Science.gov

Sample records for colon carcinoma caco-2

  1. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    PubMed

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  2. A new in vitro model of Entamoeba histolytica adhesion, using the human colon carcinoma cell line Caco-2: scanning electron microscopic study.

    PubMed Central

    Rigothier, M C; Coconnier, M H; Servin, A L; Gayral, P

    1991-01-01

    The human colon carcinoma cell line Caco-2, which is widely used to study the adhesion and cytotoxicity of enterobacteria, was used to investigate the adhesion of the trophozoites of Entamoeba histolytica. We observed a high percentage of adhesion of amoebae to Caco-2 cells. Scanning electron microscopy showed that amoebial membrane structures were involved in adhesion and the cytolytic action. These differentiated cells should prove to be a useful model system for investigation of the pathogenic action of amoebae. Images PMID:1937772

  3. Prune extract (Prunus domestica L.) suppresses the proliferation and induces the apoptosis of human colon carcinoma Caco-2.

    PubMed

    Fujii, Takashi; Ikami, Takao; Xu, Jin-Wen; Ikeda, Katsumi

    2006-10-01

    Prunes are the dried fruits of certain cultivars of Prunus domestica L., and are recognized as a health food. The separated ethanol fraction from concentrated prune juice by DIAION HP-20 (PE) was investigated for cytotoxic effects on two different cancer cell lines in vitro. PE dose-dependently reduced the viable cell number of Caco-2, KATO III, but does not reduce the viable cell number of human normal colon fibroblast cells (CCD-18Co) used as a normal cell model. PE treatment for 24 h led to apoptotic changes in Caco-2 such as cell shrinkage and blebbed surfaces due to the convolutions of nuclear and plasma membranes and chromatin condensation, but this was not observed in CCD-18Co. PE induced nucleosomal DNA fragmentation typical of apoptosis in Caco-2 after 24 h of treatment. These results show that PE induced apoptosis in Caco-2. Furthermore, by Caco-2 treatment with H2O2 chelator catalase and Ca2+-chelator BAPTA/AM, the PE-induced cytotoxic pathway was completely blocked, and the viable cell number of Caco-2 was not affected.

  4. Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells.

    PubMed

    Salmivirta, M; Safaiyan, F; Prydz, K; Andresen, M S; Aryan, M; Kolset, S O

    1998-10-01

    Heparan sulfate species expressed by different cell and tissue types differ in their structural and functional properties. Limited information is available on differences in regulation of heparan sulfate biosynthesis within a single tissue or cell population under different conditions. We have approached this question by studying the effect of cell differentiation on the biosynthesis and function of heparan sulfate in human colon carcinoma cells (CaCo-2). These cells undergo spontaneous differentiation in culture when grown on semipermeable supports; the differentiated cells show phenotypic similarity to small intestine enterocytes. Metabolically labeled heparan sulfate was isolated from the apical and basolateral media from cultures of differentiated and undifferentiated cells. Compositional analysis of disaccharides, derived from the contiguous N-sulfated regions of heparan sulfate, indicated a greater proportion of 2-O-sulfated iduronic acid units and a smaller amount of 6-O-sulfated glucosamine units in differentiated than in undifferentiated cells. By contrast, the overall degree of sulfation, the chain length and the size distribution of the N-acetylated regions were similar regardless the differentiation status of the cells. The structural changes were found to affect the binding of heparan sulfate to the long isoform of platelet-derived growth factor A chain but not to fibroblast growth factor 2. These findings show that heparan sulfate structures change during cell differentiation and that heparan sulfate-growth factor interactions may be affected by such changes.

  5. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway.

    PubMed

    Altonsy, Mohammed O; Andrews, Simon C; Tuohy, Kieran M

    2010-02-28

    The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytochrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.

  6. The Intestinal Transport of Bovine Milk Exosomes Is Mediated by Endocytosis in Human Colon Carcinoma Caco-2 Cells and Rat Small Intestinal IEC-6 Cells123

    PubMed Central

    Wolf, Tovah; Baier, Scott R; Zempleni, Janos

    2015-01-01

    Background: MicroRNAs play essential roles in gene regulation. A substantial fraction of microRNAs in tissues and body fluids is encapsulated in exosomes, thereby conferring protection against degradation and a pathway for intestinal transport. MicroRNAs in cow milk are bioavailable in humans. Objective: This research assessed the transport mechanism of bovine milk exosomes, and therefore microRNAs, in human and rodent intestinal cells. Methods: The intestinal transport of bovine milk exosomes and microRNAs was assessed using fluorophore-labeled bovine milk exosomes in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. Transport kinetics and mechanisms were characterized using dose-response studies, inhibitors of vesicle transport, carbohydrate competitors, proteolysis of surface proteins on cells and exosomes, and transepithelial transport in transwell plates. Results: Exosome transport exhibited saturation kinetics at 37°C [Michaelis constant (Km) = 55.5 ± 48.6 μg exosomal protein/200 μL of media; maximal transport rate = 0.083 ± 0.057 ng of exosomal protein · 81,750 cells−1 · h−1] and decreased by 64% when transport was measured at 4°C, consistent with carrier-mediated transport in Caco-2 cells. Exosome uptake decreased by 61–85% under the following conditions compared with controls in Caco-2 cells: removal of exosome and cell surface proteins by proteinase K, inhibition of endocytosis and vesicle trafficking by synthetic inhibitors, and inhibition of glycoprotein binding by carbohydrate competitors. When milk exosomes, at a concentration of 5 times the Km, were added to the upper chamber in transwell plates, Caco-2 cells accumulated miR-29b and miR-200c in the lower chamber, and reverse transport was minor. Transport characteristics were similar in IEC-6 cells and Caco-2 cells, except that substrate affinity and transporter capacity were lower and higher, respectively. Conclusion: The uptake of bovine milk exosomes is

  7. Inhibitory effects of green tea and grape juice on the phenol sulfotransferase activity of mouse intestines and human colon carcinoma cell line, Caco-2.

    PubMed

    Tamura, H; Matsui, M

    2000-06-01

    Tea and fruit juices are beverages consumed daily all over the world. The present study reports the inhibitory effects of these beverages on the activity of mammalian intestinal phenol sulfotransferases (P-STs). Green tea strongly inhibited the E. coli-expressed mouse intestinal P-ST activity in vitro. (-)-Epigallocatechin gallate (EGCG) was found to be the most potent inhibitor among the catechins tested (IC50=0.93 microM). (-)EGCG also inhibited the P-ST activity of the human colon carcinoma cell line, Caco-2. Kinetic analysis showed that the inhibition was competitive. Among fruit juices examined (apple, grape, grapefruit and orange), grape juice exhibited the most potent inhibitory action on the P-ST activity of mouse intestines and human colon carcinoma cells. The inhibitory activity of grape juice was located mainly in the skin and seeds. Flavonols, such as quercetin and kaempferol, inhibited the P-ST activity at low concentrations. These observations suggest the possible inhibition of P-ST activity in human intestines by green tea or grape juice.

  8. Palmitoylethanolamide Exerts Antiproliferative Effect and Downregulates VEGF Signaling in Caco-2 Human Colon Carcinoma Cell Line Through a Selective PPAR-α-Dependent Inhibition of Akt/mTOR Pathway.

    PubMed

    Sarnelli, Giovanni; Gigli, Stefano; Capoccia, Elena; Iuvone, Teresa; Cirillo, Carla; Seguella, Luisa; Nobile, Nicola; D'Alessandro, Alessandra; Pesce, Marcella; Steardo, Luca; Cuomo, Rosario; Esposito, Giuseppe

    2016-06-01

    Palmitoylethanolamide (PEA) is a nutraceutical compound that has been demonstrated to improve intestinal inflammation. We aimed at evaluating its antiproliferative and antiangiogenic effects in human colon adenocarcinoma Caco-2 cell line. Caco-2 cells were treated with increasing concentrations of PEA (0.001, 0.01 and 0.1 μM) in the presence of peroxisome proliferator-activated receptor-a (PPAR-α) or PPAR-γ antagonists. Cell proliferation was evaluated by performing a MTT assay. Vascular endothelial growth factor (VEGF) release was estimated by ELISA, while the expression of VEGF receptor and the activation of the Akt/mammalian target of rapamycin (mTOR) pathway were evaluated by western blot analysis. PEA caused a significant and concentration-dependent decrease of Caco-2 cell proliferation at 48 h. PEA administration significantly reduced in a concentration-dependent manner VEGF secretion and VEGF receptor expression. Inhibition of Akt phosphorylation and a downstream decrease of phospho-mTOR and of p-p70S6K were observed as compared with untreated cells. PPAR-α, but not PPAR-γ antagonist, reverted all effects of PEA. PEA is able to decrease cell proliferation and angiogenesis. The antiangiogenic effect of PEA depends on the specific inhibition of the AkT/mTOR axis, through the activation of PPAR-α pathway. If supported by in vivo models, our data pave the way to PEA co-administration to the current chemotherapeutic regimens for colon carcinoma. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer

    PubMed Central

    Jiménez, Sandra; Gascón, Sonia; Luquin, Asunción; Laguna, Mariano; Ancin-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2016-01-01

    The in vitro antiproliferative and antioxidant effects of different fractions of Rosa canina hips on human colon cancer cell lines (Caco-2) was studied. The compounds tested were total extract (fraction 1), vitamin C (fraction 2), neutral polyphenols (fraction 3) and acidic polyphenols (fraction 4). All the extracts showed high cytotoxicity after 72 h, both low and high concentrations. The flow cytometric analysis revealed that all the fractions produce disturbances in the cell cycle resulting in a concomitant cell death by an apoptotic pathway. Changes in the redox status of Caco-2 cells in response to Rosa canina hips were determined. Cells were exposed to hydrogen peroxide in presence of plant fractions and the production of Reactive Oxygen Species (ROS) was significantly decreased. Therefore, our data demonstrate that rosehip extracts are a powerful antioxidant that produces an antiproliferative effect in Caco-2 cells. Therefore, these results predict a promising future for Rosa canina as a therapeutic agent. Thus, this natural plant could be an effective component of functional foods addressed towards colorectal carcinoma. PMID:27467555

  10. Application of HPLC for determination of phytic acid in the colonic epithelial Caco-2 cells.

    PubMed

    Weglarz, Ludmiła; Parfiniewicz, Beata; Bat, Beata; Orchel, Arkadiusz; Dzierzewicz, Zofia; Wilczok, Tadeusz

    2004-12-01

    Phytic acid (myo-inositol hexaphosphate, IP6) is currently receiving a considerable interest because of its anticancer (preventive and therapeutic) potential against colon tumors and the need for methods of its determination. The aim of this study was to analyze the uptake of IP6 by human colon adenocarcinoma cells (Caco-2 cell line) and to evaluate the method of its intracellular quantification with the use of high performance liquid chromatography (HPLC) technique. Chromatographic analysis revealed a rapid uptake of IP6 by cells. The intracellular accumulation of IP6 was saturable at 0.5 h and it did not change with the prolongation of incubation up to 72 h.

  11. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells.

    PubMed

    Almeida, Elizângela A M S; Facchi, Suelen P; Martins, Alessandro F; Nocchi, Samara; Schuquel, Ivânia T A; Nakamura, Celso V; Rubira, Adley F; Muniz, Edvani C

    2015-01-22

    New pectin derivative (Pec-MA) was obtained in specific reaction conditions. The presence of maleoyl groups in Pec-MA structure was confirmed by (1)H NMR and FTIR spectroscopy. The substitution degree of Pec-MA (DS=24%) was determined by (1)H NMR. The properties of Pec-MA were investigated through WAXS, TGA/DTG, SEM and zeta potential techniques. The Pec-MA presented amorphous characteristics and higher-thermal stability compared to raw pectin (Pec). In addition, considerable morphological differences between Pec-MA and Pec were observed by SEM. The cytotoxic effect on the Caco-2 cells showed that the Pec-MA significantly inhibited the growth of colon cancer cells whereas the Pec-MA does not show any cytotoxic effect on the VERO healthy cells. This result opens new perspectives for the manufacture of biomaterials based on Pec with anti-tumor properties.

  12. Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE₂.

    PubMed

    Gentile, Luciana B; Piva, Bruno; Diaz, Bruno L

    2011-01-01

    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E₂ are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE₂ generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE₂ generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE₂ production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE₂ on VEGF production, Caco-2 cells were treated with cPLA₂ (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE₂ generation. The Caco-2 cells were also treated with a non selective PGE₂ receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE₂ or selective EP₂ receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE₂ appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl₂ was decreased by inhibition of concomitant PGE₂ generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE₂ plays an inhibitory

  13. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  14. Sinomenine Sensitizes Multidrug-Resistant Colon Cancer Cells (Caco-2) to Doxorubicin by Downregulation of MDR-1 Expression

    PubMed Central

    Liu, Zhen; Duan, Zhi-Jun; Chang, Jiu-Yang; Zhang, Zhi-feng; Chu, Rui; Li, Yu-Ling; Dai, Ke-Hang; Mo, Guang-quan; Chang, Qing-Yong

    2014-01-01

    Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-κB signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-κB signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance. PMID:24901713

  15. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  16. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture.

    PubMed

    Lozoya-Agullo, Isabel; Araújo, Francisca; González-Álvarez, Isabel; Merino-Sanjuán, Matilde; González-Álvarez, Marta; Bermejo, Marival; Sarmento, Bruno

    2017-04-03

    The Caco-2 cellular monolayer is a widely accepted in vitro model to predict human permeability but suffering from several and critical limitations. Therefore, some alternative cell cultures to mimic the human intestinal epithelium, as closely as possible, have been developed to achieve more physiological conditions, as the Caco-2/HT29-MTX coculture and the triple Caco-2/HT29-MTX/Raji B models. In this work the permeability of 12 model drugs of different Biopharmaceutical Classification System (BCS) characteristics, in the coculture and triple coculture models was assessed. Additionally, the utility of both models to classify compounds according to the BCS criteria was scrutinized. The obtained results suggested that the coculture of Caco-2/HT29-MTX and the triple coculture of Caco-2/HT29-MTX/Raji B were useful models to predict intestinal permeability and to classify the drugs in high or low permeability according to BCS. Moreover, to study thoroughly the transport mechanism of a specific drug, using a more complex model than Caco-2 monocultures is more suitable because coculture and triple coculture are more physiological models, so the results obtained with them will be closer to those obtained in the human intestine.

  17. Differentiation-associated decrease in the proportion of fucosylated polylactosaminoglycans of CaCo-2 human colonic adenocarcinoma cells.

    PubMed Central

    Youakim, A; Herscovics, A

    1987-01-01

    CaCo-2 cells are human colonic adenocarcinoma cells which can differentiate spontaneously into enterocytes when maintained confluent for extended periods of time. Cells kept in culture for 4 days (rapidly growing), 7-9 days (early confluence) and 19-22 days (late confluence) were incubated for 24 h with L-[5,6-3H]fucose or D-[6-3H]glucosamine in order to examine the changes in glycoprotein carbohydrate structure that occur during this differentiation. Labelled glycopeptides obtained by exhaustive Pronase digestion of the cell-surface and cell-pellet fractions were fractionated on Bio-Gel P-6. A high-Mr glycopeptide fraction which was excluded from Bio-Gel P-6 was present in all cases. These glycopeptides were then fractionated by affinity chromatography on Datura stramonium agglutinin-agarose. The glycopeptides which were specifically bound to the lectin column were largely degraded by endo-beta-galactosidase, thereby indicating that they consisted of fucosylated polylactosaminoglycans. The proportion of labelled polylactosaminoglycans decreased with increasing time in culture, whereas sucrase activity, which is characteristic of differentiated enterocytes, increased. These results demonstrate that a relatively large decrease in the proportion of fucosylated polylactosaminoglycans occurs with differentiation of CaCo-2 cells. PMID:3122722

  18. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.

    PubMed

    Sahu, Saura C; Zheng, Jiwen; Graham, Lesley; Chen, Lynn; Ihrie, John; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in

  19. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells.

    PubMed

    Ramos, Sonia; Rodríguez-Ramiro, Ildefonso; Martín, María Angeles; Goya, Luis; Bravo, Laura

    2011-12-01

    Flavanols intake has been associated with reduced risk of cancer. In this study, the anticarcinogenic effects of the flavanols epicatechin (EC), epicatechin-gallate (ECG) and procyanidin B2 (PB2) on Caco-2 and SW480 colon cancer cells were investigated. Catechins showed different cytotoxicity depending on the cell line. ECG displayed strong growth inhibitory effects against SW480 cells, but was ineffective on Caco-2 cells. In contrast, PB2 did not affect Caco-2 cells, whereas promoted cell growth in SW480 cells and EC had no obvious effects on any cell line. Exposure of SW480 cells to ECG led to apoptosis as determined by caspase-3 activity, imbalance among Bcl-2 anti- and pro-apoptotic protein levels, ERK activation and AKT inhibition, whereas PB2 treatment enhanced phospho-AKT and phospho-ERK levels. Incubation of Caco-2 cells with ECG increased glutathione levels without affecting the expression of pro- and anti-apoptotic Bcl-2 proteins, AKT or ERK. The results suggest that the different cytotoxicity of flavanols is caused by their different activity and the degree of differentiation of the colon cancer cell line. Thus, ECG induced apoptosis in SW480 cells and contributed to the cytotoxic effect, whereas ECG enhanced the antioxidant potential in Caco-2 cells. PB2 activated cell proliferation and survival/proliferation pathways in SW480 cells.

  20. The von Hippel-Lindau (VHL) tumor-suppressor gene is down-regulated by selenium deficiency in Caco-2 cells and rat colon mucosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the hypothesis that selenium affects DNA methylation and hence gene regulation we employed a methylation array (Panomics) in the human colonic epithelial Caco-2 cell model. The array profiles DNA methylation from promoter regions of 82 human genes. After conditioning cells to repeatedly redu...

  1. Selenium is critical for the regulation of tumor suppressor and pro-inflammatory gene expresssion in human colon Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential role of Se in growth of most mammalian cells is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. We generated Se-deficient colon Caco-2 cells by gradually reducing serum in the media because serum contains a trace ...

  2. Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells.

    PubMed

    Babbar, Naveen; Gerner, Eugene W; Casero, Robert A

    2006-02-15

    Epidemiological, experimental and clinical results suggest that aspirin and other NSAIDs (non-steroidal anti-inflammatory drugs) inhibit the development of colon cancer. It has been shown that the NSAID sulindac induces apoptosis and suppresses carcinogenesis, in part, by a mechanism leading to the transcriptional activation of the gene encoding SSAT (spermidine/spermine N1-acetyltransferase), a rate-limiting enzyme in polyamine catabolism. In the present study, we show that a variety of NSAIDs, including aspirin, sulindac, ibuprofen and indomethacin, can induce SSAT gene expression in Caco-2 cells. Aspirin, at physiological concentrations, can induce SSAT mRNA via transcriptional initiation mechanisms. This induction leads to increased SSAT protein levels and enzyme activity. Promoter deletion analysis of the 5' SSAT promoter-flanking region led to the identification of two NF-kappaB (nuclear factor kappaB) response elements. Electrophoretic mobility-shift assays showed binding of NF-kappaB complexes at these sequences after aspirin treatment. Aspirin treatment led to the activation of NF-kappaB signalling and increased binding at these NF-kappaB sites in the SSAT promoter, hence providing a potential mechanism for the induction of SSAT by aspirin in these cells. Aspirin-induced SSAT ultimately leads to a decrease in cellular polyamine content, which has been associated with decreased carcinogenesis. These results suggest that activation of SSAT by aspirin and different NSAIDs may be a common property of NSAIDs that plays an important role in their chemopreventive actions in colorectal cancer.

  3. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells

    PubMed Central

    Reyes-Zurita, Fernando J.; Rufino-Palomares, Eva E.; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P.; Parra, Andrés; Cascante, Marta; Lupiáñez, José A.

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  4. Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes.

    PubMed Central

    Levy, P.; Munier, A.; Baron-Delage, S.; Di Gioia, Y.; Gespach, C.; Capeau, J.; Cherqui, G.

    1996-01-01

    The products of ras and src proto-oncogenes are frequently activated in a constitutive state in human colorectal cancer. In this study we attempted to establish whether the tumorigenic progression induced by oncogenic activation of p21ras and pp60c-src in human colonic Caco-2 cells is associated with specific alterations of syndecan-1, a membrane-anchored proteoglycan playing a role in cell-matrix interaction and neoplastic growth control. To this end, we used Caco-2 cells made highly tumorigenic by transfection with an activated (Val 12) human Ha-ras gene or with the polyoma middle T (Py-MT) oncogene, a constitutive activator of pp60c-src tyrosine kinase activity. Compared with control vector-transfected Caco-2 cells, both oncogene-transfected cell lines (1) contained smaller amounts of membrane-anchored PGs; (2) exhibited decreased syndecan-1 expression at the protein but not the mRNA level; (3) synthesized 35S-labelled syndecan-1 with decreased specific activity; (4) produced a syndecan-1 ectodomain with a lower molecular mass and reduced GAG chain size and sulphation; and (5) expressed heparanase degradative activity. These results show that the dramatic activation of the tumorigenic potential induced by oncogenic p21ras or Py-MT/pp60c-src in Caco-2 cells is associated with marked alterations of syndecan-1 expression at the translational and post-translational levels. Images Figure 2 PMID:8695359

  5. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma-mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml(-1) concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml(-1) both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation.

  6. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation.

    PubMed

    Sahu, Saura C; Roy, Shambhu; Zheng, Jiwen; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    As a consequence of the increased use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics to prevent fungal and bacterial growth, there is a need for validated rapid screening methods to assess the safety of nanoparticle exposure. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential genotoxicity of 20-nm nanosilver. The average silver nanoparticle size as determined by transmission electron microscopy (TEM) was 20.4 nm. Dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The silver concentration in a 20-nm nanosilver solution determined by the inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Analysis by ICP-MS and TEM demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Genotoxicity was determined by the cytochalasin B-blocked micronucleus assay with acridine orange staining and fluorescence microscopy. Concentration- and time-dependent increases in the frequency of binucleated cells with micronuclei induced by the nanosilver was observed in the concentration range of 0.5 to 15 µg ml(-1) in both HepG2 and Caco2 cells compared with the control. Our results indicated that HepG2 cells were more sensitive than Caco2 cells in terms of micronuclei formation induced by nanosilver exposure. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, represent potential screening models for prediction of genotoxicity of silver nanoparticles by in vitro micronucleus assay.

  7. Lysophosphatidic acid prevents apoptosis of Caco-2 colon cancer cells via activation of mitogen-activated protein kinase and phosphorylation of Bad.

    PubMed

    Rusovici, Raluca; Ghaleb, Amr; Shim, Hyunsuk; Yang, Vincent W; Yun, C Chris

    2007-08-01

    Lysophosphatidic acids (LPA) exert growth factor-like effects through specific G protein-coupled receptors. The presence of different LPA receptors often determines the specific signaling mechanisms and the physiological consequences of LPA in different environments. Among the four members of the LPA receptor family, LPA(2) has been shown to be overexpressed in colon cancer suggesting that the signaling by LPA(2) may potentiate growth and survival of tumor cells. In this study, we examined the effect of LPA on survival of colon cancer cells using Caco-2 cells as a cell model system. LPA rescued Caco-2 cells from apoptosis elicited by the chemotherapeutic drug, etoposide. This protection was accompanied by abrogation of etoposide-induced stimulation of caspase activity via a mechanism dependent on Erk and PI3K. In contrast, perturbation of cellular signaling mediated by the LPA(2) receptor by knockdown of a scaffold protein NHERF2 abrogated the protective effect of LPA. Etoposide decreased the expression of Bcl-2, which was reversed by LPA. Etoposide decreased the phosphorylation level of the proapoptotic protein Bad in an Erk-dependent manner, without changing Bad expression. We further show that LPA treatment resulted in delayed activation of Erk. These results indicate that LPA protects Caco-2 cells from apoptotic insult by a mechanism involving Erk, Bad, and Bcl-2.

  8. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2016-02-01

    Phenolic compounds are common ingredients in many dietary supplements and functional foods. However, data concerning physicochemical properties and permeability of polyphenols on the intestinal epithelial cells are scarce. The aims of this study were to determine the experimental partition coefficient (Log P), and parallel artificial membrane permeability assay (PAMPA), to characterize the bi-directional transport of six phenolic compounds viz. caffeic acid, chrysin, gallic acid, quercetin, resveratrol and rutin in Caco-2 cells. The experimental Log P values of six polyphenols were correlated (R (2) = 0.92) well with the calculated Log P values. The apparent permeability (P app) range of all polyphenols in PAMPA for the apical (AP) to basolateral (BL) was 1.18 ± 0.05 × 10(-6) to 5.90 ± 0.16 × 10(-6) cm/s. The apparent Caco-2 permeability (P app) range for the AP-BL was 0.96 ± 0.03 × 10(-6) to 3.80 ± 0.45 × 10(-6) cm/s. The efflux ratio of P app (BL → AP) to P app (AP → BL) for all phenolics was <2, suggesting greater permeability in the absorptive direction. Six compounds exhibited strong correlations between Log P and PAMPA/Caco-2 cell monolayer permeation data. Dietary six polyphenols were poorly absorbed through PAMPA and Caco-2 cells, and their transepithelial transports were mainly by passive diffusion.

  9. Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells.

    PubMed

    Rodríguez-Ramiro, Ildefonso; Ramos, Sonia; López-Oliva, Elvira; Agis-Torres, Angel; Bravo, Laura; Goya, Luis; Martín, Maria Angeles

    2013-07-28

    Numerous lines of evidence support a relationship between intestinal inflammation and cancer. Therefore, much attention has recently been focused on the identification of natural compounds with anti-inflammatory activities as a strategy to suppress the early stages of colorectal cancer. Because cocoa is a rich source of bioactive compounds, the present study investigated its anti-inflammatory properties in a rat model of azoxymethane (AOM)-induced colon carcinogenesis and in TNF-α-stimulated Caco-2 cells. A total of forty male rats were fed with control or cocoa-enriched diets (12 %) during 8 weeks and injected with saline or AOM (20 mg/kg body weight) during the third and fourth week (n 10 rats/group). At the end of the experiment, colon samples were evaluated for markers of inflammation. The anti-inflammatory activity of a cocoa polyphenolic extract (10 μg/ml) was examined in TNF-α-stimulated Caco-2 cells, an in vitro model of experimentally induced intestinal inflammation. The signalling pathways involved, including NF-κB and the mitogen-activated protein kinase family such as c-Jun NH₂-terminal kinases (JNK), extracellular signal-regulated kinases and p38, were also evaluated. The results show that the cocoa-rich diet decreases the nuclear levels of NF-κB and the expression of pro-inflammatory enzymes such as cyclo-oxygenase-2 and inducible NO synthase induced by AOM in the colon. Additionally, the experiments in Caco-2 cells confirm that cocoa polyphenols effectively down-regulate the levels of inflammatory markers induced by TNF-α by inhibiting NF-κB translocation and JNK phosphorylation. We conclude that cocoa polyphenols suppress inflammation-related colon carcinogenesis and could be promising in the dietary prevention of intestinal inflammation and related cancer development.

  10. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Zheng, Jiwen; Ihrie, John

    2016-04-01

    Exposure to nanosilver found in food- and cosmetics-related consumer products is of public concern because of the lack of information about its safety. In this study, two widely used in vitro cell culture models, human liver HepG2 and colon Caco2 cells, and the flow cytometric micronucleus (FCMN) assay were evaluated as tools for rapid predictive screening of the potential genotoxicity of nanosilver. Recently, we reported the genotoxicity of 20 nm nanosilver using these systems. In the current study presented here, we tested the hypothesis that the nanoparticle size and cell types were critical determinants of its genotoxicity. To test this hypothesis, we used the FCMN assay to evaluate the genotoxic potential of 50 nm nanosilver of the same shape, composition, surface charge and obtained from the same commercial source using the same experimental conditions and in vitro models (HepG2 and Caco2) as previously tested for the 20 nm silver. Results of our study show that up to the concentrations tested in these cultured cell test systems, the smaller (20 nm) nanoparticle is genotoxic to both the cell types by inducing micronucleus (MN). However, the larger (50 nm) nanosilver induces MN only in HepG2 cells, but not in Caco2 cells. Also in this study, we evaluated the contribution of ionic silver to the genotoxic potential of nanosilver using silver acetate as the representative ionic silver. The MN frequencies in HepG2 and Caco2 cells exposed to the ionic silver in the concentration range tested are not statistically significant from the control values except at the top concentrations for both the cell types. Therefore, our results indicate that the ionic silver may not contribute to the MN-forming ability of nanosilver in HepG2 and Caco2 cells. Also our results suggest that the HepG2 and Caco2 cell cultures and the FCMN assay are useful tools for rapid predictive screening of a genotoxic potential of food- and cosmetics-related chemicals including nanosilver.

  11. Substrate specificity and some properties of phenol sulfotransferase from human intestinal Caco-2 cells

    SciTech Connect

    Baranczyk-Kuzma, A.; Garren, J.A.; Hidalgo, I.J.; Borchardt, R.T. )

    1991-01-01

    The phase 2 metabolic reactions, sulfation and glucuronidation, were studied in a human colon carcinoma cell line (Caco-2), which has been developed as a model of intestinal enterocytes. Phenol sulfotransferase was isolated from Caco-2 cells cultured for 7, 14 and 21 days. The enzyme catalyzed the sulfation of both p-nitrophenol and catecholamines as well as most catecholamine metabolites. The affinity (K{sub m}) of PST for dopamine was much higher than for p-nitrophenol, and the specific activity of PST with both substrates increased with the age of the cells. The thermal stability of Caco-2 PST increased with cell age and was not dependent on the acceptor substrate used. The thermolabile PST from 7-day old cells was more sensitive to NEM than was the thermostable enzyme from 21-day old cells. No UDP-glucuronyltransferase activity was detected in 7-, 14- and 21-day old Caco-2 cells with any of the methods used.

  12. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  13. Cyto- and genotoxicity of a vanadyl(IV) complex with oxodiacetate in human colon adenocarcinoma (Caco-2) cells: potential use in cancer therapy.

    PubMed

    Di Virgilio, Ana L; Rivadeneira, Josefina; Muglia, Cecilia I; Reigosa, Miguel A; Butenko, Nataliya; Cavaco, Isabel; Etcheverry, Susana B

    2011-12-01

    The complex of vanadyl(IV) cation with oxodiacetate, VO(oda) caused an inhibitory effect on the proliferation of the human colon adenocarcinoma cell line Caco-2 in the range of 25-100 μM (P < 0.001). This inhibition was partially reversed by scavengers of free radicals. The difference in cell proliferation in the presence and the absence of scavengers was statistically significant in the range of 50-100 μM (P < 0.05). VO(oda) altered lysosomal and mitochondria metabolisms (neutral red and MTT bioassays) in a dose-response manner from 10 μM (P < 0.001). Morphological studies showed important transformations that correlated with the disassembly of actin filaments and a decrease in the number of cells in a dose response manner. Moreover, VO(oda) caused statistically significant genotoxic effects on Caco-2 cells in the low range of concentration (5-25 μM) (Comet assay). Increment in the oxidative stress and a decrease in the GSH level are the main cytotoxic mechanisms of VO(oda). These effects were partially reversed by scavengers of free radicals in the range of 50-100 μM (P < 0.05). Besides, VO(oda) interacted with plasmidic DNA causing single and double strand cleavage, probably through the action of free radical species. Altogether, these results suggest that VO(oda) is a good candidate to be evaluated for alternative therapeutics in cancer treatment.

  14. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland.

    PubMed

    Slominski, Andrzej T; Kim, Tae-Kang; Shehabi, Haleem Z; Tang, Edith K Y; Benson, Heather A E; Semak, Igor; Lin, Zongtao; Yates, Charles R; Wang, Jin; Li, Wei; Tuckey, Robert C

    2014-03-05

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2, 25(OH)D2 and 1,25(OH)₂D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)₂D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)₂D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity.

  15. Quercetin Suppresses the Migration and Invasion in Human Colon Cancer Caco-2 Cells Through Regulating Toll-like Receptor 4/Nuclear Factor-kappa B Pathway

    PubMed Central

    Han, Mingyang; Song, Yucheng; Zhang, Xuedong

    2016-01-01

    Objective: The migration and invasion features, which were associated with inflammatory response, acted as vital roles in the development of colon cancer. Quercetin, a bioflavonoid compound, was widely spread in vegetables and fruits. Although quercetin exerts antioxidant and anticancer activities, the molecular signaling pathways in human colon cancer cells remain unclear. Hence, the present study was conducted to investigate the suppression of quercetin on migratory and invasive activity of colon cancer and the underlying mechanism. Materials and Methods: The effect of quercetin on cell viability, migration, and invasion of Caco-2 cells was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound-healing assay, and transwell chambers assay, respectively. The protein expressions of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) p65, mitochondrial membrane potential-2 (MMP-2), and MMP-9 were detected by Western blot assay. The inflammatory factors, such as tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6), in cell supernatant were detected by enzyme-linked immunosorbent assay. Results: The concentration of quercetin <20 μM was chosen for further experiments. Quercetin (5 μM) could remarkably suppress the migratory and invasive capacity of Caco-2 cells. The expressions of metastasis-related proteins of MMP-2, MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent manner. Interestingly, the anti-TLR4 (2 μg) antibody or pyrrolidine dithiocarbamate (PDTC; 1 μM) could affect the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and NF-κB p65. In addition, quercetin could reduce the inflammation factors production of TNF-α, Cox-2, and IL-6. Conclusion: The findings suggested for the 1st time that quercetin might exert its anticolon cancer activity via

  16. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells.

    PubMed

    Yasui, Yumiko; Hosokawa, Masashi; Sahara, Takehiko; Suzuki, Rikako; Ohgiya, Satoru; Kohno, Hiroyuki; Tanaka, Takuji; Miyashita, Kazuo

    2005-08-01

    Bitter gourd (Momordica charantia) seed oil (BGO) is a unique oil which contains 9cis, 11trans, 13trans-conjugated linolenic acid (9c,11t,13t-CLN) at a high level of more than 60%. In this study, we investigated the anti-proliferative and apoptosis-inducing effects of free fatty acids prepared from BGO (BGO-FFA) using colon cancer Caco-2 cells. BGO-FFA and purified 9c,11t,13t-CLN remarkably reduced the cell viability of Caco-2. In Caco-2 cells treated with BGO-FFA, DNA fragmentation of apoptosis indicators was observed in a dose-dependent manner. The expression level of apoptosis suppressor Bcl-2 protein was also decreased by BGO-FFA treatment. The GADD45 and p53, which play an important role in apoptosis-inducing pathways, were remarkably up-regulated by BGO-FFA treatment in Caco-2 cells. Up-regulation of PPARgamma mRNA and protein were also observed during apoptosis induced by BGO-FFA. These results suggest that BGO-FFA rich in 9c,11t,13t-CLN may induce apoptosis in Caco-2 cells through up-regulation of GADD45, p53 and PPARgamma.

  17. The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    PubMed Central

    Benoit, Jean-Pierre; Garcion, Emmanuel

    2011-01-01

    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken

  18. Degradation of the Transcription Factors NF-κB, STAT3, and STAT5 Is Involved in Entamoeba histolytica-Induced Cell Death in Caco-2 Colonic Epithelial Cells

    PubMed Central

    Kim, Kyeong Ah; Min, Arim; Lee, Young Ah

    2014-01-01

    Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-κB (p65) in Caco-2 cells. However, IκB, an inhibitor of NF-κB, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-κB was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-κB and STATs in colonic epithelial cells, which ultimately accelerates cell death. PMID:25352693

  19. Degradation of the transcription factors NF-κB, STAT3, and STAT5 is involved in Entamoeba histolytica-induced cell death in Caco-2 colonic epithelial cells.

    PubMed

    Kim, Kyeong Ah; Min, Arim; Lee, Young Ah; Shin, Myeong Heon

    2014-10-01

    Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-κB (p65) in Caco-2 cells. However, IκB, an inhibitor of NF-κB, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-κB was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-κB and STATs in colonic epithelial cells, which ultimately accelerates cell death.

  20. [Lactobacilli and colon carcinoma--A review].

    PubMed

    Wang, Shumei; Zhang, Lanwei; Shan, Yujuan

    2015-06-04

    Epidemiological studies showed that incidence of colon carcinoma is increased in the world. There are many difficulties to inhibit colon carcinoma because the causes of inducing colon carcinoma were various and interactive each other. Previous evidence supported the balance of the colonic microflora was critical in inhibiting colon carcinoma and the protection by colonic microflora could be improved by ingesting lactobacilli. Therefore, the biological functions and anticancer effects of lactobacilli attract attention of researchers. In this review we discussed the causes of colon carcinoma; the anticancer mechanisms of lactobacilli on the basis of our own studies. Eventually, we summarized the effects of anticancer of different components and metabolic products extracted from lactobacilli.

  1. Evaluation of the cytotoxicity and genotoxicity of extracts of mussels originating from Moroccan Atlantic coast, in human colonic epithelial cells Caco-2.

    PubMed

    Nasser, Boubker; Moustaid, Khadija; Moukha, Serge; Mobio, Théophile A; Essamadi, Abdelkhalid; Creppy, Edmond E

    2008-08-01

    Industrial processing of phosphates generates chemical wastes which are, without any treatment, discharged directly into the Atlantic Ocean at Jorf Lasfar (JL), located 120 km south of Casablanca (Morocco) were shellfish are also collected by people without any control. Marine bivalves concentrate these pollutants by filtration and serve as vectors in human's exposure. The objective of this study was to test and compare in vitro on human intestinal cells (Caco-2) the cytotoxicity and genotoxicity of mussels (Mytilus galloprovincialis) extracts (either hydrophilic or lipophilic) collected at two coastal sites; JL (neighboring a phosphate processing plat-form) and Oualidia (OL) (a vegetable growing area) located 160 km south of Casablanca (i.e. 40 km south of JL). Using Caco-2 cells, the following end-points have been evaluated, cytotoxicity as measured by MTS test, inhibition of cellular macromolecules syntheses (DNA and protein) and genotoxicity evaluated by DNA fragmentation in agarose gel electrophoresis. The results indicated, that hydrophilic and lipophilic OL mussels extracts are cytotoxic and inhibit cellular macromolecules syntheses. Moreover these extracts damage the DNA in Caco-2 cells. The lipophilic JL mussels extract is cytotoxic, inhibits cellular macromolecules syntheses, and damages the DNA in Caco-2 cells whereas the hydrophilic extract of JL mussels fails to inhibit protein synthesis and does not damage the DNA. This extract rather enhances protein synthesis, suggesting possible metallothioneins induction by metal ions. Altogether these in vitro data indicate that mussels collected from OL could be more harmful than those from JL even though the later is closer to the pollution site than OL. Nevertheless consumption of mussels from all these areas may present a risk for humans. Epidemiological studies will be needed for global risk assessment in humans living in these areas especially those consuming see food regularly.

  2. Hydrophobicity of Antifungal β-Peptides Is Associated with Their Cytotoxic Effect on In Vitro Human Colon Caco-2 and Liver HepG2 Cells

    PubMed Central

    Mora-Navarro, Camilo; Méndez-Vega, Janet; Caraballo-León, Jean; Lee, Myung-ryul; Palecek, Sean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2016-01-01

    The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial β-peptides are peptidomimetics of natural antimicrobial peptides (AMPs), which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the β-peptide’s effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various β-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the β-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic β-peptide was 2–3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC). The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied β-peptide against C. albicans. PMID:26992117

  3. The human vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor 1 (VPAC1) promoter: characterization and role in receptor expression during enterocytic differentiation of the colon cancer cell line Caco-2Cl.20.

    PubMed Central

    Couvineau, A; Maoret, J J; Rouyer-Fessard, C; Carrero, I; Laburthe, M

    2000-01-01

    The basic organization of the human vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor (VPAC) 1 promoter was investigated after cloning the 5'-flanking region (1.4 kb) of the VPAC1 gene from a human genomic library. Subsequent functional analysis of various deletions of the 5'-flanking sequence, subcloned upstream of a luciferase reporter gene, was carried out in HT-29 cells. The minimal promoter region identified encompasses the -205/+76 sequence and contains a crucial CCAAT box (-182/-178) and a GC-rich sequence. Moreover a region (-1348/-933) containing a silencer element was identified. We previously showed that the expression of the VPAC1 receptor binding site is strictly dependent upon the enterocytic differentiation of human colon cancer Caco-2 cells [Laburthe, Rousset, Rouyer-Fessard, Couvineau, Chantret, Chevalier and Zweibaum (1987) J. Biol. Chem. 262, 10180-10184]. In the present study we show that VPAC1 mRNA increases dramatically when Caco-2Cl.20 cells differentiate, as measured by RNase protection assays and reverse transcriptase-PCR. A single transcript species of 3 kb is detected in differentiated cells by Northern-blot analysis. Accumulation of VPAC1 receptor mRNA is due to a 5-fold increase of transcription rate (run-on assay) without a change in mRNA half-life (9 h). Stable transfections of various constructs in Caco-2Cl.20 cells and subsequent analysis of reporter gene expression, during the enterocytic differentiation process over 25 days of culture, further indicated that the -254/+76 5'-flanking sequence is endowed with the regulatory element(s) necessary for transcriptional regulation of VPAC1 during differentiation. Altogether, these observations provide the first characterization of the basic organization of the human VPAC1 gene promoter and unravel the crucial role of a short promoter sequence in the strict transcriptional control of VPAC1 expression during differentiation of human colon cancer Caco-2

  4. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers

    PubMed Central

    Akiyama, Takuya; Oishi, Kenji

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  5. Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5′-diphospho-glucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells

    PubMed Central

    WANG, MIN; ZHU, JING-YU; CHEN, SHUO; QING, YING; WU, DONG; LIN, YING-MIN; LUO, JI-ZHUANG; HAN, WEI; LI, YAN-QING

    2014-01-01

    Sulforaphane (SFN), which is highly enriched in cruciferous vegetables, has been investigated for its cancer chemopreventive properties and ability to induce autophagy. Uridine 5′-diphospho (UDP)-glucuronosyltransferase (UGT)1A induction is one of the mechanisms that is responsible for the cancer chemopreventive activity of SFN. The current study demonstrates that rapamycin may enhance the chemopreventive effects of SFN on Caco-2 cells; this may be partially attributed to nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2)- and human pregnane X receptor (hPXR)-mediated UGT1A1, UGT1A8 and UGT1A10 induction. These results indicate that targeting autophagy modulation may be a promising strategy for increasing the chemopreventive effects of SFN in cases of colon cancer. PMID:25364403

  6. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α.

    PubMed

    Real Hernandez, Luis M; Fan, Junfeng; Johnson, Michelle H; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  7. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  8. Contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by the cytokinesis-block micronucleus assay.

    PubMed

    Sahu, Saura C; Roy, Shambhu; Zheng, Jiwen; Ihrie, John

    2016-04-01

    Extensive human exposure to food- and cosmetics-related consumer products containing nanosilver is of public concern because of the lack of information about their safety. Genotoxicity is an important endpoint for the safety and health hazard assessment of regulated products including nanomaterials. The in vitro cytokinesis-block micronucleus (CBMN) assay is a very useful test for predictive genotoxicity testing. Recently, we have reported the genotoxicity of 20 nm nanosilver in human liver HepG2 and colon Caco2 cells evaluated using the CBMN assay. The objective of our present study was three-fold: (i) to evaluate if HepG2 and Caco2 cells are valuable in vitro models for rapid genotoxicity screening of nanosilver; (ii) to test the hypothesis that the nanoparticle size and cell types are critical determinants of its genotoxicity; and (iii) to determine if ionic silver contributes to the nanosilver genotoxicity. With these objectives in mind, we evaluated the genotoxic potential of 50 nm nanosilver of the same shape, composition, surface charge, obtained from the same commercial source, under the same experimental conditions and the same genotoxic CBMN endpoint used for the previously tested 20 nm silver. The ionic silver (silver acetate) was also evaluated under the same conditions. Results of our study show that up to the concentrations tested in these cell types, the smaller (20 nm) nanosilver induces micronucleus formation in both the cell types but the larger (50 nm) nanosilver and the ionic silver provide a much weaker response compared with controls under the same conditions.

  9. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  10. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review.

    PubMed

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-09-08

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.

  11. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    PubMed Central

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977

  12. Colon carcinoma metastatic to the thyroid gland

    SciTech Connect

    Lester, J.W. Jr.; Carter, M.P.; Berens, S.V.; Long, R.F.; Caplan, G.E.

    1986-09-01

    Metastatic carcinoma to the thyroid gland rarely is encountered in clinical practice; however, autopsy series have shown that it is not a rare occurrence. A case of adenocarcinoma of the colon with metastases to the thyroid is reported. A review of the literature reveals that melanoma, breast, renal, and lung carcinomas are the most frequent tumors to metastasize to the thyroid. Metastatic disease must be considered in the differential diagnosis of cold nodules on radionuclide thyroid scans, particularly in patients with a known primary.

  13. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16{sup INK4a} gene in human colorectal carcinoma (Caco-2) cells

    SciTech Connect

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A.

    2014-07-18

    Highlights: • Cactus pear fruit extract and indicaxanthin cause apoptosis of colon cancer cells. • Indicaxanthin does not cause ROS formation, but affects epigenoma in Caco-2 cells. • Indicaxanthin reverses methylation of oncosuppressor p16{sup INK4a} gene in Caco-2 cells. • Indicaxanthin reactivates retinoblastoma in Caco-2 cells. • Bioavailable indicaxanthin may have chemopreventive activity in colon cancer. - Abstract: Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC{sub 50} 400 ± 25 mg fresh pulp equivalents/mL, and 115 ± 15 μM (n = 9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16{sup INK4a} gene promoter, reactivation of the silenced mRNA expression and accumulation of p16{sup INK4a}, a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells.

  14. [Thyroid metastasis due to right colonic carcinoma].

    PubMed

    Rauber, E; Pancrazio, F; Spivach, A; Stanta, G

    1998-12-01

    Clinical evident metastases to the thyroid gland are rarely found antemortem. A case of a 62 year-old man with a history of right colonic carcinoma, who presented a mass in the right lobe of his thyroid gland one year after the removal of a metachronous metastasis in his right lung, is presented. The tumour of the thyroid was found to be metastatic adenocarcinoma from his previous colonic cancer. The clinical finding of metastases to the thyroid gland is rare, particularly from a colorectal primary neoplasm. However, the possibility of a tumour of the thyroid gland representing a secondary malignancy is to be considered in any patient with a prior history of cancer.

  15. A novel quinone-based derivative (DTNQ-Pro) induces apoptotic death via modulation of heat shock protein expression in Caco-2 cells

    PubMed Central

    Gomez-Monterrey, Isabel; Campiglia, Pietro; Bertamino, Alessia; Aquino, Claudio; Sala, Marina; Grieco, Paolo; Dicitore, Alessandra; Vanacore, Daniela; Porta, Amalia; Maresca, Bruno; Novellino, Ettore; Stiuso, Paola

    2010-01-01

    Background and purpose: The resistance of human colon adenocarcinoma cells to antineoplastic agents may be related to the high endogenous expression of stress proteins, including the family of heat shock proteins (HSPs). Recently, a quinone-based pentacyclic derivative, DTNQ-Pro, showed high cytotoxic activity in human colon carcinoma cell lines. The aim of the present study was to determine the precise cellular mechanisms of this cytotoxic action of DTNQ-Pro. Experimental approach: Using human colorectal carcinoma-derived Caco-2 cells as a model, we studied the effects of DTNQ-Pro on cellular viability and oxidative stress; HSP70 and HSP27 accumulation; and cell cycle, differentiation and apoptosis. Key results: Incubation of Caco-2 cells with DTNQ-Pro reduced cell growth and increased the levels of reactive oxygen species in mitochondria. After 48 h of treatment, cells surviving showed an increased expression of Mn-superoxide dismutase (SOD), nitric oxide production and membrane lipid peroxidation. Treatment with DTNQ-Pro decreased HSP70 expression, and redistributed HSP27 and vimentin within the cell. DTNQ-Pro down-regulated the expression of A and B cyclins with arrest of the cell cycle in S phase and increased cellular differentiation. A second treatment of Caco-2 cells with DTNQ-Pro induced cellular death by activation of the apoptotic pathway. Conclusions and implications: DTNQ-Pro causes Caco-2 cell death by induction of apoptosis via inhibition of HSP70 accumulation and the intracellular redistribution of HSP27. These findings suggest the potential use of DTNQ-Pro in combination chemotherapy for colon cancer. PMID:20590589

  16. [A Case of Adenosquamous Carcinoma of the Ascending Colon].

    PubMed

    Hijikawa, Takeshi; Yoshida, Ryo; Yamada, Masanori; Nakatani, Kazuyoshi; Tokuhara, Katsuji; Kitade, Hiroaki; Shikata, Nobuaki; Yoshioka, Kazuhiko; Kon, Masanori

    2015-10-01

    We report a case of adenosquamous carcinoma of the colon. A 70-year-old woman underwent a colonoscopic examination because of a positive fecal occult blood test. Colonoscopy demonstrated a type 2 tumor of the ascending colon, and a biopsy specimen showed poorly-moderately differentiated tubular adenocarcinoma. We performed a right hemicolectomy with D2 lymphadenectomy. The histopathology of the tumor demonstrated adenosquamous adenocarcinoma. Primary adenosquamous carcinoma of the colon is relatively rare and has a poor prognosis. Therefore, adenosquamous carcinoma of the colon may require strict follow-up.

  17. Nonsteroidal anti-inflammatory drugs attenuate proliferation of colonic carcinoma cells by blocking epidermal growth factor-induced Ca++ mobilization.

