicon oxide substrate was performed using the electrospray method. Electrical charging characteristics of particles produced by the electrospray and patterned area created by contact charging of the electrical conductor with non- or semi-conductors were investigated. Colloidal droplets were electrosprayed and subsequently dried as individual nanoparticles which then were deposited on substrates, and observed using field emission-scanning electron microscopy. The number of elementary charge units on particles generated by the electrospray was 0.4-148, and patterned area created by contact charging contained sufficient negative charges to attract multiple charged particles. Locations where nanoparticles were (reversibly) deposited depended on voltage polarity applied to the spraying colloidal droplet and the substrate, and the existence of additional ions such as those from a stabilizer.
Electrical and Optical Measurements of the Bandgap Energy of a Light-Emitting Diode
ERIC Educational Resources Information Center
Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe
2016-01-01
Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy E[subscript g]. In the case of…
NASA Astrophysics Data System (ADS)
Hughes, Stephen; Agarwal, Girish S.
2017-02-01
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries
Manshian, Bella B.; Soenen, Stefaan J.; Brown, Andy; Hondow, Nicole; Wills, John; Jenkins, Gareth J. S.; Doak, Shareen H.
2016-01-01
Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure–activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD. PMID:26275419
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Luminescence and related properties of nanocrystalline porous silicon
NASA Astrophysics Data System (ADS)
Koshida, N.
This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.
2008-12-01
evident from Figure 7 that, if the applied bias is not correct, it is very likely that electrons will not tunnel into their intended energy state...the theoretical laser contrasts sharply to that of semiconductor lasers. Semiconductor lasers rely on electron hole recombination or interband ...the active layer of a forward- biased pn junction [26]. In contrast to this, the QCL is a unipolar device that uses a quantum well (QW) structure
Model of an Injection Semiconductor Quantum-Dot Laser
NASA Astrophysics Data System (ADS)
Koryukin, I. V.
2018-05-01
We propose an asymmetric electron-hole model of an injection semiconductor quantum-dot laser, which correctly allows for relaxation at transitions between the electron and hole levels. Steady-state solutions of the proposed model, conditions for the simultaneous operation at transitions between the ground and first excited state levels, and relaxation oscillations in the two-wave lasing regime are studied. It is shown that the model can be simplified when the relaxation between hole levels is much faster than the relaxation between electron levels.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Ballistic superconductivity in semiconductor nanowires.
Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P
2017-07-06
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
NASA Astrophysics Data System (ADS)
Liang, Yu-Han; Towe, Elias
2017-12-01
Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardin, Gaël; Li, Hebin; Autry, Travis M.
2015-03-21
We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures,more » such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.« less
Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V
2012-08-22
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.
Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution
Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai
2015-01-01
Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry–Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10−14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm−2 under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950
Integrated Broadband Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment
ERIC Educational Resources Information Center
Rice, Charles V.; Giffin, Guinevere A.
2008-01-01
Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…
Assembly and characterization of quantum-dot solar cells
NASA Astrophysics Data System (ADS)
Leschkies, Kurtis Siegfried
Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of technologies have been developed to harness solar energy. For example, photovoltaic (or solar) cells based on silicon wafers can convert solar energy directly into electricity with high efficiency, however they are expensive to manufacture, and thus unattractive for widespread use. As the need for low-cost, solar-derived energy becomes more dire, strategies are underway to identify materials and photovoltaic device architectures that are inexpensive yet efficient compared to traditional silicon solar cells. Nanotechnology enables novel approaches to solar-to-electric energy conversion that may provide both high efficiencies and simpler manufacturing methods. For example, nanometer-size semiconductor crystallites, or semiconductor quantum dots (QDs), can be used as photoactive materials in solar cells to potentially achieve a maximum theoretical power conversion efficiency which exceeds that of current