    PubMed

    Kokoska, E R; Smith, G S; Miller, T A

    2000-01-01

    Numerous studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal carcinogenesis. We have previously reported that NSAIDs, in human colonic carcinoma cells (Caco-2), attenuate epidermal growth factor (EGF)-induced cellular proliferation through a process independent of their inhibitory effects on prostaglandin synthesis. Furthermore, separate studies have also suggested that NSAIDs inhibit EGF-induced store-operated Ca++ influx. Thus we developed the hypothesis that NSAIDs may limit the activity of EGF by altering intracellular Ca++ ([Ca++]i) mobilization. Serum-deprived Caco-2 cells were employed for all experimentation. [Ca++]i was measured with Fluo-3 and extracellular Ca++ influx was monitored by quenching Fluo-3 fluorescence with Mn++. Proliferation was quantitated with two assays: cellular nucleic acid and total protein content. Caco-2 cells exposed to EGF demonstrated an initial increase in [Ca++]i which was blocked by neomycin, an inhibitor of IPsubscript 3 generation, and the phospholipase C inhibitor U73122 but not U73343 (inactive control). This was followed by sustained extracellular Ca++ influx, which was attenuated with calcium-free buffer (-Ca++), the store- operated Ca++ channel blocker lanthanum, indomethacin, ibuprofen, and aspirin. In subsequent studies, cells were treated with either serum-free media or EGF +/- the aforementioned inhibitors, and again serum starved. Cells exposed to EGF +/- the inactive phospholipase C inhibitor U73343 demonstrated a significant increase in nucleic acid and protein. However, proliferation induced by EGF was not observed when [Ca++]i elevation was prevented by blocking either internal Ca++ store release via phospholipase C/IPsubscript 3 or sustained Ca++ influx through store-operated Ca++ channels. Sustained [Ca++]i elevation, as induced by EGF, appears to be required for mitogenesis. These data support our premise that one mechanism whereby NSAIDs may attenuate colonic neoplasia is

  18. Chronic anisakiasis of the ascending colon associated with carcinoma.

    PubMed

    Mineta, Sho; Shimanuki, Kimiyoshi; Sugiura, Atsushi; Tsuchiya, Yoshikazu; Kaneko, Masahiro; Sugiyama, Yoshihiko; Akimaru, Koho; Tajiri, Takashi

    2006-06-01

    Chronic anisakiasis of the colon is rare and difficult to diagnose. We report a case of chronic anisakiasis associated with advanced colonic carcinoma. A 69-year-old man was admitted for abdominal pain, diarrhea, and urticaria. Right hemicolectomy was performed because of an obstruction of the ascending colon and a palpable tumor of the right lower abdomen. The lesion was thought to be located in the deeper layers of the ascending colon. Preoperative examinations failed to detect the coexistence of anisakiasis and carcinoma of the colon. The anisakis was identified morphologically in the intestinal wall of the resected specimen and by an elevated titer of an IgE antibody specific to the parasite. Seventy-five cases of colonic and rectal anisakiasis, including the present case, have been reported in Japan. This is the only reported case of anisakiasis to appear in association with colonic carcinoma.

  19. Expression and function of FERMT genes in colon carcinoma cells.

    PubMed

    Kiriyama, Kenji; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Kubo, Terufumi; Tamura, Yasuaki; Kanaseki, Takayuki; Takahashi, Akari; Nakazawa, Emiri; Saka, Eri; Ragnarsson, Charlotte; Nakatsugawa, Munehide; Inoda, Satoko; Asanuma, Hiroko; Takasu, Hideo; Hasegawa, Tadashi; Yasoshima, Takahiro; Hirata, Koichi; Sato, Noriyuki

    2013-01-01

    Invasion into the matrix is one of hallmarks of malignant diseases and is the first step for tumor metastasis. Thus, analysis of the molecular mechanisms of invasion is essential to overcome tumor cell invasion. In the present study, we screened for colon carcinoma-specific genes using a cDNA microarray database of colon carcinoma tissues and normal colon tissues, and we found that fermitin family member-1 (FERMT1) is overexpressed in colon carcinoma cells. FRRMT1, FERMT2 and FERMT3 expression was investigated in colon carcinoma cells. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that only FERMT1 had cancer cell-specific expression. Protein expression of FERMT1 was confirmed by western blotting and immunohistochemical staining. To address the molecular functions of FERMT genes in colon carcinoma cells, we established FERMT1-, FERMT2- and FERMT3-overexpressing colon carcinoma cells. FERMT1-overexpressing cells exhibited greater invasive ability than did FERMT2- and FERMT3-overexpressing cells. On the other hand, FERMT1-, FERMT2- and FERMT3-overexpressing cells exhibited enhancement of cell growth. Taken together, the results of this study indicate that FERMT1 is expressed specifically in colon carcinoma cells, and has roles in matrix invasion and cell growth. These findings indicate that FERMT1 is a potential molecular target for cancer therapy.

  20. Comparative clinicopathological characteristics of colon and rectal T1 carcinoma

    PubMed Central

    Ichimasa, Katsuro; Kudo, Shin-Ei; Miyachi, Hideyuki; Kouyama, Yuta; Hayashi, Takemasa; Wakamura, Kunihiko; Hisayuki, Tomokazu; Kudo, Toyoki; Misawa, Masashi; Mori, Yuichi; Matsudaira, Shingo; Hidaka, Eiji; Hamatani, Shigeharu; Ishida, Fumio

    2017-01-01

    Lymph node metastasis significantly influences the management of patients with colorectal carcinoma. It has been observed that the biology of colorectal carcinoma differs by location. The aim of the current study was to retrospectively compare the clinicopathological characteristics of patients with colon and rectal T1 carcinomas, particularly their rates of lymph node metastasis. Of the 19,864 patients who underwent endoscopic or surgical resection of colorectal neoplasms at Showa University Northern Yokohama Hospital, 557 had T1 surgically resected carcinomas, including 457 patients with colon T1 carcinomas and 100 patients with rectal T1 carcinomas. Analysed clinicopathological features included patient age, gender, tumor size, morphology, tumor budding, invasion depth, vascular invasion, histological grade, lymphatic invasion and lymph node metastasis. Rectal T1 carcinomas were significantly larger than colon T1 carcinomas (mean ± standard deviation: 23.7±13.1 mm vs. 19.9±11.0 mm, P<0.01) and were accompanied by significantly higher rates of vascular invasion (48.0% vs. 30.2%, P<0.01). Significant differences were not observed among any other clinicopathological factors. In conclusion, tumor location itself was not a risk factor for lymph node metastasis in colorectal T1 carcinomas, even though on average, rectal T1 carcinomas were larger and accompanied by a significantly higher rate of vascular invasion than colon T1 carcinomas. PMID:28356962

  1. Metabolism of haem in Caco-2 cells.

    PubMed

    Uc, Aliye; McDonagh, Antony F; Stokes, John B

    2010-02-01

    The haem oxygenase-1-biliverdin reductase system degrades haem and generates biliverdin and bilirubin, both of which possess antioxidant and anti-inflammatory properties. Biliverdin and bilirubin are protective in intestinal injury models, but little is known about their generation and fate in the intestine. In the present work, an in vitro intestinal epithelial cell model, Caco-2 cells, were exposed to haem from either the apical or the basolateral side, and bile pigment generation and transport were measured spectrophotometrically and with high-pressure liquid chromatography. The Caco-2 cells generated bilirubin and bilirubin glucuronides upon exposure to haem. Bilirubin appeared predominantly in the apical medium regardless of the side to which haem was applied. In contrast to an earlier report, significant bidirectional haem transport was not observed. We conclude that Caco-2 cells metabolize haem and export its metabolic product, bilirubin, principally to the lumen, where it may exert antioxidant and anti-inflammatory functions.

  2. Quantification of pancreatic secretory trypsin inhibitor in colonic carcinoma and normal adjacent colonic mucosa.

    PubMed Central

    Bohe, H; Bohe, M; Jönsson, P; Lindström, C; Ohlsson, K

    1992-01-01

    AIMS: To measure the content of immunoreactive human pancreatic secretory trypsin inhibitor (irPSTI) in colonic carcinoma and adjacent normal colonic mucosa. METHODS: From a stable hybridoma cell line producing monoclonal antibodies specific for human PSTI, a specific enzyme linked immunosorbent assay (ELISA) for human PSTI was developed. In a precipitation assay system these antibodies bound human PSTI in a dose-dependent manner. The specimens were obtained from resectional surgery. RESULTS: The content of irPSTI was 19.9 micrograms/g protein (0.55 micrograms/g tissue wet weight) in colonic carcinoma. In adjacent normal colonic mucosa 43.6 micrograms/g protein (1.12 micrograms/g tissue wet weight) was shown. CONCLUSIONS: The enzymatic degradation of surrounding tissue necessary for tumour cell invasion could be facilitated by this relative deficit of the inhibitor in infiltrative carcinoma. PMID:1479031

  3. Cholecystocolic fistula caused by gallbladder carcinoma: preoperatively misdiagnosed as hepatic colon carcinoma.

    PubMed

    Ha, Gi Won; Lee, Min Ro; Kim, Jong Hun

    2015-04-21

    Cholecystocolic fistula secondary to gallbladder carcinoma is extremely rare and has been reported in very few studies. Most cholecystocolic fistulae are late complications of gallstone disease, but can also develop following carcinoma of the gallbladder when the necrotic tumor penetrates into the adjacent colon. Although no currently available imaging technique has shown great accuracy in recognizing cholecystocolic fistula, abdominopelvic computed tomography may show fistulous communication and anatomical details. Herein we report an unusual case of cholecystocolic fistula caused by gallbladder carcinoma, which was preoperatively misdiagnosed as hepatic flexure colon carcinoma.

  4. Reduced expression of TANGO in colon and hepatocellular carcinomas.

    PubMed

    Arndt, Stephanie; Bosserhoff, Anja K

    2007-10-01

    The TANGO gene was originally identified as a new family member of the MIA gene family. The gene codes for a 14-kDa protein of so far unknown function. Recently, we identified TANGO as a tumor suppressor in malignant melanoma. In this study we evaluated TANGO transcription in different colon and hepatocellular carcinoma cell lines and tissue samples, to analyze whether loss of TANGO expression is a more general process in tumor development. TANGO was down-regulated or lost in all hepatocellular and colon cell lines compared to primary human hepatocytes or normal colon epithelial cells, respectively, and in most of the tumor samples compared to non-tumorous tissue. These results were confirmed in situ by immunohistochemistry on paraffin-embedded sections of colon and hepatocellular tumors. Functional assays with exogenous TANGO treatment of colon and hepatoma cell lines revealed reduced motility and invasion capacity. Our studies present for the first time the down-regulation of TANGO in colon and hepatocellular carcinoma and provide the first indications for a tumor suppressor role of the TANGO gene in human colon and hepatocellular carcinoma. Thus, functional relevant loss of TANGO expression may contribute to general tumor development and progression, and may provide a new target for therapeutic strategies.

  5. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16(INK4a) gene in human colorectal carcinoma (Caco-2) cells.

    PubMed

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A

    2014-07-18

    Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC50 400±25 mg fresh pulp equivalents/mL, and 115±15 μM (n=9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16(INK4a) gene promoter, reactivation of the silenced mRNA expression and accumulation of p16(INK4a), a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells.

  6. Primary signet ring cell carcinoma of the colon and rectum.

    PubMed

    Arifi, Samia; Elmesbahi, Omar; Amarti Riffi, Afaf

    2015-10-01

    Colorectal primary signet ring cell carcinoma (SRCC) is a rare entity accounting for nearly 1% of all colorectal carcinomas. It is an independent prognostic factor associated with less favorable outcome. This aggressiveness is mainly due to the intrinsic biology of these tumors. Here is an overview of the literature related to clinicopathological features, molecular biology, and management of SRCC of the colon and the rectum.

  7. Different responses of Fe transporters in Caco2/HT29-MTX cocultures than in independent Caco-2 cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human intestinal epithelium is composed of several cell types; mainly enterocytes and globet (mucin-secreting) cells. This study compares the cellular response for Fe transporters in Caco-2, HT29-MTX, and Caco-2/HT29-MTX coculture models for Fe bioavailability studies. Under culture, Caco-2 cell...

  8. Measuring oxygen levels in Caco-2 cultures

    PubMed Central

    Zeitouni, Nathalie E; Fandrey, Joachim; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2015-01-01

    Purpose Measuring oxygen levels in three different systems of Caco-2 cell culture. Methods Caco-2 cells were cultured in three different systems, using conventional polystyrene 24-well plates, special 24-well gas permeable plates, or on membrane inserts in conventional plates. Optical sensor spots were used to measure dissolved O2 levels in these cultured cells over the course of 6 days under normoxia (143 mmHg) and for 6 hours under hypoxia (7 mmHg). Western blot analysis was used to determine the protein levels of hypoxia-inducible factor 1α (HIF-1α) in the different cultures. Results All culture systems displayed lower O2 levels over time than expected when cultured under normoxia conditions. On average, O2 levels reached as low as 25 mmHg in 24-well plates but remained at 97 and 117 mmHg in gas permeable plates and membrane inserts, respectively. Under hypoxia, 1 mL cell cultures equilibrated to 7 mmHg O2 within the first 60 minutes and dropped to 0.39 and 0.61 mmHg O2 in 24-well and gas permeable plates, respectively, after the 6-hour incubation period. Cultures in membrane inserts did not equilibrate to 7 mmHg by the end of the 6-hour incubation period, where the lowest O2 measurements reached 23.12 mmHg. Western blots of HIF-1α protein level in the whole cell lysates of the different Caco-2 cultures revealed distinct stabilization of HIF-1α after hypoxic incubation for 1, 2, and 4 hours in 24-well plates as well as gas permeable plates. For membrane inserts, notable HIF-1α was seen after 4 hours of hypoxic incubation. Conclusion Cellular oxygen depletion was achieved in different hypoxic Caco-2 culture systems. However, different oxygen levels comparing different culture systems indicate that O2 level should be carefully considered in oxygen-dependent experiments. PMID:27774482

  9. Protective effect of polyphenols from Glycyrrhiza glabra against oxidative stress in Caco-2 cells.

    PubMed

    D'Angelo, Stefania; Morana, Alessandra; Salvatore, Anna; Zappia, Vincenzo; Galletti, Patrizia

    2009-12-01

    In the present article, we have investigated the antioxidant properties of methanolic liquorice polyphenol extracts (LPE(s)). Polyphenol extraction was performed with 60% and 100% methanol. Analysis of LPE(s) by thin-layer chromatography revealed that a higher amount of polyphenols was recovered by extraction with 60% methanol. Antioxidant activity measurement of the reducing power, scavenging effect on 2,2'-diphenyl-1-picrylhydrazyl free radical, and hydrogen peroxide scavenging capability have been taken as the parameters for assessment of antioxidant potential of LPE(s). Results have been compared with both natural and synthetic antioxidants. All experimental data have indicated that LPE(s) possess strong antioxidant power proportional to their o-diphenolic and total polyphenolic content, independently from the assay used. Therefore, the LPE(s) antioxidant property was examined against the cytotoxic effects of reactive oxygen species in human colon carcinoma cells. Pretreatment of Caco-2 cells with liquorice polyphenolic extracts provided a remarkable protection against oxidative damage induced by H(2)O(2). The highest oxidative stress protection (72% of cell vitality) was measured in cells pretreated with 0.54 mM polyphenols. This effect seems to be associated to the antioxidant activity of liquorice polyphenolic compounds. Our data suggest that polyphenols from Glycyrrhiza glabra could exert a beneficial action in the prevention of intestinal pathologies related to production of reactive oxygen species.

  10. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers.

    PubMed

    Stetinová, Vera; Smetanová, Libuse; Kholová, Dagmar; Svoboda, Zbynek; Kvetina, Jaroslav

    2009-09-01

    This study aimed i) to characterize the transepithelial transport of the mucolytic agent ambroxol hydrochloride across the intestinal barrier, ii) to classify the ambroxol according to Biopharmaceutics Classification System (BCS) and iii) to predict ambroxol absorption in humans. Transport of ambroxol (100, 300 and 1000 micromol/l) was studied in a human colon carcinoma cell line Caco-2 in apical to basolateral and basolateral to apical direction, under iso-pH 7.4 and pH-gradient (6 vs. 7.4) conditions. The relative contribution of the paracellular route was estimated using Ca2+-free transport medium. Ambroxol samples from receiver compartments were analysed by HPLC with UV detection (242 nm). Results showed that ambroxol transport is linear with time, pH-dependent and direction-independent, displays non-saturable (first-order) kinetics. Thus, the transport seems to be transcellular mediated by passive diffusion. Estimated high solubility and high permeability (P(app) = 45 x 10(-6) cm/s) of ambroxol rank it among well absorbed compounds and class I of BCS. It can be expected that the oral dose fraction of ambroxol absorbed in human intestine is high.

  11. Cold-storage affects antioxidant properties of apples in Caco-2 cells.

    PubMed

    Tarozzi, Andrea; Marchesi, Alessandra; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2004-05-01

    Data on the composition of phenolic antioxidant compounds present in food plants and assessment of their activity are essential for epidemiological explanation of the health benefits of fruit and vegetables. Various factors such as cultivation methods, industrial processing, and storage may affect the final concentrations of phytochemicals in food plants and their eventual bioactivity. This study investigated the influence of commercial cold-storage periods on the antioxidant properties of apples grown either by organic or integrated systems. In both cases, total phenolics and total antioxidant activity decreased only in the first 3 mo and only in apples with skin (P < 0.05), suggesting that cold storage rapidly impoverishes these properties in skin but not in pulp. Assessment of antioxidant bioactivity in vitro, measured in terms of intracellular antioxidant, cytoprotective, and antiproliferative activity in human colon carcinoma (Caco-2) cells (differentiated to normal intestinal epithelia for intracellular antioxidant and cytoprotective effects), showed strong, time-related decreases over 6 mo of cold storage for all 3 parameters (P < 0.01), irrespective of the cultivation system. These findings with integrated and organic apples further support the concept that organic systems of cultivation do not generally provide real health benefits. Moreover, the data from the present study clearly show that factors such as cold storage may affect the antioxidant properties of apples. Epidemiological studies on the cancer-preventive benefits of fruits and vegetables should take into account the cold-storage bias for apples, and possibly for other products.

  12. Late metastatic colon cancer masquerading as primary jejunal carcinoma

    PubMed Central

    Meshikhes, A-WN; Joudeh, AA

    2016-01-01

    Metastasis to the small bowel from a previously resected colorectal cancer is rare and may erroneously be diagnosed as a primary small bowel carcinoma. It usually occurs several years after the primary resection. We present the case of a 67-year-old man who had undergone left hemicolectomy for colon cancer 3 years earlier and returned with subacute small bowel obstruction. This was initially thought, based on preoperative radiological findings and normal colonoscopic examination, to be due a primary jejunal cancer. Even at surgery, the lesion convincingly appeared as an obstructing primary small bowel carcinoma. However, the histology of the resected small bowel revealed metastatic colon cancer. This rare and an unusual metastatic occurrence some years after the primary resection is described and reviewed. PMID:26890851

  13. A colonic tissue architecture assay applied to human colon carcinoma cells.

    PubMed

    Ilantzis, C; Stanners, C P

    1997-01-01

    A two-component tissue architecture assay system has been devised that tests the ability of human colon carcinoma cells to conform to the specific three-dimensional cell-cell and cell-substratum interactions characteristic of normal colonic tissues. Dissociated fetal rat colonic cells (FRCC) were allowed to reaggregate in suspension with or without the addition of different proportions (0.1%, 1%, and 10% of the total cells) of the human colon carcinoma cell lines, SW-1222 and LS-174T. Cellular aggregates obtained after 36 hours, incubation exhibited cell sorting by the formation of recognizable epithelial colonic crypt-like structures with glandular lumens in a mesenchyme-like background. Carcinoembryonic antigen (CEA)-positive SW-1222 cells in 10% mixed aggregates were organized into numerous well-formed glandular structures with a polarized apical distribution of CEA. LS-174T cells, on the other hand, were self-sorted but structurally disorganized with a continuous cell surface CEA distribution. Pure FRCC and mixed aggregates were implanted under the kidney capsules of Swiss nu/nu (nude) or CD-1 nu/nu mice and allowed to grow for a period of 7-10 days. Whereas the normal FRCC readily formed colonic tissue, the SW-1222 cells exhibited a capacity for differentiation into colonic crypts which became progressively less normal and more tumor-like as the proportion of carcinoma cells in the aggregates was increased. The LS-174T cells demonstrated poor differentiation at all concentrations. Cell surface levels of CEA and the CEA family member nonspecific crossreacting antigen (NCA), both overexpressed in colon cancer, were higher in LS-174T than in SW-1222 cells, whereas family member biliary glycoprotein (BGP), downregulated in colon carcinoma was higher in the SW-1222 cells. These results thus support the suggestion that deregulated expression of CEA family members can be involved in the ability of colonocytes to differentiate and conform to normal tissue architecture

  14. Hollow fiber culture accelerates differentiation of Caco-2 cells.

    PubMed

    Deng, Xudong; Zhang, Guoliang; Shen, Chong; Yin, Jian; Meng, Qin

    2013-08-01

    Caco-2 cells usually require 21 days of culture for developing sufficient differentiation in traditional two-dimensional Transwell culture, deviating far away from the quick differentiation of enterocytes in vivo. The recently proposed three-dimensional cultures of Caco-2 cells, though imitating the villi/crypt-like microstructure of intestinal epithelium, showed no effect on accelerating the differentiation of Caco-2 cells. In this study, a novel culture of Caco-2 cells on hollow fiber bioreactor was applied to morphologically mimic the human small intestine lumen for accelerating the expression of intestine functions. The porous hollow fibers of polyethersulfone (PES), a suitable membrane material for Caco-2 cell culture, successfully promoted cells to form confluent monolayer on the inner surface. The differentiated functions of Caco-2 cells, represented by alkaline phosphatase, γ-glutamyltransferase, and P-glycoprotein activity, were greatly higher in a 10-day hollow fiber culture than in a 21-day Transwell culture. Moreover, the Caco-2 cells on PES hollow fibers expressed higher F-actin and zonula occludens-1 protein than those on Transwell culture, indicative of an increased mechanical stress in Caco-2 cells on PES hollow fibers. The accelerated differentiation of Caco-2 cells on PES hollow fibers was unassociated with membrane chemical composition and surface roughness, but could be stimulated by hollow fiber configuration, since PES flat membranes with either rough or smooth surface failed to enhance the differentiation of Caco-2. Therefore, the accelerated expression of Caco-2 cell function on hollow fiber culture might show great values in simulation of the tissue microenvironment in vivo and guide the construction of intestinal tissue engineering apparatus.

  15. [A case of mixed adenoneuroendocrine carcinoma of the transverse colon].

    PubMed

    Kusakabe, Jiro; Miki, Akira; Kobayashi, Hiroyuki; Uryuhara, Kenji; Hashida, Hiroki; Mizumoto, Masaki; Kaihara, Satoshi; Hosotani, Ryo; Yamashita, Daisuke

    2014-11-01

    A 7 1-year-old man presented to our hospital with constipation and abdominal pain. Computed tomography of the abdomen and colonoscopy revealed advanced cancer of the transverse colon. The biopsy specimen indicated a highly differentiated adenocarcinoma. The patient underwent extended right hemicolectomy with regional lymph node dissection. Pathological examination showed a neuroendocrine carcinoma (NEC) with concurrent adenocarcinoma of the transverse colon and regional lymph node metastases of the NEC and adenocarcinoma. The histopathological examination confirmed a diagnosis of mixed adenoneuroendocrine carcinoma (MANEC) in accordance with the 2010 WHO Classification of Tumors of the Digestive System. Liver and lung metastases were identified 8 months after the surgery. We administered chemotherapy including 5-fluorouracil, Leucovorin, and oxaliplatin (mFOLFOX) plus bevacizumab, with limited therapeutic effect, as the disease progressed despite treatment. The patient chose best supportive care 13 months after the surgery. Several studies have reported that most patients with adenoendocrine cell carcinoma, including MANEC, experience relapse within 1 year after surgery, and few patients remain disease-free for long periods after surgery. The optimal strategy for the management of MANEC is variable owing to its rarity; only 2 cases of MANEC in the colon, including the present case, have been reported in Japan. It is thus important to gather more evidence on this disease and its management.

  16. Recurrent histoplasmosis in AIDS mimicking a colonic carcinoma.

    PubMed

    Aisenberg, G; Marcos, L A; Ogbaa, I

    2009-06-01

    The prevalence rate of lower gastrointestinal bleeding in patients with AIDS is around 2.6%. A 42-year-old woman with AIDS (CD(4) count 9/microL) and recently treated for disseminated histoplasmosis presented to the emergency room with melena, severe anaemia and fever. A colonoscopy showed an umbilicated colonic nodule mimicking a carcinoma of the colon. The biopsy showed intracytoplasmic microorganisms compatible with Histoplasma capsulatum. She had poor compliance to the itraconazole when discharge on previous admission. Despite the fact that colonic histoplasmosis is uncommon, the mortality rate is around 8% and clinicians should be aware of the clinical presentation of histoplasmosis when recur, especially in patients not taking the itraconazole for long-term treatment.

  17. [A case of adenosquamous carcinoma of the ascending colon].

    PubMed

    Toyoda, Tetsutaka; Nishimura, Yoji; Yatsuoka, Toshimasa; Yokoyama, Yasuyuki; Shimada, Ryu; Ishikawa, Hideki; Fukuda, Takashi; Amikura, Katsumi; Kawashima, Yoshiyuki; Sakamoto, Hirohiko; Tanaka, Yoichi; Nishimura, Yu

    2014-11-01

    A 6 8-year-old man was admitted to our hospital with lower abdominal pain. Lower gastrointestinal endoscopy showed type 2 advanced cancer in the ascending colon. Histopathological examination after endoscopical biopsy revealed both moderately differentiated adenocarcinoma and well-differentiated squamous carcinoma. Subsequently, right hemicolectomy was performed. The tumor was 55 × 40 mm in size and was diagnosed as an adenosquamous carcinoma A, type 2, pSS, pN0, sH0, sP0, sM0, fStageII. Adenosquamous carcinoma is extremely rare, represents about 0.1% of all colorectal cancer, and usually has a poor prognosis. Thirty-one months after surgery, the patient is still in good health and displays no signs of recurrence.

  18. Pleomorphic Carcinoma of the Colon: Morphological and Immunohistochemical Findings

    PubMed Central

    Branca, Giovanni; Barresi, Valeria; Ieni, Antonio; Irato, Eleonora; Caruso, Rosario Alberto

    2016-01-01

    Pleomorphic carcinoma is an aggressive neoplasm defined by the World Health Organization (WHO) as a poorly differentiated (squamous cell carcinoma or adenocarcinoma) or undifferentiated carcinoma in which at least 10% spindle and/or giant cells are identified, or as a carcinoma constituted purely of spindle and giant cells. Although this entity has initially been shown in the lung, it has been described also in extrapulmonary locations, with only one report for a colonic site. A 65-year-old woman developed a caecal tumour. Gross examination revealed an endophytic/ulcerative mass 7 cm in length. Microscopically, the tumour was a poorly differentiated adenocarcinoma with a pleomorphic component that occupied more than 10% of the specimen. The tumour shared these histopathological findings with pulmonary giant cell carcinoma but differed in other clinicopathological features such as a pushing growth pattern, stage pT3N1, and an uneventful outcome 24 months after operation. The pleomorphic component showed morphological and immunohistochemical features compatible with mitotic catastrophe, a non-apoptotic cell death occurring in cycling cells after aberrant mitosis. These features included multinucleation, micronucleation, atypical mitoses, foci of geographic necrosis, as well as immunohistochemical overexpression of p53 and Ki-67. The interpretation of the pleomorphic component as morphological expression of mitotic catastrophe may be useful in comprehending the pathogenesis of this rare neoplasm, and it may have practical implications as a potential cancer therapeutic target. PMID:27462191

  19. Medullary carcinoma of the colon: can the undifferentiated be differentiated?

    PubMed

    Fiehn, Anne-Marie Kanstrup; Grauslund, Morten; Glenthøj, Anders; Melchior, Linea Cecilie; Vainer, Ben; Willemoe, Gro Linno

    2015-01-01

    Medullary carcinoma of the colon is a rare variant of colorectal cancer claimed to have a more favorable prognosis than conventional adenocarcinomas. The histopathologic appearance may be difficult to distinguish from poorly differentiated adenocarcinoma. The study aimed to evaluate the diagnostic interobserver agreement and to characterize the immunohistochemical and molecular differences between these two subgroups. Fifteen cases initially classified as medullary carcinoma and 30 cases of poorly differentiated adenocarcinomas were included. Two pathologists reviewed the slides independently without knowledge of the original diagnosis and subgrouped the tumors into the two entities. Agreement was reached in 31 of 45 cases (69 %) with kappa = 0.32. An extensive immunohistochemical panel was performed, and KRAS, NRAS, and BRAF mutational status was assessed. Of the 31 cases with diagnostic agreement, the expression of only MLH-1 along with corresponding expression of PMS-2 differed significantly (p = 0.04). A high rate of BRAF mutations was detected in both subgroups without significant differences. Expression of MLH-1 was superior in dividing the tumors into two separate entities with significant differences in CK20 (p = 0.005) expression and in the rate of BRAF mutations (p = 0.0035). In conclusion, medullary carcinomas of the colon are difficult to discriminate from poorly differentiated adenocarcinoma even with the help of immunohistochemical and molecular analyses. This raises the question whether these morphological subtypes should be maintained or whether an alternative classification of poorly differentiated colorectal adenocarcinomas based on MLH-1 status rather than morphology should be suggested.

  20. Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol.

    PubMed

    Macpherson, Tara; Armstrong, Jane A; Criddle, David N; Wright, Karen L

    2014-01-01

    The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.

  1. Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells.

    PubMed

    Farabegoli, F; Scarpa, E S; Frati, A; Serafini, G; Papi, A; Spisni, E; Antonini, E; Benedetti, S; Ninfali, P

    2017-03-01

    Vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L. (BVc) seeds, betaxanthin (R1) and betacyanin (R2) fractions from Beta vulgaris var. rubra L. (BVr) roots were combined and tested for cytotoxicity in CaCo-2 colon cancer cells. XVX was the most cytotoxic molecule, but the combination of XVX with R1 and R2 significantly prolonged its cytotoxicity. Cytotoxicity was mediated by the intrinsic apoptotic pathway, as shown by an increase in Bcl2-like protein 4, cleaved Poly ADP-Ribosyl Polymerase 1 and cleaved Caspase 3 levels with a parallel decrease in anti-apoptotic protein B-cell leukemia/lymphoma 2 levels. R1 and R2, used alone or in combination, reduced oxidative stress triggered by H2O2 in CaCo-2 cells. Betalains dampened cyclooxygenase-2 and interleukin-8 mRNA expression after lipopolysaccharide induction in CaCo-2, showing an anti-inflammatory action. Our results support the use of a cocktail of R1, R2 and XVX as a chemopreventive tool against colon cancer.

  2. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro

    PubMed Central

    Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2016-01-01

    Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50) value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G0/G1 phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis. PMID:27347927

  3. Primary colonic signet ring cell carcinoma in a young patient

    PubMed Central

    Prabhu, Raghunath; Kumar, Neha; Krishna, Sunil; Shenoy, Rajgopal

    2014-01-01

    A 28-year-old woman presented with colicky abdominal pain for 3 months. Pain was associated with episodes of vomiting, abdominal distension and constipation. She also had loss of weight for this duration. General physical examination was unremarkable and the abdomen was soft, with no palpable organomegaly. A CT of the abdomen showed small bowel and ascending colon dilation with multiple air fluid levels. There was also a short segment of circumferential bowel wall thickening and luminal narrowing in the hepatic flexure with sudden transition of bowel diameter. She underwent a right hemicolectomy after necessary preoperative investigations. Histopathology revealed signet ring cell carcinoma (SRCC). This case highlights the importance of detecting such a lesion in a young, otherwise fit woman. The challenge lies in early diagnosis and awareness of general practitioners about this aggressive form of colonic tumours. PMID:24654235

  4. Carcinoma of the colon in children: a report of six new cases and a review of the literature.

    PubMed

    Andersson, A; Bergdahl, L

    1976-12-01

    Of six children with carcinoma of the colon, none had ulcerative colitis or a family history of carcinoma of the colon or colonic polyposis. In 75 cases traced in the literature, a common early symptom of carcinoma of the colon in children is acute, crampy abdominal pain. At laparotomy for suspected appendictis, the possibility of the acute pain being due to carcinoma of the colon should be borne in mind. Otherwise the symptoms of carcinoma of the colon in children do not differ substantially from those in adults. The prognosis is unfavorable; in only 2.5% of the cases on record did the children survive 5 yr after the operation.

  5. Endoscopic mucosal resection of early stage colon neuroendocrine carcinoma

    PubMed Central

    Yamasaki, Yasushi; Uedo, Noriya; Ishihara, Ryu; Tomita, Yasuhiko

    2015-01-01

    Early stage colorectal neuroendocrine carcinoma is rare. A small colon tumour was found in a 56-year-old man during diagnostic colonoscopy performed after a positive faecal occult blood test, and he was referred for treatment. A slightly reddish superficial elevated lesion with a shallow depression 10 mm in size was found in the transverse colon. Magnifying narrow-band imaging revealed disrupted irregular microvessels and the absence of a surface pattern in the depressed area. En bloc endoscopic mucosal resection (EMR) of the tumour was undertaken. The tumour was positive for chromogranin A and synaptophysin, and had a mitotic rate of >20/10 high-power fields and a Ki-67 proliferative index of >50%; it was diagnosed as a neuroendocrine carcinoma. The tumour minimally invaded the submucosa (300 μm) without lymphovascular involvement. The patient was followed up carefully, and at 1 year after EMR, no recurrence was found using colonoscopy and CT scans. PMID:25737221

  6. Metachronous squamous-cell carcinoma of the colon and treatment of rectal squamous carcinoma with chemoradiotherapy.

    PubMed

    Brammer, R D; Taniere, P; Radley, S

    2009-02-01

    Rectal squamous-cell carcinoma is a rare tumour with an incidence of less than 1 per 1000 cases. We report such a case treated with chemoradiotherapy. The patient developed a metastasis in the spleen and a further squamous tumour in the right colon, both of which were successfully resected. No histological evidence of recurrent rectal tumour has been found. Two years following presentation, the patient remains disease-free although symptomatic from a radiotherapy-induced stricture of the rectum.

  7. Sphere formation assay is not an effective method for cancer stem cell derivation and characterization from the Caco-2 colorectal cell line.

    PubMed

    Wu, Hui; Zhang, Haihong; Hu, Yue; Xia, Qiu; Liu, Chenlu; Li, Yingnan; Yu, Bin; Gu, Tiejun; Zhang, Xizhen; Yu, Xianghui; Kong, Wei

    2014-03-01

    Although the existence of cancer stem cells (CSCs) has been demonstrated in colorectal cancer, further investigation is hindered by controversies over their surface markers. The sphere formation assay is widely used as in vitro method for derivation and characterization of CSCs based on the intrinsic self-renewal property of these cells. Isolated cancer cells that form tumorspheres are generally recognized as CSCs with self-renewal and tumorigenic capacities. In this study, colon spheres grown from Caco-2 cells in the sphere formation assay were separated from other differentiated cells and characterized. Compared with Caco-2 cells, the derived colon spheres lost several CSC properties. The colon spheres contained decreased levels of specific colorectal CSC surface markers as well as low levels of ATP-binding cassette (ABC) transporters typically overexpressed in CSCs, resulting in the near loss of their chemoresistance ability. Furthermore, cells that developed as colon spheres with strong self-renewal ability in vitro lost their tumorigenic capacity in vivo compared with Caco-2 cells, which could establish tumors in non-obese diabetic/severe-combined immunodeficient (NOD/SCID) mice. The results indicated that the Caco-2 cell derived colon spheres did not consist of colorectal CSCs. Thus, the well-accepted sphere formation assay may not be an effective method for CSC isolation and characterization from the Caco-2 colorectal cancer cell line.

  8. Biphasic effect of falcarinol on caco-2 cell proliferation, DNA damage, and apoptosis.

    PubMed

    Young, Jette F; Duthie, Susan J; Milne, Lesley; Christensen, Lars P; Duthie, Garry G; Bestwick, Charles S

    2007-02-07

    The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by <10 microM falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.

  9. APOBEC3G expression is correlated with poor prognosis in colon carcinoma patients with hepatic metastasis.

    PubMed

    Lan, Huanrong; Jin, Ketao; Gan, Meifu; Wen, Shouxiang; Bi, Tienan; Zhou, Shenkang; Zhu, Naibiao; Teng, Lisong; Yu, Wenjie

    2014-01-01

    Increased expression of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) in human primary colorectal tumors and hepatic metastasis has been detected. However, the clinical relevance of APOBEC3G in colon carcinoma hepatic metastasis remains uncertain. The aim of this study was to assess the prognostic value of APOBEC3G in colon carcinoma patients with hepatic metastasis after hepatic resection. APOBEC3G expression was evaluated by immunohistochemistry in paraffin-embedded primary colon carcinoma and paired hepatic metastasis tissues from 136 patients with liver metastasis from colon carcinoma that underwent hepatic resection. The relation between APOBEC3G expression and clinicopathologic factors and long-term prognosis in these 136 patients was retrospectively examined. The prognostic significance of negative or positive APOBEC3G expression in colon carcinoma hepatic metastasis was assessed using Kaplan-Meier survival analysis and log-rank tests. Positive expression of APOBEC3G was correlated with liver metastasis of colon cancer. Univariate analysis indicated significantly worse overall survival (OS) for patients with a positive APOBEC3G expression in colon carcinoma hepatic metastasis than for patients with a negative APOBEC3G expression. Multivariate analysis showed positive-APOBEC3G in colon carcinoma hepatic metastasis to be an independent prognostic factor for OS after hepatic resection (P = 0.000). Positive expression of APOBEC3G was statistically significantly associated with poor prognosis of colon carcinoma patients with hepatic metastasis. APOBEC3G could be a novel predictor for poor prognosis of colon carcinoma patients with hepatic metastasis after hepatic resection.

  10. Detection of Enterobius vermicularis eggs in the submucosa of the transverse colon of a man presenting with colon carcinoma.

    PubMed

    Lee, Sai-Cheong; Hwang, Kao-Pin; Tsai, Wen-Sy; Lin, Chin-Yew; Lee, Ning

    2002-11-01

    We report a case of a chronic infiltrate of the intestinal wall of the transverse colon by the eggs of Enterobius vermicularis in a man who had immigrated to Taiwan from mainland China 50 years ago. During surgery for suspected transverse colon carcinoma, histologic examination of the tumor mass revealed eggs of E. vermicularis embedded in granulation tissue in the submucosa of the transverse colon. Results of a stool examination were negative for eggs but strongly positive for occult blood. The mass in the transverse colon was completely removed during surgery. At the present time, the patient remains asymptomatic.

  11. Proteomic analysis of colon and rectal carcinoma using standard and customized databases.

    PubMed

    Slebos, Robbert J C; Wang, Xia; Wang, Xiaojing; Wang, Xaojing; Zhang, Bing; Tabb, David L; Liebler, Daniel C

    2015-01-01

    Understanding proteomic differences underlying the different phenotypic classes of colon and rectal carcinoma is important and may eventually lead to a better assessment of clinical behavior of these cancers. We here present a comprehensive description of the proteomic data obtained from 90 colon and rectal carcinomas previously subjected to genomic analysis by The Cancer Genome Atlas (TCGA). Here, the primary instrument files and derived secondary data files are compiled and presented in forms that will allow further analyses of the biology of colon and rectal carcinoma. We also discuss new challenges in processing these large proteomic datasets for relevant proteins and protein variants.

  12. Differential Roles of Hath1, MUC2 and P27Kip1 in Relation with Gamma-Secretase Inhibition in Human Colonic Carcinomas: A Translational Study

    PubMed Central

    Souazé, Frédérique; Bou-Hanna, Chantal; Kandel, Christine; Leclair, François; Devallière, Julie; Charreau, Béatrice; Bézieau, Stéphane; Mosnier, Jean-François; Laboisse, Christian L.

    2013-01-01

    Hath1, a bHLH transcription factor negatively regulated by the γ-secretase-dependent Notch pathway, is required for intestinal secretory cell differentiation. Our aim was fourfold: 1) determine whether Hath1 is able to alter the phenotype of colon cancer cells that are committed to a differentiated phenotype, 2) determine whether the Hath1-dependent alteration of differentiation is coupled to a restriction of anchorage-dependent growth, 3) decipher the respective roles of three putative tumor suppressor genes Hath1, MUC2 and P27kip1 in this coupling and, 4) examine how our findings translate to primary tumors. Human colon carcinoma cell lines that differentiate along a mucin secreting (MUC2/MUC5AC) and/or enterocytic (DPPIV) lineages were maintained on inserts with or without a γ-secretase inhibitor (DBZ). Then the cells were detached and their ability to survive/proliferate in the absence of substratum was assessed. γ-secretase inhibition led to a Hath1-mediated preferential induction of MUC2 over MUC5AC, without DPPIV modification, in association with a decrease in anchorage-independent growth. While P27kip1 silencing relieved the cells from the Hath1-induced decrease of anchorage-independent growth, MUC2 silencing did not modify this parameter. Hath1 ectopic expression in the Hath1 negative enterocytic Caco2 cells led to a decreased anchorage-independent growth in a P27kip1-independent manner. In cultured primary human colon carcinomas, Hath1 was up-regulated in 7 out of 10 tumors upon DBZ treatment. Parallel MUC2 up-regulation occurred in 4 (4/7) and P27kip1 in only 2 (2/7) tumors. Interestingly, the response patterns of primary tumors to DBZ fitted with the hierarchical model of divergent signalling derived from our findings on cell lines. PMID:23409082

  13. Small cell carcinoma of the colon arising in a carcinoid tumor.

    PubMed

    Saif, M Wasif

    2013-04-01

    Small cell carcinomas of the gastrointestinal tract are rare and clinically aggressive tumors. A case is presented of a 70 year-old woman who presented with small bowel obstruction and was found to have a cecal mass. She underwent right hemicolectomy, and histopathology showed a small cell carcinoma arising in the background of a carcinoid tumor. Although small cell carcinomas of the colon have frequently been found in association with colonic adenomas, this appears to be the first report of a low-grade carcinoid tumor in combination with a small cell carcinoma.

  14. Differentiating the undifferentiated: immunohistochemical profile of medullary carcinoma of the colon with an emphasis on intestinal differentiation.

    PubMed

    Winn, Brody; Tavares, Rosemarie; Fanion, Jacqueline; Noble, Lelia; Gao, John; Sabo, Edmond; Resnick, Murray B

    2009-03-01

    Undifferentiated or medullary carcinoma is characterized by its distinct histologic appearance and relatively better prognosis compared to poorly differentiated colonic carcinoma. These 2 entities may be difficult to differentiate by light microscopy alone. Only limited immunohistochemical studies investigating medullary carcinoma have been reported. These studies suggest a loss of intestinal differentiation, exemplified by a high percentage of CDX2 negativity. Our aim was to further characterize the immunohistochemical profile of medullary carcinoma, with particular emphasis on intestinal markers. Paraffin blocks from 16 cases of medullary carcinoma and 33 cases of poorly differentiated colonic carcinoma were retrieved, and tissue microarrays were constructed and stained with an immunohistochemical panel including CDX2, CK7, CK20, p53, intestinal trefoil factor 3, chromogranin, synaptophysin, MLH-1, MUC-1, MUC-2, and calretinin. A significantly higher proportion of medullary carcinomas, as opposed to poorly differentiated colonic carcinomas, showed loss of staining for MLH-1 and for the intestinal transcription factor CDX2, in accordance with previous studies. MLH-1 staining was present in only 21% of medullary carcinoma cases compared with 60% of the poorly differentiated colonic carcinoma cases (P = .02), whereas CDX2 was positive in 19% of medullary carcinomas and 55% of poorly differentiated colonic carcinomas (P = .03). Interestingly, calretinin staining was strongly positive in 73% of medullary carcinomas compared to only 12% of poorly differentiated colonic carcinomas (P < .0001). Evidence of intestinal differentiation by MUC-1, MUC-2, and TFF-3 staining was seen in 67%, 60%, and 53% of the medullary carcinomas, respectively. These 3 markers were frequently positive in many of the CDX2-negative medullary carcinoma cases. Medullary carcinoma of the colon retains a significant degree of intestinal differentiation as evidenced by its high percentage of

  15. [Signet ring cell carcinoma of sigmoid colon in an adolescent patient. Report of a case].

    PubMed

    Casavilca Zambrano, S; Cisneros Gallegos, E; Lem Arce, F; Magallanes Maldonado, M

    2001-01-01

    We report the case of a female patient, sixteen years old who was diagnosed of signet ring cell carcinoma of sigmoid colon. We discuss the clinical presentation outstanding the early presentation of this unusual cancer.

  16. Effects of Japanese mistletoe lectin on cytokine gene expression in human colonic carcinoma cells and in the mouse intestine.

    PubMed

    Monira, Pervin; Koyama, Yu; Fukutomi, Ryuuta; Yasui, Kensuke; Isemura, Mamoru; Yokogoshi, Hidehiko

    2009-10-01

    Mistletoe lectins have various biological activities including anti-cancer and immunomodulatory effects. We previously isolated a lectin (ML-J) from Japanese mistletoe. In the present study, we examined the effects of ML-J on cytokine gene expression in human colon adenocarcinoma Caco-2 cells and in the mouse intestine. The results of reverse transcription-polymerase chain reaction and quantitative real-time polymerase chain reaction indicated that ML-J caused an upregulation of the gene expression of the proinflammatory cytokines interleukin (IL)-8, tumor necrosis factor-alpha (TNF-alpha) and IL-6 in Caco-2 cells and TNF-alpha and IL-6 in the duodenum. This study provides the first example to show that a perorally administered plant lectin affects gene expression in the duodenum.

  17. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells.

    PubMed

    Chen, Honglang; Song, Lijun; Li, Guixian; Chen, Wenfeng; Zhao, Shumin; Zhou, Ruoxia; Shi, Xiaoying; Peng, Zhenying; Zhao, Wenchang

    2017-03-13

    Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na(+)-coupled transport mechanisms at the luminal membrane, including Na(+)/H(+) exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca(2+) concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca(2+) concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.

  18. Intestinal transport of sophocarpine across the Caco-2 cell monolayer model and quantification by LC/MS.

    PubMed

    Sun, Sen; Zhang, Hai; Sun, Fengfeng; Zhao, Liang; Zhong, Yanqiang; Chai, Yifeng; Zhang, Guoqing

    2014-06-01

    Sophocarpine is a biologically active component obtained from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. The aim of this study was to develop a rapid and specific LC/MS method for the determination of sophocarpine and to explore its transcellular transport mechanism across the Caco-2 (the human colon adenocarcia cell lines) monolayer cell transwell model. Caco-2 cells were seeded on permeable polycarbonate membranes and incubated for 21 days. Before the experiment, the trans-epithelial electric resistance, integrity and alkaline phosphatase activity of the Caco-2 monolayers were verified and used in subsequent experiments. In the Caco-2 model constructed, many influencing factors were investigated, including time, concentration, pH and different protein inhibitors. The results suggested that sophocarpine was transported mainly by passive diffusion. The flux of sophocarpine was time- and concentration-dependent, and the pH also had an effect on its transportation. The PappBA was higher than PappAB , indicating that a polarized transport might exist for sophocarpine. MK-571 and reserpine, inhibitors of the multidrug resistance associated protein 2 and the breast cancer resistance protein, decreased the efflux of sophocarpine, while verapamil had no effect on its transport. These results revealed that sophocarpine is absorbed mainly by passive diffusion, and that a carrier-mediated mechanism is also involved in the transport of sophocarpine.

  19. Quantum dots incorporated magnetic nanoparticles for imaging colon carcinoma cells

    PubMed Central

    2013-01-01

    Background Engineered multifunctional nanoparticles (NPs) have made a tremendous impact on the biomedical sciences, with advances in imaging, sensing and bioseparation. In particular, the combination of optical and magnetic responses through a single particle system allows us to serve as novel multimodal molecular imaging contrast agents in clinical settings. Despite of essential medical imaging modalities and of significant clinical application, only few nanocomposites have been developed with dual imaging contrast. A new method for preparing quantum dots (QDs) incorporated magnetic nanoparticles (MNPs) based on layer-by-layer (LbL) self-assembly techniques have developed and used for cancer cells imaging. Methods Here, citrate - capped negatively charged Fe3O4 NPs were prepared and coated with positively - charged hexadecyltrimethyl ammonium bromide (CTAB). Then, thiol - capped negatively charged CdTe QDs were electrostatically bound with CTAB. Morphological, optical and magnetic properties of the fluorescent magnetic nanoparticles (FMNPs) were characterized. Prepared FMNPs were additionally conjugated with hCC49 antibodies fragment antigen binding (Fab) having binding affinity to sialylated sugar chain of TAG-72 region of LS174T cancer cells, which was prepared silkworm expression system, and then were used for imaging colon carcinoma cells. Results The prepared nanocomposites were magnetically responsive and fluorescent, simultaneously that are useful for efficient cellular imaging, optical sensing and magnetic separation. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the particle size is around 50 nm in diameter with inner magnetic core and outer CdTe QDs core-shell structure. Cytotoxicity test of prepared FMNPs indicates high viability in Vero cells. NPs conjugated with anti cancer antibodies were successfully labeled on colon carcinoma cells (LS174) in vitro and showed significant specificity to target cells

  20. FRZB up-regulation is correlated with hepatic metastasis and poor prognosis in colon carcinoma patients with hepatic metastasis.

    PubMed

    Shen, Yanping; Zhang, Fang; Lan, Huanrong; Chen, Ke; Zhang, Qi; Xie, Guoming; Teng, Lisong; Jin, Ketao

    2015-01-01

    Frizzled-related protein (FRZB) was up-regulated in hepatic metastasis samples compared with primary colon cancer samples in our previous work. However, the clinical relevance of FRZB in colon cancer hepatic metastasis remains uncertain. The aim of this study was to assess the prognostic value of FRZB in patients with colon carcinoma hepatic metastasis after hepatic resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) primary colon carcinoma and paired hepatic metastasis tissues from 136 patients with liver metastasis from colon carcinoma that underwent hepatic resection. The relation between FRZB expression and clinicopathologic factors and long-term prognosis in these 136 patients was retrospectively examined. The prognostic significance of negative or positive FRZB expression in colon carcinoma hepatic metastasis was assessed using Kaplan-Meier survival analysis and log-rank tests. Positive expression of FRZB was correlated with liver metastasis of colon cancer. Univariate analysis indicated significantly worse overall survival (OS) for patients with a positive FRZB expression in colon carcinoma hepatic metastasis than for patients with a negative FRZB expression. Multivariate analysis showed positive-FRZB in colon carcinoma hepatic metastasis to be an independent prognostic factor for OS after hepatic resection (P = 0.001). Positive expression of FRZB was statistically significantly associated with poor prognosis of patients with colon carcinoma hepatic metastasis. FRZB could be a novel predictor for poor prognosis of patients with colon carcinoma hepatic metastasis after hepatic resection.

  1. Cronkhite-Canada syndrome associated with carcinoma of the sigmoid colon: report of a case.

    PubMed

    Nakatsubo, N; Wakasa, R; Kiyosaki, K; Matsui, K; Konishi, F

    1997-01-01

    Cronkhite-Canada syndrome is generally accepted as being a benign disorder. We herein present a 66-year-old-male patient with Cronkhite-Canada syndrome who had a carcinoma of the sigmoid colon along with multiple colonic polyps, which included juvenile-type polyps, adenomas, and hyperplastic polyps. In the world literature, there have been 34 cases of Cronkhite-Canada syndrome associated with colorectal carcinoma among the 280 reported cases of this syndrome. This report thus adds to the growing evidence that Cronkhite-Canada syndrome may be a premalignant condition for colorectal carcinoma. A periodic examination of the colon is therefore advised in order to detect any development of colorectal carcinoma at an early stage.

  2. 5-aminosalicylic acid in combination with nimesulide inhibits proliferation of colon carcinoma cells in vitro

    PubMed Central

    Fang, Hai-Ming; Mei, Qiao; Xu, Jian-Ming; Ma, Wei-Juan

    2007-01-01

    AIM: To investigate the effects of 5-aminosalicylic acid (5-ASA) in combination with nimesulide on the proliferation of HT-29 colon carcinoma cells and its potential mechanisms. METHODS: Inhibitory effects of drugs (5-ASA, nimesulide and their combination) on HT-29 colon carcinoma cells were investigated by thiazolyl blue tetrazolium bromide (MTT) assay. Cellular apoptosis and proliferation were detected by TUNEL assay and immunocytochemical staining, respectively. RESULTS: Pretreatment with 5-ASA or nimesulide at the concentration of 10-1000 μmol/L inhibited proliferation of HT-29 colon carcinoma cells in a dose-dependent manner in vitro (t = 5.122, P < 0.05; t = 3.086, P < 0.05, respectively). The inhibition rate of HT-29 colon carcinoma cell proliferation was also increased when pretreated with 5-ASA (100 μmol/L) or nimesulide (100 μmol/L) for 12-96 h, which showed an obvious time-effect relationship (t = 6.149, P < 0.05; t = 4.159, P < 0.05, respectively). At the concentration of 10-500 μmol/L, the apoptotic rate of HT-29 colon carcinoma cells significantly increased (t = 18.156, P < 0.001; t = 19.983, P < 0.001, respectively), while expression of proliferating cell nuclear antigen (PCNA) was remarkably decreased (t = 6.828, P < 0.05; t = 14.024, P < 0.05, respectively). 5-ASA in combination with nimesulide suppressed the proliferation of HT-29 colon carcinoma cells more than either of these agents in a dose-dependent and time-dependent manner (t = 5.448, P < 0.05; t = 4.428, P < 0.05, respectively). CONCLUSION: 5-ASA and nimesulide may inhibit the proliferation of HT-29 colon carcinoma cells and coadministration of these agents may have additional chemopreventive potential. PMID:17569127

  3. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    SciTech Connect

    Loh, Jing Wen; Saunders, Martin; Lim, Lee-Yong

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  4. Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L.

    PubMed

    Rosa, Antonella; Rescigno, Antonio; Piras, Alessandra; Atzeri, Angela; Scano, Paola; Porcedda, Silvia; Zucca, Paolo; Assunta Dessì, M

    2012-10-01

    Cynomorium coccineum L. is a non-photosynthetic plant, spread over Mediterranean countries, amply used in traditional medicine. We investigated the composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil obtained from dried stems of the plant. Oil isolation has been performed by supercritical fractioned extraction with CO2. 13C NMR spectroscopy has been used to study the molecular composition of oil lipids; fatty acid composition was identified using GC and HPLC techniques. The fixed oil was composed mainly by triacylglycerols and derivates. The main fatty acids were 18:1 n-9 (38%), 18:2 n-6 (20%), 16:0 (15%), and 18:3 n-3 (10.8%). The oil showed a significant in vitro inhibitory effect on the growth of colon cancer undifferentiated Caco-2 cells. Moreover, cell viability, lipid composition, and lipid peroxidation were measured in intestinal epithelial cells (differentiated Caco-2 cells) after 24 h incubation with fixed oil. The oil did not show a toxic effect on colon epithelial cell viability but induced a significant change in fatty acid composition, with a significant accumulation of the essential fatty acids 18:3 n-3 and 18:2 n-6. The results showed remarkable biological activity of Maltese mushroom oil, and qualify it as a potential resource for food/pharmaceutical applications.

  5. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations.

    PubMed

    Bradai, Mohamed; Han, Junkyu; Omri, Abdelfatteh El; Funamizu, Naoyuki; Sayadi, Sami; Isoda, Hiroko

    2016-08-01

    Linear alkylbenzene sulfonate (LAS) is a cytotoxic synthetic anionic surfactant widely present in the environment due to its large-scale production and intensive use in the detergency field. In this study, we investigated the effect of LAS (CAS No. 25155-30-0) at non cytotoxic concentrations on human intestinal Caco-2 cells using different in vitro bioassays. As results, LAS increased Caco-2 cell proliferation at concentrations ranging from 1 to 15 ppm, more significantly for shorter exposure time (24 h), confirmed using flow cytometry and trypan blue exclusion methods. Moreover, proteomics analysis revealed that this effect was associated with an over-expression of elongation factor 2 and dipeptidyl peptidase 3, and a down-regulation of 14-3-3 protein theta, confirmed at mRNA level using real-time PCR. These findings suggest that LAS at non cytotoxic concentrations, similar to those observed at wastewater treatment plants outlets, increases the growth rate of colon cancer cells, raising thereby its tumor promotion effect potential.

  6. Adipokine regulation of colon cancer: adiponectin attenuates interleukin-6-induced colon carcinoma cell proliferation via STAT-3.

    PubMed

    Fenton, Jenifer I; Birmingham, Janette M

    2010-07-01

    Obesity results in increased circulating levels of specific adipokines, which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin, IGF-1, and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6-induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential-targeted therapies.

  7. Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases.

    PubMed

    Lan, Huanrong; Jin, Ketao; Xie, Bojian; Han, Na; Cui, Binbin; Cao, Feilin; Teng, Lisong

    2012-11-01

    Heterogeneity is one of the recognized characteristics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the heterogeneity found in primary tumors and related metastases with the consideration that the evaluation of metastatic rather than primary sites could be of clinical relevance. Numerous studies have demonstrated particularly high rates of heterogeneity between primary colorectal tumors and their paired lymphatic and hepatic metastases. It has also been proposed that the heterogeneity between primary colon carcinomas and their paired lymphatic and hepatic metastases may result in different responses to anticancer therapies. The heterogeneity in primary colon carcinoma and corresponding metastases by genome‑wide gene expression analysis has not been extensively studied. In the present study, we investigated the differentially expressed genes between a primary colon carcinoma specimen (obtained from a 40-year-old female colon carcinoma patient with lymphatic and hepatic metastases) and its paired lymphatic and hepatic metastases by genome-wide gene expression analysis using GeneChip HGU133Plus2.0 expression arrays. Our results demonstrate that genome-wide gene expression varies between primary colon carcinoma and its paired lymphatic and hepatic metastases.

  8. Survivin promotes the invasion of human colon carcinoma cells by regulating the expression of MMP‑7.

    PubMed

    Gao, Fei; Zhang, Yuqin; Yang, Feng; Wang, Peng; Wang, Wenjun; Su, Yan; Luo, Weiren

    2014-03-01

    Increased expression levels of survivin are crucial for invasion activity in several types of human cancer, including colon carcinoma. However, the molecular mechanisms whereby survivin regulates cancer invasion have not been completely elucidated. To the best of our knowledge, this study is the first to investigate the role of matrix metalloprotease‑7 (MMP‑7) in cell invasion that is induced by survivin by using in vitro assays, including western blot, immunofluorescence and qPCR analyses. The results demonstrated that the ectopic expression of survivin significantly promoted the invasive activity of colon carcinoma cells (SW620 and HCT‑116) and resulted in increased levels of MMP‑7 activation. By contrast, the small interfering RNA (siRNA)‑based knockdown of survivin markedly reduced cell migration and led to a dose‑dependent decrease in MMP‑7 expression levels. Compared with the controls, knockdown of MMP‑7 by siRNA in colon carcinoma cells led to reduced invasion ability, whereas no obvious changes were observed when MMP‑7 expression was silenced in survivin‑overexpressing colon carcinoma cells. These findings demonstrate that MMP‑7 is crucial for survivin‑mediated invasiveness, suggesting that the survivin‑mediated MMP‑7 signaling pathway is a potential therapeutic target for the treatment of colon carcinoma.

  9. Differential expression in normal-adenoma-carcinoma sequence suggests complex molecular carcinogenesis in colon.

    PubMed

    Lee, Seungkoo; Bang, Seunghyun; Song, Kyuyoung; Lee, Inchul

    2006-10-01

    The majority of colon cancers develop from pre-existing adenomas. We analyzed the expression profiles in the sequence of normal colon crypts, adenomas and early-stage carcinomas using microdissected cells from tubular adenomas with foci of malignant transformation. Differentially expressed genes were detected between normal-adenoma and adenoma-carcinoma, and were grouped according to the patterns of expression changes in the sequence. Down-regulated genes in the sequence included PLA2G2A, TSPAN1, PDCD4, FCGBP, AATK, EPLIN, FABP1, AGR2, MTUS1, TSC1, galectin 4 and MT1F. PLA2G2A has been shown to suppress colon tumorigenesis in mice, but the pathobiological role in humans has been controversial. Our data showed continuous down-regulation of PLA2G2A in the sequence supporting an implication in human colon cancer. Tumor suppressor and/ or proapoptotic activities have also been reported in other genes. Up-regulated genes included ribosomal proteins, IER3 and TPR. TGF-beta2 and matrix metalloproteinase 23B were up-regulated in carcinoma but not in adenoma, supporting the pathobiological roles in malignant transformation. Differentially expressed genes partly coincided with those in the adenoma-carcinoma sequence of the stomach, which was published previously, suggesting a partial overlap between the adenoma-carcinoma sequences of the colon and stomach.

  10. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma.

    PubMed

    Yao, Hou Shan; Wang, Juan; Zhang, Xiao Ping; Wang, Liang Zhe; Wang, Yi; Li, Xin Xing; Jin, Kai Zhou; Hu, Zhi Qian; Wang, Wei Jun

    2016-05-01

    Hepatocyte nuclear factor 4-α (HNF4α), a nuclear receptor, is expressed at lower levels in colon carcinoma tissues than in adjacent normal tissues. However, the relation between HNF4α and colon cancer progression and the underlying molecular mechanisms remain unclear. Here, we investigated the role of HNF4α in the progression of colon carcinoma. We showed that HNF4α mRNA and protein were downregulated in colon carcinoma specimens. HNF4α expression was related to pT classification (P < 0.001), lymph node metastasis (P = 0.002), distant metastasis (P < 0.001) and clinical stage (P < 0.001) in colon carcinoma patients. Patients with low or negative HNF4α expression had worse 3-year progression-free survival (PFS, P = 0.006) and overall survival (OS, P = 0.005) than patients with high HNF4α expression. Low HNF4α expression was an independent prognostic factor for 3-year PFS (hazard ratio 2.94; 95% confidence interval 1.047-8.250; P = 0.041). Ectopic expression of HNF4α inhibited colon carcinoma cell (HT29, LoVo, and SW480) proliferation, migration, and invasion, induced G2/M phase arrest and promoted apoptosis. Ectopic expression of HNF4α upregulated E-cadherin and downregulated vimentin in vitro, and suppressed SW480 xenograft tumor growth and liver metastasis in vivo. Furthermore, HNF4α overexpression downregulated the expression of snail, slug and twist. HNF4α inhibited EMT through its effect on the Wnt/β-catenin signaling pathway, and HNF4α downregulation may be mediated by promoter methylation in cancer tissues. Our results suggest that downregulation of HNF4α plays a critical role in the aggravation of colon carcinoma possibly by promoting EMT via the Wnt/β-catenin signaling pathway and by affecting apoptosis and cell cycle progression.

  11. Study of the Biotransformation of Tongmai Formula by Human Intestinal Flora and Its Intestinal Permeability across the Caco-2 Cell Monolayer.

    PubMed

    Wu, Shuai; Xu, Wei; Wang, Fu-Rong; Yang, Xiu-Wei

    2015-10-15

    Tongmai formula (TMF) is a well-known Chinese medicinal preparation that contains isoflavones as its major bioactive constituents. As traditional Chinese medicines (TCMs) are usually used by oral administration, their fate inside the intestinal lumen, including their biotransformation by human intestinal flora (HIF) and intestinal absorption deserves study. In this work TMF extract was incubated with human intestinal bacteria under anaerobic conditions and the changes in the twelve main constituents of TMF were then investigated. Their intestinal permeabilities, i.e., the transport capability across the intestinal brush border were investigated with a human colon carcinoma cell line (Caco-2) cell monolayer model to predict the absorption mechanism. Meanwhile, rapid HPLC-DAD methods were established for the assay. According to the biotransformation curves of the twelve constituents and the permeability coefficients, the intestinal absorption capacity of the typical compounds was elevated from the levels of 10(-7) cm/s to 10(-5) cm/s from those of the original compounds in TMF. Among them the main isoflavone glycosides puerarin (4), mirificin (6) and daidzin (7) were transformed into the same aglycone, daidzein (10). Therefore it was predicted that the aglycone compounds might be the real active ingredients in TMF. The models used can represent a novel path for the TCM studies.

  12. Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress.

    PubMed

    Rodríguez-Ramiro, Ildefonso; Martín, María Ángeles; Ramos, Sonia; Bravo, Laura; Goya, Luis

    2011-10-09

    Humans are exposed to dietary acrylamide (AA) during their lifetime, it is therefore necessary to investigate the mechanisms associated with AA-induced toxic effects. Accumulating evidence indicates that oxidative stress contributes to AA cytotoxicity, thus, dietary antioxidants might have a protective role in colonic cells against AA toxicity. We have recently reported that hydroxytyrosol (HTy), a natural antioxidant abundant in olive oil, is able to enhance the cellular antioxidant defence capacity, thereby protecting cells from oxidative stress. In this study, we evaluate the protective role of HTy on alterations of the redox balance induced by AA in Caco-2 intestinal cells. AA cytotoxicity was counteracted by HTy by powerfully reducing ROS generation, recovering the excited enzyme antioxidant defences and decreasing phospho-Jun kinase concentration and caspase-3 activity induced by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells and the olive oil natural dietary antioxidant HTy was able to contain AA toxicity by improving the redox status of Caco-2 cells and by partly restraining the apoptotic pathway activated by AA.

  13. Scintigraphic demonstration of acute gastrointestinal bleeding caused by gallbladder carcinoma eroding the colon

    SciTech Connect

    Czerniak, A.; Zwas, S.T.; Rabau, M.Y.; Avigad, I.; Borag, B.; Wolfstein, I.

    1985-08-01

    Massive lower gastrointestinal (GI) bleeding caused by gallbladder carcinoma eroding into the colonic wall was demonstrated accurately by Tc-99m RBCs. In addition, retrograde bleeding into the gallbladder was also identified while arteriography did not show contrast extravasation. This case supports the use of Tc-99m RBCs over Tc-99m sulfur colloid for more accurate localization of lower GI bleeding.

  14. Visualization of metastases from colon carcinoma using an iodine 131-radiolabeled monoclonal antibody

    SciTech Connect

    Leyden, M.J.; Thompson, C.H.; Lichtenstein, M.; Andrews, J.T.; Sullivan, J.R.; Zalcberg, J.R.; McKenzie, I.F.

    1986-03-15

    A murine monoclonal antibody that reacts with human colonic cancer (250-30.6) was labeled with radioactive iodine (131I) and the antibody was injected intravenously into 15 patients with known metastases originating from carcinoma of the colon (10 cases), malignant melanoma (1), breast (1), pancreas (1), hepatocellular carcinoma (1), and adenocarcinoma of unknown origin (1). Of the patients with metastatic colon carcinoma, there were 19 known deposits as judged by the techniques of clinical examination, x-rays, and scans obtained using sulpha-colloid. Of these 19 deposits, 17 (90%) were found using the 131I-labeled monoclonal antibody. In one case, the primary tumor, previously undiagnosed, was found. In only 1 of the 10 patients was tumor not found and this was due to the subsequent finding that the undifferentiated tumor did not react with antibody. Of the five patients who did not have carcinoma of the colon, three had negative scans, but two were positive. Thus, the technique of immunoscintography can readily detect both primary and metastatic tumors.

  15. Frequency and spectrum of c-Ki-ras mutations in human sporadic colon carcinoma, carcinomas arising in ulcerative colitis, and pancreatic adenocarcinoma

    SciTech Connect

    Burmer, G.C.; Rabinovitch, P.S.; Loeb, L.A. )

    1991-06-01

    Sporadic colon carcinomas, carcinomas arising in chronic ulcerative colitis, and pancreatic adenocarcinomas have been analyzed for the presence of c-Ki-ras mutations by a combination of histological enrichment, cell sorting, polymerase chain reaction, and direct sequencing. Although 60% (37/61) of sporadic colon carcinomas contained mutations in codon 12, only 1 of 17 specimens of dysplasia or carcinoma from ulcerative colitis patients contained c-Ki-ras mutations, despite a high frequency of aneuploid tumors. In contrast, a higher percentage (16/20 = 80%) of pancreatic adenocarcinomas contained mutations in c-Ki-ras 2, despite a lower frequency of DNA aneuploidy in these neoplasms. Moreover, the spectrum of mutations differed between sporadic colon carcinoma, where the predominant mutation was a G to A transition, and pancreatic carcinomas, which predominantly contained G to C or T transversions. These results suggest that the etiology of ras mutations is different in these three human neoplasms.

  16. Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor.

    PubMed

    Sase, Tomohiko; Suzuki, Takashi; Miura, Koh; Shiiba, Kenichi; Sato, Ikuro; Nakamura, Yasuhiro; Takagi, Kiyoshi; Onodera, Yoshiaki; Miki, Yasuhiro; Watanabe, Mika; Ishida, Kazuyuki; Ohnuma, Shinobu; Sasaki, Hiroyuki; Sato, Ryuichiro; Karasawa, Hideaki; Shibata, Chikashi; Unno, Michiaki; Sasaki, Iwao; Sasano, Hironobu

    2012-11-15

    Runt-related transcription factor 2 (RUNX2) belongs to the RUNX family of heterodimeric transcription factors, and is mainly associated with osteogenesis. Previous in vitro studies demonstrated that RUNX2 increased the cell proliferation of mouse and rat colon carcinoma cells but the status of RUNX2 has remained unknown in human colon carcinoma. Therefore, we examined clinical significance and biological functions of RUNX2 in colon carcinoma. RUNX2 immunoreactivity was examined in 157 colon carcinoma tissues using immunohistochemistry. RUNX2 immunoreactivity was evaluated as percentage of positive carcinoma cells [i.e., labeling index (LI)]. We used SW480 and DLD-1 human colon carcinoma cells, expressing estrogen receptor-β (ER) in subsequent in vitro studies. RUNX2 immunoreactivity was detected in colon carcinoma cells, and the median value of RUNX2 LI was 67%. RUNX2 LI was significantly associated with Dukes' stage, liver metastasis and ERβ status. In addition, RUNX2 LI was significantly associated with adverse clinical outcome of the colon carcinoma patients, and turned out an independent prognostic factor following multivariate analysis. Results of in vitro studies demonstrated that both SW480 and DLD-1 cells transfected with small interfering RNA against RUNX2 significantly decreased their cell proliferation, migration and invasive properties. In addition, RUNX2 mRNA level was significantly decreased by ER antagonist in these two cells. These findings all suggest that RUNX2 is a potent prognostic factor in human colon carcinoma patients through the promotion of cell proliferation and invasion properties, and is at least partly upregulated by estrogen signals through ERβ of carcinoma cells.

  17. Transport of hop aroma compounds across Caco-2 monolayers.

    PubMed

    Heinlein, A; Metzger, M; Walles, H; Buettner, A

    2014-11-01

    Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying Caco-2 transport experiments as well as investigations on potential biotransformation processes. Selective and sensitive identification and quantification were thereby achieved by application of two-dimensional high resolution gas chromatography-mass spectrometry in conjunction with stable isotope dilution analysis, leading to the determination of apparent permeability values by different mathematical approaches considering sink and non-sink conditions. Overall, calculated permeability values ranged from 2.6 × 10(-6) to 1.8 × 10(-4) cm s(-1) with all mathematical approaches, indicating high absorption potential and almost complete bioavailability for all tested compounds with hydroxyl-functionalities. Considering this high permeability together with the high lipophilicity of these substances, a passive transcellular uptake route can be speculated. Investigated sesquiterpenes and β-myrcene showed flat absorption profiles while the investigated esters showed decreasing profiles. In view of the lipophilic and volatile nature of the investigated substances, special attention was paid to recovery and mass balance determination. Furthermore, in the course of the transport experiments of 1-octen-3-ol and 3-methyl-2-buten-1-ol, additional biotransformation products were observed, namely 3-octanone and 3-methyl-2-butenal, respectively. The absence of these additional substances in control experiments strongly indicates an intestinal first-pass metabolism of the

  18. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers

    SciTech Connect

    Kobayashi, Shoko; Konishi, Yutaka

    2008-03-28

    Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (J{sub ap{yields}}{sub bl}) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled J{sub ap{yields}}{sub bl} of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on J{sub ap{yields}}{sub bl} of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport.

  19. [A case of ascending colon carcinoma metastasized to an inguinal hernia sac].

    PubMed

    Miyake, Yasuhiro; Kato, Takeshi; Katayama, Kinzo; Doi, Takashi; Oshima, Kazuteru; Handa, Rio; Hoshi, Minako; Makari, Yoichi; Oshima, Satoshi; Iijima, Shohei; Kurokawa, Eiji; Kikkawa, Nobuteru

    2007-11-01

    While inguinal hernia is one of the most common diseases, metastatic cancer of an inguinal hernia sac is rare. We report a case of ascending colon cancer metastasized to an inguinal hernia sac. A 60-year-old man, who was undergone a right hemicolectomy for an ascending colon cancer, was pointed out a palpable inguinal mass at one year and eight months after the operation. He was diagnosed as inguinal hernia, and herniorrhaphy was performed. In the operation, a tumor of the inguinal hernia sac, which invaded to spermatic cord, could be found and was removed with right testis. Bassini's method was performed after the resection of the inguinal tumor. Histological examination revealed that the tumor was metastasis of colon carcinoma. Examination of the entire body showed no other metastasis. As for the advanced colon cancer, we need to mention the possibility of metastatic saccular tumor.

  20. [Marked therapeutic effects of hybrid liposomes on the hepatic metastasis of colon carcinoma].

    PubMed

    Funamoto, Kota; Ichihara, Hideaki; Matsushita, Taku; Matsumoto, Yoko; Ueoka, Ryuichi

    2009-04-01

    Hybrid liposomes (HLs) composed of vesicular and micellar surfactants have inhibitory effects on the growth of tumor cells in vitro and in vivo. Successful clinical chemotherapy with drug-free HLs to patient with lymphoma has been reported after approval by the Committe of Bioethics. However, the therapeutic effects of HLs on the metastasis of colon carcinoma cells have not yet been elucidated. In this study, the therapeutic effects of HLs composed of L-alpha-dimyristoylphosphatidylcholine (DMPC) and polyoxyethylene (23) dodecyl ether [C(12)(EO)(23)] on the metastasis of colon carcinoma (Colon26) cells were examined in vivo. Marked high therapeutic effects were obtained in the hepatic metastasis mice model after the treatment with HLs. Furthermore, optical microscopic analysis indicated that HLs could induce the apoptosis of colon carcinoma cells in vivo. No toxicity was observed in the hepatic metastasis mice model after intravenously injecting HLs. Therapeutic effects along with the induction of apoptosis by HLs without any drugs on hepatic metastasis were revealed on the basis of optical microscopic analysis for the first time in vivo.

  1. Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence

    PubMed Central

    Sedivy, R; Wolf, B; Kalipciyan, M; Steger, G G; Karner-Hanusch, J; Mader, R M

    2000-01-01

    The colorectal adenoma–carcinoma sequence represents a well-known paradigm for the sequential development of cancer driven by the accumulation of genomic defects. Although the colorectal adenoma–carcinoma sequence is well investigated, studies about tumours of different dignity co-existent in the same patient are seldom. In order to address the distribution of genetic alterations in different lesions of the same patient, we coincidently investigated carcinomas, adenomas and aberrant crypt foci in patients with sporadic colon cancer. By utilizing polymerase chain reaction, single-strand conformation polymorphism, heteroduplex-analysis, restriction fragment length polymorphism, protein truncation test and sequencing techniques we looked for mutations and microsatellite instability of APC, H- ras, K- ras, p53, DCC and the DNA repair genes hMLH1/hMSH2. In accordance with the suggested adenoma–carcinoma sequence of the colon, four patients reflected the progressive accumulation of genetic defects in synchronously appearing tumours during carcinogenesis. However, two patients with non-hereditary malignomas presented different genetic instabilities in different but synchronously appearing tumours suggesting non-clonal growth under almost identical conditions of the environment. Thus, sporadically manifesting multiple lesions of the colon were not necessarily driven by similar genetic mechanisms. Premalignant lesions may transform into malignant tumours starting from different types of genetic instability, which indicates independent and simultaneous tumorigenesis within the same organ. © 2000 Cancer Research Campaign PMID:10755401

  2. H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance.

    PubMed

    Paschall, Amy V; Yang, Dafeng; Lu, Chunwan; Choi, Jeong-Hyeon; Li, Xia; Liu, Feiyan; Figueroa, Mario; Oberlies, Nicholas H; Pearce, Cedric; Bollag, Wendy B; Nayak-Kapoor, Asha; Liu, Kebin

    2015-08-15

    The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.

  3. Tumor-associated macrophages favor C26 murine colon carcinoma cell proliferation in an oxidative stress-dependent manner.

    PubMed

    Luput, Lavinia; Licarete, Emilia; Sesarman, Alina; Laura, Patras; Alupei, Marius Costel; Banciu, Manuela

    2017-02-17

    The role of tumor-associated macrophages (TAMs) in the development of colon carcinoma is still controversial. Therefore, the present study aimed to investigate the TAM‑driven processes that may affect colon cancer cell proliferation. To achieve this purpose, murine macrophages were co-cultured with C26 murine colon carcinoma cells at a cell density ratio that approximates physiological conditions for colon carcinoma development in vivo. In this respect, the effects of TAM-mediated angiogenesis, inflammation and oxidative stress on the proliferative capacity of C26 murine colon carcinoma cells were studied. To gain insight into the TAM-driven oxidative stress, NADPH oxidase, the main pro-oxidant enzyme in macrophages, was inhibited. Our data revealed that the stimulatory effects of TAMs on C26 cell proliferation may be related mainly to their pro-oxidant actions exerted by NADPH oxidase activity, which maintains the redox status and the angiogenic capacity of the tumor microenvironment. Additionally, the anti-inflammatory and pro-angiogenic effects of TAMs on tumor cells were found to create a favorable microenvironment for C26 colon carcinoma development and progression. In conclusion, our data confirmed the protumor role of TAMs in the development of colon carcinoma in an oxidative stress-dependent manner that potentiates the angiogenic capacity of the tumor microenvironment. These data may offer valuable information for future tumor-targeted therapies based on TAM 're-education' strategies.

  4. Activated macrophages containing tumor marker in colon carcinoma: immunohistochemical proof of a concept.

    PubMed

    Faber, T J E; Japink, D; Leers, M P G; Sosef, M N; von Meyenfeldt, M F; Nap, M

    2012-04-01

    The presence of carcinoembryonic antigen (CEA)-containing activated macrophages has been demonstrated in peripheral blood from patients with colorectal carcinoma. Macrophages migrate from the circulation into the tissue, phagocytose debris, and return to the bloodstream. Hence it seems likely that activated macrophages containing tumor debris, i.e., tumor marker, are present in the stroma of colorectal carcinoma. After phagocytosis, they could follow a hematogenic or lymphogenic route to the peripheral blood. The aim of this study is to assess the presence of tumor marker-containing activated macrophages in the stroma of colon carcinoma and in regional lymph nodes. From 10 cases of colon carcinoma, samples of tumor tissue and metastasis-free lymph nodes were cut in serial sections and stained for CD68 to identify macrophages and for CEA, cytokeratin, or M30 presence. Slides were digitalised and visually inspected using two monitors, comparing the CD68 stain to the tumor marker stain to evaluate the presence of tumor marker-positive macrophages. Macrophages containing tumor marker could be identified in tumor stroma and in metastasis-free regional lymph nodes. The distribution varied for the different markers, CEA-positive macrophages being most abundant. The presence of macrophages containing tumor marker in the tumor stroma and lymph nodes from patients with colon carcinoma could be confirmed in this series using serial immunohistochemistry. This finding supports the concept of activated macrophages, after phagocytosing cell debris, being transported or migrating through the lymphatic system. These results support the potential of tumor marker-containing macrophages to serve as a marker for diagnosis and follow-up of colon cancer patients.

  5. Identification of stromal differentially expressed proteins in the colon carcinoma by quantitative proteomics.

    PubMed

    Mu, Yibing; Chen, Yongheng; Zhang, Guiying; Zhan, Xianquan; Li, Yuanyuan; Liu, Ting; Li, Guoqing; Li, Maoyu; Xiao, Zhefeng; Gong, Xiaoxiang; Chen, Zhuchu

    2013-06-01

    Tumor microenvironment plays very important roles in the carcinogenesis. A variety of stromal cells in the microenvironment have been modified to support the unique needs of the malignant state. This study was to discover stromal differentially expressed proteins (DEPs) that were involved in colon carcinoma carcinogenesis. Laser capture microdissection (LCM) was captured and isolated the stromal cells from colon adenocarcinoma (CAC) and non-neoplastic colon mucosa (NNCM) tissues, respectively. Seventy DEPs were identified between the pooled LCM-enriched CAC and NNCM stroma samples by iTRAQ-based quantitative proteomics. Gene Ontology (GO) relationship analysis revealed that DEPs were hierarchically grouped into 10 clusters, and were involved in multiple biological functions that were altered during carcinogenesis, including extracellular matrix organization, cytoskeleton, transport, metabolism, inflammatory response, protein polymerization, and cell motility. Pathway network analysis revealed 6 networks and 56 network eligible proteins with Ingenuity pathway analysis. Four significant networks functioned in digestive system development and its function, inflammatory disease, and developmental disorder. Eight DEPs (DCN, FN1, PKM2, HSP90B1, S100A9, MYH9, TUBB, and YWHAZ) were validated by Western blotting, and four DEPs (DCN, FN1, PKM2, and HSP90B1) were validated by immunohistochemical analysis. It is the first report of stromal DEPs between CAC and NNCM tissues. It will be helpful to recognize the roles of stromas in the colon carcinoma microenvironment, and improve the understanding of carcinogenesis in colon carcinoma. The present data suggest that DCN, FN1, PKM2, HSP90B1, S100A9, MYH9, TUBB, and YWHAZ might be the potential targets for colon cancer prevention and therapy.

  6. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma.

    PubMed

    Zhang, Zhang; Su, Tao; He, Liang; Wang, Hongtao; Ji, Gang; Liu, Xiaonan; Zhang, Yun; Dong, Guanglong

    2012-01-01

    Natural killer (NK) cells play important roles in the immune defense against tumor cells. The function of NK cells is determined by a balance between activating and inhibitory signals. DNAX accessory molecule-1 (DNAM-1) and NK group 2 member D (NKG2D) are major NK cell activating receptors, which transduce activating signals after binding their ligands CD155, CD112 and major histocompatibility complex class I-related chains A and B (MICA/B). However, the expression and functions of these ligands in colon carcinoma are still elusive. Here, we show the higher expression of CD155, CD112 and MICA/B in colon carcinoma tissues, although no correlations between the ligands expression and patient clinicopathological parameters were found. The subsequent cytotoxicity assay indicated that NK cells effectively kill colon carcinoma cells. Functional blocking of these ligands and/or receptors with antibodies led to significant inhibition of NK cell cytotoxicity. Importantly, expression of DNAM-1 and NKG2D was reduced in NK cells of colon cancer patients, and this reduction could directly suppress the activation of NK cells. Moreover, colon cancer patients have higher serum concentrations of sCD155 and sMICA/B (soluble ligands, secreted or shed from cells) than those in healthy donors (sCD155, 127.82 ± 44.12 vs. 63.67 ± 22.30 ng/ml; sMICA, 331.51 ± 65.23 vs. 246.74 ± 20.76 pg/ml; and sMICB, 349.42 ± 81.69 vs. 52.61 ± 17.56 pg/ml). The up-regulation of these soluble ligands may down-regulate DNAM-1 and NKG2D on NK cells, ultimately leading to the inhibition of NK cytotoxicity. Colon cancer might be a promising target for NK cell-based adoptive immunotherapy.

  7. Feasibility of electronic nose technology for discriminating between head and neck, bladder, and colon carcinomas.

    PubMed

    van de Goor, R M G E; Leunis, N; van Hooren, M R A; Francisca, E; Masclee, A; Kremer, B; Kross, K W

    2017-02-01

    Electronic nose (e-nose) technology has the potential to detect cancer at an early stage and can differentiate between cancer origins. Our objective was to compare patients who had head and neck squamous cell carcinoma (HNSCC) with patients who had colon or bladder cancer to determine the distinctive diagnostic characteristics of the e-nose. Feasibility study An e-nose device was used to collect samples of exhaled breath from patients who had HNSCC and those who had bladder or colon cancer, after which the samples were analyzed and compared. One hundred patients with HNSCC, 40 patients with bladder cancer, and 28 patients with colon cancer exhaled through an e-nose for 5 min. An artificial neural network was used for the analysis, and double cross-validation to validate the model. In differentiating HNSCC from colon cancer, a diagnostic accuracy of 81 % was found. When comparing HNSCC with bladder cancer, the diagnostic accuracy was 84 %. A diagnostic accuracy of 84 % was found between bladder cancer and colon cancer. The e-nose technique using double cross-validation is able to discriminate between HNSCC and colon cancer and between HNSCC and bladder cancer. Furthermore, the e-nose technique can distinguish colon cancer from bladder cancer.

  8. Evaluation of antioxidant activity and antiproliferative effect of fruit juices enriched with Pycnogenol® in colon carcinoma cells. The effect of in vitro gastrointestinal digestion.

    PubMed

    Frontela-Saseta, Carmen; López-Nicolás, Rubén; González-Bermúdez, Carlos A; Peso-Echarri, Patricia; Ros-Berruezo, Gaspar; Martínez-Graciá, Carmen; Canali, Raffaella; Virgili, Fabio

    2011-12-01

    The aim of this study was to examine the effect of in vitro gastrointestinal digestion on the antioxidant and antiproliferative effect of fruit juices enriched with Pycnogenol® (0.5 g/L) on a colon carcinoma cell line (Caco-2). The total phenolic concentration (TPC), antioxidant activity and inhibition cell growth were studied in fresh and digested pineapple juice and red fruits juice (both enriched with pine bark extract and not). After in vitro digestion the level of detectable phenolic compounds (expressed as gallic acid equivalent) was higher in both pineapple and red fruits juices enriched with Pycnogenol® than in non-enriched commercial juices (155.6 mg/100 mL vs 94.6 mg/100 mL and 478.5 mg/100 mL vs 406.9 mg/100 mL, respectively). Increased antioxidant activity (measured by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and oxygen radical absorbance capacity assay (ORAC) methods) was observed in digested enriched juices with respect to the same samples before digestion. Pycnogenol® enrichment led to a high antiproliferative effect between 24 and 72 h of incubation with undigested pineapple juice compared with the non-enriched juice. It can be concluded that enrichment of fruit juices with Pycnogenol® provides a source of phenolic compounds with high stability to in vitro gastrointestinal conditions; however, the antioxidant properties of fruit juices were affected to a different extent.

  9. Alanylglutamine dipeptide and growth hormone maintain PepT1-mediated transport in oxidatively stressed Caco-2 cells.

    PubMed

    Alteheld, B; Evans, M E; Gu, L H; Ganapathy, V; Leibach, F H; Jones, D P; Ziegler, T R

    2005-01-01

    Reactive oxygen species (ROS) produced by gut mucosal cells during conditions such as inflammatory bowel disease (IBD) may impair mucosal repair and nutrient transport/absorptive function. Absorption of di- and tripeptides in the small intestine and colon is mediated by the H(+)-dependent transporter PepT1, but effects of oxidative stress on di- and tripeptide transport are unknown. We assessed whether exposure to hydrogen peroxide (H(2)O(2)) influences dipeptide transport in human colonic epithelial (Caco-2) cells. Uptake of [(14)C]glycylsarcosine (Gly-Sar) was used to evaluate PepT1-mediated dipeptide transport. Exposure to 1-5 mmol/L H(2)O(2) for 24 h caused a dose-dependent decrease in Gly-Sar transport, which was associated with decreased PepT1 transport velocity (V(max)). Treatment with alanylglutamine (Ala-Gln) or growth hormone (GH) did not alter Caco-2 Gly-Sar transport in the absence of H(2)O(2). However, both Ala-Gln and GH prevented the decrease in dipeptide transport observed with 1 mmol/L H(2)O(2) treatment. Ala-Gln, but not GH, maintained cellular glutathione and prevented the decrease in PepT1 protein expression. Thus, these agents should be further investigated as potential therapies to improve absorption of small peptides in disorders associated with oxidative injury to the gut mucosa.

  10. Label-free detection of tumor markers in a colon carcinoma tumor progression model by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Rück, Angelika; Udart, Martin; Hauser, Carmen; Dürr, Christine; Kriebel, Martin

    2013-06-01

    Living colon carcinoma cells were investigated by confocal Raman microspectroscopy. An in vitro model of tumor progression was established. Evaluation of data sets by cluster analysis reveals that lipid bodies might be a valuable diagnostic parameter for early carcinogenesis.

  11. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  12. Impaired skin barrier function in mice with colon carcinoma induced by azoxymethane and dextran sodium sulfate.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-01-01

    We have previously reported that impaired skin barrier function was induced by small intestinal injury in mice. Therefore, we postulated that other intestinal diseases might also influence skin barrier function. In this study, we evaluated the skin barrier function of hairless mice with colon carcinoma that was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). In mice treated with these drugs, we observed elevated transepidermal water loss and reduced skin hydration levels, compared to those in the control mice. In addition, plasma nitrogen di/trioxide (NO2(-)/NO3(-)) levels were significantly elevated, and expression of type I collagen was significantly reduced in the treated mice, compared to those in control. These results suggest that impaired skin barrier function occurs in mice when colon carcinoma is present.

  13. Radiography of the distal colon and rectum after irradiation of carcinoma of the cervix

    SciTech Connect

    Meyer, J.E.

    1981-04-01

    High dose therapeutic irradiation for carcinoma of the cervix, usually delivered using a combination of external and intracavitary sources, may damage the rectum, sigmoid, distal small bowel, vagina, and urinary bladder. A pretreatment barium enema is valuable for baseline comparison should symptoms developing after treatment necessitate radiographic evaluation of the colon and rectum. Included in this review are a summary of radiation therapy techniques for carcinoma of the cervix, the radiation tolerance of normal pelvic structures, and the histopathology of changes in the bowel following irradiation. The spectrum of radiographic manifestations of radiation effect on the rectum and sigmoid is presented and contrasted with changes secondary to recurrent of persistent tumor. Gradations of symmetrical volume loss characterize radiation change, whereas mass effect, asymmetrical narrowing of the colon lumen, or fixation are more typical of tumor recurrence.

  14. Massive gas gangrene secondary to occult colon carcinoma.

    PubMed

    Griffin, Andrew S; Crawford, Matthew D; Gupta, Rajan T

    2016-06-01

    Gas gangrene is a rare but often fatal soft-tissue infection. Because it is uncommon and the classic symptom of crepitus does not appear until the infection is advanced, prompt diagnosis requires a high index of suspicion. We present a case report of a middle-aged man who presented with acute onset lower-extremity pain that was initially thought to be due to deep vein thrombosis. After undergoing workup for pulmonary embolism, he was found to have massive gas gangrene of the lower extremity secondary to an occult colon adenocarcinoma and died within hours of presentation from multisystem organ failure.

  15. Transepithelial transport of biperiden hydrochloride in Caco-2 cell monolayers.

    PubMed

    Abalos, Ivana S; Rodríguez, Yanina I; Lozano, Verónica; Cereseto, Marina; Mussini, Maria V; Spinetto, Marta E; Chiale, Carlos; Pesce, Guido

    2012-09-01

    The aim of this research has been to determine the biperiden hydrochloride permeability in Caco-2 model, in order to classify it based on the Biopharmaceutics Classification System (BCS). The World Health Organization (WHO) as well as many other authors have provisionally assigned the drug as BCS class I (high solubility-high permeability) or III (high solubility-low permeability), based on different methods. We determined biperiden BCS class by comparing its permeability to 5 pre-defined compounds: atenolol and ranitidine hydrochloride (low permeability group) and metoprolol tartrate, sodium naproxen and theophylline (high permeability group). Since biperiden permeability was higher than those obtained for high permeability drugs, we classified it as a BCS class I compound. On the other hand, as no differences were obtained for permeability values when apical to basolateral and basolateral to apical fluxes were studied, this drug cannot act as a substrate of efflux transporters. As a consequence of our results, we suggest that the widely used antiparkinsonian drug, biperiden, should be candidate for a waiver of in vivo bioequivalence studies.

  16. Role of alpha 5 beta 1 integrin in determining malignant properties of colon carcinoma cells.

    PubMed

    Gong, J; Wang, D; Sun, L; Zborowska, E; Willson, J K; Brattain, M G

    1997-01-01

    We characterized the expression of alpha 5 beta 1 integrin in two distinct phenotypes of colon carcinoma cell lines. Highly invasive colon cell lines (designated Group I cell lines) expressed higher levels of integrin alpha 5 beta 1 mRNA and protein than did poorly invasive colon cell lines (designated Group III cell lines). The relatively high expression of integrin alpha 5 beta 1 in Group I cell lines resulted in strong enhancement of cell adhesion to fibronectin (FN) tissue culture plates, whereas Group III cell lines showed little or no enhancement of cell adhesion by coating. There was no significant difference between Group I and Group III cell lines with respect to cell adhesion to laminin and collagen IV. Cell adhesion to FN in Group I cells was mainly mediated by integrin alpha 5 beta 1 because a monoclonal anti-alpha 5 subunit antibody could block cell adhesion to FN, whereas anti-alpha 2 and anti-alpha 3 antibodies had no effect on cell adhesion to FN. The divergence of alpha 5 beta 1 expression in these two distinct colon carcinoma phenotypes suggested that high expression of alpha 5 beta 1 might contribute to malignant progression in this model system. To test this hypothesis, GEO cells, a Group III cell line that did not express alpha 5 integrin, were transfected with the alpha 5 subunit. Stable transfection of alpha 5 sense cDNA into a typical GEO-limiting dilution clone led to the expression of alpha 5 subunit mRNA and cell surface alpha 5 beta 1 protein. The alpha 5 sense transfectants showed enhanced attachment to FN-coated plates and were more tumorigenic when the cells were injected into athymic nude mice. These results indicate that inappropriately high alpha 5 beta 1 integrin expression contributes to malignant progression in colon carcinoma.

  17. Successful radioimmunotherapy of established syngeneic rat colon carcinoma with 211At-mAb

    PubMed Central

    2013-01-01

    Background Most carcinomas are prone to metastasize despite successful treatment of the primary tumor. One way to address this clinical challenge may be targeted therapy with α-emitting radionuclides such as astatine-211 (211At). Radioimmunotherapy utilizing α-particle emitting radionuclides is considered especially suitable for the treatment of small cell clusters and single cells, although lesions of different sizes may also be present in the patient. The aim of this study was primarily to evaluate the toxicity and secondarily in vivo efficacy of a 211At-labeled monoclonal antibody (mAb) directed against colon carcinoma with tumor diameters of approximately 10 mm. Methods Eighteen rats with subperitoneal syngeneic colon carcinoma were allocated to three groups of six animals together with three healthy rats in each group. The groups were injected intravenously with either 150 μg of unlabeled mAbs (controls) or 2.5 or 5 MBq 211At-mAbs directed towards the Lewis Y antigen expressed on the cell membrane of several carcinomas. Tumor volume, body weight, and blood cell counts were monitored for 100 days after treatment. Results Local tumors were non-palpable in five out of six rats after treatment with both activities of 211At-mAbs, compared to one out of six in the control group. At the study end, half of the animals in each group given 211At-BR96 and one animal in the control group were free from disease. Radioimmunotherapy resulted in dose-dependent, transient weight loss and myelotoxicity. Survival was significantly better in the groups receiving targeted alpha therapy than in those receiving unlabeled mAbs. Conclusions This study demonstrates the possibility of treating small, solid colon carcinoma tumors with α-emitting radionuclides such as 211At bound to mAbs, with tolerable toxicity. PMID:23557183

  18. Combination Gene Therapy for Liver Metastasis of Colon Carcinoma in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hsai; Chen, X. H. Li; Wang, Yibin; Kosai, Ken-Ichiro; Finegold, Milton J.; Rich, Susan S.

    1995-03-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8^+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.

  19. Transverse colon perforation due to carcinoma rectum: an unusual presentation against Laplace's law.

    PubMed

    Sahoo, Manash Ranjan; Kumar, Anil; Jaiswal, Sunil; C, Basavaraja

    2013-08-16

    We present a case of distal large bowel obstruction, in the setting of a competent ileocaecal valve, the caecum is the most common site of perforation (for Laplace's law). We describe a case of obstruction at the rectum due to constricting carcinomatous growth, presenting with perforation of transverse colon (against Laplace's law). A 60-year-old women presented to the emergency department with acute abdominal pain. The pain was preceded by 3 days of intestinal obstruction. Clinically there was guarding and rigidity. Straight X-ray of the abdomen revealed free gas under diaphragm. Surgical exploration revealed transverse colon perforation with carcinoma of rectum. Loop transverse colostomy was performed as the patient was very sick. The patient improved slowly in the intensive care unit. To conclude, even though the caecum is the most common site for perforation in case of distal obstruction, perforation of transverse colon can occur otherwise as a unique presentation.

  20. [Primary squamous cell carcinoma of the ascending colon: report of a case and Korean literature review].

    PubMed

    Cho, Dong Keun; Kim, Sang Hun; Cho, Sung Bum; Lee, Wan Sik; Joo, Young Eun

    2014-08-01

    Primary squamous cell carcinoma of the colon is an extremely rare malignancy. A 48-year-old male visited our hospital for screening colonoscopy. Colonoscopic examination showed a 1 cm sized sessile polyp in the ascending colon. The patient underwent endoscopic mucosal resection (EMR) without any complication. The pathologic findings were compatible with squamous differentiation of tumor cells in inflammatory colonic mucosa. The tumor was confined to the mucosa and the margins of the excised tissue were found to be free of the tumor. There were no other primary sites and no distant metastases in the extensive evaluation using a whole body CT scan and PET-CT. Additional surgical resection was not done. Follow-up colonoscopy performed eight month later showed a whitish scar without evidence of local recurrence and follow-up PET-CT demonstrated no evidence of recurrence. Herein, we report a case of primary squamous cell carcinoma of the ascending colon presenting as a sessile polyp which was removed by EMR.

  1. Ectopic adrenocorticotropic hormone syndrome caused by neuroendocrine carcinoma of the colon.

    PubMed

    Fujimoto, Kazuyo; Nakashima, Takatoshi; Sasaki, Kazunari; Hayashi, Kenichi; Hanafusa, Masao; Yoshida, Shiei; Myojo, Satoshi; Yoshida, Shun-Ichi; Sawai, Shigeaki; Sano, Nobuya

    A 48-year-old woman with a history of autoimmune hemolytic anemia and taking long-term corticosteroid therapy presented with a 3-month history of general fatigue, abdominal distension, and pigmentation. A computed tomography scan of the abdomen showed a tumor in the sigmoid colon and multiple metastatic nodules in the liver. A colonoscopy revealed an obstructing mass with the presence of an irregular ulcer in the sigmoid colon. Following biopsy and histopathological analysis, the patient was diagnosed with neuroendocrine carcinoma (NEC) of the colon. She received her first cycle of chemotherapy, with carboplatin and etoposide. During hospitalization, her pigmentation and hypertension worsened and hypokalemia was observed, all of which suggsted Cushing's syndrome. Her plasma adrenocorticotropic hormone (ACTH) and cortisol levels were high, and an ectopic ACTH-producing tumor was suspected. After a second chemotherapy cycle, she developed neutropenic fever and subsequently died. At autopsy, two histological types were found in the tumor: small cell carcinoma and large cell NEC. Immunohistochemical analysis revealed ACTH in the large cell NEC. This is the first reported case of an ectopic ACTH syndrome caused by NEC of the colon.

  2. Antitumor effect of D-erythrose in an abdominal metastatic model of colon carcinoma

    PubMed Central

    LIU, LI-LI; YI, TAO; ZHAO, XIA

    2015-01-01

    Traditional chemotherapy drugs against colorectal cancer possess little or no specificity, leading to severe intolerable side-effects. Therefore, it is necessary to develop additional specific therapeutic strategies. It has been suggested that D-erythrose may specifically inhibit the growth of tumor cells. However, the in vivo antitumor effect of D-erythrose against colorectal cancer remains unknown. Thus, the present study investigated the antitumor effect of D-erythrose in an abdominal metastatic model of colon carcinoma. Intraperitoneal (IP) colon carcinoma-bearing BALB/c mice received an IP injection of D-erythrose or normal saline (NS) daily for 15 days. The mice were weighed every three days. The tumor weights and the volume of ascites were evaluated following the treatment. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess apoptosis in tumor tissues. The results revealed that D-erythrose significantly reduced the weight of the intraperitoneal tumor by 69.1%, markedly inhibited the development of ascites and increased tumor cell apoptosis, without any observed toxic effects. These observations suggest that D-erythrose possesses antitumor activity against colon cancer. The present study may provide a potentially effective and specific approach for colon cancer treatment. PMID:25621049

  3. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma

    PubMed Central

    Binder Gallimidi, Adi; Nussbaum, Gabriel; Hermano, Esther; Weizman, Barak; Meirovitz, Amichay; Vlodavsky, Israel; Götte, Martin; Elkin, Michael

    2017-01-01

    Syndecan-1 (Sdc1) is an important member of the cell surface heparan sulfate proteoglycan family, highly expressed by epithelial cells in adult organisms. Sdc1 is involved in the regulation of cell migration, cell-cell and cell-matrix interactions, growth-factor, chemokine and integrin activity, and implicated in inflammatory responses and tumorigenesis. Gastrointestinal tract represents an important anatomic site where loss of Sdc1 expression was reported both in inflammation and malignancy. However, the biological significance of Sdc1 in chronic colitis-associated tumorigenesis has not been elucidated. To the best of our knowledge, this study is the first to test the effects of Sdc1 loss on colorectal tumor development in inflammation-driven colon tumorigenesis. Utilizing a mouse model of colitis-related colon carcinoma induced by the carcinogen azoxymethane (AOM), followed by the inflammatory agent dextran sodium sulfate (DSS), we found that Sdc1 deficiency results in increased susceptibility to colitis-associated tumorigenesis. Importantly, colitis-associated tumors developed in Sdc1-defficient mice were characterized by increased local production of IL-6, activation of STAT3, as well as induction of several STAT3 target genes that act as important effectors of colonic tumorigenesis. Altogether, our results highlight a previously unknown effect of Sdc1 loss in progression of inflammation-associated cancer and suggest that decreased levels of Sdc1 may serve as an indicator of colon carcinoma progression in the setting of chronic inflammation. PMID:28350804

  4. Early-stage primary signet ring cell carcinoma of the colon

    PubMed Central

    Kim, Jae Hyun; Park, Seun Ja; Park, Moo In; Moon, Won; Kim, Sung Eun

    2013-01-01

    Primary signet ring cell carcinoma of the colorectum detected at an early stage is very rare; most cases are detected at an advanced stage. Therefore, its prognosis is poorer than that of ordinary colorectal cancer. A 56-year-old Korean man was seen at this hospital for management of signet ring cell carcinoma of the colon. Colonoscopic examination revealed a IIa-like, ill-defined and flatly elevated 9-mm residual tumor in the cecum. Endoscopic mucosal resection was preformed. Pathological examination of the resected specimen revealed signet ring cell carcinoma that had invaded the lamina propria without venous or perineural invasion. Abdominal computed tomography (CT) and positron CT showed no evidence of primary lesions or distant metastasis. An additional laparoscopic right-hemicolectomy was performed; no residual tumor or lymph node metastasis was found. We report a case of primary signet ring cell carcinoma of the colon detected at an early stage and provide a review of the literature. PMID:23840131

  5. Opposite variation tendencies of serum CA724 levels in patients with colon and rectal carcinoma.

    PubMed

    Zhu, Zhanmeng; Chen, Zhe; Chen, Chunlin; Yang, Ziyi; Xuan, Weibo; Hou, Yahui; Zuo, Yunfei; Ren, Shuangyi

    2014-01-01

    The aim of this study was to investigate tumor biomarker carbohydrate antigen 724 (CA724) in the serum of patients with carcinomas of the colon and rectum at various clinical stages. Serum was collected from 51 patients with colon carcinoma (CC) and 49 patients with rectal carcinoma (RC). CA724 levels were then measured in the different groups according to site, TNM classification, gender, age and metastastic status of the patients. The statistical significance of the differences between the groups was calculated by non-parametric statistics (Mann-Whitney and Kruskall-Wallis tests). We observed a close association between the serum CA724 levels and tumor migration in colorectal carcinoma (CRC) and opposite variation tendencies of CA724 in the evolution of CC and RC. In conclusion, we identified a close association between the serum levels of CA724 and tumor migration in CRC. The opposite variation tendencies of CA724 in the different evolution groups of CC and RC may reflect the differences between these two types of cancer. The evaluation of serum CA724 may be of monitoring and and predictive value and may also assist in the development of treatment strategies for CRC patients.