mainstay solar technology at a much lower cost. However, the novel concepts of quantum dot solar cells and their energy conversion designs are still very much in their infancy, as a general understanding of their assembly and operation is limited. This thesis introduces various innovative and novel solar cell architectures based on semiconductor QDs and provides a fundamental understanding of the operating principles that govern the performance of these solar cells. Such effort may lead to the advancement of current nanotechnology-based solar power technologies and perhaps new initiatives in nextgeneration solar energy conversion devices. We assemble QD-based solar cells by depositing photoactive QDs directly onto thin ZnO films or ZnO nanowires. In one scheme, we combine CdSe QDs and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell (QDSSC). An array of ZnO nanowires was grown vertically from a fluorine-doped-tin-oxide conducting substrate and decorated with an ensemble of CdSe QDs, capped with mercaptopropionic acid. When illuminated with visible light, the CdSe QDs absorb photons and inject electrons into the ZnO nanowires. The morphology of the nanowires then provided these photoinjected electrons with a direct and efficient electrical pathway to the photoanode. When using a liquid electrolyte as the hole transport medium, our quantum-dot-sensitized nanowire solar cells exhibited short-circuit current densities up to 2.1 mA/cm 2 and open-circuit voltages between 0.6--0.65 V when illuminated with 100 mW/cm2 of simulated AM1.5 light. Our QDSSCs also demonstrated internal quantum efficiencies as high as 50--60%, comparable to those reported for dye-sensitized solar cells made using similar nanowires. We found that the overall power conversion efficiency of these QDSSCs is largely limited by the surface area of the nanowires available for QD adsorption. Unfortunately, the QDs used to make these devices corrode in the presence of the liquid electrolyte and QDSSC performance degrades after several hours. Consequently, further improvements on the efficiency and stability of these QDSSCs required development of an optimal hole transport medium and a transition away from the liquid electrolyte. Towards improving the reliability of semiconductor QDs in solar cells, we developed a new type of all-solid-based solar cell based on heterojunctions between PbSe QDs and thin ZnO films. We found that the photovoltage obtained in these devices depends on QD size and increases linearly with the QD effective bandgap energy. Thus, these solar cells resemble traditional photovoltaic devices based on a semiconductor--semiconductor heterojunction but with the important difference that the bandgap energy of one of the semiconductors, and consequently the cell's photovoltage, can be varied by changing the size of the QDs. Under simulated 100 mW/cm2 AM1.5 illumination, these QD-based solar cells exhibit short-circuit current densities as high as 15 mA/cm2 and open-circuit voltages up to 0.45 V, larger than that achieved with solar cells based on junctions between PbSe QDs and metal films. Moreover, we found that incident-photon-to-current-conversion efficiency in these solar cells can be increased by replacing the ZnO films with a vertically-oriented array of single crystal ZnO nanowires, separated by distances comparable to the exciton diffusion length, and infiltrating this array with colloidal PbSe QDs. In this scheme, photogenerated excitons can encounter a donor--acceptor junction before they recombine. Thus, we were able to construct solar cells with thick QD absorber layers that were still capable of efficiently extracting charge despite short exciton or charge carrier diffusion lengths. When illuminated with the AM1.5 spectrum, these nanowire-based quantum-dot solar cells exhibited power conversion efficiencies approaching 2%, approximately three times higher than that achieved with thin film ZnO devices constructed with the same amount of QDs. Supporting experiments using field-effect transistors made from the PbSe QDs as well as the sensitivity of these transistors to nitrogen and oxygen gas show that the solar cells described above are unlikely to be operating like traditional p--n heterojunction solar cells. All data, including significant improvements in both photocurrent and power conversion efficiency with increasing nanowire length, suggest that these photovoltaic devices operate as excitonic solar cells.
Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad
2017-11-21
Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow format results in high-quality perovskite nanocrystals with kinetically tunable emission wavelength, ranging as much as 25 nm at equivalent residence times. Further application of this unique platform would allow rapid parameter optimization in the colloidal synthesis of a wide range of nanomaterials (e.g., metal or semiconductor), that is directly transferable to continuous manufacturing in a numbered-up platform with a similar characteristic length scale.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.
2017-12-01
Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.
Nanotechnology: Colourful Particles for Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.