  6. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers.

  7. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease.

    PubMed

    Li, Jihong; McClane, Bruce A

    2014-11-01

    Previous studies showed that Clostridium perfringens type D animal disease strain CN3718 uses NanI sialidase for adhering to enterocyte-like Caco-2 cells. The current study analyzed whether NanI is similarly important when type A and C human intestinal disease strains attach to Caco-2 cells. A PCR survey determined that the nanI gene was absent from typical type A food poisoning (FP) strains carrying a chromosomal enterotoxin (CPE) gene or the genetically related type C Darmbrand (Db) strains. However, the nanI gene was present in type A strains from healthy humans, type A strains causing CPE-associated antibiotic-associated diarrhea (AAD) or sporadic diarrhea (SD), and type C Pig-Bel strains. Consistent with NanI sialidase being the major C. perfringens sialidase when produced, FP and Db strains had little supernatant sialidase activity compared to other type A or C human intestinal strains. All type A and C human intestinal strains bound to Caco-2 cells, but NanI-producing strains had higher attachment levels. When produced, NanI can contribute to host cell attachment of human intestinal disease strains, since a nanI null mutant constructed in type A SD strain F4969 had lower Caco-2 cell adhesion than wild-type F4969 or a complemented strain. Further supporting a role for NanI in host cell attachment, sialidase inhibitors reduced F4969 adhesion to Caco-2 cells. Collectively, these results suggest that NanI may contribute to the intestinal attachment and colonization needed for the chronic diarrhea of CPE-associated AAD and SD, but this sialidase appears to be dispensable for the acute pathogenesis of type A FP or type C enteritis necroticans.

  8. Na+-independent phosphate transport in Caco2BBE cells.

    PubMed

    Candeal, Eduardo; Caldas, Yupanqui A; Guillén, Natalia; Levi, Moshe; Sorribas, Víctor

    2014-12-15

    Pi transport in epithelia has both Na(+)-dependent and Na(+)-independent components, but so far only Na(+)-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na(+)-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na(+)-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport was mainly caused by Vmax changes, and it was prevented by actinomycin D and cycloheximide. Pi transport in cells grown in 1 mM Pi (basal DMEM) decreased at pH > 7.5, and it was inhibited with proton ionophores. Pi transport in cells incubated with 4 mM Pi increased with alkaline pH, suggesting a preference for divalent phosphate. Pi uptake in cells in 1 mM Pi was completely inhibited only by Pi and partially inhibited by phosphonoformate, oxalate, DIDS, SITS, SO4 (2-), HCO3 (-), and arsenate. This inhibition pattern suggests that more than one Pi transporter is active in cells maintained with 1 mM Pi. Phosphate transport from cells maintained at 4 mM Pi was only partially inhibited by phosphonoformate, oxalate, and arsenate. Attempts to identify the responsible transporters showed that multifunctional anion exchangers of the Slc26 family as well as members of Slc17, Slc20, and Slc37 and the Pi exporter xenotropic and polytropic retrovirus receptor 1 are not involved.

  9. Doxorubicin decreases paraquat accumulation and toxicity in Caco-2 cells.

    PubMed

    Silva, Renata; Carmo, Helena; Vilas-Boas, Vânia; de Pinho, Paula Guedes; Dinis-Oliveira, Ricardo Jorge; Carvalho, Félix; Silva, Isabel; Correia-de-Sá, Paulo; Bastos, Maria de Lourdes; Remião, Fernando

    2013-02-13

    P-glycoprotein (P-gp) is an efflux pump belonging to the ATP-binding cassette transporter superfamily expressed in several organs. Considering its potential protective effects, the induction of de novo synthesis of P-gp could be used therapeutically in the treatment of intoxications by its substrates. The herbicide paraquat (PQ) is a P-gp substrate responsible for thousands of fatal intoxications worldwide that still lacks an effective antidote. The aim of the present work was to evaluate the effectiveness of such an antidote by testing whether doxorubicin (DOX), a known P-gp inducer, could efficiently protect Caco-2 cells against PQ cytotoxicity, 6 h after the incubation with the herbicide, reflecting a real-life intoxication scenario. Cytotoxicity was evaluated by the MTT assay and PQ intracellular concentrations were measured by gas chromatography-ion trap-mass spectrometry (GC-IT-MS). Also, the DOX modulatory effect on choline uptake transport system was assessed by measuring the uptake of [³H]-choline. The results show that DOX exerts protective effects against PQ cytotoxicity, preventing the intracellular accumulation of the herbicide. These protective effects were not completely prevented by the incubation with the UIC2 antibody, a specific P-gp inhibitor, suggesting the involvement of alternative protection mechanisms. In fact, DOX also efficiently inhibited the choline transport system that influences PQ cellular uptake. In conclusion, in this cellular model, DOX effectively protects against PQ toxicity by inducing P-gp and through the interaction with the choline transporter, suggesting that compounds presenting this double feature of promoting the efflux and limiting the uptake of PQ could be used as effective antidotes to treat intoxications.

  10. Na+-independent phosphate transport in Caco2BBE cells

    PubMed Central

    Candeal, Eduardo; Caldas, Yupanqui A.; Guillén, Natalia; Levi, Moshe

    2014-01-01

    Pi transport in epithelia has both Na+-dependent and Na+-independent components, but so far only Na+-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na+-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na+-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport was mainly caused by Vmax changes, and it was prevented by actinomycin D and cycloheximide. Pi transport in cells grown in 1 mM Pi (basal DMEM) decreased at pH > 7.5, and it was inhibited with proton ionophores. Pi transport in cells incubated with 4 mM Pi increased with alkaline pH, suggesting a preference for divalent phosphate. Pi uptake in cells in 1 mM Pi was completely inhibited only by Pi and partially inhibited by phosphonoformate, oxalate, DIDS, SITS, SO42−, HCO3−, and arsenate. This inhibition pattern suggests that more than one Pi transporter is active in cells maintained with 1 mM Pi. Phosphate transport from cells maintained at 4 mM Pi was only partially inhibited by phosphonoformate, oxalate, and arsenate. Attempts to identify the responsible transporters showed that multifunctional anion exchangers of the Slc26 family as well as members of Slc17, Slc20, and Slc37 and the Pi exporter xenotropic and polytropic retrovirus receptor 1 are not involved. PMID:25298422

  11. HLA-A, -B, -C expression in colon carcinoma mimics that of the normal colonic mucosa and is prognostically relevant.

    PubMed

    Benevolo, Maria; Mottolese, Marcella; Piperno, Giulia; Sperduti, Isabella; Cione, Antonio; Sibilio, Leonardo; Martayan, Aline; Donnorso, Raffaele Perrone; Cosimelli, Maurizio; Giacomini, Patrizio

    2007-01-01

    Whether human leukocyte antigen (HLA)-A, -B, -C expression has any predictive value on the prognosis of human malignancies remains controversial. Herein, monoclonal antibodies with preferential reactivity for HLA-A, HLA-B, and HLA-C (HCA2, HC10, and L31) were used to stain an archival collection of 291 formalin-fixed/paraffin-embedded tissues, comprising neoplastic lesions from stages II and III colon carcinoma patients (n=165), and the uninvolved, morphologically normal mucosae from a subset (n=126) of these patients. Marked staining variability was detected not only in the tumors as in previous studies, but also in the normal paired mucosae. HLA-A, -B, -C expression was similar in approximately two thirds of the available 126 normal/neoplastic pairs, confirming in vivo our previous observation that most tumor cells mimic the HLA phenotypes of their normal counterparts. Both up and down-regulation occurred in the remaining third of the pairs, but did not coincide with high and low expression, respectively, conventionally evaluated on the tumor lesion only. Remarkably, a "paired" evaluation, but not high or low expression in the tumor, was predictive of the clinical outcome. Deviations from the expression in the normal paired mucosa (both increases and decreases) of HCA2-reactive class I molecules (possibly HLA-A), and down-regulation of L31-reactive class I molecules (possibly HLA-C), particularly in tumors from stage II patients, correlated with poor 5-year overall and disease-free survival, hazard risk ranging from 2 to 6, approximately. Thus, a paired immunohistochemical comparison reveals a novel immune evasion strategy that may impact on the prognosis of colon carcinoma.

  12. A Link between FXYD3 (Mat-8)-mediated Na,K-ATPase Regulation and Differentiation of Caco-2 Intestinal Epithelial Cells

    PubMed Central

    Bibert, Stéphanie; Aebischer, David; Desgranges, Florian; Roy, Sophie; Schaer, Danièle; Kharoubi-Hess, Solange; Horisberger, Jean-Daniel

    2009-01-01

    FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation. PMID:19109419

  13. Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell

    PubMed Central

    2013-01-01

    Background Human colon adenocarcinoma cells are resistant to chemotherapeutic agents, such as anthracyclines, that induce death by increasing the reactive oxygen species. A number of studies have been focused on chemo-preventive use of resveratrol as antioxidant against cardiovascular diseases, aging and cancer. While resveratrol cytotoxic action was due to its pro-oxidant properties. In this study, we investigate whether the Resveratrol (trans-3,5,49-trihydroxystilbene) and its natural precursor Polydatin (resveratrol-3-O-b-mono- D-glucoside, the glycoside form of resveratrol) combination, might have a cooperative antitumor effect on either growing or differentiated human adenocarcinoma colon cancer cells. Methods The polydatin and resveratrol pharmacological interaction was evaluated in vitro on growing and differentiated Caco-2 cell lines by median drug effect analysis calculating a combination index with CalcuSyn software. We have selected a synergistic combination and we have evaluated its effect on the biological and molecular mechanisms of cell death. Results Simultaneous exposure to polydatin and resveratrol produced synergistic antiproliferative effects compared with single compound treatment. We demonstrated that polydatin alone or in combination with resveratrol at 3:1 molar ratio synergistically modulated oxidative stress, cell cycle, differentiation and apoptosis. Worthy of note treatment with polydatin induced a nuclear localization and decreased expression of heat shock protein 27, and vimentin redistributed within the cell. Conclusions From morphological, and biochemical outcome we obtained evidences that polydatin induced a transition from a proliferative morphology to cell-specific differentiated structures and caused human CaCo-2 cell death by induction of apoptosis. Our data suggest the potential use of polydatin in combination chemotherapy for human colon cancer. PMID:24138806

  14. Multiple promoter elements govern expression of the human ornithine decarboxylase gene in colon carcinoma cells.

    PubMed Central

    Moshier, J A; Osborne, D L; Skunca, M; Dosescu, J; Gilbert, J D; Fitzgerald, M C; Polidori, G; Wagner, R L; Friezner Degen, S J; Luk, G D

    1992-01-01

    Overexpression of the ornithine decarboxylase (ODC) gene may be important to the development and maintenance of colonic neoplasms, as well as tumors in general. In this study, we examined the promoter elements governing constitutive expression of the human ODC gene in HCT 116 human colon carcinoma cells and, for comparison, K562 human erythro-leukemia cells. It was determined by functional analysis that the promoter elements responsible reside within the 378 bp immediately upstream from the transcription start site. Within this sequence, there are at least three regions that modulate the efficiency of the ODC promoter cooperatively. Both DNA bandshift and footprint assays demonstrated all three regions to be rich in sites that bind to nuclear proteins isolated from HCT 116 and K562 cells; the protein binding pattern of non-transformed, diploid fibroblasts was found to be much less complex. Several of the protein binding sequences have little or no homology to common regulatory elements. We suggest that the constitutive activity of the ODC gene in HCT 116 colon carcinoma cells, and perhaps transformed cells in general, involves a complex interaction of multiple regulatory sequences and their associated nuclear proteins. Finally, the saturation of the promoter in these transformed cell lines suggests that high levels of protein binding in the ODC promoter may contribute to elevated constitutive expression of this gene. Images PMID:1598217

  15. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  16. The Influence of Spirulina platensis Filtrates on Caco-2 Proliferative Activity and Expression of Apoptosis-Related microRNAs and mRNA

    PubMed Central

    Śmieszek, Agnieszka; Giezek, Ewa; Chrapiec, Martyna; Murat, Martyna; Mucha, Aleksandra; Michalak, Izabela; Marycz, Krzysztof

    2017-01-01

    Spirulina platensis (SP) is a blue-green microalga that has recently raised attention not only as a nutritional component, but also as a source of bioactivities that have therapeutic effects and may find application in medicine, including cancer treatment. In the present study we determined the cytotoxic effect of S. platensis filtrates (SPF) on human colon cancer cell line Caco-2. Three concentrations of SPF were tested—1.25%, 2.5%, and 5% (v/v). We have found that the highest concentration of SPF exerts the strongest anti-proliferative and pro-apoptotic effect on Caco-2 cultures. The SPF negatively affected the morphology of Caco-2 causing colony shrinking and significant inhibition of metabolic and proliferative activity of cells. The wound-healing assay showed that the SPF impaired migratory capabilities of Caco-2. This observation was consistent with lowered mRNA levels for metalloproteinases. Furthermore, SPF decreased the transcript level of pro-survival genes (cyclin D1, surviving, and c-Myc) and reduced the autocrine secretion of Wnt-10b. The cytotoxic effect of SPF involved the modulation of the Bax and Bcl-2 ratio and a decrease of mitochondrial activity, and was related with increased levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO). Moreover, the SPF also caused an increased number of cells in the apoptotic sub-G0 phase and up-regulated expression of mir-145, simultaneously decreasing expression of mir-17 and 146. Obtained results indicate that SPF can be considered as an agent with anti-cancer properties that may be used for colon cancer prevention and treatment. PMID:28272349

  17. A rare case of medullary carcinoma of the colon presenting as intussusception in an adult with rectal bleeding.

    PubMed

    Jain, Shilpa; Jain, Ankur; Onizuka, Neil; Boukhar, Sarag A

    2014-11-01

    Medullary carcinoma is a recently recognized rare subtype of colorectal cancer resembling both poorly differentiated adenocarcinoma and neuroendocrine tumors. Medullary carcinoma most commonly presents in the proximal colon and can be differentiated from other right-sided malignant lesions by histology and immunochemical markers. We present here a rare case of an adult patient with rectal bleeding who was found to have an intussusception due to underlying medullary carcinoma of the splenic flexure. A 72-year-old woman presented to our GI clinic with rectal bleeding. Colonoscopy revealed a necrotic mass of the sigmoid colon, later determined by CT to be a colo-colonic intussusception at the level of the splenic flexure. Patient underwent diagnostic laparoscopy with findings of a large splenic flexure mass, which was resected and found to be medullary carcinoma of the colon. The tumor was poorly differentiated and exhibited microsatellite instability but was discovered at an early stage and thus did not require any adjuvant chemotherapy. Unlike most previously reported cases of medullary carcinoma, our patient presented with a left sided tumor. To our knowledge, this is the first report of a medullary colon cancer presenting with intussusception.

  18. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers.

    PubMed

    Inokuchi, Hitoshi; Takei, Takuto; Aikawa, Katsuyoshi; Shimizu, Makoto

    2009-02-01

    The intestinal epithelium is a significant barrier to oral absorption of hydrophilic compounds, and their passage through the intercellular space is restricted by the tight junctions. In this study we found that hyperosmosis is a significant factor altering paracellular transport in Caco-2 cell monolayers. Osmotic regulators, such as sodium chloride, mannitol, and raffinose, decreased transepithelial electrical resistance and enhanced lucifer yellow permeability. The effect of these osmotic regulators on Caco-2 cell monolayers was not likely to be caused by gross cytotoxicity. Although certain amino acids and oligosaccharides have been reported to have specific tight junction-modulating activity, we found that the increased paracellular permeability of Caco-2 monolayers induced by these compounds was at least partly due to the increased osmotic pressure of the test solutions. These findings provide a new potential precaution in the evaluation of paracellular permeability-modulating substances using the Caco-2 cell monolayer system.

  19. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma.

    PubMed

    Rastgoo, Marziyeh; Hosseinzadeh, Hossein; Alavizadeh, Hoda; Abbasi, Azam; Ayati, Zahra; Jaafari, Mahmoud R

    2013-04-01

    Crocin is a pharmacologically active component of Crocus sativus. It is an unusual water-soluble carotenoid responsible for the red color of saffron. In various studies, the anticancer effect of saffron and its constituents has been established. Polyethylene glycolated nanoliposomes with a size range up to 200 nm are suitable for encapsulation of cytotoxic drugs and can target tumors passively through the enhanced permeation and retention effect. The aim of this study was to develop a nanoliposomal formulation containing crocin with a higher therapeutic index for the treatment of cancer. Four formulations of polyethylene glycolated nanoliposomes containing 25 mg/ml crocin were prepared with hydrogenated soy phosphatidylcholine, cholesterol, and methoxy-polyethylene glycol (MW 2000)-distearoylphosphatidylcholine at different molar ratios by a solvent evaporation method plus extrusion. Then the liposomes were characterized for their size, zeta potential, crocin encapsulation, release properties, and in vitro cytotoxicity against C26 colon carcinoma cells. Based on in vitro results, the best formulation was selected for an in vivo study, and its antitumor activity was evaluated in BALB/c mice bearing C26 colon carcinoma. The IC50 of crocin itself against C26 colon carcinoma was 0.73 mM. The characterization of the best formulation was as follow: Z-average size: 127.6 ± 1.5 nm; polydispersity index: 0.087 ± 0.018; zeta potential: - 21.7 mV ± 6.7; % encapsulation: 84.62 ± 0.59; % release after 168 hours in RPMI 1640 containing 30 % FBS: 16.26 ± 0.01 %. Liposomal crocin at doses of 50 and 100 mg/kg significantly decreased tumor size and increased survival rate compared with PBS and crocin in buffer (100 mg/kg) groups. The results of this study indicated that liposomal encapsulation of crocin could increase its antitumorigenic activity. Thus, to obtain an optimal dose for use in humans, the formulation merits further investigation.

  20. Expression Profiles of miRNA Subsets Distinguish Human Colorectal Carcinoma and Normal Colonic Mucosa

    PubMed Central

    Pellatt, Daniel F; Stevens, John R; Wolff, Roger K; Mullany, Lila E; Herrick, Jennifer S; Samowitz, Wade; Slattery, Martha L

    2016-01-01

    OBJECTIVES: MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that are commonly dysregulated in colorectal tumors. The objective of this study was to identify smaller subsets of highly predictive miRNAs. METHODS: Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. Tissue samples were available for 1,953 individuals, of which 1,894 had carcinoma tissue and 1,599 had normal mucosa available for statistical analysis. Agilent Human miRNA Microarray V.19.0 was used to generate miRNA expression profiles; validation of expression levels was carried out using quantitative PCR. We used random forest analysis and verified findings with logistic modeling in separate data sets. Important microRNAs are identified and bioinformatics tools are used to identify target genes and related biological pathways. RESULTS: We identified 16 miRNAs for colon and 17 miRNAs for rectal carcinoma that appear to differentiate between carcinoma and normal mucosa; of these, 12 were important for both colon and rectal cancer, hsa-miR-663b, hsa-miR-4539, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-5p, hsa-miR-3651, hsa-miR-378a-3p, and hsa-miR-378i. Estimated misclassification rates were low at 4.83% and 2.5% among colon and rectal observations, respectively. Among independent observations, logistic modeling reinforced the importance of these miRNAs, finding the primary principal components of their variation statistically significant (P<0.001 among both colon and rectal observations) and again producing low misclassification rates. Repeating our analysis without those miRNAs initially identified as important identified other important miRNAs; however, misclassification rates increased and distinctions between remaining miRNAs in terms of classification importance were reduced. CONCLUSIONS: Our data support the hypothesis that while many miRNAs are

  1. Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon

    PubMed Central

    1992-01-01

    Amphiregulin (AR) is a newly discovered glycosylated, 84-amino acid residue polypeptide growth regulator which has sequence homology to the EGF family of proteins. To obtain immunological reagents to study the biological role of AR, two synthetic peptides containing sequences corresponding to distinct regions of AR were used to generate polyclonal antibodies in rabbits. One preparation of antipeptide antibodies directed against residues 26-44 of AR (AR-Ab2) was most effective in the detection of native AR, whereas another preparation of antibodies against residues 8-26 (AR-Ab1) was found to be most efficacious in the detection of AR in formalin-fixed and paraffin- embedded tissues. The growth of a colon carcinoma cell line, Geo, which proliferates autonomously under serum-free conditions, was stimulated by the exogenous addition of AR or EGF. Half-maximal stimulation of this growth was observed at 40 and 200 pM of EGF and AR, respectively. A mAb to the extracellular domain of the EGF receptor blocked the stimulation of cell proliferation induced by the exogenous addition of AR, suggesting that this stimulation was mediated via the EGF receptor. Geo cells were found to constitutively express significant levels of the AR mRNA transcript as determined by analysis of the polymerase chain reaction-amplified cDNA product and AR protein was detected immunocytochemically using the AR-Ab1 antibodies in these cells. AR was immunoprecipitated specifically using the AR-Ab2 antibodies from the conditioned medium of Geo cells, which had been metabolically labeled with [35S]cysteine. The secreted AR migrated as a broad band (18.5-22.5 kD) with a median molecular weight of approximately 20.7 kD in SDS- PAGE. Immunospecific removal of AR from serum-free medium conditioned by the Geo cells and readdition of the AR-depleted medium to Geo cells resulted in an approximately 40% inhibition of cell growth relative to controls. Furthermore, the growth of the Geo cells was also inhibited

  2. The Prognostic Impact of Protein Expression of E-Cadherin-Catenin Complexes Differs between Rectal and Colon Carcinoma.

    PubMed

    Aamodt, Rolf; Bondi, Johan; Andersen, Solveig Norheim; Bakka, Arne; Bukholm, Geir; Bukholm, Ida R K

    2010-01-01

    The E-cadherin-catenin complex provides cell-cell adhesion. In order for a carcinoma to metastasize, cancer cells must let go of their hold of neighboring cells in the primary tumor. The presence of components of the E-cadherin-catenin complex in 246 rectal adenocarcinomas was examined by immunohistochemistry and compared to their presence in 219 colon carcinomas. The expression data were correlated to clinical information from the patients' records. There were statistically significant differences in protein expression between the rectal and the colon carcinomas regarding membranous beta-catenin, gamma-catenin, p120-catenin, and E-cadherin, as well as nuclear beta-catenin. In the rectal carcinomas, there was a significant inverse association between the expression of p120-catenin in cell membranes of the primary tumors and the occurrence of local recurrence, while membranous protein expression of beta-catenin was inversely related to distant metastases.

  3. Salmonella enterica Serovar Kentucky Flagella Are Required for Broiler Skin Adhesion and Caco-2 Cell Invasion.

    PubMed

    Salehi, Sanaz; Howe, Kevin; Lawrence, Mark L; Brooks, John P; Bailey, R Hartford; Karsi, Attila

    2017-01-15

    Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one of the main factors that contribute to bacterial attachment to broiler skin. However, the precise role of flagella and the mechanism of attachment are unknown. There are two different flagellar subunits (fliC and fljB) expressed alternatively in Salmonella enterica serovars using phase variation. Here, by making deletions in genes encoding flagellar structural subunits (flgK, fliC, and fljB), and flagellar motor (motA), we were able to differentiate the role of flagella and their rotary motion in the colonization of broiler skin and cellular attachment. Utilizing a broiler skin assay, we demonstrated that the presence of FliC is necessary for attachment to broiler skin. Expression of the alternative flagellar subunit FljB enables Salmonella motility, but this subunit is unable to mediate tight attachment. Deletion of the flgK gene prevents proper flagellar assembly, making Salmonella significantly less adherent to broiler skin than the wild type. S Kentucky with deletions in all three structural genes, fliC, fljB, and flgK, as well as a flagellar motor mutant (motA), exhibited less adhesion and invasion of Caco-2 cells, while an fljB mutant was as adherent and invasive as the wild-type strain.

  4. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1.

    PubMed

    Dziaman, Tomasz; Ludwiczak, Hubert; Ciesla, Jaroslaw M; Banaszkiewicz, Zbigniew; Winczura, Alicja; Chmielarczyk, Mateusz; Wisniewska, Ewa; Marszalek, Andrzej; Tudek, Barbara; Olinski, Ryszard

    2014-01-01

    The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the Cys326Cys genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the Ser326Cys and Ser326Ser genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.

  5. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella test and alkaline, Endo III- and FPG-modified comet assays with the human cell line Caco-2.

    PubMed

    LLana-Ruiz-Cabello, Maria; Maisanaba, Sara; Puerto, Maria; Prieto, Ana I; Pichardo, Silvia; Jos, Ángeles; Cameán, Ana M

    2014-10-01

    Currently, direct antimicrobial and antioxidant additives derived from essential oils are used in food packaging and are perceived by consumers as low-health-risk compounds. In this study, we investigated the potential mutagenicity and genotoxicity of carvacrol and thymol, major compounds in several essential oils, using the Ames Salmonella test and the alkaline, Endo III- and formamidopyrimidine glycosylase (FPG)-modified comet assays, respectively. Thymol did not show any mutagenic activity at any concentration assayed (0-250 μM), whereas carvacrol exhibited mutagenic potential, displaying greater activity in presence of the metabolic fraction (29-460 μM). The genotoxic effects were evaluated in the human colon carcinoma cell line Caco-2, and the standard comet assay revealed that neither carvacrol (0-460 μM) nor thymol (0-250 μM) had any affects at 24 and 48 h. The FPG-modified comet assay showed that the highest concentration of carvacrol (460 μM) caused DNA damage, indicating damage to the purine bases. These results should be used to identify the appropriate concentrations of carvacrol and thymol as additives in food packaging. Moreover, further studies are necessary to explore the safety and/or the toxicity mechanisms of these compounds.

  6. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells

    SciTech Connect

    De Berardis, Barbara; Civitelli, Gabriele; Condello, Maria; Lista, Pasquale; Pozzi, Roberta; Arancia, Giuseppe; Meschini, Stefania

    2010-08-01

    Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics. The physico-chemical characteristics were evaluated by analytical electron microscopy. The cytotoxicity was determined by growth curves and water-soluble tetrazolium assay. The reactive oxygen species production, cellular glutathione content, changes of mitochondrial membrane potential and apoptosis cell death were quantified by flow cytometry. The inflammatory cytokines were evaluated by enzyme-linked immunoadsorbent assay. Treatment with ZnO (5 {mu}g/cm{sup 2} corresponding to 11.5 {mu}g/ml) for 24 h induced on LoVo cells a significant decrease of cell viability, H{sub 2}O{sub 2}/OH{center_dot} increase, O2{sup -{center_dot}} and GSH decrease, depolarization of inner mitochondrial membranes, apoptosis and IL-8 release. Higher doses induced about 98% of cytotoxicity already after 24 h of treatment. The experimental data show that oxidative stress may be a key route in inducing the cytotoxicity of ZnO nanoparticles in colon carcinoma cells. Moreover, the study of the relationship between toxicological effects and physico-chemical characteristics of particles suggests that surface area does not play a primary role in the cytotoxicity.

  7. Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells.

    PubMed

    Porfire, Alina; Tomuta, Ioan; Muntean, Dana; Luca, Lavinia; Licarete, Emilia; Alupei, Marius Costel; Achim, Marcela; Vlase, Laurian; Banciu, Manuela

    2015-01-01

    Simvastatin (SIM) is a lipophilic statin that has potential benefits for prevention and treatment of several types of malignancies. However, its low water solubility and the toxicity associated with administration of high doses recommend it for encapsulation in carriers able to deliver the therapeutic dose in the tumor. In this work, liposomes with long-circulating properties were proposed as delivery systems for SIM. The objective of this study was to optimize the formulation of SIM-loaded long-circulating liposomes (LCL-SIM) by using D-optimal experimental design. The influence of phospholipids concentration, phospholipids to cholesterol molar ratio and SIM concentration was studied on SIM liposomal concentration, encapsulation efficiency and liposomal size. The optimized formulation had liposomal SIM concentration 6238 µg/ml, EE % of 83.4% and vesicle size of 190.5 nm. Additionally we evaluated the in vitro cytotoxicity of the optimized liposomal SIM (LCL-SIM-OPT) on C26 murine colon carcinoma cells cultivated in monoculture as well as in co-culture with murine peritoneal macrophages at a cell density ratio that provides an approximation of physiological conditions of colon carcinoma development in vivo. Our preliminary studies suggested that LCL-SIM-OPT exerted cytotoxicity on C26 cells probably via enhancement of oxidative stress in co-culture environment.

  8. Chemical Characterization of Enteromorpha prolifera Extract Obtained by Enzyme-Assisted Extraction and Its Influence on the Metabolic Activity of Caco-2

    PubMed Central

    Michalak, Izabela; Dmytryk, Agnieszka; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-01-01

    The green seaweed Enteromorpha prolifera was used as a feedstock for the production of enzymatic hydrolysate using cellulase. The selection of the conditions for enzymatic hydrolysis of the biomass was carried out for different enzyme doses and incubation periods. The obtained extract was examined in terms of its multielemental composition, content of polyphenols and antibacterial properties (tested against Escherichia coli and Staphylococcus aureus). Additionally, its influence on the metabolic activity of human colon epithelial cells (Caco-2) was analyzed. The tested concentrations of extract using an in vitro model were 62.5, 125, 250, 500, 1000 and 2000 µg/mL. The hydrolysis yield in the most suitable experimental conditions (8-h process and 50 and 100 µL of cellulase) was 36%. Micro- and macroelements were poorly extracted from the algal biomass. Total phenolic content was 55 mg of gallic acid equivalent per 100 g of dry mass of extract. The cytotoxic effect of extracts, related to the inhibition of the metabolic activity of Caco-2, was noted only after 24 h. In turn, cultures of Caco-2 propagated with extracts for 72 h were characterized by significantly elevated metabolism (the concentration of extracts ranged from 62.5 to 1000 µg/mL, p < 0.05). Obtained results indicated the high biological activity of the prepared extracts; however, the observed effects did not occur in a dose-dependent manner. PMID:28241482

  9. Biofortification of rice with zinc: assessment of the relative bioavailability of zinc in a Caco-2 cell model and suckling rat pups.

    PubMed

    Jou, Ming-Yu; Du, Xiaogu; Hotz, Christine; Lönnerdal, Bo

    2012-04-11

    Staple foods, such as rice, can now be enriched in micronutrients through conventional breeding (i.e., biofortification) to enhance dietary intake of vulnerable populations. The objectives of this study were (1) to establish a rapid, high capacity Caco-2 cell model to determine the relative bioavailability of zinc (Zn) from samples of staple food breeding lines for potential use as a guideline for selection/breeding and (2) to determine the relative bioavailability of Zn from conventional rice varieties and one Zn-biofortified type. Polished or undermilled, parboiled rice samples were digested in vitro with pepsin and pH adjustment, and by pancreatic enzymes. Zn uptake from digested samples was measured in Caco-2 cells in culture. A previously validated rat pup model was also used to assess Zn absorption in vivo, using gastric intubation and (65)Zn labeling. Pups were killed after 6 h, and radioactivity in tissues and in small intestine perfusate and cecum-colon contents was used to measure Zn bioavailability. A biofortified rice variety contained substantially more Zn than conventional varieties, with no change in phytate content. Absorbed Zn (μg/g rice) was significantly higher from the new variety in both the in vitro Caco-2 cell model (2.1-fold) and the rat pup model (2.0-fold). Results from the two models were highly correlated, particularly for the polished samples. Biofortification of rice with Zn results in significantly increased Zn uptake in both models. Since results from the Caco-2 cell model correlated well with those from rat pups, this cell model is likely to predict results in human populations and can be used for screening purposes.

  10. [A Case of Invasive Intraductal Papillary Mucinous Carcinoma, Penetrating the Stomach, Colon, and Jejunum].

    PubMed

    Goto, Tadahiro; Toyama, Hirochika; Asari, Sadaki; Terai, Sachio; Kinoshita, Hisoka; Matsumoto, Taku; Kuramitsu, Kaori; Tanaka, Motofumi; Takebe, Atsushi; Kido, Masahiro; Matsumoto, Ippei; Ajiki, Tetsuo; Fukumoto, Takumi; Ku, Yonson

    2015-11-01

    A 69-year-old woman was admitted to a nearby clinic complaining of abdominal pain. Abdominal CT showed a 10 cm diameter huge cystic lesion in the body and tail of the pancreas. The patient was referred to our institution for treatment. Endoscopic ultrasonography (EUS) revealed a cystic mass with a solid lesion. Endoscopic retrograde pancreatography(ERP) demonstrated mucous at the opening of the papilla of Vater and dilatation of the pancreatic duct with a solid nodule. Contrast radiography revealed a fistula from the tumor to the jejunum. A biopsy specimen from the lesion showed adenocarcinoma. Intraoperative findings showed a tumor occupying the pancreas body and tail with suspected invasion to the stomach, jejunum, and transverse colon. We performed distal pancreatectomy with partial resection of stomach, jejunum, and colon. Pathological findings showed an invasive type of IPMC, with invasion to the subserosal layer of the stomach and colon and the mucous layer of the jejunum. While IPMC is recognized as a slow growing malignancy, some cases of invasive carcinoma with fistulation into adjacent organs have been reported. To our knowledge, a case of IPMC penetrating to 3 adjacent organs is rare.

  11. Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung.

    PubMed Central

    Iigo, M.; Nakagawa, T.; Ishikawa, C.; Iwahori, Y.; Asamoto, M.; Yazawa, K.; Araki, E.; Tsuda, H.

    1997-01-01

    Unsaturated fatty acids, including n-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (C22:6, DHA) and eicosapentaenoic acid (C20:5, EPA), and a series of n-6 PUFAs were investigated for their anti-tumour and antimetastatic effects in a subcutaneous (s.c.) implanted highly metastatic colon carcinoma 26 (Co 26Lu) model. EPA and DHA exerted significant inhibitory effects on tumour growth at the implantation site and significantly decreased the numbers of lung metastatic nodules. Oleic acid also significantly inhibited lung metastatic nodules. Treatment with arachidonic acid showed a tendency for reduction in colonization. However, treatment with high doses of fatty acids, especially linoleic acid, increased the numbers of lung metastatic nodules. DHA and EPA only inhibited lung colonizations when administered together with the tumour cells, suggesting that their incorporation is necessary for an influence to be exerted. Chromatography confirmed that contents of fatty acids in both tumour tissues and plasma were indeed affected by the treatments. Tumour cells pretreated with fatty acids in vivo, in particular DHA, also showed a low potential for lung colony formation when transferred to new hosts. Thus, DHA treatment exerted marked antimetastatic activity associated with pronounced change in the fatty acid component of tumour cells. The results indicate that uptake of DHA into tumour cells results in altered tumour cell membrane characteristics and a decreased ability to metastasize. PMID:9043019

  12. Supercritical CO₂ extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells.

    PubMed

    Ben Rahal, Naila; Barba, Francisco J; Barth, Danielle; Chevalot, Isabelle

    2015-09-01

    The optimal conditions of supercritical carbon dioxide (SC-CO2) (160-220 bars, 40-80 °C) technology combined with co-solvent (ethanol), to recover oil, flavonolignans (silychristin, silydianin and silybinin) and fatty acids from milk thistle seeds, to be used as food additives and/or nutraceuticals, were studied. Moreover, the antioxidant and cytotoxic activities of the SC-CO2 oil seeds extracts were evaluated in Caco-2 carcinoma cells. Pressure and temperature had a significant effect on oil and flavonolignans recovery, although there was not observed a clear trend. SC-CO2 with co-solvent extraction at 220 bars, 40 °C was the optimum treatment to recover oil (30.8%) and flavonolignans from milk thistle seeds. Moreover, linoleic (47.64-66.70%), and oleic (19.68-24.83%) acids were the predominant fatty acids in the oil extracts recovered from milk thistle under SC-CO2. In addition, SC-CO2 extract showed a high antioxidant activity determined by DPPH and ABTS tests. Cytotoxic activities of silychristin, silydianin and silybinin and the obtained SC-CO2 extract (220 bars, 40 °C) were evaluated against Caco-2 cells. The SC-CO2 extract inhibited the proliferation of Caco-2 cells in a dose-responsive manner and induced the highest percentage of mortality of Caco-2 cells (from 43 to 71% for concentrations from 10 up to 100 μg/ml of SC-CO2 oil seeds).

  13. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    PubMed Central

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  14. Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells▿

    PubMed Central

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-01-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity. PMID:18539800

  15. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells.

    PubMed

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-08-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.

  16. Design of 3D printed insert for hanging culture of Caco-2 cells.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2014-12-17

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30-100% higher brush border enzyme activity and ∼2-7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R(2) = 0.92) to the human oral adsorption than that of the Transwell culture (R(2) = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption.

  17. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.

    PubMed

    Ding, Long; Wang, Liying; Zhang, Yan; Liu, Jingbo

    2015-09-23

    The objective of this study was to investigate the transepithelial transport of RVPSL (Arg-Val-Pro-Ser-Leu), an egg-white-derived peptide with angiotensin I-converting enzyme (ACE) inhibitory and antihypertensive activity, in human intestinal Caco-2 cell monolayers. Results revealed that RVPSL could be passively transported across Caco-2 cell monolayers. However, during the process of transport, 36.31% ± 1.22% of the initial RVPSL added to the apical side was degraded, but this degradation decreased to 23.49% ± 0.68% when the Caco-2 cell monolayers were preincubated with diprotin A (P < 0.001), suggesting that RVPSL had a low resistance to various brush border membrane peptidases. When transport from the apical side to the basolateral side was investigated, the apparent permeability coefficient (Papp) was (6.97 ± 1.11) × 10(-6) cm/s. The transport route of RVPSL appears to be the paracellular pathway via tight junctions, as only cytochalasin D, a disruptor of tight junctions (TJs), significantly increased the transport rate (P < 0.001). In addition, the relationship between the structure of RVPSL and transport across Caco-2 cell monolayers was studied by mutation of RVPSL. It was found that N-terminal Pro residues were more beneficial for transport of pentapeptides across Caco-2 cell monolayers than Arg and Val. Furthermore, RVPSL could be more easily transported as smaller peptides, especially in the form of dipeptides and tripeptides.

  18. Paraneoplastic Dermatomyositis in Hepatocellular Carcinoma with Colonic Perforation: A Case Report

    PubMed Central

    Miyata, Naoteru; Emoto, Katsura; Dei, Yoshiaki; Tomiyasu, Kazuhiro; Ishiyama, Ryoko; Horie, Tomofumi; Sakai, Gen; Tahara, Toshiyuki

    2016-01-01

    Background Dermatomyositis (DM) is an autoimmune disease characterized by cutaneous Gottron papules, heliotrope rash, and proximal myopathy. It may also present as a paraneoplastic syndrome that can complicate a variety of different cancers, such as lung, cervical, and breast cancer. However, the association with hepatocellular carcinoma (HCC) is extremely rare. Moreover, to our knowledge, there are no previous reports of colonic perforation following steroid pulse treatment for a DM patient. Case Summary A 61-year-old male complained of a skin rash that began in his neck and spread to his face and abdomen. On physical examination, the patient was also found to have symmetrical proximal muscle weakness, abdominal pain, heliotrope rash in the periorbital skin, and poikiloderma on his face and abdomen. Serum level of muscle enzymes was remarkably increased. Muscle examination revealed symmetrical proximal weakness. The diagnosis of DM was made, and steroid treatment was started for symptomatic relief. A search for causative malignancy revealed HCC. Despite steroid therapy for DM, his symptoms did not improve. Additionally, C-reactive protein elevation was seen along with severe abdominal pain on day 14 of admission. Shortly after this, the patient died of septic shock due to suppurative peritonitis after perforation of the ascending colon. Conclusion Here, we present a rare case of DM caused by non-hepatitis-associated advanced HCC with colonic perforation. The cause of colonic perforation is still unclear. This case demonstrates the need to carefully monitor abdominal pain in DM patients as symptoms can be masked by steroid therapy. PMID:27790119

  19. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine.

    PubMed

    Gou, MaLing; Men, Ke; Zhang, Juan; Li, YuHua; Song, Jia; Luo, Shan; Shi, HuaShan; Wen, YanJun; Guo, Gang; Huang, MeiJuan; Zhao, Xia; Qian, ZhiYong; Wei, YuQuan

    2010-10-26

    Biodegradable cationic nanoparticles have promising application as a gene delivery system. In this article, heparin-polyethyleneimine (HPEI) nanogels were prepared, and these nanogels were developed as a nonviral gene vector. The transfection efficiency of HPEI nanogels was comparable with that of PEI25K, while the cytotoxicity was lower than that of PEI2K and much lower than that of PEI25K in vitro. These HPEI nanogels also had better blood compatibility than PEI25K. After intravenous administration, HPEI nanogels degraded, and the degradation products were excreted through urine. The plasmid expressing vesicular stomatitis virus matrix protein (pVSVMP) could be efficiently transfected into C-26 colon carcinoma cells by HPEI nanogels in vitro, inhibiting the cell proliferation through apoptosis induction. Intraperitoneal injection of pVSVMP/HPEI complexes efficiently inhibited the abdominal metastases of C-26 colon carcinoma through apoptosis induction (mean tumor weight in mice treated with pVSVMP/HPEI complex = 0.93 g and in control mice = 3.28 g, difference = 2.35 g, 95% confidence interval [CI] = 1.75-2.95 g, P < 0.001) and prolonged the survival of treated mice. Moreover, intravenous application of pVSVMP/HPEI complexes also inhibited the growth of pulmonary metastases of C-26 colon carcinoma through apoptosis induction. The HPEI nanogels delivering pVSVMP have promising application in treating colon carcinoma.

  20. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  1. Genetically Modified Caco-2 Cells With Improved Cytochrome P450 Metabolic Capacity.

    PubMed

    Küblbeck, Jenni; Hakkarainen, Jenni J; Petsalo, Aleksanteri; Vellonen, Kati-Sisko; Tolonen, Ari; Reponen, Petri; Forsberg, Markus M; Honkakoski, Paavo

    2016-02-01

    The human intestinal Caco-2 cell line has been extensively used as a model of small intestinal absorption but it lacks expression and function of cytochrome P450 enzymes, particularly CYP3A4 and CYP2C9, which are normally expressed in the intestinal epithelium. In order to increase the expression and activity of CYP isozymes in these cells, we created 2 novel Caco-2 sublines expressing chimeric constitutive androstane or pregnane X receptors and characterized these cells for their metabolic and absorption properties. In spite of elevated mRNA expression of transporters and differentiation markers, the permeation properties of the modified cell lines did not significantly differ from those of the wild-type cells. In contrast, the metabolic activity was increased beyond the currently used models. Specifically, CYP3A4 activity was increased up to 20-fold as compared to vitamin D treated wild-type Caco-2 cells.

  2. A Model of Cadmium Uptake and Transport in Caco-2 Cells.

    PubMed

    Gerasimenko, T N; Senyavina, N V; Anisimov, N U; Tonevitskaya, S A

    2016-05-01

    We created a physiologically substantiated kinetic model of cadmium transport and toxicity in intestinal cell model (Caco-2 cells). Transcriptome profiling of Caco-2 cells revealed high content of transporter DMT1 and ZIP14 and intensive expression of some calcium channels of the CACN family. The mathematical model describing three types of transporters, as well as intracellular cadmium binding with metallothionein and excretion through the basolateral membrane allowed us to construct cadmium uptake and transport curves that approximated the previously obtained experimental data. Using the proposed model, we determined toxic intracellular cadmium concentration leading to cell death and impairing the integrity of cell monolayer and described cadmium transport in this case.

  3. Teng-Long-Bu-Zhong-Tang, a Chinese herbal formula, enhances anticancer effects of 5 - Fluorouracil in CT26 colon carcinoma

    PubMed Central

    2013-01-01

    Background Colorectal cancer remains one of the leading causes of cancer death worldwide. Traditional Chinese Medicine (TCM) has played a positive role in colorectal cancer treatment. There is a great need to establish effective herbal formula for colorectal cancer treatment. Based on TCM principles and clinical practices, we have established an eight herbs composed formula for colorectal cancer treatment, which is Teng-Long-Bu-Zhong-Tang (TLBZT). We have demonstrated the anticancer effects of TLBZT against colorectal carcinoma in vitro. In present study, we evaluated the anticancer potential of TLBZT, used alone or in combination with low dose of 5-Fluorouracil (5-Fu), in CT26 colon carcinoma in vivo. Methods CT26 colon carcinoma was established in BALB/c mice and treated with TLBZT, 5-Fu, or TLBZT plus 5-Fu. The tumor volumes were observed. Apoptosis was detected by TUNEL assay. Caspases activities were detected by colorimetric assay. Cell senescence was indentified by senescence β-galactosidase staining. Gene expression and angiogenesis was observed by immunohistochemistry or western blot. Results TLBZT significantly inhibited CT26 colon carcinoma growth. TLBZT elicited apoptosis in CT26 colon carcinoma, accompanied by Caspase-3, 8, and 9 activation and PARP cleavage, and downregulation of XIAP and Survivin. TLBZT also induced cell senescence in CT26 colon carcinoma, with concomitant upregulation of p16 and p21 and downregulation of RB phosphorylation. In addition, angiogenesis and VEGF expression in CT26 colon carcinoma was significantly inhibited by TLBZT treatment. Furthermore, TLBZT significantly enhanced anticancer effects of 5-Fu in CT26 colon carcinoma. Conclusions TLBZT exhibited significantly anticancer effect, and enhanced the effects of 5-Fu in CT26 colon carcinoma, which may correlate with induction of apoptosis and cell senescence, and angiogenesis inhibition. The present study provides new insight into TCM approaches for colon cancer treatment

  4. Suppressive effect of sinomenine combined with 5-fluorouracil on colon carcinoma cell growth.

    PubMed

    Zhang, Ji-Xiang; Yang, Zi-Rong; Wu, Dan-Dan; Song, Jia; Guo, Xu-Feng; Wang, Jing; Dong, Wei-Guo

    2014-01-01

    It is reported that sinomenine (SIN) and 5-fluorouracil (5-FU) both are effective for colon cancer, but their cooperative suppressive effects and toxicity remain to be clarified in detail. This study aimed to determine suppressive effects and toxicity of sinomenine (SIN) plus 5-fluorouracil (5-FU) on LoVo colon carcinoma cells in vitro and in vivo. CCK-8, Hoechst 33258 staining and an annexin V-FITC/PI apoptosis kit were used to detect suppressive effects. Western blotting was applied to investigate the essential mechanism underlying SIN and 5-FU-induced apoptosis. SIN or 5-FU or both were injected into nude mice, and then suppressive effects and side effects were observed. SIN plus 5-FU apparently inhibited the proliferation of LoVo cells and induced apoptosis. Moreover the united effects were stronger than individually (p<0.05). The results of annexin V-FITC /PI staining and Hoechst 33258 staining showed that the percentage of apoptotic cells induced by SIN and 5-FU combined or alone was significantly higher than the control group (p<0.05). Expression of Bax and Bcl-2 was up-regulated and down-regulated respectively. SIN or 5-FU significantly inhibited effects on the volume of tumour xenografts and their combined suppressive effects were stronger (p<0.05). No obvious side effects were observed. It was apparent that the united effects of SIN and 5-FU on the growth of colorectal carcinoma LoVo cells in vitro and in vivo were superior to those using them individually, and it did not markedly increase the side effects of chemotherapy.

  5. Allicin Alleviates Inflammation of Trinitrobenzenesulfonic Acid-Induced Rats and Suppresses P38 and JNK Pathways in Caco-2 Cells

    PubMed Central

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin. PMID:25729217

  6. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    SciTech Connect

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt} cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.

  7. Application of Caco-2 Cell Line in Herb-Drug Interaction Studies: Current Approaches and Challenges

    PubMed Central

    Awortwe, C.; Fasinu, P.S.; Rosenkranz, B.

    2015-01-01

    The Caco-2 model is employed in pre-clinical investigations to predict the likely gastrointestinal permeability of drugs because it expresses cytochrome P450 enzymes, transporters, microvilli and enterocytes of identical characteristics to the human small intestine. The FDA recommends this model as integral component of the Biopharmaceutics Classification System (BCS). Most dedicated laboratories use the Caco-2 cell line to screen new chemical entities through prediction of its solubility, bioavailability and the possibility of drug-drug or herb-drug interactions in the gut lumen. However, challenges in the inherent characteristics of Caco-2 cell and inter-laboratory protocol variations have resulted to generation of irreproducible data. These limitations affect the extrapolation of data from pre-clinical research to clinical studies involving drug-drug and herb-drug interactions. This review addresses some of these caveats and enumerates the plausible current and future approaches to reduce the anomalies associated with Caco-2 cell line investigations focusing on its application in herb-drug interactions. PMID:24735758

  8. In vitro interaction between Bacillus megaterium strains and Caco-2 cells.

    PubMed

    López, Ana C; Minnaard, Jessica; Pérez, Pablo F; Alippi, Adriana M

    2013-03-01

    To further our understanding of the virulence potential of Bacillus megaterium strains, cell association and invasion assays were conducted in vitro by infecting human enterocytes (Caco-2 cells) with 53 strains of this bacterium isolated from honey. Two series of experiments were performed: (i) necrosis and cell detachment assays with the supernatants of bacterial culture filtrates from 16-h cultures and (ii) adhesion/invasion assays in which cultured enterocytes incubated with bacteria from 3-h cultures were resuspended in Dulbecco's modified Eagle's medium and chloramphenicol. The detachment of Caco-2 cells was evaluated by staining the cells with crystal violet. Necrosis was assessed by fluorescence microscopy of cells labeled with propidium iodide. Association (adhesion plus invasion) was determined by plate counts and invasion in an aminoglycoside protection assay. The results showed that spent culture supernatants detached and necrotized Caco-2 cells in a strain-dependent manner. Seven out of 53 B. megaterium filtered culture supernatants caused complete cell detachment. Suspensions of these same bacterial strains adhered and invaded enterocytes in 2-h infection experiments. To our knowledge, this is the first report on the interaction between B. megaterium and intestinal epithelial Caco-2 cells.

  9. Lack of genoprotective effect of phytosterols and conjugated linoleic acids on Caco-2 cells.

    PubMed

    Daly, Trevor J; Aherne, S Aisling; O'Connor, Tom P; O'Brien, Nora M

    2009-08-01

    Much interest has focused on the cholesterol-lowering effects of phytosterols (plant sterols) but limited data suggests they may also possess anti-carcinogenic activity. Conjugated linoleic acids (CLA), sourced from meat and dairy products of ruminant animals, has also received considerable attention as a potential anti-cancer agent. Therefore, the aims of this project were to (i) examine the effects of phytosterols and CLA on the viability and growth of human intestinal Caco-2 cells and (ii) determine their potential genoprotective (comet assay), COX-2 modulatory (ELISA) and apoptotic (Hoechst staining) activities. Caco-2 cells were supplemented with the phytosterols campesterol, beta-sitosterol, or beta-sitostanol, or a CLA mixture, or individual CLA isomers (c10t12-CLA, t9t11-CLA) for 48 h. The three phytosterols, at the highest levels tested, were found to reduce both the viability and growth of Caco-2 cells while CLA exhibited isomer-specific effects. None of the phytosterols protected against DNA damage. At a concentration of 25 microM, both c10t12-CLA and t9t11-CLA enhanced (P<0.05) oxidant-induced, but not mutagen-induced, DNA damage. Neither the phytosterols nor CLA induced apoptosis or modulated COX-2 production. In conclusion, campesterol, beta-sitosterol, beta-sitostanol, c10t12-CLA, and t9t11-CLA were not toxic to Caco-2 cells, at the lower levels tested, and did not exhibit potential anti-carcinogenic activity.

  10. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Lamprecht, Alf; Koenig, Petra; Ubrich, Nathalie; Maincent, Philippe; Neumann, Dirk

    2006-08-01

    Nanoparticles (NPs) have shown their efficiency in increasing the oral bioavailability of macromolecular drugs, among them heparin. However, mechanisms of absorption are still unclear. Here, heparin-loaded NPs were prepared from different polymers (Eudragit® RS, poly(lactic-co-glycolic acid) (PLGA), and their respective mixtures) and analysed for their mucoadhesive properties using a resonant mirror system. Subsequent binding and drug transport studies of the free heparin and heparin-loaded NPs were carried out on Caco-2 cells. Cationic NPs were found to be mucoadhesive, while pure drug and polyester NPs were not. The adsorption of anionic heparin masked the positive surface charge of the particles, thus partially diminishing the adhesiveness to mucin. Increased binding to Caco-2 cells was found for all NP formulation, with RS/PLGA NPs showing maximum binding. However, the transport of heparin was the same for the RS/PLGA NPs and the PLGA NPs and slightly higher than for the free drug. In all cases, no NP transport across the cell layer was observed. When Caco-2 cells were coated with an additional mucin layer, cell binding of RS NPs and RS/PLGA NPs was further increased. Transport across Caco-2 cells demonstrated similar tendencies to results obtained without mucin. In contrast, cationic NPs led to higher heparin transport in the presence of mucin. The mechanism of drug absorption associated with RS NPs was concluded to be independent of typical transcellular NP transport.

  11. Effects of Tea Phenolics on Iron Uptake from Different Fortificants by Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vitro effects of tea phenolics on Fe uptake from different fortificants (FeSO4, FeCl3, FeEDTA) by Caco-2 cells were compared. Cell cultures were exposed to catechin, tannic acid, green or black tea solutions added within Fe-containing solution, or used to pre-treat cell cultures before Fe-exp...

  12. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  13. Unpolished Thai rice prevents ACF formation and dysplastic progression in AOM-induced rats and induces apoptosis through redox alteration in CaCo-2 cells.

    PubMed

    Tammasakchai, Achiraya; Chaiyasut, Chaiyavat; Riengrojpitak, Suda; Suwannalert, Prasit

    2015-01-01

    Oxidative stress is associated with colon carcinogenesis including aberrant crypt foci (ACF) formation and it plays an important role in pathophysiological changes in cancer cells. The aims of this study were to investigate the effects of dietary unpolished Thai rice (UTR) on ACF formation and dysplastic progression in azoxymethane (AOM)-treated rats. Anti-cancer efficacy of UTR regarding apoptotic induction and oxidative redox status in human colon cancer (CaCo-2) cells was also investigated. Rats given 20% and 70% of UTR in the diet showed significantly and dose-dependently decreased total number of ACF. UTR treatment also was strongly associated with the low percentage of dysplastic progression and mucin depletion. In addition, we found that UTR significantly induced cancer cell apoptosis, increased cellular oxidants, and decreased the level of GSH/GSSG ratio in CaCo-2 cells. Our study suggests that UTR supplementation may be a useful strategy for CRC prevention with the inhibition of precancerous progression, with induction of cancer cell apoptosis through redox alteration.

  14. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells.

    PubMed

    Janicke, Birgit; Hegardt, Cecilia; Krogh, Morten; Onning, Gunilla; Akesson, Björn; Cirenajwis, Helena M; Oredsson, Stina M

    2011-01-01

    Epidemiological and animal studies have shown that dietary fiber is protective against the development of colon cancer. Dietary fiber is a rich source of the hydroxycinnamic acids ferulic acid (FA) and p-coumaric acid (p-CA), which both may contribute to the protective effect. We have investigated the effects of FA and p-CA treatment on global gene expression in Caco-2 colon cancer cells. The Caco-2 cells were treated with 150 μM FA or p-CA for 24 h, and gene expression was analyzed with cDNA microarray technique. A total of 517 genes were significantly affected by FA and 901 by p-CA. As we previously have found that FA or p-CA treatment delayed cell cycle progression, we focused on genes involved in proliferation and cell cycle regulation. The expressions of a number of genes involved in centrosome assembly, such as RABGAP1 and CEP2, were upregulated by FA treatment as well as the gene for the S phase checkpoint protein SMC1L1. p-CA treatment upregulated CDKN1A expression and downregulated CCNA2, CCNB1, MYC, and ODC1. Some proteins corresponding to the affected genes were also studied. Taken together, the changes found can partly explain the effects of FA or p-CA treatment on cell cycle progression, specifically in the S phase by FA and G(2)/M phase by p-CA treatment.

  15. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    NASA Astrophysics Data System (ADS)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p < 0.05). The amount of Cu transport increased with the increase of CuSO4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  16. Immunohistochemical and Western blot analysis of two protein tyrosine phosphatase receptors, R and Z1, in colorectal carcinoma, colon adenoma and normal colon tissues.

    PubMed

    Woźniak, Marta; Gamian, Elżbieta; Łaczmańska, Izabela; Sąsiadek, Maria M; Duś-Szachniewicz, Kamila; Ziółkowski, Piotr

    2014-05-01

    Two classes of proteins, namely tyrosine kinases (PTK) and phosphatases (PTP), play an important role in cell proliferation and differentiation, thus leading to an acceleration or inhibition of tumour growth. The role of the above proteins in colorectal carcinoma (CRC) growth is a well-known event. In this study we carried out immunohistochemical and Western blot analysis of colorectal carcinoma, adenoma and normal colon tissue in relation to two protein tyrosine phosphatase receptors, R and Z1. Twenty-five cases of CRC were analyzed and the results were compared with similar data obtained in non-malignant tissues. High expression of both PTP receptors was observed in all examined cases of CRC, adenoma and normal colon tissue in this study. These results are not in line with recently published data, showing that genetic coding for PTPRR and PTPRZ1 were hypermethylated in CRC's. We presume that the protein tyrosine phosphatase overexpression in colorectal carcinoma is not enough to protect from the progression of disease.

  17. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers.

    PubMed

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function.

  18. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

    PubMed Central

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function. PMID:28046014

  19. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.

    PubMed

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-04-16

    Titanium dioxide (TiO₂) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO₂ nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO₂ nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO₂ particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO₂ particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO₂ particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO₂ particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO₂ particles also increased IL-8 expression. The results indicated that anatase TiO₂ nanoparticles induced inflammatory responses compared with other TiO₂ particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  20. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology.

    PubMed

    Chai, Gui-Hong; Xu, Yingke; Chen, Shao-Qing; Cheng, Bolin; Hu, Fu-Qiang; You, Jian; Du, Yong-Zhong; Yuan, Hong

    2016-03-09

    Solid lipid nanoparticles (SLNs) have been extensively investigated and demonstrated to be a potential nanocarriers for improving oral bioavailability of many drugs. However, the molecular mechanisms related to this discovery are not yet understood. Here, the molecular transport mechanisms of the SLNs crossing simulative intestinal epithelial cell monolayers (Caco-2 cell monolayers) were studied. The cytotoxicology results of the SLNs in Caco-2 cells demonstrated that the nanoparticles had low cytotoxicity, had no effect on the integrity of the cell membrane, did not induce oxidative stress, and could significantly reduce cell membrane fluidity. The endocytosis of the SLNs was time-dependent, and their delivery was energy-dependent. For the first time, the transport of the SLNs was directly verified to be a vesicle-mediated process. The internalization of the SLNs was mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes. Transferrin-related endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus were confirmed to be the main destinations of the SLNs in Caco-2 cells. As for the transport of the SLNs in Caco-2 cell monolayers, the results demonstrated that the SLNs transported to the basolateral side were intact, and the transport of the nanoparticles did not destroy the structure of tight junctions. The transcytosis of the SLNs across the Caco-2 cell monolayer was demonstrated to be mediated by the same routes as that in the endocytosis study. The ER, Golgi apparatus, and microtubules were confirmed to be important for the transport of the SLNs to both the basolateral and apical membrane sides. This study provides a more thoroughly understand of SLNs transportation crossing intestinal epithelial cell monolayers and could be beneficial for the fabrication of SLNs.

  1. Transport of chlorpromazine in the Caco-2 cell permeability assay: a kinetic study.

    PubMed

    Broeders, Jessica J W; van Eijkeren, Jan C H; Blaauboer, Bas J; Hermens, Joop L M

    2012-07-16

    The intestinal transport of compounds can be measured in vitro with Caco-2 cell monolayers. We took a closer look at the exposure and fate of a chemical in the Caco-2 cell assay, including the effect of protein binding. Transport of chlorpromazine (CPZ) was measured in the absorptive and secretory direction, with and without albumin basolaterally. Samples were taken from medium, cells, and well plastic. For the secretory transport experiments with albumin, the free CPZ concentration at the start of the experiment was measured by negligible depletion-solid phase microextraction (nd-SPME). Recovery of CPZ from the medium was low, especially in the absorptive transport direction. CPZ was found in the cells (≤20%) and bound to the well plastic (≤25%), and 94% of CPZ was bound to albumin. An initial lag phase was observed, which was likely caused by partitioning of CPZ between the donor concentration and the Caco-2 cells; after 20 min, transport of CPZ to the receiver compartment was linear. The low recovery and the test compound found both inside the Caco-2 cells and bound to the well plastic complicate the calculation of the fraction transported and render reliable estimates of permeability constants impossible. For a chemical like chlorpromazine, which is hydrophobic in its neutral form, but in general also for more lipophilic compounds, the Caco-2 cell assay might not be straightforward, and a more detailed study into the fate and exposure of the test compound might be needed to arrive at meaningful data for transport and permeability.

  2. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    PubMed Central

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  3. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers.

    PubMed

    Ingels, F; Beck, B; Oth, M; Augustijns, P

    2004-04-15

    Presently, the Caco-2 cell culture model is widely used during drug discovery and development as a predictive tool for the oral absorption of drug candidates. For transport experiments in the Caco-2 system, HBSS-like buffered salt solutions are commonly used, although different shortcomings have been associated with the use of these buffers. In this paper, we investigated the effect of using fasted state simulated intestinal fluid (FaSSIF) as potential biorelevant medium for the drug permeability estimation across Caco-2 monolayers. The transport characteristics of 19 model compounds were determined in the Caco-2 cell culture model in the presence of FaSSIF as compared to classic transport medium. A sigmoidal relation was obtained when the estimated P(app), s of the apical to basolateral transport were plotted versus the reported values of the fraction absorbed in man. Although no effect of FaSSIF as compared to classic transport medium (TM) was observed on the total predictability of the model, an impact was demonstrated (1) on the bi-directional transport of actively transported drugs (including talinolol, digoxin and doxorubicin), (2) on recovery and (3) on the solubility and permeability estimation of poorly water-soluble drugs. The observed differences may be attributed to a P-gp inhibitory effect of sodium taurocholate (NaTC), micellar encapsulation by the NaTC/lecithin mixed micelles and/or an increase of the solubility of lipophilic drugs. As the experimental conditions should mimic the physiological in vivo conditions, the use of FaSSIF as medium during Caco-2 experiments may improve the biorelevance of the model.

  4. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers.

    PubMed

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2004-11-17

    Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods.

  5. Milk peptides increase iron solubility in water but do not affect DMT-1 expression in Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. Our objectives were to investigate whether these fractions a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells b) enhance iron dialyzability when added in meals. Peptid...

  6. Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal alpha-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-con...

  7. Purified glycosaminoglycans from cooked haddock may enhance Fe uptake via endocytosis in a Caco-2 cell culture model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to understand the enhancing effect of glycosaminoglycans (GAGs), such as chondroitin/dermatan structures, on Fe uptake to Caco-2 cells. High sulfated GAGs were selectively purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to evaluate Fe uptake (ce...

  8. Approaching the cellular processes involved in the positive effect of glycosaminoglycans on Fe uptake to Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study constitutes an approach to understand the enhancing effect of glycosaminoglycans (GAGs) on Fe uptake to Caco-2 cells. The high-sulfated GAGs fraction was isolated and purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to monitor Fe uptake (cell ferritin...

  9. Increased serum leptin level in overweight patients with colon carcinoma: A cross-sectional and prospective study.

    PubMed

    Wang, Di; Gao, Lichen; Gong, Kuiyu; Chai, Qin; Wang, Guihua

    2017-01-01

    Leptin is associated with carcinogenesis and progression of various cancers. However, the changes of the serum leptin level in Chinese overweight patients with colon carcinoma and its association with response to treatment in these patients have rarely been investigated. A total of 63 Chinese overweight patients with colon cancer and 40 body mass index-matched control subjects were recruited in the present study. The serum leptin levels of colon cancer patients prior to and 21 days after colectomy, as well as those of healthy controls, were measured and compared. In addition, the focal expression of phosphorylated Akt, mammalian target of rapamycin and 70S6 Kinase (p-Akt, p-mTOR and P-70S6 Kinase) and leptin were determined in the resected specimens and the correlation between serum leptin levels and the focally expressed markers were investigated. The serum leptin levels of colon cancer patients were significantly higher compared with those of the controls (22.67±12.56 vs. 12.68±7.8 ng/ml, respectively; P<0.05). Moreover, the leptin levels decreased after the operation when compared to the preoperative levels (18.67±8.54 vs. 22.67±12.56 ng/ml, respectively; P<0.05). In addition, there was a significant correlation between the serum leptin levels and the focal expression of p-Akt, p-mTOR, P-70S6 Kinase and leptin (P<0.05). In conclusion, the leptin levels were elevated in Chinese overweight patients with colon cance these levels decreased following colectomy, indicating that leptin may be associated with colon carcinogenesis. Thus, serum leptin level may be used for early diagnosis and for monitoring the response to treatment of colon carcinoma in overweight Chinese patients.

  10. Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma.

    PubMed

    Wang, Zijing; Zhu, Linlin; Guo, Tianjiao; Wang, Yiping; Yang, Jinlin

    2015-07-01

    This study aimed to evaluate the expression of H2B monoubiquitination enzyme (uH2B) and ubiquitin-specific protease enzyme 22 (USP22) in colon carcinoma and establish a correlation between the expression of these enzymes and clinicopathological parameters. The modification levels of uH2B and USP22 in 20 noncancerous and 129 cancerous colon samples were studied by immunohistochemistry. We used a dual-rated semiquantitative method to classify the expression according to 3 levels and analyzed these results. uH2B was abundant in the normal colon epithelium, but its expression was decreased in colon cancers (P < .001); the uH2B modification level correlated with tumor differentiation (P < .001), lymph node metastasis (P = .017), distant metastasis (P = .036), and tumor stage (P = .039). The USP22 expression in colon carcinoma was higher than that in normal tissues (P = .007) and negatively correlated with the degree of differentiation (P = .006), invasion (P = .025), lymph node metastasis (P = .026), and tumor stage (P = .044). uH2B and USP22 expression negatively correlated (r = -0.401, P < .001). Patients with uH2B-negative and USP22-positive staining were found to have lower survival rates (30.737 ± 2.866 versus 51.667 ± 2.286 months, P < .001). Positive uH2B and negative USP22 expression remained a statistically significant prognostic indicator in a multivariate Cox regression analysis (hazard ratio, 2.557; 95% confidence interval, 1.043-6.269; P = .04). We conclude that uH2B displays differential staining patterns according to progressive stages of colon cancer, indicating that uH2B may play an important inhibitory role in carcinogenesis. Increased USP22 expression in colon cancer correlated with reduced uH2B expression, and this expression pattern may contribute to tumor progression.

  11. Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002.

    PubMed

    Cai, Xinyi; Yu, Kun; Zhang, Lijuan; Li, Yunfeng; Li, Qiang; Yang, Zhibin; Shen, Tao; Duan, Lincan; Xiong, Wei; Wang, Weiya

    2015-01-01

    The Hedgehog (Hh) signaling pathway not only plays important roles in embryogenesis and adult tissue homeostasis, but also in tumorigenesis. Aberrant Hh pathway activation has been reported in a variety of malignant tumors including colon carcinoma. Here, we sought to investigate the regulation of the Hh pathway transcription factor Gli1 by arsenic trioxide and phosphoinositide 3-kinase (PI3K) inhibitor LY294002 in colon carcinoma cells. We transfected cells with siGli1 and observed a significant reduction of Gli1 expression in HCT116 and HT29 cells, which was confirmed by quantitative real-time polymerase chain reaction and Western blots. Knocking down endogenous Gli1 reduced colon carcinoma cell viability through inducing cell apoptosis. Similarly, knocking down Gli2 using short interfering RNA impaired colon carcinoma cell growth in vitro. To elucidate the regulation of Gli1 expression, we found that both Gli inhibitor arsenic trioxide and PI3K inhibitor LY294002 significantly reduced Gli1 protein expression and colon carcinoma cell proliferation. Arsenic trioxide treatment also reduced Gli1 downstream target gene expression, such as Bcl2 and CCND1. More importantly, the inhibition of Hedgehog-Gli1 by arsenic trioxide showed synergistic anticancer effect with the PI3K inhibitor LY294002 in colon carcinoma cells. Our findings suggest that the Hh pathway transcription factor Gli1 is involved in the regulation of colon carcinoma cell viability. Inhibition of Hedgehog-Gli1 expression by arsenic trioxide and PI3K inhibitor synergistically reduces colon cancer cell proliferation, indicating that they could be used as an effective anti-colon cancer combination therapy.

  12. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Cao, Feilin; Han, Na; Xu, Zhenzhen; Li, Guangliang; He, Kuifeng; Teng, Lisong

    2012-08-01

    Heterogeneity in primary tumors and related metastases may result in failure of antitumor therapies, particularly in targeted therapies for the treatment of cancer. In this study, patient-derived tumor tissue (PDTT) xenograft models of colon carcinoma with lymphatic and hepatic metastases were used to evaluate the response to EGFR- and VEGF-targeted therapies. Our results showed that primary colon carcinoma and its corresponding lymphatic and hepatic metastases have a different response rate to anti-EGFR (cetuximab) and anti-VEGF (bevacizumab) therapies. However, the underlying mechanism of these types of phenomenon is still unclear. To investigate whether such phenomena may result from the heterogeneity in primary colon carcinoma and related metastases, we compared the expression levels of cell signaling pathway proteins using immunohistochemical staining and western blotting, and the gene status of KRAS using pyrosequencing in the same primary colon carcinoma and its corresponding lymphatic and hepatic metastatic tissues which were used for establishing the PDTT xenograft models. Our results showed that the expression levels of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR were different in primary colon carcinoma and matched lymphatic and hepatic metastases although the KRAS gene status in all cases was wild-type. Our results indicate that the heterogeneity in primary colon carcinoma and its corresponding lymphatic and hepatic metastases may result in differences in the response to dual-inhibition of EGFR and VEGF.

  13. Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells.

    PubMed

    Lin, Kai-Yuan; Uen, Yih-Huei

    2010-05-01

    The present study aimed to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two human colon carcinoma cell lines, DLD-1 and WiDr. Colon carcinoma cells were treated with various concentrations of aloe-emodin for different durations. Cell viability was measured by sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Nuclear shrinkage was visualized by Hoechst 33258 staining. Western blotting was used to indicate the release of apoptosis-inducing factor and cytochrome c from mitochondria and the phosphorylation of Bid. Caspase-3 and casein kinase II activities were measured by the respective assays. Cell viability analyses showed that aloe-emodin induced cell death in a dose- and time-dependent manner. Notably, the WiDr cells were more sensitive to aloe-emodin than the DLD-1 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by activation of caspase-3 leading to DNA fragmentation, nuclear shrinkage and apoptosis. In addition, exposure of colon carcinoma cells to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These findings showed that the inhibition of casein kinase II activity, the release of apoptosis-inducing factor and cytochrome c, and the caspase-3 activation are involved in aloe-emodin-mediated apoptosis in colon carcinoma cells.

  14. Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells

    PubMed Central

    LIN, KAI-YUAN; UEN, YIH-HUEI

    2010-01-01

    The present study aimed to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two human colon carcinoma cell lines, DLD-1 and WiDr. Colon carcinoma cells were treated with various concentrations of aloe-emodin for different durations. Cell viability was measured by sodium 3′-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Nuclear shrinkage was visualized by Hoechst 33258 staining. Western blotting was used to indicate the release of apoptosis-inducing factor and cytochrome c from mitochondria and the phosphorylation of Bid. Caspase-3 and casein kinase II activities were measured by the respective assays. Cell viability analyses showed that aloe-emodin induced cell death in a dose- and time-dependent manner. Notably, the WiDr cells were more sensitive to aloe-emodin than the DLD-1 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by activation of caspase-3 leading to DNA fragmentation, nuclear shrinkage and apoptosis. In addition, exposure of colon carcinoma cells to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These findings showed that the inhibition of casein kinase II activity, the release of apoptosis-inducing factor and cytochrome c, and the caspase-3 activation are involved in aloe-emodin-mediated apoptosis in colon carcinoma cells. PMID:22966340

  15. Gastrin-stimulated Gα13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells.

    PubMed

    Masià-Balagué, Miriam; Izquierdo, Ismael; Garrido, Georgina; Cordomí, Arnau; Pérez-Benito, Laura; Miller, Nichol L G; Schlaepfer, David D; Gigoux, Véronique; Aragay, Anna M

    2015-06-12

    The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279-1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.

  16. Gastrin-stimulated Gα13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells*

    PubMed Central

    Masià-Balagué, Miriam; Izquierdo, Ismael; Garrido, Georgina; Cordomí, Arnau; Pérez-Benito, Laura; Miller, Nichol L. G.; Schlaepfer, David D.; Gigoux, Véronique; Aragay, Anna M.

    2015-01-01

    The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279–1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells. PMID:25922072

  17. Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma.

    PubMed

    Shen, Zhiyong; Deng, Haijun; Fang, Yuan; Zhu, Xianjun; Ye, Geng-Tai; Yan, Li; Liu, Hao; Li, Guoxin

    2015-08-21

    Elevated expression of S100P has been detected in several tumor types and suggested to be responsible for tumor metastasis and invasion, but the upstream regulatory mechanisms promoting S100P overexpression are largely unknown. Here, we report that SOX9 was predicted and verified as a transcription factor of S100P. SOX9 and S100P were both overexpressed in colon cancer. SOX9 bound to and activated the S100P promoter. Knockdown of SOX9 expression down-regulated S100P expression, resulting in reduced invasiveness and metastasis of colon cancer cells by inhibiting the activation of receptor for advanced glycation end products (RAGE)/ERK signaling and epithelial-mesenchymal transition (EMT). Further, decreased expression of SOX9 dramatically inhibited the tumor growth and peritoneal metastasis in nude mice. More importantly, S100P was found to be critical for SOX9-mediated metastasis and invasion in colon cancer. Knockdown of S100P in SOX9-overexpressing colon cancer cells dramatically suppressed metastasis and invasion both in vitro and in mice. We also detected SOX9 and S100P expression in a tissue microarray with 90 colon cancer cases to provide their clinical relevance. There was a strong correlation between SOX9 and S100P expression in colon carcinomas. In conclusion, our results suggest that SOX9 promotes tumor metastasis and invasion through regulation of S100P expression.

  18. Adjuvant intraoperative photodynamic therapy (AIOPDT) after photosensitization with mTHPC in a CC531 colon carcinoma model in mice

    NASA Astrophysics Data System (ADS)

    Winkler, Steffi; Prosst, Ruediger L.; Stern, Josef; Rheinwald, Markus; Haase, Thomas; Herfarth, Christian; Gahlen, Johannes

    2001-01-01

    The effectiveness of PDT as an adjuvant alternative therapy method for diverse malignant tumors has been investigated in numerous studies. The therapeutic benefit and extent of side effects is mainly determined by the applied photoactive substance. The second generation photosensitizer (PS) mTHPC is capable of causing selective tumor cell death in colon carcinoma when combined with laser irradiation of a PS specific wavelength. Our study revealed PDT with mTHPC as an efficient adjuvant intraoperative modality after R1/R2 resection of a subcutaneously implanted colon tumor. There was a significant increase of postoperative recurrence-free survival time using PDT compared to a control group in a colon cancer model in nude mice. The accumulation of the PS determined by point spectrometry showed a high tumor-selectivity in the tumor, tumor bed, and overlying skin compared to muscle tissue as reference parameter.

  19. Induction of glutathione-S-transferase-pi by short-chain fatty acids in the intestinal cell line Caco-2.

    PubMed

    Stein, J; Schröder, O; Bonk, M; Oremek, G; Lorenz, M; Caspary, W F

    1996-01-01

    Glutathione S-transferases (GSTs) are a multigene family of detoxification and metabolizing enzymes that have been linked with the susceptibility of tissues to environmental carcinogens. In addition to their role as the main energy source in the colonic mucosa, short-chain fatty acids (SCFAs) have been found to act as potent antiproliferative and differentiating agents in various cancer cell lines. The objective of this study was to evaluate the effects of SCFAs on the induction of GSTpi in the intestine as a possible new anticarcinogenic mechanism of SCFAs. Studies were performed in Caco-2 cells, a cell line resembling functionally normal enterocytes. Cells, cultured in DMEM supplemented with 10% fetal calf serum, were studied from day 0 dpc (days post confluence) until 21 dpc and culture. SCFAs (acetate, propionate, butyrate) were added to give a final concentration of 5 mmol L(-1). At 0, 3, 6, 9, 15, and 21 dpc, protein, lactate dehydrogenase (LDH), alkaline phosphatase (AP) and GSTpi were measured. Butyrate supplementation significantly (P < or = 0.01) increased GSTpi levels compared with controls in a concentration-dependent manner. The effect was detectable within 3 dpc with a maximum at 15 dpc. In contrast to butyrate, the other SCFAs tested had no (acetate) or little effect (propionate). In conclusion, the data suggest that the anticancer effect of butyrate in part may be based on the induction of GSTpi activity, resulting in an enhanced detoxification capacity of the gut.

  20. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells.

    PubMed

    Condello, Maria; De Berardis, Barbara; Ammendolia, Maria Grazia; Barone, Flavia; Condello, Giancarlo; Degan, Paolo; Meschini, Stefania

    2016-09-01

    Zinc Oxide (ZnO) nanoparticles are widely used both in the industry and in biomedical applications for their chemical and physical nanomaterial properties. It is therefore essential to go in depth into the cytotoxicity mechanisms and interactions between nanomaterials and cells. The aim of this work was to evaluate the dissolution of ZnO nanoparticles and their uptake, from a few minutes after treatments up to 24h. ZnO nanoparticles routes of entry into the human colon carcinoma cells (LoVo) were followed at different times by a thorough ultrastructural investigation and semiquantitative analysis. The intracellular release of Zn(2+) ions by Zinquin fluorescent dye, and phosphorylated histone H2AX (γ-H2AX) expression were evaluated. The genotoxic potential of ZnO nanoparticles was also investigated by determining the levels of 8-hydroxyl-2'-deoxyguanosine (8-oxodG). The experimental data show that ZnO nanoparticles entered LoVo cells by either passive diffusion or endocytosis or both, depending on the agglomeration state of the nanomaterial. ZnO nanoparticles coming into contact with acid pH of lysosomes altered organelles structure, resulting in the release of Zn(2+) ions. The simultaneous presence of ZnO nanoparticles and Zn(2+) ions in the LoVo cells determined the formation of reactive oxygen species at the mitochondrial and nuclear level, inducing severe DNA damage.

  1. ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis.

    PubMed

    Das, Sudipta; Czarnek, Maria; Bzowska, Monika; Mężyk-Kopeć, Renata; Stalińska, Krystyna; Wyroba, Barbara; Sroka, Jolanta; Jucha, Jarosław; Deneka, Dawid; Stokłosa, Paulina; Ogonek, Justyna; Swartz, Melody A; Madeja, Zbigniew; Bereta, Joanna

    2012-01-01

    ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.

  2. Imaging of human colon carcinoma thin sections by FT-IR microspectrometry

    NASA Astrophysics Data System (ADS)

    Lasch, Peter; Waesche, Wolfgang; McCarthy, W. J.; Mueller, Gerhard J.; Naumann, Dieter

    1998-04-01

    FTIR microspectroscopic maps of unstained colon carcinoma thin sections were obtained on a conventional IR microscope equipped with an automatic x, y stage, or alternatively by using a MCT focal plane array detector system. IR data were analyzed by different image re-assembling techniques. One main goal of the present study was to test the influence of different spectra data compression approaches on the quality of the FTIR images. The images, re-assembled by Principal component analysis (PCA) on the basis of spectral information available from the fingerprint region exhibited an excellent image contrast confirming standard histo- pathological examinations. The second approach included a systematic search for spectral windows which were supposed to contain the relevant information, necessary for spectra classification and identification. Data from these spectral windows were analyzed by an ANN and output data were utilized for image construction. In contrast to the PCA approach, the image contrast was lower although the main morphological structures were exactly classified. From the spectroscopic point of view, the spectral feature selection method delivered useful information which could be discussed in terms of structural alternations upon carcinogenesis.

  3. Effect of 5-fluorouracil combination therapy on RNA processing in human colonic carcinoma cells.

    PubMed Central

    Greenhalgh, D. A.; Parish, J. H.

    1990-01-01

    We have evaluated the RNA-directed cytotoxicity of 5-fluorouracil (5-FU) in human colonic carcinoma cells. The mode of action of 5-FU and its effects on human pre-rRNA processing were then examined. From these data, possible reasons why the disruption of pre-rRNA maturation could induce cytotoxic effects are considered. The results imply that inhibition of thymidylate synthase is not the sole primary cytotoxic lesion in this cell line. First, exogenous thymidine (dTHd) enchanced cytotoxicity. Second, addition of dThd to the cells was found to enhance incorporation of 5-FU into total cellular RNA. Third, 5-FU disrupted rRNA processing by a different mechanism from actinomycin D and methotrexate (MTX), suggesting that the inhibition was not just a consequence of cell death. Finally, the addition of dThd was found to enhance the disruption of rRNA processing consistent with an increase in concentration of 5-FU. These data are discussed in the light of literature reports and their potential for optimising 5-FU protocols. Images Figure 3 Figure 4 Figure 5 PMID:2328208

  4. Physical Activity Counteracts Tumor Cell Growth in Colon Carcinoma C26-Injected Muscles: An Interim Report

    PubMed Central

    Hiroux, Charlotte; Vandoorne, Tijs; Koppo, Katrien; De Smet, Stefan; Hespel, Peter; Berardi, Emanuele

    2016-01-01

    Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis. PMID:27478560

  5. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM.

  6. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines.

    PubMed

    Van Dross, Rukiyah; Xue, Yue; Knudson, Alexandra; Pelling, Jill C

    2003-11-01

    Apigenin is a nonmutagenic chemopreventive agent found in fruits and green vegetables. In this study, we used two different epithelial cell lines (308 mouse keratinocytes and HCT116 colon carcinoma cells) to determine the effect of apigenin on the mitogen-activated protein kinase (MAPK) cascade. Apigenin induced a dose-dependent phosphorylation of both extracellular signal-regulated protein kinase (ERK) and p38 kinase but had little effect on the phosphorylation of c-jun amino terminal kinase (JNK). We used immunoprecipitation-coupled kinase assays to show that apigenin increased the kinase activity of ERK and p38 but not JNK. Consistent with these results, we found that apigenin induced a 7.4-fold induction in the phosphorylation of Elk, the downstream phosphorylation target of ERK kinase. Similarly, apigenin induced a 3.2-fold induction in the phosphorylation of activating transcription factor-2, the downstream phosphorylation target of p38 kinase. Little change was observed in the phosphorylation of c-jun, the phosphorylation target of JNK. These data suggest that part of the chemopreventive activity of apigenin may be mediated by its ability to modulate the MAPK cascade.

  7. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells.

    PubMed

    Wang, Bo; Zhao, Xin-Huai

    2017-02-01

    Apigenin is one of the plant-originated flavones with anticancer activities. In this study, apigenin was assessed for its in vitro effects on a human colon carcinoma line (HCT‑116 cells) in terms of anti-proliferation, cell cycle progression arrest, apoptosis and intracellular reactive oxygen species (ROS) generation, and then outlined its possible apoptotic mechanism for the cells. Apigenin exerted cytotoxic effect on the cells via inhibiting cell growth in a dose-time-dependent manner and causing morphological changes, arrested cell cycle progression at G0/G1 phase, and decreased mitochondrial membrane potential of the treated cells. Apigenin increased respective ROS generation and Ca2+ release and thereby, caused ER stress in the treated cells. Apigenin shows apoptosis induction towards the cells, resulting in enhanced portion of apoptotic cells. A mechanism involved ROS generation and endoplasmic reticulum stress was outlined for the apigenin-mediated apoptosis via both intrinsic mitochondrial and extrinsic pathways, based on the assayed mRNA and protein expression levels in the cells. With this mechanism, apigenin resulted in the HCT-116 cells with enhanced intracellular ROS generation and Ca2+ release together with damaged mitochondrial membrane, and upregulated protein expression of CHOP, DR5, cleaved BID, Bax, cytochrome c, cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, which triggered apoptosis of the cells.

  8. ADAM17 Silencing in Mouse Colon Carcinoma Cells: The Effect on Tumoricidal Cytokines and Angiogenesis

    PubMed Central

    Das, Sudipta; Czarnek, Maria; Bzowska, Monika; Mężyk-Kopeć, Renata; Stalińska, Krystyna; Wyroba, Barbara; Sroka, Jolanta; Jucha, Jarosław; Deneka, Dawid; Stokłosa, Paulina; Ogonek, Justyna; Swartz, Melody A.; Madeja, Zbigniew; Bereta, Joanna

    2012-01-01

    ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response. PMID:23251384

  9. Induction of apoptosis of 2,4',6-trihydroxybenzophenone in HT-29 colon carcinoma cell line.

    PubMed

    Lay, Ma Ma; Karsani, Saiful Anuar; Malek, Sri Nurestri Abd

    2014-01-01

    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.

  10. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells.

    PubMed

    Limpeanchob, Nanteetip; Trisat, Kanittaporn; Duangjai, Acharaporn; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2010-12-08

    A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.

  11. Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2.

    PubMed

    Fukada, Atsuko; Saito, Hideyuki; Inui, Ken-Ichi

    2002-08-01

    Ulcerative colitis is a disease more commonly seen in nonsmokers. Because nicotine was postulated to be a beneficial component of tobacco smoke for ulcerative colitis, various formulations of nicotine have been developed to improve the local bioavailability within the gastrointestinal tissue. In the present study, to characterize the disposition of nicotine in the intestines, we investigated intestinal nicotine transport using Caco-2 cells. Nicotine was predominantly transported across Caco-2 cell monolayers in a unidirectional mode, corresponding to intestinal secretion, by pH-dependent specific transport systems. The specific uptake systems appear to be distinct from organic cation transporters and the transport system for tertiary amines, in terms of its substrate specificity and the pattern of the interaction. These transport systems could play a role in the intestinal accumulation of nicotine from plasma and could also be responsible for the topical delivery of nicotine for ulcerative colitis therapy. These findings could provide useful information for the design of effective nicotine delivery.

  12. Combined impact of pH and organic acids on iron uptake by Caco-2 cells.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2003-12-17

    Previous studies have shown that organic acids have an impact on both Fe(II) and Fe(III) uptake in Caco-2 cell. However, to what extent this effect is correlated with the anion of organic acids per se, or with the resulting decrease in pH, has not yet been clarified. Therefore, we studied the effect of five organic acids (tartaric, succinic, citric, oxalic, and propionic acid) on the absorption of Fe(II) and Fe(III) in Caco-2 cells and compared this with sample solutions without organic acids but set to equivalent pH by HCl. The results showed that the mechanisms behind the enhancing effect of organic acids differed for the two forms of iron. For ferric iron the organic acids promoted uptake both by chelation and by lowering the pH, whereas for ferrous iron the promoting effect was caused only by the lowered pH.

  13. miRNAs modified by dietary lipids in Caco-2 cells. A microarray screening

    PubMed Central

    Daimiel, Lidia; Ordovás, Jose Mª.; Dávalos, Alberto

    2015-01-01

    We performed a screening of miRNAs regulated by dietary lipids in a cellular model of enterocytes, Caco-2 cells. Our aim was to describe new lipid-modified miRNAs with an implication in lipid homeostasis and cardiovascular disease [1], [2]. For that purpose, we treated differentiated Caco-2 cells with micelles containing the assayed lipids (cholesterol, conjugated linoleic acid and docosahexaenoic acid) and the screening of miRNAs was carried out by microarray using the μParaflo®Microfluidic Biochip Technology of LC Sciences (Huston, TX, USA). Experimental design, microarray description and raw data have been made available in the GEO database with the reference number of GSE59153. Here we described in detail the experimental design and methods used to obtain the relative expression data. PMID:26484250

  14. Transepithelial transport efficiency of bovine collagen hydrolysates in a human Caco-2 cell line model.

    PubMed

    Feng, Mengmeng; Betti, Mirko

    2017-06-01

    Collagen was extracted from raw bovine hide and hydrolyzed by one of three enzymes - Alcalase, Flavourzyme, or trypsin - or by using a combination of two or three of these enzymes. The Alcalase-containing enzymatic hydrolysis treatments generated a greater proportion of hydrolysates with molecular weight (MW) <2kDa (79.8-82.7%). Flavourzyme-containing hydrolysis treatments exhibited the greatest proportion of free amino acids (686-740nmol/mg). The hydrolysates were then subjected to a simulated gastrointestinal (GI) digestion, and transport studies were conducted using a Caco-2 cell model. Due to the lower MW profile, the hydrolyzed collagen showed greater resistance to GI digestion and greater transport efficiency than the unhydrolyzed collagen control. Hydrolysates from a dual enzyme mixture - the Alcalase/Flavourzyme combination - generated the greatest transport efficiency across Caco-2 cell monolayers (21.4%), two-fold more than that of the collagen control.

  15. Isoflavones in food supplements: chemical profile, label accordance and permeability study in Caco-2 cells.

    PubMed

    Almeida, I M C; Rodrigues, F; Sarmento, B; Alves, R C; Oliveira, M B P P

    2015-03-01

    Consumers nowadays are playing an active role in their health-care. A special case is the increasing number of women, who are reluctant to use exogenous hormone therapy for the treatment of menopausal symptoms and are looking for complementary therapies. However, food supplements are not clearly regulated in Europe. The EFSA has only recently begun to address the issues of botanical safety and purity regulation, leading to a variability of content, standardization, dosage, and purity of available products. In this study, isoflavones (puerarin, daidzin, genistin, daidzein, glycitein, genistein, formononetin, prunetin, and biochanin A) from food supplements (n = 15) for menopausal symptoms relief are evaluated and compared with the labelled information. Only four supplements complied with the recommendations made by the EC on the tolerable thresholds. The intestinal bioavailability of these compounds was investigated using Caco-2 cells. The apparent permeability coefficients of the selected isoflavonoids across the Caco-2 cells were affected by the isoflavone concentration and product matrix.

  16. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    PubMed

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  17. Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Di Fenza, Armida; Alagona, Giuliano; Ghio, Caterina; Leonardi, Riccardo; Giolitti, Alessandro; Madami, Andrea

    2007-04-01

    The ability to cross the intestinal cell membrane is a fundamental prerequisite of a drug compound. However, the experimental measurement of such an important property is a costly and highly time consuming step of the drug development process because it is necessary to synthesize the compound first. Therefore, in silico modelling of intestinal absorption, which can be carried out at very early stages of drug design, is an appealing alternative procedure which is based mainly on multivariate statistical analysis such as partial least squares (PLS) and neural networks (NN). Our implementation of neural network models for the prediction of intestinal absorption is based on the correlation of Caco-2 cell apparent permeability ( P app) values, as a measure of intestinal absorption, to the structures of two different data sets of drug candidates. Several molecular descriptors of the compounds were calculated and the optimal subsets were selected using a genetic algorithm; therefore, the method was indicated as Genetic Algorithm-Neural Network (GA-NN). A methodology combining a genetic algorithm search with neural network analysis applied to the modelling of Caco-2 P app has never been presented before, although the two procedures have been already employed separately. Moreover, we provide new Caco-2 cell permeability measurements for more than two hundred compounds. Interestingly, the selected descriptors show to possess physico-chemical connotations which are in excellent accordance with the well known relevant molecular properties involved in the cellular membrane permeation phenomenon: hydrophilicity, hydrogen bonding propensity, hydrophobicity and molecular size. The predictive ability of the models, although rather good for a preliminary study, is somewhat affected by the poor precision of the experimental Caco-2 measurements. Finally, the generalization ability of one model was checked on an external test set not derived from the data sets used to build the models

  18. Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells.

    PubMed

    Lee, Hee Ju; Cha, Kwang Hyun; Kim, Chul Young; Nho, Chu Won; Pan, Cheol-Ho

    2014-06-11

    Hydroxycinnamic acids have antioxidant properties and potentially beneficial effects on human health. This study investigated the digestive stability, bioaccessibility, and permeability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells. The major compounds of C. denticulatum were determined to be four hydroxycinnamic acids [caftaric acid, chlorogenic acid, chicoric acid, and 3,5-di-O-caffeoylquinic acid (3,5-DCQA)] and one flavonoid (luteolin-7-O-glucuronide) by high-performance liquid chromatography and electrospray ionization mass spectrometry. Hydroxycinnamic acids from C. denticulatum were rapidly released in the stomach and duodenum phase, maximizing the possibility of absorption in the intestinal Caco-2 cells. The digestive stability and bioaccessibility of hydroxycinnamic acids from C. denticulatum were markedly low after simulated digestion and remained minimal in the soluble fraction of the ileum phase. Unlike the four hydroxycinnamic acids, luteolin-7-O-glucuronide was stable in terms of digestive stability and bioaccessibility during simulated digestion. The cell permeabilities (P(app A to B)/P(app B to A)) of caftaric acid (0.054) and chlorogenic acid (0.055) were higher than those of chicoric acid (0.011) and 3,5-DCQA (0.006) in general. That of luteolin-7-O-glucuronide was not detectable, showing its low absorption in Caco-2 cells. These results indicate that the rapid release of hydroxycinnamic acids in the stomach and duodenum phase may increase the potential for absorption in Caco-2 cells, and that luteolin-7-O-glucuronide, which was stable in terms of digestive stability and bioaccessibility, has relatively low absorption compared with hydroxycinnamic acids.

  19. Apomorphine and its esters: Differences in Caco-2 cell permeability and chylomicron affinity.

    PubMed

    Borkar, Nrupa; Chen, Zhizhong; Saaby, Lasse; Müllertz, Anette; Håkansson, Anders E; Schönbeck, Christian; Yang, Mingshi; Holm, René; Mu, Huiling

    2016-07-25

    Oral delivery of apomorphine via prodrug principle may be a potential treatment for Parkinson's disease. The purpose of this study was to investigate the transport and stability of apomorphine and its esters across Caco-2 cell monolayer and their affinity towards chylomicrons. Apomorphine, monolauroyl apomorphine (MLA) and dilauroyl apomorphine (DLA) were subjected to apical to basolateral (A-B) and basolateral to apical (B-A) transport across Caco-2 cell monolayer. The stability of these compounds was also assessed by incubation at intestinal pH and physiological pH with and without Caco-2 cells. Molecular dynamics (MD) simulations were performed to understand the stability of the esters on a molecular level. The affinity of the compounds towards plasma derived chylomicrons was assessed. The A-B transport of intact DLA was about 150 times lower than the transport of apomorphine. In contrast, MLA was highly unstable in the aqueous media leading to apomorphine appearance basolaterally. MD simulations possibly explained the differences in hydrolysis susceptibilities of DLA and MLA. The affinity of apomorphine diesters towards plasma derived chylomicrons provided an understanding of their potential lymphatic transport. The intact DLA transport is not favorable; therefore, the conversion of DLA to MLA is an important step for intestinal apomorphine absorption.

  20. Effect of cationized gelatins on the paracellular transport of drugs through caco-2 cell monolayers.

    PubMed

    Seki, Toshinobu; Kanbayashi, Hiroshi; Nagao, Tomonobu; Chono, Sumio; Tabata, Yasuhiko; Morimoto, Kazuhiro

    2006-06-01

    Cationized gelatins, candidate absorption enhancers, were prepared by addition of ethylenediamine or spermine to gelatin and the effects of the resulting ethylenediaminated gelatin (EG) and sperminated gelatin (SG) on the paracellular transport of 5(6)-carboxyfluorescein (CF), FITC-dextran-4 (FD4), and insulin through caco-2 cell monolayers were examined. The Renkin function was used for characterization of the paracellular pathway and changes in the pore radius (R) and pore occupancy/length ratio (epsilon/L) calculated from the apparent permeability coefficients (P(app)) of CF and FD4 are discussed. Ethylenediaminetetraacetic acid (EDTA) increased the R of the caco-2 cell monolayer and the P(app) of all compounds examined was markedly increased by the addition of EDTA. On the other hand, EG and SG did not increase R and their enhancing effects were not as strong as those of EDTA. The increase in epsilon/L could be the enhancing mechanism for the cationized gelatins. The number of pathways for water-soluble drugs, such as CF and FD4, in the caco-2 monolayers could be increased by the addition of the cationized gelatins. The ratios of the permeability coefficients of insulin (observed/calculated based on the Renkin function) suggest that insulin undergoes enzymatic degradation during transport which is not inhibited by enhancers.

  1. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    PubMed

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  2. Transport in Caco-2 cell monolayers of antidiabetic cucurbitane triterpenoids from Momordica charantia fruits.

    PubMed

    Wu, Shi-Biao; Yue, Grace G L; To, Ming-Ho; Keller, Amy C; Lau, Clara B S; Kennelly, Edward J

    2014-07-01

    Bitter melon, the fruit of Momordica charantia L. (Cucurbitaceae), is a widely-used treatment for diabetes in traditional medicine systems throughout the world. Various compounds have been shown to be responsible for this reputed activity, and, in particular, cucurbitane triterpenoids are thought to play a significant role. The objective of this study was to investigate the gastrointestinal transport of a triterpenoid-enriched n-butanol extract of M. charantia using a two-compartment transwell human intestinal epithelial cell Caco-2 monolayer system, simulating the intestinal barrier. Eleven triterpenoids in this extract were transported from the apical to basolateral direction across Caco-2 cell monolayers, and were identified or tentatively identified by HPLC-TOF-MS. Cucurbitane triterpenoids permeated to the basolateral side with apparent permeability coefficient (P app) values for 3-β-7-β,25-trihydroxycucurbita-5,23(E)-dien-19-al and momordicines I and II at 9.02 × 10(-6), 8.12 × 10(-6), and 1.68 × 10(-6)cm/s, respectively. Also, small amounts of these triterpenoids were absorbed inside the Caco-2 cells. This is the first report of the transport of the reputed antidiabetic cucurbitane triterpenoids in human intestinal epithelial cell monolayers. Our findings, therefore, further support the hypothesis that cucurbitane triterpenoids from bitter melon may explain, at least in part, the antidiabetic activity of this plant in vivo.

  3. Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins.

    PubMed

    Cundiff, Judy K; McConnell, Elizabeth J; Lohe, Kimberly J; Maria, Sarah D; McMahon, Robert J; Zhang, Qiang

    2016-01-04

    Mass spectrometry (MS)-based proteomic approaches have largely facilitated our systemic understanding of cellular processes and biological functions. Cutoffs in protein expression fold changes (FCs) are often arbitrarily determined in MS-based quantification with no demonstrable determination of small magnitude changes in protein expression. Therefore, many biological insights may remain veiled due to high FC cutoffs. Herein, we employ the intestinal epithelial cell (IEC) line Caco-2 as a model system to demonstrate the dynamicity of tandem-mass-tag (TMT) labeling over a range of 5-40% changes in protein abundance, with the variance controls of ± 5% FC for around 95% of TMT ratios when sampling 9-12 biological replicates. We further applied this procedure to examine the temporal proteome of Caco-2 cells upon exposure to human whey proteins (WP). Pathway assessments predict subtle effects due to WP in moderating xenobiotic metabolism, promoting proliferation and various other cellular functions in differentiating enterocyte-like Caco-2 cells. This demonstration of a sensitive MS approach may open up new perspectives in the system-wide exploration of elusive or transient biological effects by facilitating scrutiny of narrow windows of proteome abundance changes. Furthermore, we anticipate this study will encourage more investigations of WP on infant gastrointestinal tract development.

  4. Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model

    NASA Technical Reports Server (NTRS)

    Rutzke, Corinne J.; Glahn, Raymond P.; Rutzke, Michael A.; Welch, Ross M.; Langhans, Robert W.; Albright, Louis D.; Combs, Gerald F Jr; Wheeler, Raymond M.