2015-07-01
In 1857 Michael Faraday gave a well-attended lecture at the Royal Institution of Great Britain, in which he presented his pioneering experimental work that investigated the interaction of light with matter. Faraday’s study probed the fundamental properties of light as it was reflected and absorbed by progressively smaller particles. Very fine gold particles dispersed in liquid were shown to produce vivid colors not seen in larger particles. Faraday did not know he had created colloidal suspensions of quantum dots, but his insight correctly concluded that the distinct colors were somehow due to the minute size of the gold particles. Thismore » great experimental physicist had actually glimpsed a special condition where the particle’s quantum nature was expressed. This work set the future course for nanoscience and quantum theory, but it would take another 125 years before the physical basis of this phenomenon would be explained by quantum size effects. It is now known that when quantum dots are exposed to UV light, some of the electrons are excited as they gain energy, however they remain confined to discrete energy levels not observed in larger particles and solid materials. When the electrons relax and lose their energy, the quantum dot emits light at a specific color that varies with the size of the quantum dot. Bao and Bawendi have cleverly exploited the unique optical properties intrinsic to colloidal quantum dots to develop an innovative compact optical spectrometer that could be integrated with a smart phone camera or as a versatile miniature handheld sensing tool.« less
Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2014-03-01
Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
Exciton shelves for charge and energy transport in third-generation quantum-dot devices
NASA Astrophysics Data System (ADS)
Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant
2014-03-01
Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.
EPR and Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
König, Jürgen; MacDonald, Allan H.
2003-08-01
Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped CdMnTe quantum wells [
Effect of the depolarization field on coherent optical properties in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu
2018-06-01
We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.
Decoupling the effects of confinement and passivation on semiconductor quantum dots.
Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew
2016-07-20
Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard
2017-10-11
Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.
Boundary Condition for Modeling Semiconductor Nanostructures
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard
2006-01-01
A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.
2017-02-22
Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less
NASA Astrophysics Data System (ADS)
Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi
2018-07-01
The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.
Nonvolatile gate effect in a ferroelectric-semiconductor quantum well.
Stolichnov, Igor; Colla, Enrico; Setter, Nava; Wojciechowski, Tomasz; Janik, Elzbieta; Karczewski, Grzegorz
2006-12-15
Field effect transistors with ferroelectric gates would make ideal rewritable nonvolatile memories were it not for the severe problems in integrating the ferroelectric oxide directly on the semiconductor channel. We propose a powerful way to avoid these problems using a gate material that is ferroelectric and semiconducting simultaneously. First, ferroelectricity in semiconductor (Cd,Zn)Te films is proven and studied using modified piezoforce scanning probe microscopy. Then, a rewritable field effect device is demonstrated by local poling of the (Cd,Zn)Te layer of a (Cd,Zn)Te/CdTe quantum well, provoking a reversible, nonvolatile change in the resistance of the 2D electron gas. The results point to a potential new family of nanoscale one-transistor memories.
Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors
NASA Astrophysics Data System (ADS)
Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.
2006-09-01
Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors
NASA Astrophysics Data System (ADS)
Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.
2016-09-01
When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.
Electrically pumped edge-emitting photonic bandgap semiconductor laser
Lin, Shawn-Yu; Zubrzycki, Walter J.
2004-01-06
A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.
Funding Proposal for EDISON’20 Conference Buffalo, New York, 07/17 - 07/21, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Jonathan
EDISON’20 – The 20th International Conference on Electron Dynamics in Semiconductors, Optoe- lectronics and Nanostructures – was held at the Hyatt Regency Hotel, Buffalo, NY from July 17 – 21, 2017. The technical focus of this conference was on the fundamental physics and applications of nonequilibrium classical and quantum carrier dynamics in semiconductors, optoelectronic de- vices, and nanostructures. This five-day, single-session conference featured a program consisting of some 15 invited talks, given by internationally-renowned academics from the U.S., Europe, and Japan. Their keynote presentations covered topics including: terahertz phenomena in semiconductors; quantum transport in novel two-dimensional semiconductors; topological insulators; mesoscopicmore » phenomena in semiconductors, and; semiconductor spintronics. The invited papers were supplemented by some 30 contributed talks, selected from almost 120 abstracts submitted in response to the conference’s call for papers, and by two poster sessions that each consisted of close to 40 different reports. This critical mass in terms of scientific content ensured a highly vibrant conference, in which leaders in the field had the opportunity to interact closely with early-career scientists.« less