    2004-01-01

    Spinach (Spinacia oleracea) cv Whitney was tested for iron bioavailabilty using an in vitro human intestinal cell culture ferritin bioassay technique previously developed. Spinach was cultured in a growth chamber for 33 days, harvested, and freeze-dried. Total iron in the samples was an average of 71 micrograms/g dry weight. Spinach was digested in vitro (pepsin and 0.1 M HCl followed by pancreatin and 0.1 M NaHCO3) with and without the addition of supplemental ascorbic acid. Caco-2 cell cultures were used to determine iron bioavailability from the spinach mixtures. Production of the iron-binding protein ferritin in the Caco-2 cells showed the supplemental ascorbic acid doubled bioavailability of iron from spinach. The data show fresh spinach is a poor source of iron, and emphasize the importance of evaluation of whole meals rather than single food items. The data support the usefulness of the in vitro/Caco-2 cell ferritin bioassay model for prescreening of space flight diets for bioavailable iron.

  5. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  6. Effect of chum salmon egg lectin on tight junctions in Caco-2 cell monolayers.

    PubMed

    Nemoto, Ryo; Yamamoto, Shintaro; Ogawa, Tomohisa; Naude, Ryno; Muramoto, Koji

    2015-05-05

    The effect of a chum salmon egg lectin (CSL3) on tight junction (TJ) of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER) value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine.

  7. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  8. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    PubMed Central

    2013-01-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications. PMID:24261419

  9. Wall-like spin excitations in A-type antiferromagnetic CaCo2As2

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Ueland, B. G.; Pandey, Abhishek; Johnston, D. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.; Anand, V. K.; Niedziela, J. L.; Abernathy, D. L.

    The ACo2As2 (A = Ca, Sr, Ba) compounds are structurally and chemically similar to AFe2As2 and possess some interesting similarities and differences in their magnetism. We recently discovered that SrCo2As2 has stripe antiferromagnetic (AFM) spin correlations similar to stripe-ordered AFe2As2. On the other hand, CaCo2As2 orders in an A-type AFM structure with ferromagnetic correlation of the spins in the square-lattice Co-layer and AFM correlations between layers. Despite the A-type order, our recent inelastic neutron scattering measurements show that spin excitations in CaCo2As2 are not associated with either the A-type or stripe-type order. Instead, we observe broad excitations that extend longitudinally (along (1,1,0) in reciprocal space), but remain sharply defined in the transverse direction. These excitations seem to be best characterized as a ``wall'' of scattering and suggest that CaCo2As2 has quasi-one-dimensional spin dynamics very different than in AFe2As2 and SrCo2As2. Work at Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-07CH11358. Work at ORNL was supported by US DOE, Office of Basic Energy Sciences, Scientific User Facilities Division.

  10. Molecular and immunohistochemical profile of a basaloid (cloacogenic) carcinoma of the sigmoid colon: possible predictive value for clinical outcomes.

    PubMed

    Gurzu, Simona; Szentirmay, Zoltan; Bara, Tivadar; Bara, Tivadar; Iurcsuk, Olga; Jung, Ioan

    2014-05-01

    A 61-year-old woman was hospitalized with a 5-week history of abdominal discomfort, change in bowel habits, and weight loss. Colonoscopy showed a protruded tumor of the sigmoid colon first diagnosed as undifferentiated carcinoma. Surgical resection of the sigmoid colon was performed. Histological examination of the surgical specimen showed a proliferation of basaloid cells arranged in tumor clusters with central comedonecrosis and peripheral palisading of the nuclei. The tumor invaded the subserosa and presented liver metastasis without lymph node metastases. The tumor cells were marked by keratin AE1/AE3, keratin 5/6, epithelial membrane antigen, bcl-2, vascular endothelial growth factor, CD105, neuron-specific enolase, MLH-1, MSH-2, and p53, and were negative for keratin 7/20, chromogranin, synaptophysin, carcinoembryonic antigen, p63, c-KIT, and maspin. A high p53 nuclear index was also detected. On the basis of these characteristics and molecular examinations, the final diagnosis was microsatellite stable/human papilloma virus-negative/K-ras mutated/BRAF wild-type basaloid carcinoma (BC). Only seven BCs of the colon were reported in the literature, this being the eighth one and the first case that reports new molecular findings about microsatellite instability, K-ras/BRAF mutations, angiogenesis, and maspin expression in BC, with direct involvement in targeted therapy.

  11. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells.

    PubMed

    Sancier, Florence; Dumont, Aurélie; Sirvent, Audrey; Paquay de Plater, Ludmilla; Edmonds, Thomas; David, Géraldine; Jan, Michel; de Montrion, Catherine; Cogé, Francis; Léonce, Stéphane; Burbridge, Michael; Bruno, Alain; Boutin, Jean A; Lockhart, Brian; Roche, Serge; Cruzalegui, Francisco

    2011-02-24

    c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.

  12. Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells.

    PubMed

    Kouji, Hironobu; Inazu, Masato; Yamada, Tomoko; Tajima, Hirohisa; Aoki, Tatsuya; Matsumiya, Teruhiko

    2009-03-01

    We examined the molecular and functional characterization of choline uptake in human colon carcinomas using the cell line HT-29. Furthermore, we explored the possible correlation between choline uptake and cell proliferation. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na(+) from the uptake buffer strongly enhanced choline uptake. This increase in component of choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger 1 (NHE1) inhibitor. Collapse of the plasma-membrane H(+) electrochemical gradient by a protonophore inhibited choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium and by intracellular alkalinization. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), CTL2, CTL4 and NHE1 mRNA are mainly expressed in HT-29 cells. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in HT-29 cells and is responsible for choline uptake in these cells. We conclude that choline transporters, especially CTL1, use a directed H(+) gradient as a driving force, and its transport functions in co-operation with NHE1. Finally, cell proliferation was inhibited by HC-3 and tetrahexylammonium chloride (THA), which strongly inhibits choline uptake. Identification of this novel CTL1-mediated choline uptake system provides a potential new target for therapeutic intervention.

  13. Overexpression of gelsolin reduces the proliferation and invasion of colon carcinoma cells

    PubMed Central

    Li, Wen-Xiang; Yang, Meng-Xuan; Hong, Xin-Qiang; Dong, Tian-Geng; Yi, Tuo; Lin, Sheng-Li; Qin, Xin-Yu; Niu, Wei-Xin

    2016-01-01

    The enhanced motility of cancer cells via the remodeling of the actin cytoskeleton is crucial in the process of cancer cell invasion and metastasis. It was previously demonstrated that gelsolin (GSN) may be involved as a tumor or a metastasis suppressor, depending on the cell lines and model systems used. In the present study, the effect of GSN on the growth and invasion of human colon carcinoma (CC) cells was investigated using reverse transcription quantitative polymerase chain reaction and western blotting. It was observed that upregulation of the expression of GSN in human CC cells significantly reduced the invasiveness of these cells. The expression levels of GSN were observed to be reduced in CC cells, and the reduced expression level of GSN was often associated with a poorer metastasis-free survival rate in patients with CC (P=0.04). In addition, the overexpression of GSN inhibited the invasion of CC cells in vitro. Furthermore, GSN was observed to inhibit signal transducer and activator of transcription (STAT) 3 signaling in CC cells. Together, these results suggested that GSN is critical in regulating cytoskeletal events and inhibits the invasive and/or metastatic potential of CC cells. The results obtained in the present study may improve understanding of the functional and mechanistic links between GSN as a possible tumor suppressor and the STAT3 signaling pathway, with respect to the aggressive nature of CC. In addition, the present study demonstrated the importance of GSN in regulating the invasion and metastasis of CC cells at the molecular level, suggesting that GSN may be a potential predictor of prognosis and treatment success in CC. PMID:27573444

  14. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells

    PubMed Central

    Jia, Yin-ping; Zhu, Pan; Fang, Yao; Zhang, Zhu-jun; Mao, Xu-hu; Li, Qian; Zeng, Dong-Zhu

    2016-01-01

    Fusobacterium nucleatum (F. nucleatum) plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α) and reactive oxygen species (ROS) in Caco-2 colorectal) adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron) could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or ATG12) in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells. PMID:27828984

  15. In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells.

    PubMed

    Yin, Naiyi; Cai, Xiaolin; Du, Huili; Zhang, Zhennan; Li, Zejiao; Chen, Xiaochen; Sun, Guoxin; Cui, Yanshan

    2017-02-01

    Arsenic (As) speciation is essential in assessing health risks from As-contaminated soil. Release of soil-bound arsenic, As transformation by human gut microbiota, and the subsequent intestinal absorption of soil As metabolites were evaluated. A colon microbial community in a dynamic human gut model and the intestinal epithelial cell line Caco-2 were cultured. Arsenic speciation analysis and absorption of different As species were undertaken. In this study, soil As release (3.7-581.2 mg kg(-1)) was observed in the colon. Arsenic in the colon digests was transformed more quickly than that in the soil solid phase. X-ray absorption near-edge spectroscopy (XANES) analysis showed that 44.2-97.6% of arsenite [As(III)] generated due to arsenate [As(V)] reduction was in the soil solid phase after the colon phase. We observed a high degree of cellular absorption of soil As metabolites, exhibiting that the intestinal absorption of monomethylarsonic acid and As(III) (33.6% and 30.2% resp.) was slightly higher than that of dimethylarsinic acid and As(V) (25.1% and 21.7% resp.). Our findings demonstrate that human gut microbiota can directly release soil-bound arsenic, particularly As-bearing amorphous Fe/Al-oxides. Determining As transformation and intestinal absorption simultaneously will result in an accurate risk assessment of human health with soil As exposures.

  16. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  17. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells.

    PubMed

    Pang, Yan; Nikolic, Dejan; Zhu, Dongwei; Chadwick, Lucas R; Pauli, Guido F; Farnsworth, Norman R; van Breemen, Richard B

    2007-07-01

    Used in the brewing of beer, hops (Humulus lupulus L.) contain the prenylated chalcone xanthohumol, which is under investigation as a cancer chemoprevention agent and as a precursor for the estrogenic flavanones isoxanthohumol and 8-prenylnaringenin. The uptake, transport and accumulation of xanthohumol were studied using the human intestinal epithelial cell line Caco-2 to help understand the poor bioavailability of this chalcone. Studies were carried out using Caco-2 cell monolayers 18-21 days after seeding. The apparent K(m) and V(max) values of xanthohumol accumulation in Caco-2 cells were determined, and the protein binding of xanthohumol in sub-cellular fractions of Caco-2 cells was investigated. Approximately 70% of xanthohumol added to the apical side of Caco-2 cells accumulated inside the cells, while 93% of the intracellular xanthohumol was localized in the cytosol. Xanthohumol accumulation was temperature dependent and saturable with an apparent K(m )value of 26.5 +/- 4.66 muM and an apparent V(max) of 0.215 +/- 0.018 nmol/mg protein/min. Facilitated transport was not responsible for the uptake of xanthohumol, instead, accumulation inside the Caco-2 cells was apparently the result of specific binding to cytosolic proteins. These data suggest that specific binding of xanthohumol to cytosolic proteins in intestinal epithelial cells contributes to the poor oral bioavailability observed previously in vivo.

  18. Use of the human colorectal adenocarcinoma (Caco-2) cell line for isolating respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Chan, K H; Yan, M K; To, K K W; Lau, S K; Woo, P C; Cheng, V C C; Li, W S; Chan, J F W; Tse, H; Yuen, K Y

    2013-05-01

    The human colorectal adenocarcinoma-derived Caco-2 cell line was evaluated as a means isolating common respiratory viruses from nasopharyngeal aspirates for the diagnosis of respiratory diseases. One hundred eighty-nine direct immunofluorescence positive nasopharyngeal aspirates obtained from patients with various viral respiratory diseases were cultured in the presence of Caco-2 cells or the following conventional cell lines: LLC-MK2, MDCK, HEp-2, and A549. Caco-2 cell cultures effectively propagated the majority (84%) of the viruses present in nasopharyngeal aspirate samples compared with any positive cultures obtained using the panel cells (78%) or individual cell line MDCK (38%), HEp-2 (21%), LLC-MK2 (27%), or A549 (37%) cell lines. The differences against individual cell line were statistically significant (P = < 0.000001). Culture in Caco-2 cells resulted in the isolation of 85% (36/42) of viruses which were not cultivated in conventional cell lines. By contrast, 80% (24/30) of viruses not cultivated in Caco-2 cells were isolated using the conventional panel. The findings indicated that Caco-2 cells were sensitive to a wide range of viruses and can be used to culture a broad range of respiratory viruses.

  19. [I costi farmacologici della terapia di conversione con farmaci biologici nel carcinoma del colon-retto con metastasi epatiche].

    PubMed

    Giuliani, Jacopo; Bonetti, Andrea

    2016-08-01

    Riassunto. Lo scopo di questo studio è quello di valutare i costi dei farmaci (con particolare riferimento alle terapie con farmaci biologici) utilizzati nella terapia di conversione in una popolazione non selezionata di pazienti affetti da carcinoma del colon-retto in stadio avanzato, al fine di ottenere una resezione epatica R0. In questa rassegna sono stati selezionati i report completi e gli aggiornamenti di tutti gli studi clinici randomizzati (di fase II e fase III) che confrontassero almeno 2 regimi di terapia con farmaci biologici in prima linea in pazienti affetti da carcinoma del colon-retto in stadio avanzato di malattia. I costi dei farmaci sono stati ricavati dalla nostra Farmacia Ospedaliera e sono espressi in euro (€). Il nostro studio inizia con la valutazione di 683 abstract. 48 tria sono stati considerati adeguati per una successiva analisi. Una valutazione più approfondita ha portato all'esclusione di 37 trial, lasciando alla valutazione finale 11 studi clinici randomizzati (3 trial di fase II, per un totale di 522 pazienti, e 8 studi di fase III, per un totale di 7191 pazienti). I costi dei farmaci utilizzati nella terapia di conversione aumentano con la sostituzione del 5-fluorouracile con la capecitabina e, in misura maggiore, con l'introduzione degli agenti biologici. In questo lavoro sono presentati due punti chiave. Primo, i costi degli agenti farmacologici utilizzati nei regimi di prima linea a base di agenti biologici più comunemente utilizzati nel trattamento del carcinoma del colon-retto in stadio avanzato sono molto variabili. Secondo, i dati di efficacia dei regimi pubblicati, in termini di tassi di resezione, dipendono dalla selezione dei pazienti, dalle caratteristiche del tumore e dal tipo di schema di terapia.

  20. Coexisting tubular adenoma with a neuroendocrine carcinoma of colon allowing early surgical intervention and implicating a shared stem cell origin

    PubMed Central

    Soliman, Mahmoud L; Tiwari, Ashish; Zhao, Qing

    2017-01-01

    High-grade colonic neuroendocrine carcinomas (NECs) are uncommon but extremely aggressive. Their co-existence with tubular adenoma (TA) has rarely been reported. We present a 68-year-old man who was found on routine colonoscopy to have multiple colorectal TAs and an ulcerated lesion in the ascending colon. Microscopically, a poorly-differentiated invasive carcinoma juxtaposed with a TA was identified. Differential diagnosis included a poorly-differentiated adenocarcinoma, medullary carcinoma, high-grade NEC and lymphoma. The immunohistochemical profile showed positive staining for keratins, synaptophysin and chromogranin but negative for LCA, CDX2, CK7, CK20, TTF-1 and PSA, supporting the NEC diagnosis. Upon subsequent laparoscopic right hemicolectomy, the tumor was identified as a 3.0 cm umbilicated and ulcerated mass with an adjacent TA. Both TA and NEC showed positive staining for β-catenin indicating a shared colonic origin. The mitotic counts (77/10 high power fields) and a high proliferation rate (75% by Ki-67) corroborated a high-grade stratification. Mutational analysis indicated a wild-type BRAF and KRAS with mismatch repair proficiency. The AJCC (7th edition) pathologic stage is pT3, pN0, pMx. The patient received adjuvant chemotherapy with cisplatin/etoposides for three cycles and will be followed up for a year to detect recurrence. In conclusion, the co-existence of TA with high grade-NEC in our case allowed early identification and intervention of the otherwise asymptomatic but aggressive tumor. In addition, the finding of a high-grade NEC within a large TA in this case suggests a link between the two lesions and could represent a shared stem cell origin. PMID:28246485

  1. Effect of ART1 on the proliferation and migration of mouse colon carcinoma CT26 cells in vivo

    PubMed Central

    Xu, Jian-Xia; Xiong, Wei; Zeng, Zhen; Tang, Yi; Wang, Ya-Lan; Xiao, Ming; Li, Ming; Li, Qing Shu; Song, Guang-Lin; Kuang, Jing

    2017-01-01

    Arginine-specific mono-ADP-ribosyltransferase 1 (ART1) is an important enzyme that catalyzes arginine-specific mono-ADP-ribosylation. There is evidence that arginine-specific mono-ADP-ribosylation may affect the proliferation of smooth muscle cells via the Rho-dependent signaling pathway. Previous studies have demonstrated that ART1 may have a role in the proliferation, invasion and apoptosis of colon carcinoma in vitro. However, the effect of ART1 on the proliferation and invasion of colon carcinoma in vivo has yet to be elucidated. In the present study, mouse colon carcinoma CT26 cells were infected with a lentivirus to produce ART1 gene silencing or overexpression, and were then subcutaneously transplanted. To observe the effect of ART1 on tumor growth or liver metastasis in vivo, a spleen transplant tumor model of CT26 cells in BALB/c mice was successfully constructed. Expression levels of focal adhesion kinase (FAK), Ras homolog gene family member A (RhoA) and the downstream factors, c-myc, c-fos and cyclooxygenase-2 (COX-2) proteins, were measured in vivo. The results demonstrated that ART1 gene silencing inhibited the growth of the spleen transplanted tumor and its ability to spread to the liver via metastasis. There was also an accompanying increase in expression of FAK, RhoA, c-myc, c-fos and COX-2, whereas CT26 cells with ART1 overexpression demonstrated the opposite effect. These results suggest a potential role for ART1 in the proliferation and invasion of CT26 cells and a possible mechanism in vivo. PMID:28138708

  2. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  3. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.

    PubMed

    Wang, Lin; Sun, Bing; Ziemer, Katherine S; Barabino, Gilda A; Carrier, Rebecca L

    2010-06-15

    Polydimethylsiloxane (PDMS) silicone elastomer is extensively used in soft lithography processes to fabricate microscale or nano scale systems for microfluidic or cell culture applications. Though PDMS is biocompatible, it is not an ideal material for cell culture due to its poor cell adhesion properties. In this study, PDMS surfaces were modified to promote intestinal cell adhesion, in the interest of testing feasibility of using microfabricated PDMS systems for high throughput drug screening. Modification techniques included changing chemical composition of PDMS (i.e., varying curing to mixing agent ratio, and oxidization of PDMS surface by oxygen plasma), surface treatment of PDMS by coating with charged molecules (i.e., poly-D-lysine, L-alpha-phosphatidylcholine, and a layer bylayer coating), and deposition of extracellular matrix (ECM) proteins (i.e., laminin, fibronectin, and collagen). The influence of these modifications on PDMS properties, including elastic modulus and surface properties (wettability, chemical composition, topography, and protein adsorption) were characterized. Modification techniques were all found to change PDMS properties and influence the attachment and proliferation of Caco-2 cells over three days of culture to varying degrees. Generally, Caco-2 cells preferred to attach on collagen-coated, fibronectin-coated, and fibronectin-coated oxygen-plasma treated PDMS. The results highlight the importance of considering multiple physical and chemical factors that may be influenced by biomaterial modification and result in altered cell attachment to microfabricated systems, including surface hydrophobicity, chemical composition, stiffness, and topography. This study provides a foundation for further miniaturization, utilizing soft lithography techniques, of Caco-2 cell-based system for high-throughput screening of drug intestinal absorption during lead optimization in drug discovery. The understanding of different surface modifications on

  4. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells.

    PubMed

    Vesterkvist, Pia S M; Misiorek, Julia O; Spoof, Lisa E M; Toivola, Diana M; Meriluoto, Jussi A O

    2012-10-25

    Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

  5. Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells.

    PubMed

    Yasuda, Akiko; Natsume, Midori; Osakabe, Naomi; Kawahata, Keiko; Koga, Jinichiro

    2011-02-23

    Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.

  6. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  7. Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells

    PubMed Central

    Vesterkvist, Pia S. M.; Misiorek, Julia O.; Spoof, Lisa E. M.; Toivola, Diana M.; Meriluoto, Jussi A. O.

    2012-01-01

    Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells. PMID:23202304

  8. Induction of apoptosis in human colon carcinoma COLO 205 cells by the recombinant α subunit of C-phycocyanin.

    PubMed

    Lu, Weihong; Yu, Ping; Li, Jianrong

    2011-03-01

    The α-subunit of C-phycocyanin (CpcA) was expressed in Escherichia coli and purified. The recombinant CpcA inhibited the growth of human colon carcinoma COLO 205 cells. Typical apoptotic morphological characteristics, such as chromatin condensation and nuclear fragmentation, were observed in CpcA-treated COLO 205 cells by fluorescence microscopy and transmission electron microscopy. Moreover, the apoptotic process was associated with the Bax/Bcl-2 ratio up-regulation, mitochondrial membrane depolarization, cytochrome c release, and caspase-9 activation. These findings indicate that CpcA induced the death of COLO 205 cells through the intrinsic apoptotic pathway.

  9. Urinary epidermal growth factor (hEGF) levels in patients with carcinomas of the breast, colon and rectum.

    PubMed Central

    Sweetenham, J. W.; Davies, D. E.; Warnes, S.; Alexander, P.

    1990-01-01

    A specific two-site ELISA for human epidermal growth factor (hEGF) has been used to measure urinary hEGF/creatinine ratios in 30 normal subjects, 30 hospital in-patients with breast cancer and 30 hospital in-patients with colonic or rectal cancer. There was no significant difference between patients with breast cancer and controls. Although a statistically significant difference between patients with colorectal cancer and controls was observed, the biological significance of this observation is doubtful. No clear effect of the presence of breast or colorectal carcinoma on the urinary excretion of hEGF has been observed. PMID:2206955

  10. Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma.

    PubMed

    Pal, Ipsita; Dey, Kaushik Kumar; Chaurasia, Madhuri; Parida, Sheetal; Das, Subhayan; Rajesh, Y; Sharma, Kulbhushan; Chowdhury, Tamohan; Mandal, Mahitosh

    2016-05-01

    Amplification of PI3K-Akt pathway promotes radioresistance in various cancers including colorectal carcinoma. Local recurrence in colon cancer causes poor prognosis affecting overall survival of cancer-affected patient population. To avoid local recurrence, pre-operative or post-operative additional radiotherapy is given. However, main concern regarding radiotherapy is to increase the radiosensitivity of malignant cell without hampering the activities of normal cells. In this context, addition of two or more than two chemotherapeutic drugs as a radiosensitizer is a common practice in radiation biology. BI-69A11 earlier showed potential apoptosis-inducing effect in melanoma and colon carcinoma. Celecoxib showed anti-cancer effects in both COX-2 dependent and independent pathways and used to act as a radiosensitizing enhancer. Here, we suggest that the combination of BI-69A11 and celecoxib inhibits the phosphorylation of ataxia telangiectasia mutated (ATM) kinase and DNA-PK responsible for ionizing radiation (IR)-induced double-strand break (DSB) repair. Moreover, the combinatorial effect of BI-69A11 and celecoxib attenuates the IR-induced G2/M cell cycle arrest. Furthermore, this combination also impairs IR-induced activation of Akt and downstream targets of ATM. This might lead to induced activation of apoptotic pathway after triple therapy treatment modulating pro-apoptotic and anti-apoptotic proteins. This activation of apoptotic pathway also showed the interdependence of PUMA and BAD in triple combination-treated colon cancer cells in a p53 independent manner. This study reveals the therapeutic potential of the triple combination therapy in prevention of radioresistance. Besides, it also demonstrates the cytotoxic effects of triple combination therapy in colon cancer. This study shows utility and potential implication on safety of the patients undergoing radiation therapy.

  11. Efficacy of oncolytic herpesvirus NV1020 can be enhanced by combination with chemotherapeutics in colon carcinoma cells.

    PubMed

    Gutermann, Anja; Mayer, Elfriede; von Dehn-Rothfelser, Karin; Breidenstein, Claudia; Weber, Mihaela; Muench, Martina; Gungor, Denis; Suehnel, Juergen; Moebius, Ulrich; Lechmann, Martin

    2006-12-01

    NV1020, an oncolytic herpes simplex virus type 1, can destroy colon cancer cells by selectively replicating within these cells, while sparing normal cells. NV1020 is currently under investigation in a clinical phase I/II trial as an agent for the treatment of colon cancer liver metastases, in combination with conventional chemotherapeutic agents such as 5-fluorouracil (5-FU), SN38 (the active metabolite of irinotecan), and oxaliplatin. To study the synergy of NV1020 and chemotherapy, cytotoxicity and viral replication were evaluated in vitro by treating various human and murine colon carcinoma cell lines, using a colorimetric viability assay, a clonogenic assay, and a plaque-forming assay. In vivo experiments, using a subcutaneous syngeneic CT-26 tumor model in BALB/c mice, were performed to determine the efficacy of combination therapy. In vitro studies showed that the efficacy of NV1020 on human colon carcinoma cell lines HT-29, WiDr, and HCT-116 was additively or synergistically enhanced in combination with 5-FU, SN38, or oxaliplatin. The sequence of application was not important and effects were still apparent after a 21-day incubation period. Three intra-tumoral treatments with NV1020 (1 x 10(7) plaque-forming units), followed by three subcutaneous treatments with 5-FU (50 mg/kg), resulted in substantially higher inhibition of tumor growth and prolongation of survival compared with monotherapies (NV1020/5-FU vs. NV1020, p = 0.027). On WiDr cells, reduced replication of NV1020, in combination with 5-FU, indicated that additive and synergistic effects of combination therapy must be independent from viral replication. These results suggest that NV1020, in combination with chemotherapy, is a promising therapy for treating patients with metastatic colorectal cancer of the liver. We hypothesize that infection of cells with NV1020 sensitizes the infected cells for the cytotoxic effect of the chemotherapeutics.

  12. [Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells].

    PubMed

    Wen, Zhen; Li, Gang; Lin, Dong-Hai; Wang, Jun-Teng; Qin, Li-Fang; Guo, Gui-Ping

    2013-12-01

    The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering. Coumarin 6 was used as a fluorescent marker in the transport of nanoparticles investigated by confocal laser scanning microscopy. The transport of furanodiene (FDE) loaded nanoparticles was quantitively determined by high performance liquid chromatography. Colchicine and nocodazole were used in the transport study to explore the involved endocytosis mechanisms of nanoparticles. Distribution of the tight junction proteins ZO-1 was also analyzed by immunofluorescence staining. The results showed that the nanoparticles dispersed uniformly. The zeta potential of PLGA-NPs was negative, the mPEG-PLGA-NPs was close to neutral and the CS-PLGA-NPs was positive. The entrapment efficiency of FDE in all nanoparticles was higher than 75%. The transport capability of mPEG-PLGA-NPs across Caco-2/HT29-MTX co-cultured cells was higher than that of PLGA-NPs and CS-PLGA-NPs. Colchicine and nocodazole could significantly decrease the transport amount of nanoparticles. mPEG-PLGA-NPs could obviously reduce the distribution of ZO-1 protein than PLGA-NPs and CS-PLGA-NPs. The transport mechanism of PLGA-NPs and mPEG-PLGA-NPs were indicated to be a combination of endocytosis and paracellular way, while CS-PLGA-NPs mainly relied on the endocytosis way. PEG coating could shield the surface charge and enhance the hydrophilicity of PLGA nanoparticles, which leads mPEG-PLGA-NPs to possess higher anti-adhesion activity. As a result, mPEG-PLGA-NPs could penetrate the mucus

  13. Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells.

    PubMed

    Fenyvesi, Ferenc; Kónya, Zoltán; Rázga, Zsolt; Vecsernyés, Miklós; Kása, Péter; Pintye-Hódi, Klára; Bácskay, Ildikó

    2014-08-01

    Titanate nanotubes can be used as drug delivery systems, but limited information is available on their interactions with intestinal cells. In this study, we investigated the cytotoxicity and cellular uptake of titanate nanotubes on Caco-2 monolayers and found that up to 5 mg/ml concentration, these nanotubes are not cytotoxic and not able to permeate through the intestinal cell layer. Transmission electron microscopic experiments showed that titanate nanotubes are not taken up by cells, only caused a high-density granulation on the surface of the endoplasmic reticulum. According to these results, titanate nanotubes are suitable systems for intestinal drug delivery.

  14. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

    PubMed

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha; Rao, R K

    2012-12-15

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200-600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues.

  15. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue.

    PubMed

    Kasprzak, Aldona; Szaflarski, Witold; Szmeja, Jacek; Andrzejewska, Małgorzata; Przybyszewska, Wiesława; Kaczmarek, Elżbieta; Koczorowska, Maria; Kościński, Tomasz; Zabel, Maciej; Drews, Michał

    2013-01-01

    The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 m

  16. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids.

    PubMed

    Tauro, Bow J; Greening, David W; Mathias, Rommel A; Mathivanan, Suresh; Ji, Hong; Simpson, Richard J

    2013-03-01

    Exosomes are naturally occurring biological nanomembranous vesicles (∼40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. They have pleiotropic functions such as antigen presentation and intercellular transfer of protein cargo, mRNA, microRNA, lipids, and oncogenic potential. Here we describe the isolation, via sequential immunocapture using anti-A33- and anti-EpCAM-coupled magnetic beads, of two distinct populations of exosomes released from organoids derived from human colon carcinoma cell line LIM1863. The exosome populations (A33-Exos and EpCAM-Exos) could not be distinguished via electron microscopy and contained stereotypical exosome markers such as TSG101, Alix, and HSP70. The salient finding of this study, revealed via gel-based LC-MS/MS, was the exclusive identification in EpCAM-Exos of the classical apical trafficking molecules CD63 (LAMP3), mucin 13 and the apical intestinal enzyme sucrase isomaltase and increased expression of dipeptidyl peptidase IV and the apically restricted pentaspan membrane glycoprotein prominin 1. In contrast, the A33-Exos preparation was enriched with basolateral trafficking molecules such as early endosome antigen 1, the Golgi membrane protein ADP-ribosylation factor, and clathrin. Our observations are consistent with EpCAM- and A33-Exos being released from the apical and basolateral surfaces, respectively, and the EpCAM-Exos proteome profile with widely published stereotypical exosomes. A proteome analysis of LIM1863-derived shed microvesicles (sMVs) was also performed in order to clearly distinguish A33- and EpCAM-Exos from sMVs. Intriguingly, several members of the MHC class I family of antigen presentation molecules were exclusively observed in A33-Exos, whereas neither MHC class I nor MHC class II molecules were observed via MS in EpCAM-Exos. Additionally, we report for the first time in any extracellular vesicle study the colocalization of EpCAM, claudin-7, and CD44

  17. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma.

    PubMed

    Huang, S K; Mayhew, E; Gilani, S; Lasic, D D; Martin, F J; Papahadjopoulos, D

    1992-12-15

    Three different liposome types were compared for blood clearance and tissue uptake in mice bearing C-26 colon carcinoma growing either s.c. or in liver. Therapeutic experiments were performed with the liposome preparation showing the highest tumor uptake. Liposomes were composed of solid-phase phosphatidylcholine, either distearoyl phosphatidylcholine or hydrogenated soy phosphatidylcholine, and cholesterol at a 2:1 molar ratio. These liposomes were compared with similar but sterically stabilized liposomes (SL) which, in addition, contained either GM1 ganglioside or phosphatidylethanolamine derivatized with poly(ethylene glycol). Pharmacokinetic analysis of drug disposition was based on the areas under the curve for liposome-entrapped 67Ga uptake per gram of tissue up to 96 h following i.v. injection. The highest tissue area under the curve values with both liposome types were obtained in spleen, liver, and tumor. However, the sterically stabilized liposomes gave an area under the curve value 2-3-fold higher in the s.c. tumor and about 2-fold lower in liver and spleen. The therapeutic efficacy of doxorubicin (DOX) and epirubicin (EPI) encapsulated in poly(ethylene glycol)-derivatized phosphatidylethanolamine-containing liposomes was compared with that of free drug at two doses, 6 and 9 (or 10) mg/kg animal weight. Liposomes containing drug were injected either as a single dose, at different times following tumor implantation, or as three weekly doses starting 10 days after implantation. When injected as a single dose, liposome-encapsulated DOX had the maximal effect on tumor growth when injected 6 to 9 days after tumor implantation. When injected as three weekly doses, with treatment starting with a delay of 10 days, tumors which had grown to a size of approximately 0.05-0.1 cm3 regressed in groups of animals treated with either liposome-encapsulated drug (SL-DOX or SL-EPI) but continued to grow unabated in untreated mice and in mice receiving either of the free

  18. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery.

    PubMed

    Réti-Nagy, Katalin; Malanga, Milo; Fenyvesi, Éva; Szente, Lajos; Vámosi, György; Váradi, Judit; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Róka, Eszter; Vecsernyés, Miklós; Balogh, György; Vasvári, Gábor; Fenyvesi, Ferenc

    2015-12-30

    Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes.

  19. Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol.

    PubMed

    Verstraeten, Sandra V; Jaggers, Grayson K; Fraga, Cesar G; Oteiza, Patricia I

    2013-11-01

    Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-β-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.

  20. Optimization of the Caco-2 permeability assay to screen drug compounds for intestinal absorption and efflux.

    PubMed

    Press, Barry

    2011-01-01

    In vitro permeability assays are a valuable tool for scientists during lead compound optimization. As a majority of discovery projects are focused on the development of orally bioavailable drugs, correlation of in vitro permeability data to in vivo absorption results is critical for understanding the structural-physicochemical relationship (SPR) of drugs exhibiting low levels of absorption. For more than a decade, the Caco-2 screening assay has remained a popular, in vitro system to test compounds for both intestinal permeability and efflux liability. Despite advances in artificial membrane technology and in silico modeling systems, drug compounds still benefit from testing in cell-based epithelial monolayer assays for lead optimization. This chapter provides technical information for performing and optimizing the Caco-2 assay. In addition, techniques are discussed for dealing with some of the most pressing issues surrounding in vitro permeability assays (i.e., low aqueous solubility of test compounds and low postassay recovery). Insights are offered to help researchers avoid common pitfalls in the interpretation of in vitro permeability data, which can often lead to the perception of misleading results for correlation to in vivo data.

  1. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  2. Intestinal permeability and P-glycoprotein-mediated efflux transport of ticagrelor in Caco-2 monolayer cells.

    PubMed

    Marsousi, Niloufar; Doffey-Lazeyras, Fabienne; Rudaz, Serge; Desmeules, Jules A; Daali, Youssef

    2016-12-01

    Ticagrelor is the unique reversible oral antiplatelet drug commercialized today. During this study, the intestinal permeability of ticagrelor and its potential P-glycoprotein (P-gp)-mediated active transport were assessed. To this end, bidirectional transport of ticagrelor was performed across Caco-2 (human epithelial colorectal adenocarcinoma) monolayer model in the presence and absence of potent P-gp inhibitor valspodar. Ticagrelor presented an apical-basolateral apparent permeability coefficient (Papp ) of 6.0 × 10(-6) cm/s. On the other hand, mean efflux ratio (ER) of 2.71 was observed for ticagrelor describing a higher efflux permeability compared to the influx component. Valspodar showed a significant inhibitory effect on the efflux of ticagrelor suggesting involvement of P-gp in its oral disposition. Co-incubation of the P-gp inhibitor decreased the efflux Papp of ticagrelor from 1.60 × 10(-5) to 1.13 × 10(-5) cm/s and decreased its ER by 70%. Results suggest a modest active transport of ticagrelor by P-gp across the Caco-2 cell monolayer. The co-administration of ticagrelor with a P-gp inhibitor seems altogether unlikely to have an extended impact on pharmacokinetics of ticagrelor and cause bleeding events in patients.

  3. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  4. Lactobacillus plantarum CUL66 can impact cholesterol homeostasis in Caco-2 enterocytes.

    PubMed

    Michael, D R; Moss, J W E; Calvente, D Lama; Garaiova, I; Plummer, S F; Ramji, D P

    2016-06-01

    Hypercholesterolemia drives the development of cardiovascular disease, the leading cause of mortality in western society. Supplementation with probiotics that interfere with cholesterol metabolism may provide a contribution to disease prevention. Lactobacillus plantarum CUL66 (NCIMB 30280) has been assessed in vitro for its ability to impact cholesterol absorption. L. plantarum CUL66 tested positive for bile salt hydrolase activity and the ability to assimilate cholesterol from culture media. RT-qPCR analysis showed that the bacterium significantly decreased the expression of Niemann-Pick C1-like 1 and ATP-binding cassette transporter-1 in polarised Caco-2 cells after 6 h exposure. Conversely, the expression of ATP-binding cassette sub-family G member (ABCG)-5 and ABCG-8, and 3-hydroxy-3-methylglutaryl-CoA reductase were significantly increased. Using a radiolabelled assay, we also observed significant reductions in the uptake and basolateral efflux of cholesterol by Caco-2 cells exposed to L. plantarum CUL66. This in vitro study identified L. plantarum CUL66 as a cholesterol lowering bacteria by highlighting its ability to beneficially regulate multiple in vitro events associated with intestinal cholesterol metabolism and provides evidence of efficacy for its inclusion in future in vivo studies.

  5. Potential P-glycoprotein-mediated drug-drug interactions of antimalarial agents in Caco-2 cells.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-07-01

    Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells. Verapamil (100 μM) and quinidine (1 μM) were used as positive inhibition controls. Lumefantrine, amodiaquin, and artesunate all showed blockade of Rho-123 transport. Subsequently, the inhibitory effect of these antimalarials on the bi-directional passage of digoxin (DIG) was examined. All of the drugs decreased basal-to-apical (B-A) P-gp-mediated DIG transport at concentrations of 100 μM and 1 mM. These concentrations may reflect therapeutic doses for amodiaquin and artesunate. Therefore, clinically relevant DDIs may occur between certain antimalarials and P-gp substrates in general.

  6. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays.

    PubMed

    Lee, Jong Bong; Zgair, Atheer; Taha, Dhiaa A; Zang, Xiaowei; Kagan, Leonid; Kim, Tae Hwan; Kim, Min Gi; Yun, Hwi-Yeol; Fischer, Peter M; Gershkovich, Pavel

    2017-01-12

    In this study, Caco-2 permeability results from different laboratories were compared. Six different sets of apparent permeability coefficient (Papp) values reported in the literature were compared to experimental Papp obtained in our laboratory. The differences were assessed by determining the root mean square error (RMSE) values between the datasets, which reached levels as high as 0.581 for the training set compounds, i.e. ten compounds with known effective human permeability (Peff). The consequences of these differences in Papp for prediction of oral drug absorption were demonstrated by introducing the Papp into the absorption and pharmacokinetics simulation software application GastroPlus™ for prediction of the fraction absorbed (Fa) in humans using calibrated "user-defined permeability models". The RMSE were calculated to assess the differences between the simulated Fa and experimental values reported in the literature. The RMSE for Fa simulated with the permeability model calibrated using experimental Papp from our laboratory was 0.128. When the calibration was performed using Papp from literature datasets, the RMSE values for Fa were higher in all cases except one. This study shows quantitative lab-to-lab variability of Caco-2 permeability results and the potential consequences this can have in the use of these results for predicting intestinal absorption of drugs.

  7. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells.

    PubMed

    Kilari, Sreenivasulu; Pullakhandam, Raghu; Nair, K Madhavan

    2010-04-01

    Studies in humans and animals have suggested negative interactions of iron and zinc during their intestinal absorption. Further, zinc seems to prevent iron-induced oxidative damage in rats, which was hypothesized to be through the modulation of the intracellular iron signaling pathway. The aim of this study was, therefore, to understand the effects of zinc on oxidant-induced iron signaling and cell death in human enterocyte-like Caco-2 cells. We demonstrate that zinc decreases glucose/glucose oxidase (H(2)O(2)-generating system)-induced iron uptake and inhibits iron-regulatory protein 1 activation and divalent metal ion transporter 1 expression. There was also a concomitant decrease in oxidant-induced intracellular labile iron and restoration of ferritin and metallothionein expression. Further, zinc enhanced the Bcl-2/Bax ratio and reduced caspase-3 activity, leading to inhibition of apoptosis. Interestingly, bathophenanthroline disulfonic acid, an extracellular iron chelator, emulated the effects of zinc except for the reduced ferritin levels. These results suggest that zinc inhibits apoptosis by reducing oxidant-induced iron signaling in Caco-2 cells.

  8. Inhibition of Cronobacter sakazakii Adhesion to Caco-2 Cells by Commercial Dairy Powders and Raw Buttermilk.

    PubMed

    Ripollés, Daniel; Harouna, Saidou; Parrón, José A; Arenales, Irene; Calvo, Miguel; Pérez, María D; Sánchez, Lourdes

    2017-02-08

    Cronobacter sakazakii is a foodborne pathogen that has been associated with severe infections, mainly in neonates. The binding of this bacterium to host cell surfaces represents the first step in the pathogenesis of disease. An ELISA-based assay has been developed using a polyclonal antiserum against C. sakazakii to determine its adhesion to Caco-2 cells. The antiserum used recognized many of the outer membrane proteins of C. sakazakii. A positive correlation was found between the absorbance values obtained by ELISA and the number of bacteria adhered to cells determined by plate counting. The inhibitory effect on bacterial adhesion to cells observed with some dairy products was concentration-dependent. Commercial buttermilk caused the maximal reduction of the adhesion percentage (33.0 ± 5.07) at the highest concentration assayed (20 mg/mL), followed by butter serum (31.9 ± 5.36), skim milk (30.4 ± 5.07), and raw buttermilk (25.6 ± 3.80). In some cases, significant differences (p < 0.05) were found in the inhibition exerted by the different products evaluated. The results obtained in this study demonstrate that dairy products contain some components with the ability to inhibit the adhesion of C. sakazakii to Caco-2 cells.

  9. Lactobacillus paracasei CBA L74 interferes with gliadin peptides entrance in Caco-2 cells.

    PubMed

    Sarno, Marco; Lania, Giuliana; Cuomo, Marialaura; Nigro, Federica; Passannanti, Francesca; Budelli, Andrea; Fasano, Francesca; Troncone, Riccardo; Auricchio, Salvatore; Barone, Maria Vittoria; Nigro, Roberto; Nanayakkara, Merlin

    2014-12-01

    Several recent reports describe a role of probiotics as a therapeutic approach for celiac disease (CD). Two undigested A-gliadin peptides, P31-43 and P57-68, are central to CD pathogenesis, inducing an innate and an adaptive immune response, respectively. They enter enterocytes and localize to vesicular compartment to induce their toxic/immunogenics effects. In this article, we tested the effect of probiotic Lactobacillus paracasei (LP) CBA L74 (International Depository Accession Number LMG P-24778), its supernatant and LP-fermented cereals on gliadin peptides, P31-43 and P57-68, entrance in Caco-2 cells. Both LP CBA L74 and its supernatant inhibit P31-43 (intensity of fluorescence; FI: 75%) and P57-68 (FI: 50%) entrance in Caco2 cells, indicating that this biological effect is due to some product included in LP CBA L74 supernatant. This effect was present also after fermentation of cereals. This study describes a novel effect of probiotics in the prevention of undigested gliadin peptides toxic effects.

  10. Dimethyl sulfoxide (DMSO) attenuates the inflammatory response in the in vitro intestinal Caco-2 cell model.

    PubMed

    Hollebeeck, Sylvie; Raas, Thomas; Piront, Neil; Schneider, Yves-Jacques; Toussaint, Olivier; Larondelle, Yvan; During, Alexandrine

    2011-10-30

    This study aimed to investigate dose effects of dimethyl sulfoxide (DMSO) (0.05-1%) on the intestinal inflammatory response in confluent- and differentiated-Caco-2 cells stimulated with interleukin (IL)-1β or a pro-inflammatory cocktail for 24 h. Cyclooxygenase-2 (COX-2) activity was assayed by incubating inflamed cells with arachidonic acid and then measuring prostaglandin-E(2) (PGE(2)) produced. Soluble mediators (IL-8, IL-6, macrophage chemoattractant protein-1 (MCP-1), and COX-2-derived PGE(2)) were quantified by enzyme immunoassays and mRNA expression of 33 proteins by high throughput TaqMan Low Density Array. Data showed that DMSO decreased induced IL-6 and MCP-1 secretions in a dose-dependent manner (P<0.05), but not IL-8; these effects were cell development- and stimulus- independent. Moreover, in IL-1β-stimulated confluent-cells, DMSO dose-dependently reduced COX-2-derived PGE(2) (P<0.05). DMSO at 0.5% decreased significantly mRNA levels of 14 proteins involved in the inflammatory response (including IL-6, IL-1α, IL-1β, and COX-2). Thus, DMSO at low concentrations (0.1-0.5%) exhibits anti-inflammatory properties in the in vitro intestinal Caco-2 cell model. This point is important to be taken into account when assessing anti-inflammatory properties of bioactive compounds requiring DMSO as vehicle, such as phenolic compounds, in order to avoid miss-interpretation of the results.

  11. Esterification of Quercetin Increases Its Transport Across Human Caco-2 Cells.

    PubMed

    Hu, Jiang-Ning; Zou, Xian-Guo; He, Yi; Chen, Fang; Deng, Ze-Yuan

    2016-07-01

    Plant polyphenols showed useful biochemical characteristics in vitro; however, the assessments of their clinical applications in vivo are restricted by their limited bioavailability due to their strong resistance to 1st-pass effects during absorption. In order to improve the bioavailability of quercetin (QU), the ester derivative of QU (3,3',4',5,7-pentahydroxy flavones, TAQU) was synthesized, followed by examining the oil-water partition coefficient as well as the transport mechanisms of QU and its ester derivative (TAQU) using human Caco-2 cells. The transport characteristics of QU and TAQU transport under different conditions (different concentrations, time, pH, temperature, tight junctions, and potential transporters) were systematically investigated. Results showed that QU had a lower permeability coefficient (2.82 × 10(-6) cm/s) for apical-to-basolateral (AP-BL) transport over 5 to 50 μM, whereas the transport rate for AP to BL flux of TAQU (5.23 × 10(-6) cm/s) was significantly greater than that of QU. Paracellular pathways were not involved during the transport of both QU and TAQU. QU was poorly absorbed by active transport, whereas TAQU was mostly absorbed by passive diffusion. Efflux transporters, P-glycoproteins, multidrug resistance proteins were proven to participate in the transport process of QU, but not in that of TAQU. These results suggested that improving the lipophicity of QU by esterification could increase the transport of QU across Caco-2 cells.

  12. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes

    PubMed Central

    Coe, Genevieve L.; Redd, Priscilla S.; Paschall, Amy V.; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O.; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  13. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers

    PubMed Central

    Váradi, Judit; Harazin, András; Fenyvesi, Ferenc; Réti-Nagy, Katalin; Gogolák, Péter; Vámosi, György; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Vasvári, Gábor; Róka, Eszter; Haines, David; Deli, Mária A.; Vecsernyés, Miklós

    2017-01-01

    Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines. PMID:28103316

  14. MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Pellatt, Daniel F; Stevens, John R; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Samowitz, Wade S; Wolff, Roger K

    2016-03-01

    MiRNAs are small, non-protein-coding RNA molecules that regulate gene expression either by post-transcriptionally suppressing mRNA translation or by mRNA degradation. We examine differentially expressed miRNAs in colorectal carcinomas, adenomas and normal colonic mucosa. Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma/normal-paired samples and 290 adenoma tissue samples were run on the Agilent Human miRNA Microarray V19.0 which contained 2006 miRNAs. We tested for significant differences in miRNA expression between paired carcinoma/adenoma/normal colonic tissue samples. Fewer than 600 miRNAs were expressed in >80% of people for colonic tissue; of these 86.5% were statistically differentially expressed between carcinoma and normal colonic mucosa using a false discovery rate of 0.05. Roughly half of these differentially expressed miRNAs showed a progression in levels of expression from normal to adenoma to carcinoma tissue. Other miRNAs appeared to be altered at the normal to adenoma stage, while others were only altered at the adenoma to carcinoma stage or only at the normal to carcinoma stage. Evaluation of the Agilent platform showed a high degree of repeatability (r = 0.98) and reasonable agreement with the NanoString platform. Our data suggest that miRNAs are highly dysregulated in colorectal tissue among individuals with colorectal cancer; the pattern of disruption varies by miRNA as tissue progresses from normal to adenoma to carcinoma.

  15. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    PubMed Central

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  16. The apparent permeabilities of Caco-2 cells to marketed drugs: magnitude, and independence from both biophysical properties and endogenite similarities

    PubMed Central

    O’Hagan, Steve

    2015-01-01

    We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate measurements) of the apparent permeability (Papp) of Caco-2 cells to marketed drugs. While in some cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not especially permeable through Caco-2 cells, with the median Papp value being some 16 ⋅ 10−6 cm s−1. This value is considerably lower than those (1,310 and 230 ⋅ 10−6 cm s−1) recently used in some simulations that purported to show that Papp values were too great to be transporter-mediated only. While these values are outliers, all values, and especially the comparatively low values normally observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly correlated with either simple biophysical properties, the extent of molecular similarity to endogenous metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water partition coefficient, logP, shows negligible correlation with Caco-2 permeability. The data are best explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of comparatively weak specificity. PMID:26618081

  17. PI3K/Akt responses to oxytocin stimulation in Caco2BB gut cells.

    PubMed

    Klein, Benjamin Y; Tamir, Hadassah; Welch, Martha G

    2011-11-01

    Recently, we discovered oxytocin receptor (OTR) expression in the developing gut villus epithelium that emerges in villus-crypt junctions after weaning. Oxytocin (OT) and OTR regulate many physiological functions in various tissues; however, their function in gut epithelium is unknown. We explored responses of PI3K and Akt phosphoisoforms to OT stimuli in the Caco2BB human gut cell line. In Caco2BB cells, PI3K and pAkt levels peaked at 62.5  nM OT. At higher concentrations, PI3K decreased more gradually than pAkt(S473) suggesting that the pAkt(S473) response is separate from PI3K. At ≤7.8  nM OT, pAkt(T308) increased while pAkt(S473) decreased. Using a specific OTR antagonist, we demonstrated that responses of pAkt(T308) to OT depend on OTR in contrast to the partial OTR-dependence of the pAkt(S473) response. Differential pAkt phosphoisoform responses included pAkt phosphoserine 473 persistently free of phosphothreonine 308. The reduction in PI3K after 62.5  nM OT for 30  min coincided with OTR internalization. The PI3K/Akt activation profile was somewhat different in other cell lines (MCF-7 breast cancer cells, HT29 gut cells), which have PI3K activating mutations, that were examined to establish experimental parameters. In Caco2BB cells, the divergent effects of OT upon pAkt phosphoisoforms suggests separate sub-pathways; pAkt (T308) activation depends on OTR via the PI3K pathway and pAkt(S473) presumably results from its specific kinase mTORC2 (mammalian target of rapamycin complex 2). Thus, OT may modulate gut cell functions downstream of mTOR complexes (e.g., translation control as suggested by others in uterine cells). We will next explore OT-stimulated kinase activities downstream of mTOR related to pAkt phosphoisoforms.

  18. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Kalive, Madhavi; Capco, David G.; Chen, Yongsheng

    2010-09-01

    The increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite (α-Fe2O3) NPs and to determine the particle size effects on the adsorption behaviors. Cellular impairment was also investigated and compared. Hematite NPs were synthesized as part of this study with a discrete size distribution and uniform morphology examined by dynamic light scattering (DLS) and confirmed by transmission electron microscopy (TEM). Caco-2 cells were cultured as a model epithelium to mirror human intestinal cells and used to evaluate the impacts of the exposure to NPs by measuring transepithelial electrical resistance (TEER). Cell surface disruption, localization and translocation of NPs through the cells were analyzed with immunocytochemical staining and confocal microscopy. Results showed that hematite NPs had mean diameters of 26, 53, 76 and 98 nm and were positively charged with minor aggregation in the buffer solution. Adsorption of the four sizes of NPs on cells reached equilibrium within approximately 5 min but adsorption kinetics were found to be size-dependent. The adsorption rates expressed as mg m - 2 min - 1 were greater for large NPs (76 and 98 nm) than those for small NPs (26 and 53 nm). However, adsorption rates, expressed in units of m - 2 min - 1, were much greater for small NPs than large ones. After the adsorption equilibrium was reached, the adsorbed mass of NPs on a unit area of cells was calculated and showed no significant size dependence. Longer exposure time (>3 h) induced adverse cellular effects as indicated by the drop in TEER compared to the control cells without the exposure

  19. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    PubMed

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.

  20. Milk peptides increase iron dialyzability in water but do not affect DMT-1 expression in Caco-2 cells.

    PubMed

    Argyri, Konstantina; Tako, Elad; Miller, Dennis D; Glahn, Raymond P; Komaitis, Michael; Kapsokefalou, Maria

    2009-02-25

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. The objectives of this study were to investigate whether these fractions (a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells and (b) enhance iron dialyzability when added in meals. Two milk peptide fractions that solubilize iron were isolated by Sephadex G-25 gel filtration of a milk digest. These peptide fractions did not affect relative gene expression of DMT-1 when incubated with Caco-2 cells for 2 or 48 h. Dialyzability was measured after in vitro simulated gastric and pancreatic digestion. Both peptide fractions enhanced the dialyzability of iron from ferric chloride added to PIPES buffer, but had no effect on dialyzability from milk or a vegetable or fruit meal after in vitro simulated gastric and pancreatic digestion. However, dialyzability from milk was enhanced by the addition of a more concentrated lyophilized peptide fraction.

  1. Voriconazole Exposure and Risk of Cutaneous Squamous Cell Carcinoma, Aspergillus Colonization, Invasive Aspergillosis and Death in Lung Transplant Recipients.

    PubMed

    Mansh, M; Binstock, M; Williams, K; Hafeez, F; Kim, J; Glidden, D; Boettger, R; Hays, S; Kukreja, J; Golden, J; Asgari, M M; Chin-Hong, P; Singer, J P; Arron, S T

    2016-01-01

    Voriconazole is a triazole antifungal used to prevent and treat invasive fungal infections after lung transplantation, but it has been associated with an increased risk of developing cutaneous squamous cell carcinoma (SCC). Despite widespread use, there are no clear guidelines for optimal prophylactic regimens that balance the competing risks and benefits. We conducted a retrospective cohort study of all lung transplant recipients at the University of California, San Francisco, who were transplanted between October 1991 and December 2012 (n = 455) to investigate whether voriconazole exposure affected development of SCC, Aspergillus colonization, invasive aspergillosis and all-cause mortality. Voriconazole exposure was associated with a 73% increased risk of developing SCC (hazard ratio [HR] 1.73; 95% confidence interval [CI]: 1.04-2.88; p = 0.03), with each additional 30-day exposure at the standard dose increasing the risk by 3.0% (HR 1.03; 95% CI: 1.02-1.04; p < 0.001). Voriconazole exposure reduced risk of Aspergillus colonization by 50% (HR 0.50; 95% CI: 0.34-0.72; p < 0.001), but we were underpowered to detect risk reduction for invasive aspergillosis. Voriconazole exposure significantly reduced all-cause mortality among subjects who developed Aspergillus colonization (HR 0.34; 95% CI: 0.13-0.91; p = 0.03) but had no significant impact on those without colonization. Physicians should consider patient-specific factors that modify the potential risks and benefits of voriconazole for the care of lung transplant recipients.

  2. Effect of dietary fibers on losartan uptake and transport in Caco-2 cells.

    PubMed

    Iwazaki, Ayano; Takahashi, Naho; Miyake, Reiko; Hiroshima, Yuka; Abe, Mariko; Yasui, Airi; Imai, Kimie

    2016-05-01

    The objective of this study was to assess the effect of dietary fibers on the transport of losartan, an angiotensin II type 1 receptor blocker, in small intestinal cells. Using Caco-2 cells in vitro, losartan uptake and transport were evaluated in the presence of various fibers (cellulose, chitosan, sodium alginate and glucomannan). Dietary fibers caused a decrease in the uptake of losartan, with chitosan causing a significant reduction. Chitosan and glucomannan significantly reduced the transport of losartan, while cellulose or sodium alginate did not. Dietary fibers also reduced the level of free losartan; however, this did not correlate with the observed reduction in losartan uptake and transport. In summary, chitosan had the greatest inhibitory effect on losartan uptake and transport, and this potential interaction should be considered in patients taking losartan. Copyright © 2016 John Wiley & Sons, Ltd.

  3. [A case of carcinoma arising in a diverticulum of the transverse colon].

    PubMed

    Nomi, Masako; Umemoto, Satoshi; Kikutake, Takashi; Hosaka, Seiji; Mase, Takahiro; Kawamoto, Shunji; Yoshida, Takahisa

    2014-11-01

    A 64 year-old woman presented with advanced, transverse colon cancer arising in the diverticulum. Tumor invasion extended beyond the serosa to the anal side of the colon. Anemia and fatigue progressed after 6 months of iron administration. The hemoglobin value was 5.3 g/dL and carcinoembryonic antigen (CEA) level was elevated to 44.2 ng/mL. A palpable and tender fist-sized mass was found in the right upper abdomen. Computed tomography (CT) revealed a low-density mass in the transverse colon invading beyond the serosa to the anal side of the colon. Right hemi-colectomy with lymph node dissection was performed. The resected specimen contained multiple diverticula including the one from which the tumor arose. Histological examination revealed a well-differentiated, tubular adenocarcinoma (UICC TNM T4bN0M0) arising in a transverse colon diverticulum. There has been no recurrence for 2 years. Colon cancer arising in a diverticulum may expand to the extra-serosa and easily invade to the adjacent organ. In such cases, malignancy should be considered.

  4. Antitumor effects of FP3 in combination with capecitabine on PDTT xenograft models of primary colon carcinoma and related lymphatic and hepatic metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Xie, Bojian; He, Kuifeng; Xu, Zhenzhen; Li, Guangliang; Han, Na; Teng, Lisong; Cao, Feilin

    2012-07-01

    FP3 is an engineered protein which contains the extracellular domain 2 of VEGF receptor 1 (Flt-1) and extracellular domain 3 and 4 of VEGF receptor 2 (Flk-1, KDR) fused to the Fc portion of human immunoglobulin G 1. Previous studies demonstrated its antiangiogenic effects in vitro and in vivo, and its antitumor activity in vivo. In this study, patient-derived tumor tissue (PDTT) xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3 in combination with capecitabine. Xenografts were treated with FP3, capecitabine, alone or in combination. After tumor growth was confirmed, volume and microvessel density in tumors were evaluated. Levels of VEGF, and PCNA in the tumor were examined by immunohistonchamical staining, level of thymidine phosphorylase (TP) was examined by ELISA, and levels of related cell signaling pathways proteins expression were examined by western blotting. FP3 in combination with capecitabine showed significant antitumor activity in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3 in combination with capecitabine was lower than that of the control. Antitumor activity of FP3 in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). This study indicated that addition of FP3 to capecitabine significantly improved tumor growth inhibition in the PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.

  5. Celiac Anti-Type 2 Transglutaminase Antibodies Induce Phosphoproteome Modification in Intestinal Epithelial Caco-2 Cells

    PubMed Central

    Marabotti, Anna; Lepretti, Marilena; Salzano, Anna Maria; Scaloni, Andrea; Vitale, Monica; Zambrano, Nicola; Sblattero, Daniele; Esposito, Carla

    2013-01-01

    Background Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. Methods and Principal Findings We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins), three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. Conclusions Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here identified in this study

  6. Lycopene Modulates THP1 and Caco2 Cells Inflammatory State through Transcriptional and Nontranscriptional Processes

    PubMed Central

    Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion

    2014-01-01

    We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766

  7. Factors involved in adherence of lactobacilli to human Caco-2 cells.

    PubMed Central

    Greene, J D; Klaenhammer, T R

    1994-01-01

    A quantitative assay performed with bacterial cells labelled with [3H]thymidine was used to investigate factors involved in the adherence of human isolates Lactobacillus acidophilus BG2FO4 and NCFM/N2 and Lactobacillus gasseri ADH to human Caco-2 intestinal cells. For all three strains, adherence was concentration dependent, greater at acidic pH values, and significantly greater than adherence of a control dairy isolate, Lactobacillus delbrueckii subsp. bulgaricus 1489. Adherence of L. acidophilus BG2FO4 and NCFM/N2 was decreased by protease treatment of the bacterial cells, whereas adherence of L. gasseri ADH either was not affected or was enhanced by protease treatment. Putative surface layer proteins were identified on L. acidophilus BG2FO4 and NCFM/N2 cells but were not involved in adherence. Periodate oxidation of bacterial cell surface carbohydrates significantly reduced adherence of L. gasseri ADH, moderately reduced adherence of L. acidophilus BG2FO4, and had no effect on adherence of L. acidophilus NCFM/N2. These results indicate that Lactobacillus species adhere to human intestinal cells via mechanisms which involve different combinations of carbohydrate and protein factors on the bacterial cell surface. The involvement of a secreted bridging protein, which has been proposed as the primary mediator of adherence of L. acidophilus BG2FO4 in spent culture supernatant (M.-H. Coconnier, T. R. Klaenhammer, S. Kernéis, M.-F. Bernet, and A. L. Servin, Appl. Environ. Microbiol. 58:2034-2039, 1992), was not confirmed in this study. Rather, a pH effect on Caco-2 cells contributed significantly to the adherence of this strain in spent culture supernatant.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7811085

  8. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture.

    PubMed

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnürch, Andreas Bernkop

    2008-01-30

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  9. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  10. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    PubMed

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  11. Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model.

    PubMed

    Zerounian, Nora R.; Linder, Maria C.

    2002-03-01

    Previous studies have implicated copper proteins, including ceruloplasmin, in intestinal iron transport. Polarized Caco2 cells with tight junctions were used to examine the possibilities that (a) ceruloplasmin promotes iron absorption by enhancing release at the basolateral cell surface and (b) copper deficiency reduces intestinal iron transport. Iron uptake and overall transport were followed for 90 min with 1 &mgr;M 59Fe(II) applied to the apical surface of Caco2 cell monolayers. Apotransferrin (38 &mgr;M) was in the basolateral chamber. Induction of iron deficiency with desferrioxamine (100 &mgr;M; 18 h) markedly increased uptake and overall transport of iron. Uptake increased from about 20% to about 65% of dose, and overall 59Fe transport from <1% to 60% of dose. On the basis of actual iron released into the basal chamber (measured with bathophenanthroline), transport increased 8-fold. Desferrioxamine pretreatment reduced cellular Fe by 55%. The addition of freshly isolated, enzymatically active human ceruloplasmin to the basolateral chamber during absorption had no effect on uptake or transport of iron by the cells. Unexpectedly, pretreatment with three different chelators of copper (18 h), which reduced cellular levels about 40%, more than doubled iron uptake and raised overall transport to 20%. This was so, whether or not cells were also made iron deficient with desferrioxamine. Acute addition of 1 &mgr;M Cu(II) to the apical chamber had no significant effect upon iron uptake, retention, or transport in iron deficient or normal cells, in the presence of absence of ascorbate. We conclude that intestinal absorption of Fe(II) is unlikely to depend upon plasma ceruloplasmin, and that cuproproteins involved in this form of iron transport must be binding copper tightly.

  12. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells.

    PubMed

    Sugawara, T; Kushiro, M; Zhang, H; Nara, E; Ono, H; Nagao, A

    2001-11-01

    Despite the interest in the beneficial roles of dietary carotenoids in human health, little is known about their solubilization from foods to mixed bile micelles during digestion and the intestinal uptake from the micelles. We investigated the absorption of carotenoids solubilized in mixed micelles by differentiated Caco-2 human intestinal cells, which is a useful model for studying the absorption of dietary compounds by intestinal cells. The micelles were composed of 1 micromol/L carotenoids, 2 mmol/L sodium taurocholate, 100 micromol/L monoacylglycerol, 33.3 micromol/L fatty acid and phospholipid (0-200 micromol/L). The phospholipid content of micelles had profound effects on the cellular uptake of carotenoids. Uptake of micellar beta-carotene and lutein was greatly suppressed by phosphatidylcholine (PC) in a dose-dependent manner, whereas lysophosphatidylcholine (lysoPC), the lipolysis product of PC by phospholipase A2 (PLA2), markedly enhanced both beta-carotene and lutein uptake. The addition of PLA2 from porcine pancreas to the medium also enhanced the uptake of carotenoids from micelles containing PC. Caco-2 cells could take up 15 dietary carotenoids, including epoxy carotenoids, such as violaxanthin, neoxanthin and fucoxanthin, from micellar carotenoids, and the uptakes showed a linear correlation with their lipophilicity, defined as the distribution coefficient in 1-octanol/water (log P(ow)). These results suggest that pancreatic PLA2 and lysoPC are important in regulating the absorption of carotenoids in the digestive tract and support a simple diffusion mechanism for carotenoid absorption by the intestinal epithelium.

  13. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    PubMed Central

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2005-01-01

    Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods. PMID:15644141

  14. First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line

    SciTech Connect

    Dagrosa, Maria Alejandra; Crivello, Martin; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gamma rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a

  15. Nanoparticle-delivered VEGF-silencing cassette and suicide gene expression cassettes inhibit colon carcinoma growth in vitro and in vivo.

    PubMed

    Leng, Aimin; Yang, Jing; Liu, Ting; Cui, Jianfang; Li, Xiu-Hua; Zhu, Yanan; Xiong, Ting; Chen, Yuxiang

    2011-12-01

    The strategies for tumor-specific expression of suicide genes and target tumor angiogenesis have been tested in tumors. However, the anti-tumor efficacy of the combination of these two strategies, particularly, delivering suicide gene and anti-angiogenesis agent by nanoparticles, has not yet been evaluated in colon carcinoma. We constructed a cassette to silence VEGF-A expression and express a fused yCDglyTK gene driven by tumor-specific promoter (shVEGF-CDTK). The DNA carrying shVEGF-CDTK was delivered into colon carcinoma cells by calcium phosphate nanoparticles (CPNPs). Cell proliferation was measured by MTT assay, and apoptosis was detected by flow cytometry. The anti-tumor effect of the combined cassette was tested in xenograft animal model. With 5-fluorocytosine (5-FC), CPNP-delivered shVEGF-CDTK DNA (CPNP-shVEGF-CDTK) showed high expression of fused yCDglyTK gene and effectively silenced VEGF-A expression in vitro and in vivo, which significantly inhibited colon carcinoma cell proliferation and induced apoptosis in vitro. With 5-FC, the systemic delivery of CPNP-shVEGF-CDTK significantly inhibited tumor growth in the colon carcinoma xenograft animal model. The combined cassette is obviously effective in inhibiting tumor cell proliferation and inducing apoptosis in vitro and tumor growth in vivo than the CPNP-shVEGF or CPNP-CDTK alone. The combination of VEGF-A-silencing and tumor-specific expression of suicide gene is an effective strategy for colon carcinoma treatment.

  16. Long non-coding RNA colon cancer-associated transcript 1 functions as a competing endogenous RNA to regulate cyclin-dependent kinase 1 expression by sponging miR-490-3p in hepatocellular carcinoma progression.

    PubMed

    Dou, Chunqing; Sun, Liyuan; Jin, Xin; Han, Mingming; Zhang, Bao; Li, Tao

    2017-04-01

    Hepatocellular carcinoma is an aggressive neoplasm and is one of the most common human cancers. Recently, long non-coding RNAs have been demonstrated to participate in pathogenesis of many diseases including the progression in several cancers. In this study, we found that the long non-coding RNA colon cancer-associated transcript 1 was upregulated in hepatocellular carcinoma tissues (p < 0.05), and high colon cancer-associated transcript 1 expression level was positively associated with tumor volume (p < 0.05) and American Joint Committee on Cancer stage (p < 0.05) in hepatocellular carcinoma patients. Luciferase reporter assays and RNA-pulldown assays showed that colon cancer-associated transcript 1 is a target of miR-490-3p. Real-time quantitative polymerase chain reaction and Western blot analysis indicated that colon cancer-associated transcript 1 regulated cyclin-dependent kinase 1 expression as a competing endogenous RNA by sponging miR-490-3p in hepatocellular carcinoma cells. Furthermore, colon cancer-associated transcript 1 silencing decreased hepatocellular carcinoma cells proliferation and invasion and overexpression promoted cell proliferation and invasion in vitro. These data demonstrated that the colon cancer-associated transcript 1/miR-490-3p/cyclin-dependent kinase 1 regulatory pathway promotes the progression of hepatocellular carcinoma. Inhibition of colon cancer-associated transcript 1 expression may be a novel therapeutic strategy for hepatocellular carcinoma.

  17. Expression of VLA-alpha 2, VLA-alpha 6, and VLA-beta 1 chains in normal mucosa and adenomas of the colon, and in colon carcinomas and their liver metastases.

    PubMed Central

    Koretz, K.; Schlag, P.; Boumsell, L.; Möller, P.

    1991-01-01

    'Very late antigen' (VLA) proteins are members of the integrin superfamily with cell-surface receptor function and are involved in the cell-cell matrix interaction. They are heterodimers with a common beta 1 chain and different alpha chains counted through VLA-1 to VLA-6. The VLA-2 complex (alpha 2/beta 1) was found to act as collagen receptor on platelets and the VLA-6 complex (alpha 6/beta 1) as laminin receptor. Using monoclonal antibodies and an indirect immunoperoxidase method, we investigated the expression of VLA-alpha 2, VLA-alpha 6, and VLA-beta 1 chains in 20 normal colonic mucosa samples, in 20 colonic adenomas, and in 96 carcinomas together with 10 accompanying liver metastases. All three proteins were expressed throughout the colonic epithelium, except for VLA-alpha 2, which was present in the cryptic gland but was absent on the mucosal surface in some cases. In general, adenomas were strongly positive for the VLA proteins but 3 of 20 cases showed focal VLA-alpha 2-negative areas. The carcinomas revealed considerable heterogeneity of VLA-alpha 2 expression; ie, 59 tumors were completely positive, 35 tumors revealed a focal loss of antigen, and 2 cases were negative. This reduced antigen expression was statistically associated with Dukes' stage C/D (P = 0.003). VLA-alpha 6 was expressed throughout in all tumors. VLA-beta 1 was found extensively expressed in 77 carcinomas, partially expressed in 17 carcinomas, and was absent in 2 carcinomas. As compared to their primary tumors, liver metastases showed roughly corresponding patterns of antigen expression. The down regulation/loss of VLA proteins in a subset of epithelial colon tumors might cause a disturbed cell-cell/cell-matrix interaction that might augment the invasive property of their cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2000944

  18. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma

    PubMed Central

    Wiśniewski, Jacek R; Ostasiewicz, Paweł; Duś, Kamila; Zielińska, Dorota F; Gnad, Florian; Mann, Matthias

    2012-01-01

    We report a proteomic analysis of microdissected material from formalin-fixed and paraffin-embedded colorectal cancer, quantifying >7500 proteins between patient matched normal mucosa, primary carcinoma, and nodal metastases. Expression levels of 1808 proteins changed significantly between normal and cancer tissues, a much larger fraction than that reported in transcript-based studies. Tumor cells exhibit extensive alterations in the cell-surface and nuclear proteomes. Functionally similar changes in the proteome were observed comparing rapidly growing and differentiated CaCo-2 cells. In contrast, there was minimal proteomic remodeling between primary cancer and metastases, suggesting that no drastic proteome changes are necessary for the tumor to propagate in a different tissue context. Additionally, we introduce a new way to determine protein copy numbers per cell without protein standards. Copy numbers estimated in enterocytes and cancer cells are in good agreement with CaCo-2 and HeLa cells and with the literature data. Our proteomic data set furthermore allows mapping quantitative changes of functional protein classes, enabling novel insights into the biology of colon cancer. PMID:22968445

  19. Influence of anatomical subsite on the incidence of microsatellite instability, and KRAS and BRAF mutation rates in patients with colon carcinoma.

    PubMed

    Benedix, Frank; Meyer, Frank; Kube, Rainer; Kropf, Siegfried; Kuester, Doerthe; Lippert, Hans; Roessner, Albert; Krüger, Sabine

    2012-10-15

    There is a growing amount of data supporting the concept that cancers originating from the proximal and distal colon are distinct clinicopathological entities. The incidence of MSI and BRAF mutation is strongly associated with right sided tumor location, whereas there are conflicting results for KRAS mutation rates. However, to date, no data exist whether and to what extent defined colonic subsites influence MSI status, KRAS and BRAF mutation rates. We selected primary colon cancer from 171 patients operated on at our institution between 2007 and 2010. BRAF, KRAS mutation rates and microsatellite instability were determined and correlated with clinicopathological features and tumor location. MSI-h cancers were significantly associated with poor histological grade but a lower rate of distant metastases. KRAS-mutated tumors were linked to lower T-stage and better differentiation. Colon carcinomas with BRAF mutation were significantly associated with distant metastatic spread and poor histological grade. Furthermore, we found that MSI-h status, KRAS and BRAF mutation rates varied remarkably among the colonic subsites irrespective of right- and left-sided origin, respectively. The results of the current study provide further evidence that a simple classification into right- and left-sided colon carcinoma does not represent the complexity of this tumor entity.

  20. The anticancer effect related to disturbances in redox balance on Caco-2 cells caused by an alkynyl gold(I) complex.

    PubMed

    Sánchez-de-Diego, Cristina; Mármol, Inés; Pérez, Rocío; Gascón, Sonia; Rodriguez-Yoldi, Mª Jesús; Cerrada, Elena

    2017-01-01

    The alkynyl gold(I) derivative [Au(C≡CPh)(PTA)] (PTA=1,3,5-triaza-7-phosphaadamantane) induces apoptosis in colorectal carcinoma tumour cells (Caco-2) without affecting to normal enterocytes. [Au(C≡CPh)(PTA)] is a slight lipophilic drug, stable in PBS (Phosphate Buffered Saline) and able to bind BSA (Bovin Serum Albumin) by hydrophobic interactions. Once inside the cell, [Au(C≡CPh)(PTA)] targets seleno proteins such as Thioredoxin Reductase 1, increasing ROS (Reactive Oxygen Species) levels, reducing cell viability and proliferation and inducing mitochondrial apoptotic pathway, pro-apoptotic and anti-apoptotic protein imbalance, loss of mitochondrial membrane potential, cytochrome c release and activation of caspases 9 and 3. Moreover, unlike other metal-based drugs such as cisplatin, [Au(C≡CPh)(PTA)] does not target nucleic acid, reducing the risk of side mutation in the DNA. In consequence, our results predict a promising future for [Au(C≡CPh)(PTA)] as a chemotherapeutic agent for colorectal carcinoma.

  1. Pien Tze Huang suppresses IL-6-inducible STAT3 activation in human colon carcinoma cells through induction of SOCS3.

    PubMed

    Shen, Aling; Chen, Youqin; Hong, Fei; Lin, Jiumao; Wei, Lihui; Hong, Zhenfeng; Sferra, Thomas J; Peng, Jun

    2012-12-01

    IL-6/STAT3 is one of the most critical cellular signal transduction pathways known to malfunction in colorectal cancer (CRC). As a target gene of signal transducer and activator of transcription 3 (STAT3) signaling, suppressor of cytokine signaling 3 (SOCS3) can be quickly induced by interleukin-6 (IL-6) stimulation but it then strongly inhibits IL-6-mediated STAT3 activation, functioning as a negative feedback regulator of the IL-6/STAT3 pathway. Aberrant activation of STAT3 and/or reduced expression of SOCS are strongly correlated with carcinogenesis, which therefore becomes a promising target for the development of novel anticancer chemotherapies. Pien Tze Huang (PZH) is a well-known traditional Chinese formula that was first prescribed by a royal physician 450 years ago in the Ming Dynasty. It has been used in China and Southeast Asia for centuries as a folk remedy for various types of cancer including CRC. However, the precise mechanism of its antitumor activity remains largely unclear. In the present study, we found that PZH could significantly and dose-dependently inhibit IL-6-mediated increase of STAT3 phosphorylation levels and transcriptional activity in the human colon carcinoma HT-29 cells, resulting in the suppression of cell proliferation and the induction of apoptosis. In addition, PZH treatment profoundly inhibited IL-6-induced upregulation of cyclin D1 and Bcl-2, two key target genes of the STAT3 pathway. Moreover, PZH treatment increased the expression of SOCS3. These results suggest that PZH could effectively inhibit proliferation and promote apoptosis of human colon carcinoma cells via modulation of the IL-6/STAT3 signaling pathway and its target genes.

  2. Apoptosis inducing capacity of Holothuria arenicola in CT26 colon carcinoma cells in vitro and in vivo

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Afzali, Mahbubeh; Nikdel, Najme; Mostafapour, Asma; Kerachian, Mohammad Amin

    2016-01-01

    Objective(s): Sea cucumber is one of the classes of echinoderms, which is considered as a health marine product and possess various biological characteristics with therapeutic application. The present investigation attempted to evaluate the potential of anti-cancer Persian Gulf sea cucumber species Holothuria arenicola (H. arenicola) aqueous extract on mice colon carcinoma cells in vitro and in vivo. Materials and Methods: The CT26 carcinoma cells were treated with various concentrations of extract in 24 and 48 hr, and then its anti-proliferative effect was measured by MTT assay and morphological observations. The apoptotic effect was examined by fluorescence microscopy (DNA fragmentation assay), Flow cytometry, caspase-3 and -9 colorimetric assays. The in vivo anti-tumor efficacy of sea cucumber extract on CT26 tumor cells transplanted in BALB/c mice was also investigated. Results: The results showed that the water extract of sea cucumber revealed remarkable anti-proliferative effect on CT26 tumor cells with IC50= 31 µg/ml with recruitment of intrinsic apoptotic pathway in vitro. In addition, the colon tumor volume in treated groups remarkably reduced in homozygous mice. Histopathological examination elucidated that sea cucumber extract attenuated tumor size and volume along with apoptosis characteristics. Moreover, RT-PCR analysis revealed that sea cucumber extract induced intrinsic apoptosis in vivo through suppression of Bcl-2 expression. Conclusion: Our data confirmed this notion that sea cucumber administrates anti-cancer effect that can be used as complementary in preclinical experiments, so further characterization are recommended for detection sea cucumber metabolites and clinical application. PMID:27279978

  3. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells.

    PubMed

    Potara, Monica; Bawaskar, Manisha; Simon, Timea; Gaikwad, Swapnil; Licarete, Emilia; Ingle, Avinash; Banciu, Manuela; Vulpoi, Adriana; Astilean, Simion; Rai, Mahendra

    2015-09-01

    In this work, two classes of silver nanoparticles (AgNPs) were biosynthesized with the goal to assess their reliability in vitro as surface-enhanced Raman scattering (SERS) nanotags. Mycosynthesized silver nanoparticles (MAgNPs) and phytosynthesized silver nanoparticles (PAgNPs) were produced through environmentally friendly procedures by reduction of silver nitrate with Fusarium oxysporum cell filtrate and Azadirachta indica extract, respectively. Two cell lines, namely C26 murine colon carcinoma cells as example of cancer cells and human immortalized keratinocyte cells (HaCaT) as representative of healthy cell line, were selected for in vitro investigation. The in vitro toxicity studies show that M(P)AgNPs present lower cytotoxic effect on both cell lines as compared with standard citrate coated AgNPs. The internalization of M(P)AgNPs by colon carcinoma cells and structural alterations induced in the morphology of treated cells were analyzed by dark-field (DF) and differential interference contrast (DIC) microscopy, respectively. The most informative data about the cellular uptake and tracking potential of M(P)AgNPs were provided by scanning Confocal Raman Microscopy (CRM) and multivariate K-means cluster analysis of collected Raman spectra. The analysis reveals the subcellular components and the localization of AgNPs inside the cell via the intrinsic SERS signature of biogenic coating material. The use of unique biological material to perform synthesis, stability, biocompatibility and SERS tagging is relevant both from the point of view of encoding nanoparticles with Raman reporters and further applications in cell investigation via Raman/SERS imaging.

  4. Carcinoma of the small intestine and colon as a complication of Crohn disease: radiologic manifestation

    SciTech Connect

    Kerber, G.W.; Frank, P.H.

    1984-03-01

    Barium examinations of the large and small bowel were analyzed in six of seven patients who had adenocarcinoma in areas of the intestine affected with Crohn disease; radiographic changes were correlated with clinical, surgical, and pathologic findings. Radiographic examinations were available in five of these patients at the time of diagnosis of tumor. Two of the five patients demonstrated classic radiographic changes associated with carcinoma. In the other three cases, the radiographic changes were atypical for carcinoma and demonstrated progression of disease over time to include more portions of the bowel and presence of fistulas, strictures, and obstruction. The most frequent clinical presentation of adenocarcinoma in these patients was a recrudescence of symptoms after a long quiescent period. In patients with long-standing Crohn disease plus these clinical features and the above radiographic findings, the diagnosis of a coexisting carcinoma should be considered.

  5. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  6. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells

    PubMed Central

    Chang, Po-Hsiang; Sekine, Keisuke; Chao, Hsiao-Mei; Hsu, Shan-hui; Chern, Edward

    2017-01-01

    Cancer stem cells (CSCs), a small population of cancer cells, have been considered to be the origin of cancer initiation, recurrence, and metastasis. Tumor microenvironment provides crucial signals for CSCs to maintain stem cell properties and promotes tumorigenesis. Therefore, establishment of an appropriate cell culture system to mimic the microenvironment for CSC studies is an important issue. In this study, we grew colon and hepatocellular carcinoma (HCC) cells on chitosan membranes and evaluated the tumor progression and the CSC properties. Experimental results showed that culturing cancer cells on chitosan increased cell motility, drug resistance, quiescent population, self-renewal capacity, and the expression levels of stemness and CSC marker genes, such as OCT4, NANOG, CD133, CD44, and EpCAM. Furthermore, we demonstrated that chitosan might activate canonical Wnt/β-catenin-CD44 axis signaling in CD44positive colon cancer cells and noncanonical Wnt-STAT3 signaling in CD44negative HCC cells. In conclusion, chitosan as culture substrates activated the essential signaling of CSCs and promoted CSC properties. The chitosan culture system provides a convenient platform for the research of CSC biology and screening of anticancer drugs. PMID:28367998

  7. Ketogenic HMGCS2 Is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer.

    PubMed

    Camarero, Nuria; Mascaró, Cristina; Mayordomo, Cristina; Vilardell, Felip; Haro, Diego; Marrero, Pedro F

    2006-09-01

    HMGCS2, the gene that regulates ketone body production, is expressed in liver and several extrahepatic tissues, such as the colon. In CaCo-2 colonic epithelial cells, the expression of this gene increases with cell differentiation. Accordingly, immunohistochemistry with specific antibodies shows that HMGCS2 is expressed mainly in differentiated cells of human colonic epithelium. Here, we used a chromatin immunoprecipitation assay to study the molecular mechanism responsible for this expression pattern. The assay revealed that HMGCS2 is a direct target of c-Myc, which represses HMGCS2 transcriptional activity. c-Myc transrepression is mediated by blockade of the transactivating activity of Miz-1, which occurs mainly through a Sp1-binding site in the proximal promoter of the gene. Accordingly, the expression of human HMGCS2 is down-regulated in 90% of Myc-dependent colon and rectum tumors. HMGCS2 protein expression is down-regulated preferentially in moderately and poorly differentiated carcinomas. In addition, it is also down-regulated in 80% of small intestine Myc-independent tumors. Based on these findings, we propose that ketogenesis is an undesirable metabolic characteristic of the proliferating cell, which is down-regulated through c-Myc-mediated repression of the key metabolic gene HMGCS2.

  8. Selected case from the Arkadi M. Rywlin International Pathology Slide Club: carcinoma of the transverse colon in a young girl.

    PubMed

    Galliani, Carlos A; Sanchez, Irene C; D'Errico, Maria M; Bisceglia, Michele

    2015-05-01

    We report a case of a 14-year-old female with primary adenocarcinoma of the transverse colon. She was hospitalized after presenting with abdominal pain and signs of intestinal obstruction. There was no health antecedent or family history of neoplasia. Physical examination revealed a distended abdomen. Tenderness was elicited to palpation of the right lower quadrant. Magnetic resonance imaging of the abdomen revealed obstructive signs, with a constricting lesion in the mid-transverse colon of probable neoplastic nature. Laparoscopic segmental resection of the colon was followed by standard right hemicolectomy. A circumferential mid-transverse tumor was diagnosed as primary colorectal carcinoma (CRC) of signet-ring cell type, AJCC stage IIIC, Dukes' C stage. On the basis of immunohistochemistry and clinical data, hereditary nonpolyposis and hamartomatous colorectal cancer syndromes were excluded. Involvement of either the p53, BRAF, or K-RAS genes was ruled out by immunohistochemistry profiling and genetic testing. The neoplasm was categorized as sporadic. The possibility of activation of the Wnt signaling pathway was suspected, because of a defective turnover of the β-catenin protein. Postoperatively, the patient was treated with both systemic and intra-abdominal adjuvant chemotherapy, including oxaliplatin. Between 18 and 24 months after diagnosis, intra-abdominal tumor recurrences were detected. The patient underwent bilateral oophorectomies for Krukenberg tumors and received salvage chemotherapy. Recently, additional recurrent metastatic retroperitoneal disease caused hydronephrosis. The retroperitoneal mass was debulked and a ureteric stent was placed. At the time of this writing, 43 months after diagnosis, the patient is receiving FOLFOX chemotherapy combined with panitumumab. CRC of childhood is exceedingly rare, generally develops in the setting of unrecognized genetic predisposing factors to cancer, presents with advanced disease, is high grade, and tends

  9. Caco-2 cells cytotoxicity of nifuroxazide derivatives with potential activity against Methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Fernandes, Mariane B; Gonçalves, José E; Scotti, Marcus T; de Oliveira, Alex A; Tavares, Leoberto C; Storpirtis, Sílvia

    2012-04-01

    It is important to determine the toxicity of compounds and co-solvents that are used in cell monolayer permeability studies to increase confidence in the results obtained from these in vitro experiments. This study was designed to evaluate the cytotoxicity of new nifuroxazide derivatives with potential activity against Methicillin-resistant Staphylococcus aureus (MRSA) in Caco-2 cells to select analogues for further in vitro permeability analyses. In this study, nitrofurantoin and nifuroxazide, in addition to 6 furanic and 6 thiophenic nifuroxazide derivatives were tested at 2, 4, 6, 8 and 10 μg/mL. In vitro cytotoxicity assays were performed according to the MTT (methyl tetrazolium) assay protocol described in ISO 10993-5. The viability of treated Caco-2 cells was greater than 83% for all tested nitrofurantoin concentrations, while those treated with nifuroxazide at 2, 4 and 6 μg/mL had viabilities greater than 70%. Treatment with the nifuroxazide analogues resulted in viability values greater than 70% at 2 and 4 μg/mL with the exception of the thiophenic methyl-substituted derivative, which resulted in cell viabilities below 70% at all tested concentrations. Caco-2 cells demonstrated reasonable viability for all nifuroxazide derivatives, except the thiophenic methyl-substituted compound. The former were selected for further permeability studies using Caco-2 cells.

  10. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    PubMed Central

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  11. Lactobacilli Reduce Chemokine IL-8 Production in Response to TNF-α and Salmonella Challenge of Caco-2 Cells

    PubMed Central

    Ren, Da-Yong; Li, Chang; Qin, Yan-Qing; Yin, Rong-Lan; Du, Shou-Wen; Ye, Fei; Liu, Hong-Feng; Wang, Mao-Peng; Sun, Yang; Li, Xiao; Tian, Ming-Yao; Jin, Ning-Yi

    2013-01-01

    The probiotic properties of two selected lactobacilli strains were assessed. L. salivarius and L. plantarum displayed higher hydrophobicity (48% and 54%, resp.) and coaggregation ability with four pathogens (from 7.9% to 57.5%). L. salivarius and L. plantarum had good inhibitory effects on S. aureus (38.2% and 49.5%, resp.) attachment to Caco-2 cells. Live lactobacilli strains and their conditioned media effectively inhibited IL-8 production (<14.6 pg/mL) in TNF-α-induced Caco-2 cells. Antibiotic-treated and the sonicated lactobacilli also maintained inhibitory effects (IL-8 production from 5.0 to 36.3 pg/mL); however, the heat-treated lactobacilli lost their inhibitory effects (IL-8 production from 130.2 to 161.0 pg/mL). These results suggest that both the structural components and the soluble cellular content of lactobacilli have anti-inflammatory effects. We also found that pretreatment of Caco-2 cells with lactobacilli inhibited S. typhimurium-induced IL-8 production (<27.3 pg/mL). However, lactobacilli did not inhibit IL-8 production in Caco-2 cells pretreated with S. typhimurium. These results suggest that the tested lactobacilli strains are appropriate for preventing inflammatory diseases caused by enteric pathogens but not for therapy. In short, L. salivarius and L. plantarum are potential candidates for the development of microbial ecological agents and functional foods. PMID:24455739

  12. Development of On-chip Coculture System for Cytotoxicity Test Using Caco-2 and Hep G2

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Nakayama, Hidenari; Yamamoto, Takatoki; Sakai, Yasuyuki; Fujii, Teruo

    We developed a chip-based coculture system for cytotoxicity test, as our continuous effort to develop a multi-functional micro culture device realized by integration of fluidic control. The culture zone in the device was divided into two compartments separated by a microporous membrane through which substances in culture medium can freely come-and-go to induce the mutual interactions between the cells cultured at each compartment. In this work, it was examined that 1) coculture and 2) cytotoxicity model through oral intake, using Caco-2 and Hep G2 cell as a model cell of small intestine and liver respectively. As a result of test 1), Hep G2 cells cocultured with Caco-2 show same albumin secretion activity as the one not cocultured with Caco-2 cells. As a result of test 2), The cytotoxicity of caffeine and paraquat on Hep G2 cells was successfully measured with and without association of a selective chemical barrier function of Caco-2 cells.

  13. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  14. The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus L. Studied on Caco-2 Cells Model.

    PubMed

    Azzini, Elena; Maiani, Giuseppe; Garaguso, Ivana; Polito, Angela; Foddai, Maria S; Venneria, Eugenia; Durazzo, Alessandra; Intorre, Federica; Palomba, Lara; Rauseo, Maria L; Lombardi-Boccia, Ginevra; Nobili, Fabio

    2016-01-01

    Phytochemicals can exert their bioactivity without reaching the systemic circulation; scarcely absorbed antioxidants might reach the large bowel contributing to protection from oxidative damage-induced gastrointestinal diseases. In the present work, we aimed to study the relationship between potential activity of polyphenol-rich extracts from Cichorium intybus L. and changes in morphological characteristics on Caco-2 cells. Phytochemicals content (carotenoids and flavonoids) and total antioxidant activity of Red Chicory of Treviso and Variegated Chicory of Castelfranco were evaluated. The bioactivity of polyphenol-rich extracts from chicories was studied in in vitro Caco-2 cell monolayers model. Morphological characteristics changes to test the antioxidant and/or prooxidant effect were verified by histological analysis and observed by Electronic Scansion Microscopy (SEM). On Caco-2 cell model, the polyphenols fractions from chicories have indicated a moderate antioxidant behavior until 17 μM concentration, while 70 μM and 34 μM exert cytotoxic effects for Treviso's and Castelfranco's Chicory, respectively, highlighted by TEER decreasing, increased permeability, and alteration of epithelium. Our findings support the beneficial effects of these products in counteracting the oxidative stress and cellular damage, induced in vitro on Caco-2 cell model, through interaction with the mucopolysaccharide complexes in the glycocalyx, maintaining in vivo a healthy and effective intestinal barrier.

  15. The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus L. Studied on Caco-2 Cells Model

    PubMed Central

    Azzini, Elena; Maiani, Giuseppe; Garaguso, Ivana; Polito, Angela; Foddai, Maria S.; Venneria, Eugenia; Durazzo, Alessandra; Intorre, Federica; Palomba, Lara; Rauseo, Maria L.; Lombardi-Boccia, Ginevra; Nobili, Fabio

    2016-01-01

    Phytochemicals can exert their bioactivity without reaching the systemic circulation; scarcely absorbed antioxidants might reach the large bowel contributing to protection from oxidative damage-induced gastrointestinal diseases. In the present work, we aimed to study the relationship between potential activity of polyphenol-rich extracts from Cichorium intybus L. and changes in morphological characteristics on Caco-2 cells. Phytochemicals content (carotenoids and flavonoids) and total antioxidant activity of Red Chicory of Treviso and Variegated Chicory of Castelfranco were evaluated. The bioactivity of polyphenol-rich extracts from chicories was studied in in vitro Caco-2 cell monolayers model. Morphological characteristics changes to test the antioxidant and/or prooxidant effect were verified by histological analysis and observed by Electronic Scansion Microscopy (SEM). On Caco-2 cell model, the polyphenols fractions from chicories have indicated a moderate antioxidant behavior until 17 μM concentration, while 70 μM and 34 μM exert cytotoxic effects for Treviso's and Castelfranco's Chicory, respectively, highlighted by TEER decreasing, increased permeability, and alteration of epithelium. Our findings support the beneficial effects of these products in counteracting the oxidative stress and cellular damage, induced in vitro on Caco-2 cell model, through interaction with the mucopolysaccharide complexes in the glycocalyx, maintaining in vivo a healthy and effective intestinal barrier. PMID:26843906

  16. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.

    PubMed

    Dashti, N; Smith, E A; Alaupovic, P

    1990-01-01

    The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the

  17. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    PubMed

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya

    2016-01-01

    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro.

  18. Molecular analysis and anticancer properties of two identified isolates, Fusarium solani and Emericella nidulans isolated from Wady El-Natron soil in Egypt against Caco-2 (ATCC) cell line

    PubMed Central

    Mohamed, Hala F

    2012-01-01

    Objective To characterize, identify and investigate the anticancer properties of two new soil fungal isolates, Emericella nidulans and Fusarium solani isolated from Wady El-Natron in Egypt against colon cancer Caco-2 (ATCC) cell line. Methods Soil sample was cultured and two strains were chosen for morphological and phenotypical characterization. Partial sequences of the 18s rRNA gene and the internal transcribed spacer region ITS of the two isolates were amplified by PCR. Phylogenetic tree construction and analysis of the resulted multiple sequences from the two fugal isolates were also carried out. In vitro anticancer activity of the two strains was done against colon Caco-2 cancer cell line. Reverse transcription – PCR was carried out to detect level of expression of p53 in Caco-2 cell line. Results HF.1 displayed morphological and genotypic characteristics most similar to that of Fusarium solani while HF.2 was most similar to Emericella nidulans with high similarity of 99% and 97% respectively. The multiple sequence alignment of the two fungal isolates showed that, the maximum identical conserved domains in the 18s rRNA genes were identified with the nucleotide regions of 51st to 399th base pairs, 88th to 525th base pairs respectively. While those in the ITS genes were identified with the nucleotide regions of 88th to 463rd and 51st to 274th. The two isolates showed IC50 value with (6.24±5.21) and (9.84±0.36) µg/mL) concentrations respectively at 28h. Reverse transcription – PCR indicated that these cells showed high level of expression for p53 mRNA. Conclusions The morphology and molecular analysis identified HF.1 and HF.2 to be Fusarium solani and Emericella nidulans; new isolates of anticancer producing fungi from Wady El-Natroon city in Egypt. Treatment with the two isolates caused P53 expression in Caco-2 cell line. These two isolates can be used as an anticancer agents. PMID:23569862

  19. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice.

    PubMed

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Zhao, Zhaohui; Ogiwara, Haru; Totsuka, Mamoru; Shimizu, Makoto

    2015-02-01

    Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions.

  20. Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Venckevicius, Rimvydas; Seliuta, Dalius; Valusis, Gintaras; Urbanowicz, Andrzej; Molis, Gediminas; Carneiro, Fatima; Carvalho Silva, Catia D.; Granja, Pedro L.

    2016-03-01

    In the present study, dehydrated human colon tissues embedded in paraffin were studied at THz frequency. A compact THz imaging system with high numerical aperture optics was developed for the analysis of adenocarcinoma-affected colon sections, in transmission and reflection geometry. A comprehensive analysis of the THz images revealed a contrast up to 23% between the neoplastic and control tissues. Absorption and reflection THz images demonstrated the possibility to distinguish adenocarcinoma-affected areas even without water in the tissue, as the main contrast mechanism in THz measurements has been observed to be water absorption in in vivo or freshly excised tissues. The present results corroborate with previous histologic findings in the same tissues, and confirm that the contrast prevails even in dehydrated tissues.

  1. Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models.

    PubMed

    He, Bing; Wang, Xin; Shi, Hua-shan; Xiao, Wen-jing; Zhang, Jing; Mu, Bo; Mao, Yong-qiu; Wang, Wei; Wang, Yong-sheng

    2013-05-01

    Thermotherapy and thermochemotherapy have been used in clinics to treat patients with malignant diseases, including colon cancer, and their efficacy has been well proved. Heat shock proteins (HSPs), especially Hsp70, play important roles in neutralizing their efficacy. It has been reported that quercetin can suppress cancer by inhibiting the intratumoral expression of Hsp70. This study was designed to investigate whether quercetin could enhance sensitivity to thermotherapy and thermochemotherapy. Soluble quercetin liposome was used in this study. The effects of quercetin were investigated in vitro and in mouse colon cancer models of subcutaneous tumor and peritoneal carcinomatosis. The results showed that quercetin liposome inhibited the upregulation of Hsp70 and enhanced apoptosis induced by hyperthermia and thermochemotherapy. Systemic administration of quercetin liposome can sensitize CT26 cells to thermotherapy and chemothermotherapy. This study suggests that quercetin liposome might be potentially applied for clinical cancer therapy.

  2. Induction of the adenoma-carcinoma progression and Cdc25A-B phosphatases by the trefoil factor TFF1 in human colon epithelial cells.

    PubMed

    Rodrigues, S; Rodrigue, C M; Attoub, S; Fléjou, J F; Bruyneel, E; Bracke, M; Emami, S; Gespach, C

    2006-10-26

    TFF1 is overexpressed in inflammatory diseases and human cancers of the digestive and urogenital systems. To examine the transforming potential of TFF1 in human colon epithelial cells, premalignant PC/AA/C1 adenoma cells (PC) derived from a patient with familial adenomatous polyposis (FAP) were transformed by the TFF1 cDNA and used as a model of the adenoma-carcinoma transition. Constitutive expression of TFF1 increased anchorage-independent cell growth in soft agar, and induced or potentiated the growth of colon PC-TFF1 and kidney MDCKts.src-TFF1 tumor xenografts in athymic mice. This resulted in reduction of thapsigargin-induced apoptosis and promotion of collagen type I invasion through several oncogenic pathways. Using the differential display approach to identify TFF1 target genes, we found that the dual specific phosphatases Cdc25A and B implicated in cell cycle transitions are strongly upregulated under active forms in both PC-TFF1 and HCT8/S11-TFF1 colon cancer cells. Accordingly, TFF1 expression is absent in normal human colon crypts but is induced in correlation with Cdc25a and b transcript levels and tumor grade in familial and sporadic colon adenomas and carcinomas. We propose that TFF1 and Cdc25A-B cooperate with other dominant oncogenic pathways to induce the adenoma and adenocarcinoma transitions. Agents that target TFF1/Cdc25 signaling pathways may be useful for treating patients with TFF1-positive solid tumors.

  3. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin.

    PubMed

    Chen, Hua; Yao, Yuan

    2017-04-15

    The study examined the capability of phytoglycogen (PG) to improve the water solubility of quercetin (QC). PG-QC formulations were prepared by mixing a QC ethanol solution with a PG aqueous solution followed with vacuum drying of the supernatant. PG-QC formulations with various PG to QC ratios were prepared; the solubility of QC reached 241.76μg/mL at PG/QC ratio of 30/1 compared with approximately 4.32μg/mL of QC alone. The X-ray powder diffraction and FTIR analyses showed a significant reduction of QC crystallinity upon formulating with PG that was associated with the intermolecular hydrogen bonding between the hydroxyl groups of QC and PG. The Caco-2 cell monolayer permeation tests showed that PG-QC formulations resulted in substantially enhanced cellular uptake and transepithelial permeation of QC, which was related to the much-enhanced QC solubility. This study showed the potential of using PG to formulate poorly water-soluble ingredients such as QC.

  4. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2.

    PubMed

    Llana-Ruiz-Cabello, María; Gutiérrez-Praena, Daniel; Pichardo, Silvia; Moreno, F Javier; Bermúdez, José María; Aucejo, Susana; Cameán, Ana María

    2014-02-01

    Essential oils used as additives in the food industry due to its flavour, antimicrobial and antioxidant properties. Therefore, human can be exposed orally to these compounds through the ingestion of foods. In this sense, the present work aims to assess toxicological effects of oregano essential oil on the digestive tract. In concrete, the cytotoxic effects of two components of the oregano essential oils, carvacrol and thymol, and their mixture, on the intestinal cells line Caco-2 after 24 and 48 h of exposure are studied. The basal cytotoxicity endpoints assayed (total protein content, neutral red uptake and the tetrazolium salt reduction) and the annexin/propidium iodide staining indicated that carvacrol and the mixture carvacrol/thymol induced toxic effects. Moreover, a morphological study was performed in order to determine the ultrastructural cellular damages caused by these substances. The main morphological alterations were vacuolated cytoplasm, altered organelles and finally cell death. In addition, although no cytotoxic effects were recorded for thymol at any concentration and time of exposure, ultrastructural changes evidenced cellular damage such as lipid degeneration, mitochondrial damage, nucleolar segregation and apoptosis.

  5. [Absorption and transportation of calycosin in Astragali Radix by using Caco-2 monolayer model].

    PubMed

    Le, Zhou; Zhao, Xiao-Li; Di, Liu-Qing

    2014-05-01

    Flavonoids are a class of important active ingredients in traditional Chinese medicine, pharmacological activity and in vivo process is the focus of research in recent years. Calycosin is the main active ingredients of flavonoids in Astragali Radix, recent studies indicate that it has many kinds of pharmacological activity, but the absorption and transport characteristics in vivo is unclear. The experiment using Caco-2 cell model, with apigenin as internal standard substance, using the method for the determination of drug concentration by HPLC, were studied at different concentrations and absorption transport characteristics of respectively adding different types of protein inhibitors. Data were analyzed by Q test, the results show that low, middle, high concentration of P(app)(BL-AP)/ P(app)(AP-BL) = 1.38 < 1.5, respectively adding different types of protein inhibitors, compared with the control group of P(app)(BL-AP)/ P(app)(AP-BL), there were no significant differences. Calycosin absorption may mainly passive transport, also involved in active transport mechanism, the transport may not be affected by the P-protein, MRP2 protein, SGLT protein.

  6. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport

    PubMed Central

    Datta, Palika; Weis, Margaret T

    2015-01-01

    AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function. METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation. RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux. CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity. PMID:26290632

  7. Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling.

    PubMed

    Pham-The, Hai; Casañola-Martin, Gerardo; Garrigues, Teresa; Bermejo, Marival; González-Álvarez, Isabel; Nguyen-Hai, Nam; Cabrera-Pérez, Miguel Ángel; Le-Thi-Thu, Huong

    2016-02-01

    In many absorption, distribution, metabolism, and excretion (ADME) modeling problems, imbalanced data could negatively affect classification performance of machine learning algorithms. Solutions for handling imbalanced dataset have been proposed, but their application for ADME modeling tasks is underexplored. In this paper, various strategies including cost-sensitive learning and resampling methods were studied to tackle the moderate imbalance problem of a large Caco-2 cell permeability database. Simple physicochemical molecular descriptors were utilized for data modeling. Support vector machine classifiers were constructed and compared using multiple comparison tests. Results showed that the models developed on the basis of resampling strategies displayed better performance than the cost-sensitive classification models, especially in the case of oversampling data where misclassification rates for minority class have values of 0.11 and 0.14 for training and test set, respectively. A consensus model with enhanced applicability domain was subsequently constructed and showed improved performance. This model was used to predict a set of randomly selected high-permeability reference drugs according to the biopharmaceutics classification system. Overall, this study provides a comparison of numerous rebalancing strategies and displays the effectiveness of oversampling methods to deal with imbalanced permeability data problems.

  8. Phospholipids and terpenes modulate Caco-2 transport of açaí anthocyanins.

    PubMed

    Cardona, Jorge A; Mertens-Talcott, Susanne U; Talcott, Stephen T

    2015-05-15

    Anthocyanins (ANC) are common polyphenolics in plants, but are poorly absorbed into the bloodstream upon consumption. Phospholipids (PL) and terpenes (TP) may serve as enhancing agents in absorption. This study evaluated their role in transepithelial transport within a Caco-2 cell monolayer-model system and impact on ANC stability. Açaí fruit ANC were isolated and found to transport, at a low rate (1.22%), in the absence of soy lecithin phospholipids and Valencia orange terpenes, yet their addition significantly increased the transport of both cyanidin-3-glucoside and cyanidin-3-rutinoside. The best transport results (5.21%) were observed when combinations of PL (5000 mg/l) and TP (50mg/l) were used. The presence of PL and TP had no influence on ANC degradation over a 40 day storage period. Results demonstrated the potential of PL and TP to increase intestinal transport of ANC, and present advancement towards the formulation of functional foods that support improved ANC absorption.

  9. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model.

    PubMed

    Moriya, Mizue; Linder, Maria C

    2006-02-01

    The potential roles of vesicular transport and apotransferrin (entering from the blood) in intestinal Fe absorption were investigated using Caco-2 cell monolayers with tight junctions in bicameral chambers as a model. As shown previously, addition of 39 microM apotransferrin (apoTf) to the basolateral fluid during absorption studies markedly stimulated overall transport of 1 microM (59)Fe from the apical to the basal chamber and stimulated its basolateral release from prelabeled cells, implicating endo- and exocytosis. Rates of transport more than doubled. Uptake was also stimulated, but only 20%. Specific inhibitors of aspects of vesicular trafficking were applied to determine their potential effects on uptake, retention, and basolateral (overall) transport of (59)Fe. Nocodazole and 5'-(4-fluorosulfonylbenzoyl)-adenosine each reduced uptake and basolateral transport up to 50%. Brefeldin A inhibited about 10%. Tyrphostin A8 (AG10) reduced uptake 35% but markedly stimulated basolateral efflux, particularly that dependent on apoTf. Cooling of cells to 4 degrees C (which causes depolymerization of microtubules and lowers energy availability) profoundly inhibited uptake and basolateral transfer of Fe (7- to 12-fold). Apical efflux (which was substantial) was not temperature affected. Our results support the involvement of apoTf cycling in intestinal Fe absorption and indicate that as much as half of the iron uses apoTf and non-apoTf-dependent vesicular pathways to cross the basolateral membrane and brush border of enterocytes.

  10. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells.

    PubMed

    Gondo, Yusuke; Satsu, Hideo; Ishimoto, Yoko; Iwamoto, Taku; Shimizu, Makoto

    2012-09-28

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.

  11. Transport characteristics of grepafloxacin and levofloxacin in the human intestinal cell line Caco-2.

    PubMed

    Yamaguchi, H; Yano, I; Saito, H; Inui, K

    2001-11-23

    Transport characteristics of grepafloxacin and levofloxacin across the apical membrane of Caco-2 cells were examined. Both grepafloxacin and levofloxacin uptakes increased rapidly, and were temperature-dependent. Grepafloxacin and levofloxacin uptakes showed concentration-dependent saturation with Michaelis constants of 3.9 and 9.3 mM, respectively. Uptake of grepafloxacin and levofloxacin increased in Cl(-)-free and ATP depleted conditions, suggesting the involvement of an efflux transport system different from the uptake mechanism. However, cyclosporin A, a typical inhibitor of P-glycoprotein, did not affect the uptake of these drugs. Unlabeled grepafloxacin, unlabeled levofloxacin and quinidine inhibited the uptake of grepafloxacin and levofloxacin under Cl(-)-free conditions. Tetraethylammonium, cimetidine, p-aminohippurate, probenecid, amino acids, beta-lactam antibiotic or monocarboxylates did not inhibit the uptake of grepafloxacin and levofloxacin under the same conditions. In conclusion, our results suggested that grepafloxacin and levofloxacin uptakes were mediated by a specific transport system distinct from those for organic cations and anions, amino acids, dipeptides and monocarboxylates.

  12. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2.

    PubMed

    Yamaguchi, H; Yano, I; Hashimoto, Y; Inui, K I

    2000-10-01

    Grepafloxacin and levofloxacin transport by Caco-2 cell monolayers was examined to characterize the intestinal behavior of these quinolones. The levels of transcellular transport of [(14)C]grepafloxacin and [(14)C]levofloxacin from the basolateral to the apical side were greater than those in the opposite direction. The unidirectional transport was inhibited by the presence of excess unlabeled quinolones, accompanied by increased accumulation. The inhibitory effects of cyclosporin A plus grepafloxacin on basolateral-to-apical transcellular transport and cellular accumulation of [(14)C]grepafloxacin were comparable to those of cyclosporin A alone, indicating that the transport of grepafloxacin across the apical membrane was mainly mediated by P-glycoprotein. On the other hand, basolateral-to-apical transcellular transport of [(14)C]levofloxacin in the presence of cyclosporin A was decreased by unlabeled levofloxacin, grepafloxacin, and enoxacin, accompanied by significantly increased cellular accumulation. The organic cation cimetidine, organic anion p-aminohippurate, and the multidrug resistance-related protein (MRP) modulator probenecid did not affect the transcellular transport of [(14)C]grepafloxacin or [(14)C]levofloxacin in the presence of cyclosporin A. The basolateral-to-apical transcellular transport of levofloxacin in the presence of cyclosporin A showed concentration-dependent saturation with an apparent Michaelis constant of 5.6 mM. In conclusion, these results suggested that basolateral-to-apical flux of quinolones was mediated by P-glycoprotein and a specific transport system distinct from organic cation and anion transporters and MRP.

  13. Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells

    PubMed Central

    Zeitouni, Nathalie E.; Dersch, Petra; Naim, Hassan Y.; von Köckritz-Blickwede, Maren

    2016-01-01

    Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins. PMID:26731748

  14. Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay.

    PubMed

    Bony, Sylvie; Carcelen, Monique; Olivier, Laurence; Devaux, Alain

    2006-09-30

    The genotoxic risk associated with deoxynivalenol (DON), a prevalent trichothecene mycotoxin which contaminates cereal-based products has not yet been deeply explored. In this work, the alkaline version of the Comet assay was used to evaluate DNA damage stemming from DON exposure in both dividing and differentiated Caco-2 cells, an epithelial intestinal cell line. To avoid false positive results, cytotoxic and apoptotic thresholds were firstly established using the MTS and neutral red assays and the Hoestch staining method, respectively. Dividing cells were found to be more sensitive to DON than differentiated cells and the lowest IC(10) (0.5 microM) obtained for dividing cells exposed for 72 h was used as the highest working concentration in the genotoxicity study. Both differentiated and dividing cells responded with a dose-dependent relationship to DON in terms of DNA damage in the 0.01-0.5 microM range. These results demonstrated the existence of a genotoxic potential for DON at low concentrations compatible with actual exposure situations and calls for additional studies to determine the functional consequences which could be taken into account for the risk assessment of this food contaminant.

  15. Effect of long-term fluoxetine treatment on the human serotonin transporter in Caco-2 cells.

    PubMed

    Iceta, Ruth; Mesonero, José E; Alcalde, Ana I

    2007-03-27

    Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) broadly used in the treatment of human mood disorders and gastrointestinal diseases involving the serotoninergic system. The effectiveness of this therapy depends on repeated long-term treatment. Most of the long-term studies in vivo of SSRI effects on serotoninergic activity have focused on their effects on autoreceptors or postsynaptic receptors. The chronic effect of SSRIs on the activity of the serotonin transporter (SERT) has been less studied and the results have been contradictory. The aim of this study was to determine the specific effect of long-term fluoxetine treatment on human serotonin transporter (hSERT) in vitro, by using the human enterocyte-like cell line Caco-2. Results show that fluoxetine diminished the 5-HT uptake in a concentration-dependent way and that this effect was reversible. Fluoxetine affected mainly the hSERT transport rate by reducing the availability of the transporter in the membrane with no significant alteration of either the total hSERT protein content or the hSERT mRNA level. These results suggest that the effect of fluoxetine on the expression of hSERT is post-translational and has shown itself to be independent of PKC and PKA activity. This study may be useful to clarify the effect of the long-term fluoxetine therapy in both gastrointestinal and central nervous system disorders.

  16. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures.

  17. Listeria monocytogenes Inhibits Serotonin Transporter in Human Intestinal Caco-2 Cells.

    PubMed

    Latorre, E; Pradilla, A; Chueca, B; Pagán, R; Layunta, E; Alcalde, A I; Mesonero, J E

    2016-10-01

    Listeria monocytogenes is a Gram-positive bacterium that can cause a serious infection. Intestinal microorganisms have been demonstrated to contribute to intestinal physiology not only through immunological responses but also by modulating the intestinal serotonergic system. Serotonin (5-HT) is a neuromodulator that is synthesized in the intestinal epithelium and regulates the whole intestinal physiology. The serotonin transporter (SERT), located in enterocytes, controls intestinal 5-HT availability and therefore serotonin's effects. Infections caused by L. monocytogenes are well described as being due to the invasion of intestinal epithelial cells; however, the effect of L. monocytogenes on the intestinal epithelium remains unknown. The main aim of this work, therefore, was to study the effect of L. monocytogenes on SERT. Caco2/TC7 cell line was used as an enterocyte-like in vitro model, and SERT functional and molecular expression assays were performed. Our results demonstrate that living L. monocytogenes inhibits serotonin uptake by reducing SERT expression at the brush border membrane. However, neither inactivated L. monocytogenes nor soluble metabolites were able to affect SERT. The results also demonstrate that L. monocytogenes yields TLR2 and TLR10 transcriptional changes in intestinal epithelial cells and suggest that TLR10 is potentially involved in the inhibitory effect observed on SERT. Therefore, L. monocytogenes, through TLR10-mediated SERT inhibition, may induce increased intestinal serotonin availability and potentially contributing to intestinal physiological changes and the initiation of the inflammatory response.

  18. Iron bioavailability of maize hemoglobin in a Caco-2 cell culture model.

    PubMed

    Bodnar, Anastasia L; Proulx, Amy K; Scott, M Paul; Beavers, Alyssa; Reddy, Manju B

    2013-07-31

    Maize ( Zea mays ) is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable, and its bioavailability is not inhibited by phytate. It was hypothesized that maize hemoglobin is a highly bioavailable iron source and that biofortification of maize with iron can be accomplished by overexpression of maize globin in the endosperm. Maize was transformed with a gene construct encoding a translational fusion of maize globin and green fluorescent protein under transcriptional control of the maize 27 kDa γ-zein promoter. Iron bioavailability of maize hemoglobin produced in Escherichia coli and of stably transformed seeds expressing the maize globin-GFP fusion was determined using an in vitro Caco-2 cell culture model. Maize flour fortified with maize hemoglobin was found to have iron bioavailability that is not significantly different from that of flour fortified with ferrous sulfate or bovine hemoglobin but is significantly higher than unfortified flour. Transformed maize grain expressing maize globin was found to have iron bioavailability similar to that of untransformed seeds. These results suggest that maize globin produced in E. coli may be an effective iron fortificant, but overexpressing maize globin in maize endosperm may require a different strategy to increase bioavailable iron content in maize.

  19. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    PubMed

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect.

  20. Activated systemic inflammatory response at diagnosis reduces lymph node count in colonic carcinoma

    PubMed Central

    Kennelly, Rory P; Murphy, Brenda; Larkin, John O; Mehigan, Brian J; McCormick, Paul H

    2016-01-01

    AIM To investigate a link between lymph node yield and systemic inflammatory response in colon cancer. METHODS A prospectively maintained database was interrogated. All patients undergoing curative colonic resection were included. Neutrophil lymphocyte ratio (NLR) and albumin were used as markers of SIR. In keeping with previously studies, NLR ≥ 4, albumin < 35 was used as cut off points for SIR. Statistical analysis was performed using 2 sample t-test and χ2 tests where appropriate. RESULTS Three hundred and two patients were included for analysis. One hundred and ninety-five patients had NLR < 4 and 107 had NLR ≥ 4. There was no difference in age or sex between groups. Patients with NLR of ≥ 4 had lower mean lymph node yields than patients with NLR < 4 [17.6 ± 7.1 vs 19.2 ± 7.9 (P = 0.036)]. More patients with an elevated NLR had node positive disease and an increased lymph node ratio (≥ 0.25, P = 0.044). CONCLUSION Prognosis in colon cancer is intimately linked to the patient’s immune response. Assuming standardised surgical technique and sub specialty pathology, lymph node count is reduced when systemic inflammatory response is activated. PMID:27574555

  1. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    PubMed

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  2. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin

    PubMed Central

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I.; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A. M.; Castiglioni, Sara

    2017-01-01

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other “staminal” traits. PMID:28094304

  3. Rifaximin Improves Clostridium difficile Toxin A-Induced Toxicity in Caco-2 Cells by the PXR-Dependent TLR4/MyD88/NF-κB Pathway

    PubMed Central

    Esposito, Giuseppe; Nobile, Nicola; Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; d’Alessandro, Alessandra; Bruzzese, Eugenia; Capoccia, Elena; Steardo, Luca; Cuomo, Rosario; Sarnelli, Giovanni

    2016-01-01

    Background: Clostridium difficile infections (CDIs) caused by Clostridium difficile toxin A (TcdA) lead to severe ulceration, inflammation and bleeding of the colon, and are difficult to treat. Aim: The study aimed to evaluate the effect of rifaximin on TcdA-induced apoptosis in intestinal epithelial cells and investigate the role of PXR in its mechanism of action. Methods: Caco-2 cells were incubated with TcdA and treated with rifaximin (0.1-10 μM) with or without ketoconazole (10 μM). The transepithelial electrical resistance (TEER) and viability of the treated cells was determined. Also, the expression of zona occludens-1 (ZO-1), toll-like receptor 4 (TLR4), Bcl-2-associated X protein (Bax), transforming growth factor-β-activated kinase-1 (TAK1), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappaB (NF-κB) was determined. Results: Rifaximin treatment (0.1, 1.0, and 10 μM) caused a significant and concentration-dependent increase in the TEER of Caco-2 cells (360, 480, and 680% vs. TcdA treatment) 24 h after the treatment and improved their viability (61, 79, and 105%). Treatment also concentration-dependently decreased the expression of Bax protein (-29, -65, and -77%) and increased the expression of ZO-1 (25, 54, and 87%) and occludin (71, 114, and 262%) versus TcdA treatment. The expression of TLR4 (-33, -50, and -75%), MyD88 (-29, -60, and -81%) and TAK1 (-37, -63, and -79%) were also reduced with rifaximin versus TcdA treatment. Ketoconazole treatment inhibited these effects. Conclusion: Rifaximin improved TcdA-induced toxicity in Caco-2 cells by the PXR-dependent TLR4/MyD88/NF-κB pathway mechanism, and may be useful in the treatment of CDIs. PMID:27242527

  4. EPS-SJ Exopolisaccharide Produced by the Strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 Is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E. coli Association to Caco-2 Cells

    PubMed Central

    Živković, Milica; Miljković, Marija S.; Ruas-Madiedo, Patricia; Markelić, Milica B.; Veljović, Katarina; Tolinački, Maja; Soković, Svetlana; Korać, Aleksandra; Golić, Nataša

    2016-01-01

    The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in Escherichia coli’s association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2) by size exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) detection. SEC-MALLS analysis revealed that an EPS-SJ- mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase) does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ+ strain BGSJ2-83 (a plasmid free-derivative of BGSJ2-8). Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coli ATCC25922’s association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT) was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ) on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium, implying its possible role in gut colonization. PMID:27014210

  5. EPS-SJ Exopolisaccharide Produced by the Strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 Is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E. coli Association to Caco-2 Cells.

    PubMed

    Živković, Milica; Miljković, Marija S; Ruas-Madiedo, Patricia; Markelić, Milica B; Veljović, Katarina; Tolinački, Maja; Soković, Svetlana; Korać, Aleksandra; Golić, Nataša

    2016-01-01

    The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in Escherichia coli's association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2) by size exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) detection. SEC-MALLS analysis revealed that an EPS-SJ(-) mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase) does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ(+) strain BGSJ2-83 (a plasmid free-derivative of BGSJ2-8). Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coli ATCC25922's association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT) was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ) on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium, implying its possible role in gut colonization.

  6. Protective role of aspirin, vitamin C, and zinc and their effects on zinc status in the DMH-induced colon carcinoma model.

    PubMed

    Christudoss, Pamela; Selvakumar, Ratnasamy; Pulimood, Anna Benjamin; Fleming, Jude Joseph; Mathew, George

    2013-01-01

    Chemoprotection refers to the use of specific natural or synthetic chemical agents to suppress or prevent the progression to cancer. The purpose of this study is to assess the protective effect of aspirin, vitamin C or zinc in a dimethyl hydrazine (DMH) colon carcinoma model in rats and to investigate the effect of these supplements on changes associated with colonic zinc status. Rats were randomly divided into three groups, group 1 (aspirin), group 2 (vitamin C) and group 3 (zinc), each being subdivided into two groups and given subcutaneous injection of DMH (30 mg/kg body wt) twice a week for 3 months and sacrificed at 4 months (A-precancer model) and 6 months (B-cancer model). Groups 1, 2, 3 were simultaneously given aspirin, vitamin C, or zinc supplement respectively from the beginning till the end of the study. It was observed that 87.5% of rats co-treated with aspirin or vitamin C showed normal colonic histology, along with a significant decrease in colonic tissue zinc at both time points. Rats co-treated with zinc showed 100% reduction in tumor incidence with no significant change in colonic tissue zinc. Plasma zinc, colonic CuZnSOD (copper-zinc superoxide dismutase) and alkaline phosphatase activity showed no significant changes in all 3 cotreated groups. These results suggest that aspirin, vitamin C or zinc given separately, exert a chemoprotective effect against chemically induced DMH colonic preneoplastic progression and colonic carcinogenesis in rats. The inhibitory effects are associated with maintaining the colonic tissue zinc levels and zinc enzymes at near normal without significant changes.

  7. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells.

    PubMed

    Preta, G; Marescotti, D; Fortini, C; Carcoforo, P; Castelli, C; Masucci, M; Gavioli, R

    2008-12-01

    Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.

  8. Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma.

    PubMed Central

    Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.

    1996-01-01

    We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244

  9. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization.

    PubMed

    Haffner, Michael C; Weier, Christopher; Xu, Meng Meng; Vaghasia, Ajay; Gürel, Bora; Gümüşkaya, Berrak; Esopi, David M; Fedor, Helen; Tan, Hsueh-Li; Kulac, Ibrahim; Hicks, Jessica; Isaacs, William B; Lotan, Tamara L; Nelson, William G; Yegnasubramanian, Srinivasan; De Marzo, Angelo M

    2016-01-01

    Prostate cancer often manifests as morphologically distinct tumour foci and is frequently found adjacent to presumed precursor lesions such as high-grade prostatic intraepithelial neoplasia (HGPIN). While there is some evidence to suggest that these lesions can be related and exist on a pathological and morphological continuum, the precise clonal and temporal relationships between precursor lesions and invasive cancers within individual tumours remain undefined. Here, we used molecular genetic, cytogenetic, and histological analyses to delineate clonal, temporal, and spatial relationships between HGPIN and cancer lesions with distinct morphological and molecular features. First, while confirming the previous finding that a substantial fraction of HGPIN lesions associated with ERG-positive cancers share rearrangements and overexpression of ERG, we found that a significant subset of such HGPIN glands exhibit only partial positivity for ERG. This suggests that such ERG-positive HGPIN cells either rapidly invade to form adenocarcinoma or represent cancer cells that have partially invaded the ductal and acinar space in a retrograde manner. To clarify these possibilities, we used ERG expression status and TMPRSS2-ERG genomic breakpoints as markers of clonality, and PTEN deletion status to track temporal evolution of clonally related lesions. We confirmed that morphologically distinct HGPIN and nearby invasive cancer lesions are clonally related. Further, we found that a significant fraction of ERG-positive, PTEN-negative HGPIN and intraductal carcinoma (IDC-P) lesions are most likely clonally derived from adjacent PTEN-negative adenocarcinomas, indicating that such PTEN-negative HGPIN and IDC-P lesions arise from, rather than give rise to, the nearby invasive adenocarcinoma. These data suggest that invasive adenocarcinoma can morphologically mimic HGPIN through retrograde colonization of benign glands with cancer cells. Similar clonal relationships were also seen for

  10. In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification

    PubMed Central

    Boulaaba, Mondher; Mkadmini, Khaoula; Tsolmon, Soninkhishig; Han, Junkyu; Smaoui, Abderrazak; Kawada, Kiyokazu; Ksouri, Riadh; Isoda, Hiroko; Abdelly, Chedly

    2013-01-01

    This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identified by LC-ESI-TOF-MS. Results showed that shoot extracts had an antiproliferative effect of about 55% as compared to the control and were characterised by substantial total polyphenol content (19 mg GAE/g DW) and high antioxidant activity (IC50 = 40 μg/mL for DPPH test). DAPI staining revealed that these extracts decrease DNA synthesis and reduce the proliferation of Caco-2 cells which were stopped at the G2/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) correlate with the changes in cell cycle distribution. Eight phenolic compounds were also identified. In conclusion, A. indicum showed interesting antioxidant capacities associated with a significant antiproliferative effect explained by a cell cycle blocking at the G2/M phase. Taken together, these data suggest that A. indicum could be a promising candidate species as a source of anticancer molecules. PMID:24348703

  11. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers.

    PubMed

    Chanburee, Sanipon; Tiyaboonchai, Waree

    2017-03-21

    This study aimed to compare the intestinal permeation of curcumin-loaded polymer coated nanostructured lipid carriers (NLCs) and uncoated NLCs using the Caco-2 cell model. The uncoated NLCs were prepared using a warm microemulsion technique, while polymer-coated NLCs were prepared with the same method but were followed by coating particle surface with polyethylene glycol (PEG) 400 or polyvinyl alcohol (PVA). After lyophilization, all formulations possessed a mean size of <400 nm with a zeta potential of ∼-30 mV and a high entrapment efficacy up to 90%. All NLCs formulation showed significantly improvement in curcumin water solubility, more than 60-folds as compared to curcumin dispersion. In addition, they could protect curcumin from degradation in basic pH, 90% curcumin remaining after 6 h incubation in culture medium. In vitro permeation studies revealed that PEG-NLCs and PVA-NLCs provided significantly higher apparent permeation coefficient (Papp ) value than uncoated NLCs. Moreover, after 6 months storage at 4 °C in the absence of sunlight, the physical, and chemical stabilities of the lyophilized curcumin-loaded polymer coated NLCs and uncoated NLCs could be maintained, i.e., the mean particle size and the amount of curcumin showed no significant changes (p > 0.05) compared to those freshly prepared formulations. Considered overall, polymer coated NLCs are an important strategy to improve the oral bioavailability of curcumin. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  12. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    PubMed

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.

  13. The effect of amino acid deprivation on the transfer of iron through Caco-2 cell monolayers.

    PubMed

    Roussel, Guenievre; Stevens, Valerie; Cottin, Sarah; McArdle, Harry J

    2017-03-01

    Iron (Fe) metabolism is modified by many nutritional factors. Amino acids (AA) play a central role in various biological processes, such as protein synthesis and energy supply. However, the influence of AA status on iron metabolism has not been investigated. Here, we test whether AA alters iron metabolism in an intestinal cell model. Both Fe uptake and transfer across the cell monolayer were significantly increased by non-essential AA deficiency (both p<0.001) while only Fe transfer was increased by essential AA deficiency (p<0.0001). Both essential and non-essential AA deficiency decreased DMT1 (±IRE) exon1A mRNA expression (respectively p=0.0007 and p=0.006) and increased expression of ferritin heavy chain. DMT1+IRE (also expressing exon1A or 1B) mRNA levels were decreased by essential AA deficiency (p=0.012). The mRNA levels of total DMT1 were also decreased by essential, but not non-essential, AA deficiency (p=0.006). Hepcidin levels were increased significantly by non-essential amino acid deprivation (p=0.047). Protein levels of ferroportin and/or ferritin heavy chain were not altered by AA deficiency, suggesting that they had no effect on Fe efflux or storage in the cell, though iron content of ferritin could be increased. Our data demonstrate, for the first time, that AA status affects iron transport and the expression of genes related to iron metabolism in Caco-2 cells, although the changes observed are not sufficient to explain the alteration in iron transport. We hypothesise that the effect on Fe transfer is mediated through an increased movement across the cell layer, rather than transfer across the cell membranes.

  14. Transepithelial Transport of Curcumin in Caco-2 Cells Is significantly Enhanced by Micellar Solubilisation.

    PubMed

    Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-03-01

    Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min(-1) cm(-2), respectively). This resulted in a higher Papp value of 2.11 × 10(-6) cm/s for Sol-CUR compared to a Papp value of 0.56 × 10(-6) cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.

  15. Tea Catechin Auto-oxidation Dimers are Accumulated and Retained by Caco-2 Human Intestinal Cells

    PubMed Central

    Neilson, Andrew P.; Song, Brian J.; Sapper, Teryn N.; Bomser, Joshua A.; Ferruzzi, Mario G.

    2010-01-01

    Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers [theasinensins (THSNs) and P-2 analogs) were quantified in commercial teas by HPLC-MS. (−)-Epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) homodimers were present at 10–43 and 0–62 µmol/g leaf, respectively. EGC-EGCG heterodimers were present at 0–79 µmol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three h accumulation of EGC and EGCG was 0.19– 0.55% and 1.24–1.35% respectively. Comparatively, 3h accumulation of the EGC P-2 analog, and THSNs C/E was 0.89 ± 0.28% and 1.53 ± 0.36%. Accumulation of P-2, and THSNs A/D was 6.93 ± 2.1%, and 10.1 ± 3.6%. EGCG-EGC heterodimer P-2 analog, and THSN B 3h accumulation was 4.87 ± 2.2%, and 4.65 ± 2.8% respectively. One h retention of P-2, and THSNs A/D was 171 ± 22%, and 29.6 ± 9.3% of accumulated amount suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium. PMID:20579525

  16. [A case of spindle cell carcinoma of the stomach presenting with hematochezia and weight loss due to fistulous tract formation with colon].

    PubMed

    An, Ji Won; Cheung, Dae Young; Seo, Min Woo; Lee, Hyun Jung; Lee, In Kyu; Kim, Tae Jung; Kim, Jin Il; Kim, Jae Kwang

    2013-08-25

    Spindle cell carcinoma (SpCC) is a rare tumor consisting of spindle cells which express cytokeratin. Despite recent advances in immunohistochemical and genetic studies, precise histogenesis of SpCC is still controversial and this tumor had been referred to with a wide range of names (in the past): carcinosarcoma, pseudosarcoma, sarcomatoid carcinoma, pseudosarcomatous carcinoma, and collision tumor. Recently, the authors experienced an extremely rare case of SpCC arising from the stomach. A 64-year-old male presented with unintended weight loss and hematochezia. Endoscopic examination revealed a fistulous tract between the stomach and the transverse colon which was made by direct invasion of SpCC of the stomach to the colon. Histologically, the tumor was positive for both vimentin and cytokeratin but negative for CD117, CD34, actin, and desmin. Herein, we report a case of SpCC arising from the stomach that formed a fistulous tract with the colon which was diagnosed during evaluation of hematochezia and weight loss.

  17. Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells.

    PubMed

    Ribiczey, Polett; Papp, Béla; Homolya, László; Enyedi, Ágnes; Kovács, Tünde

    2015-08-14

    We have previously presented co-expression of the plasma membrane calcium ATPase isoforms 4b (PMCA4b) and 1b (PMCA1b) in colon carcinoma cells, and selective upregulation of PMCA4b during differentiation initiated by short chain fatty acids or post-confluent growth. Here we show that the induction of PMCA4b expression is a characteristic feature of the post-confluency-induced differentiation of both enterocyte-type and goblet cell-type colon cancer cells. Vitamin D3 (1,25(OH)2D3) is a well-known regulator of intestinal Ca(2+) absorption and of basic cell functions such as growth and differentiation in various cell types. As PMCA proteins are involved both in intestinal Ca(2+) absorption and adenocarcinoma cell differentiation, we investigated the effect of 1,25(OH)2D3 on PMCA expression in enterocyte-like colon carcinoma cells, and monitored its effect on the expression of various differentiation markers. 1,25(OH)2D3 stimulated PMCA1b, but not PMCA4b expression without modulating the expression of the majority of the differentiation markers examined. Caco-2 cells differentiated in post-confluent cultures present normal enterocyte-like intestinal epithelial phenotype. To better understand the role of PMCA proteins in vectorial Ca(2+) transport by enterocytes, we also studied their subcellular localization in mature polarized Caco-2 cells. Both PMCA isoforms were located to the basolateral membrane, and the PMCA-specific immunofluorescent signal was significantly higher in vitamin D3-treated cells, underlining the 1,25(OH)2D3-induced upregulation of PMCA (presumably 1b isoform) expression in differentiated Caco-2 cells. We suggest that while PMCA1b has a housekeeping function in colon cancer cells, PMCA4b participates in the reorganization of the Ca(2+) signalling machinery during cell differentiation. The subcellular localization of PMCA1b and its selective 1,25(OH)2D3-dependent upregulation indicate that this isoform may have a specific role in 1,25(OH)2D3

  18. Induction of the cholesterol biosynthesis pathway in differentiated Caco-2 cells by the potato glycoalkaloid alpha-chaconine.

    PubMed

    Mandimika, Tafadzwa; Baykus, Hakan; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2007-10-01

    Glycoalkaloids are naturally occurring toxins in potatoes, which at high levels may induce toxic effects in humans, mainly on the gastrointestinal tract by cell membrane disruption. In order to better understand the molecular mechanisms underlying glycoalkaloid toxicity, we examined the effects of alpha-chaconine on gene expression in the Caco-2 intestinal epithelial cell line using DNA microarrays. Caco-2 cells were exposed for 6h to 10 microM alpha-chaconine in three independent experiments (randomized block design). The most prominent finding from our gene expression and pathway analyses was the upregulation of expression of several genes involved in cholesterol biosynthesis. This to some extent is in line with the literature-described mechanism of cell membrane disruption by glycoalkaloids. In addition, various growth factor signaling pathways were found to be significantly upregulated. This study is useful in understanding the mechanism(s) of alpha-chaconine toxicity, which may be extended to other potato glycoalkaloids more generally.

  19. Inhibition by yeast-derived mannoproteins of adherence to and invasion of Caco-2 cells by Campylobacter jejuni.

    PubMed

    Ganan, M; Carrascosa, A V; de Pascual-Teresa, S; Martinez-Rodriguez, A J

    2009-01-01

    The main objective of the present work was to study the influence of yeast-derived mannoproteins on the adherence to and invasion of Caco-2 cells by Campylobacter jejuni. Mannoprotein fractions were prepared by enzymatic and thermal extraction methods. The method used to prepare the mannoprotein extracts influenced their composition and determined the efficacy of the extract against C. jejuni adherence and/or invasion. The availability of mannose in the mannoprotein fraction seemed to be important for inhibiting effective adherence and invasion of Caco-2-cells by C. jejuni, although protein moieties also played a role in the process. The study of the mechanisms involved in the inhibition of C. jejuni adherence and invasion by mannoproteins may have further implications in the control of this foodborne pathogen.

  20. Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni.

    PubMed

    Ganan, M; Collins, M; Rastall, R; Hotchkiss, A T; Chau, H K; Carrascosa, A V; Martinez-Rodriguez, A J

    2010-02-28

    The ability of pectic oligosaccharides (POS) to inhibit adherence to and invasion of undifferentiated (UC) and differentiated (DC) Caco-2 cells by Campylobacter jejuni (C. jejuni) was investigated. It was observed that both adherence and invasion were significantly higher in UC than in DC. POS (2.5mg/ml) had no significant effect on the number of bacteria which can adhere to cells, but they significantly inhibited cell invasion. The extent of the anti-invasive effect of POS was dependent on the concentration, although the entire range tested (from 2.5mg/ml to 0.05 mg/ml) was capable of inhibiting the invasion of Caco-2 cells by Campylobacter to some degree. The pre-incubation or not of C jejuni with POS did not influence the behaviour observed. The results obtained in this work suggest that POS could be potentially useful as alternatives to antibiotics in the control of C. jejuni.

  1. Beta-cryptoxanthin from citrus juices: assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model.

    PubMed

    Dhuique-Mayer, Claudie; Borel, Patrick; Reboul, Emmanuelle; Caporiccio, Bertrand; Besancon, Pierre; Amiot, Marie-Josèphe

    2007-05-01

    Beta-Cryptoxanthin (beta-CX), a provitaminic carotenoid of potential interest for health, is found principally in Citrus fruit in both free and esterified forms. Little is known about the intestinal absorption of beta-CX especially with regard to the esterified forms. The aim of this study was to evaluate the absorption of free and esterified beta-CX using simulated digestion coupled with the Caco-2 model. Bioaccessibility was investigated by measuring the transfer of carotenoids from different citrus juices into micelles using an in vitro digestion system. Then, carotenoid uptake was evaluated by adding carotenoid-rich micelles (from the in vitro digestion) or synthetic micelles (made from synthetic lipids and carotenoids purified from citrus juice) to human intestinal cells (Caco-2 TC7 clone). Our results showed that beta-cryptoxanthin esters (beta-CXE) were partially hydrolysed during the in vitro digestion. The bioaccessibility of free beta-CX measured was significantly higher (40 (SD 1.05) %) than that of beta-carotene (30 (SD 1.9) %) and beta-CXE (16 (SD 1.5) %). In the same way, the incorporation of free beta-CX (27 (SD 1.01) %) into synthetic micelles exceeded (P<0.05) that of beta-carotene (10 (SD 0.7) %) and beta-CXE (8.8 (SD 0.4) %). In the case of micelles from in vitro digestion, the uptake of beta-carotene, free beta-CX and beta-CXE forms by Caco-2 cells was 14.3 (SD 1.8), 3.9 (SD 1.3), and 0.7 (SD 0.08) % respectively. These results showed a preferential uptake by Caco-2 cells of beta-carotene and free beta-CX compared with the two esters of beta-CX.

  2. Electrostatic properties of confluent Caco-2 cell layer correlates to their microvilli growth and determines underlying transcellular flow.

    PubMed

    Vandrangi, P; Lo, D D; Kozaka, R; Ozaki, N; Carvajal, N; Rodgers, V G J

    2013-10-01

    Recently, Rajapaksa et al. (2010) showed that the rate of uptake of potential vaccine delivery nanoparticles in the mucosal layer is a function of the electrostatic properties of the corresponding solvent. This fundamentally implies that the dominant driving forces that may be capitalized on for mucosal vaccine strategies are electrostatic in nature. We hypothesize that the driving force normal to the cell (in the direction from apical to basolateral across the cell) is of particular importance. In addition, it has been theoretically shown that the electrostatic properties of mucosal cells are directly related to their development of brush border. Here we correlate the development of brush border on a human mucosal epithelial model (Caco-2) cultured in DMEM on 3.0 µm pore sized polycarbonate membranes to their corresponding electrostatic properties characterized by measuring their normal zeta potential. Properties of normal streaming potential, hydraulic permeability, and brush border development (as determined by size and number) were monitored for 2, 6, and 16 days (after cells were confluent). Human endothelial cells (HECs), which lack brush border, were used as the control. Our results demonstrate that normal zeta potential of Caco-2 cells significantly changed from -5.7 ± 0.11 mV to -3.4 ± 0.11 mV for a period between 2 and 16 days, respectively. The zeta potential of the control cell line, HECs, stayed constant (statistically not different, P > 0.05) for the duration of the experiments. Our results show that the calculated increase in surface area of the Caco-2 cells with microvilli from 6 to 16 days was directly proportional to the corresponding measured zeta potential difference. These results imply that microvilli alter the electrostatic local environment around Caco-2 cells and, hence, enhance the normal electrostatic selective transport of solute across the mucosal barrier.

  3. Tick-Borne Encephalitis Virus Replication, Intracellular Trafficking, and Pathogenicity in Human Intestinal Caco-2 Cell Monolayers

    PubMed Central

    Möller, Lars; Schulzke, Joerg D.; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route. PMID

  4. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

    PubMed Central

    Hoi, Julia Katharina; Holik, Ann-Katrin; Geissler, Katrin; Hans, Joachim; Friedl, Barbara; Liszt, Kathrin; Krammer, Gerhard E.; Ley, Jakob P.; Somoza, Veronika

    2017-01-01

    Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by –48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by –57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1. PMID:28192456

  5. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells.

    PubMed

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (-)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22 ± 0.16, 0.90 ± 0.14, 3.25 ± 0.37, and 1.92 ± 0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68 ± 0.16, 0.88 ± 0.09, 2.39 ± 0.31, and 1.42 ± 0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems.

  6. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers.

    PubMed

    Yu, Chao; Achazi, Katharina; Möller, Lars; Schulzke, Joerg D; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.

  7. Intestinal transport of 3,6'-disinapoylsucrose, a major active component of Polygala tenuifolia, using Caco-2 cell monolayer and in situ rat intestinal perfusion models.

    PubMed

    Chen, Ying; Liu, Xinmin; Pan, Ruile; Zhu, Xiaoxin; Steinmetz, André; Liao, Yonghong; Wang, Ning; Peng, Bo; Chang, Qi

    2013-10-01

    3,6'-Disinapoylsucrose is a major active component of the herb Polygala tenuifolia which has long been used for relieving tranquilization, uneasiness of the mind, and improving learning and memory. Our previous study found that 3,6'-disinapoylsucrose had a very low oral bioavailability. Its mechanisms of absorption in the small intestine have so far been unclear. In the present study, the absorption mechanisms of 3,6'-disinapoylsucrose were investigated by using the Caco-2 cell monolayer and in situ rat intestinal perfusion models. The 3,6'-disinapoylsucrose concentration was determined by an LC/MS/MS method. In a Caco-2 cell transport study, the results showed that 3,6'-disinapoylsucrose had very limited intestinal permeability with average apparent permeability coefficient values around (1.11-1.34) × 10(-7) cm/s from the apical (A) to the basolateral (B) side and (1.37-1.42) × 10(-7) cm/s from B to A, at concentrations of 5, 20, and 33 µM. No concentration dependence in the 3,6'-disinapoylsucrose transport was observed. The apparent permeability coefficient value of 3,6'-disinapoylsucrose (5 µM) from A to B greatly increased to 4.49 × 10(-7) and 1.81 × 10(-7) cm/s, respectively, when the cells were preincubated with EDTA (17 mM) and sodium caprate (5.14 mM). No significant effect on the 3,6'-disinapoylsucrose transport by the inhibitors including verapamil, cyclosporine A, and sodium azide was observed. Similar results were found in the small intestinal perfusion study. The apparent permeability coefficient value of 3,6'-disinapoylsucrose greatly increased from 3.97 × 10(-6) to 23.4 × 10(-6) and 20.0 × 10(-6) cm/s in the presence of EDTA (17 mM) and sodium caprate (5.14 mM), respectively, in perfusion buffer. An in vitro stability evaluation of 3,6'-disinapoylsucrose in the gastrointestinal tract showed that it was relatively stable both in the stomach and small intestine contents, while it was found to be more instable in the colon contents. All of the

  8. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    PubMed Central

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  9. Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells.

    PubMed

    Kiss, Lóránd; Hellinger, Éva; Pilbat, Ana-Maria; Kittel, Ágnes; Török, Zsolt; Füredi, András; Szakács, Gergely; Veszelka, Szilvia; Sipos, Péter; Ózsvári, Béla; Puskás, László G; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2014-10-01

    Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and β-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp.

  10. Influence of diets rich in Maillard reaction products on calcium bioavailability. Assays in male adolescents and in Caco-2 cells.

    PubMed

    Mesías, Marta; Seiquer, Isabel; Navarro, María Pilar

    2009-10-28

    The effects of the high intake of Maillard reaction products (MRP) on calcium availability in adolescents and across Caco-2 cell monolayers were examined. In a 2 week randomized two-period crossover trial, 18 male adolescents consumed two diets, named white diet (WD) and brown diet (BD), which were poor and rich in MRP, respectively. A 3 day balance was performed at the end of each period, and fasting blood samples were collected. Calcium solubility and absorption across Caco-2 cells were studied after the in vitro digestion of the diets. The in vitro assay showed similar solubility after the in vitro digestion and similar transport across Caco-2 cells. In accordance, calcium bioavailability in adolescents did not vary between the diets (%WD = 40.4 +/- 5.1, %BD = 38.2 +/- 3.6). Serum and urine biochemical parameters related to calcium status and bone metabolism remained unaltered. Only deoxypyridinoline values were significantly lower after consumption of the BD (13.0 +/- 1.1 compared to 18.3 +/- 2.1 nM/Mm Cr in the WD), possibly indicative of less efficient bone turnover during this period. As calcium acquired during adolescence is essential to maximize peak bone mass and to prevent osteoporosis, possible long-term effects of excessive MRP intake during this period warrant attention.

  11. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  12. Effects of rhinacanthin-C on function and expression of drug efflux transporters in Caco-2 cells.

    PubMed

    Wongwanakul, Ratjika; Vardhanabhuti, Nontima; Siripong, Pongpun; Jianmongkol, Suree

    2013-09-01

    Rhinacanthin-C is a bioactive naphthoquinone ester found in Rhinacanthus nasutus Kurz (Acanthaceae). This compound has potential therapeutic value as an anticancer and antiviral agent. The purposes of this study were to determine the effects of this compound on the function and the expression of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2), using the in vitro model of Caco-2 cells. The activities of P-gp and MRP2 were determined by following the intracellular accumulation of calcein and 5(6)-carboxy-2',7'-dichlorofluorescein in the uptake assays with fluorescence spectroscopy. The expression of P-gp after prolonged exposure was evaluated by flow cytometry with the use of a fluorescein isothiocyanate-conjugated anti-human P-gp antibody. Our results showed that the inhibitory effect of rhinacanthin-C was more potent toward P-gp than MRP2, and was reversible. Short-term exposure of Caco-2 cells with rhinacanthin-C (100 μM) resulted in increase in P-gp expression without any significant change in its function. Extended exposure of Caco-2 cells to the naphthoquinone at the highest non-cytotoxic concentration (0.625 μM) for 7 days had no effect on the expression and the function of P-gp. These findings suggested that rhinacanthin-C might raise the problem of herb-drug interaction when co-administered with other P-gp substrates.

  13. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers.

    PubMed

    Pérez-Sánchez, Almudena; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category.

  14. Suitability of the in vitro Caco-2 assay to predict the oral absorption of aromatic amine hair dyes.

    PubMed

    Obringer, Cindy; Manwaring, John; Goebel, Carsten; Hewitt, Nicola J; Rothe, Helga

    2016-04-01

    Oral absorption is a key element for safety assessments of cosmetic ingredients, including hair dye molecules. Reliable in vitro methods are needed since the European Union has banned the use of animals for the testing of cosmetic ingredients. Caco-2 cells were used to measure the intestinal permeability characteristics (Papp) of 14 aromatic amine hair dye molecules with varying chemical structures, and the data were compared with historical in vivo oral absorption rat data. The majority of the hair dyes exhibited Papp values that indicated good in vivo absorption. The moderate to high oral absorption findings, i.e. ≥60%, were confirmed in in vivo rat studies. Moreover, the compound with a very low Papp value (APB: 3-((9,10-dihydro-9,10-dioxo-4-(methylamino)-1-anthracenyl)amino)-N,N-dimethyl-N-propyl-1-propanaminium) was poorly absorbed in vivo as well (5% of the dose). This data set suggests that the Caco-2 cell model is a reliable in vitro tool for the determination of the intestinal absorption of aromatic amines with diverse chemical structures. When used in combination with other in vitro assays for metabolism and skin penetration, the Caco-2 model can contribute to the prediction and mechanistic interpretation of the absorption, metabolism and elimination properties of cosmetic ingredients without the use of animals.

  15. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.).

    PubMed

    Koronowicz, Aneta A; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  16. [Establishment of Caco-2 cell monolayer model with collagen coating 6-well plates for study of traditional Chinese medicine prescription].

    PubMed

    Yang, Yan-Fang; Wu, Ni; Yang, Xiu-Wei

    2014-02-01

    Caco-2 cell monolayer model is widely utilized in drug absorption study and 12-well transwellTM plates were commonly used to study the absorption of different kinds of natural products. To establish a stable method for the study of traditional Chinese medicine prescription, 6-well plates were chosen because of the larger well volumes than 12-well plates. To study the impacts of collagen kinds, coating density as well as coating time on the cell culture, the transepithelial electrical resistance of Caco-2 cell monolayers grown on different collagen coating transwells was determined, and the permeations of propranolol and atenolol as standard markers were detected with HPLC. The results showed that the kinds of collagen, the different coating densities and coating time of rat tail collagen had no significant influences on the Caco-2 cell monolayer integrality and absorption capacity. 6-well plates coated with 2 micro g Scm-2 rat tail collagen for 1 hour were enough reliable and suitable for the study of traditional Chinese medicine prescription in vitro.

  17. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates

    PubMed Central

    Vidal, Jorge E.; Ohtani, Kaori; Shimizu, Tohru; McClane, Bruce A.

    2009-01-01

    Clostridium perfringens type C isolates cause necrotizing enteritis in humans and domestic animals. In vitro, type C isolates often produce beta toxin (CPB), beta2 toxin (CPB2), alpha toxin (CPA), perfringolysin O (PFO), and TpeL during (or after) late log-phase growth. In contrast, the current study found that many type C isolates respond to close contact with enterocyte-like Caco-2 cells by producing all toxins, except TpeL, much more rapidly than occurs during in vitro growth. This in vivo effect involves rapid transcriptional upregulation of the cpb, cpb2, pfoA and plc toxin genes. Rapid Caco-2 cell-induced upregulation of CPB and PFO production involves the VirS/VirR two-component system, since upregulated in vivo transcription of the pfoA and cpb genes was blocked by inactivating the virR gene and was reversible by complementation to restore VirR expression. However, the luxS quorum sensing system is not required for the rapid upregulation of type C toxin production induced by contact with Caco-2 cells. These results provide the first indication of host cell:pathogen cross-talk affecting toxin production kinetics by any pathogenic Clostridium spp., identify in vivo vs. in vitro differences in C. perfringens toxin expression, and implicate VirS/VirR as a possible contributor to some C. perfringens enteric diseases. PMID:19438515

  18. Effect of growth phase on the adherence to and invasion of Caco-2 epithelial cells by Campylobacter.

    PubMed

    Ganan, M; Campos, G; Muñoz, R; Carrascosa, A V; de Pascual-Teresa, S; Martinez-Rodriguez, A J

    2010-05-30

    The effect of growth phase on the adherence to and invasion of Caco-2 epithelial cells by five strains of Campylobacter was studied. No significant differences were observed between the behaviors in the exponential or stationary phases for the most stationary-phase tolerant strains (C. jejuni 118 and C. coli LP2), while the strains that produced a greater reduction in the viability in the stationary phase (C. jejuni 11351, C. jejuni 11168 and C. jejuni LP1), also presented reduced adherence to and invasion of Caco-2 cells. In order to find a possible explanation for the observed differences, the presence of putative virulence factors was studied in the analyzed strains. In spite of the fact that C. jejuni 118 and C. jejuni 11168 strains showed a different adherence to and invasion of Caco-2 cells behavior, they posses identical alleles for ciaB, cadF, and pldA loci. From the virulence factors analyzed, only the flaA locus was different among both strains.

  19. Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells.

    PubMed

    Deiana, Monica; Corona, Giulia; Incani, Alessandra; Loru, Debora; Rosa, Antonella; Atzeri, Angela; Paola Melis, M; Assunta Dessì, M

    2010-10-01

    Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.

  20. Inhibitory action of soybean beta-conglycinin hydrolysates on Salmonella typhimurium translocation in Caco-2 epithelial cell monolayers.

    PubMed

    Yang, Baichong; Lv, Ying; Chen, Yang; Wang, Jin; Tang, Wuxia; Guo, Shuntang

    2008-08-27

    Soybean protein hydrolysates are widely used as functional foods as they have antioxidative properties able to enhance immune responses in humans. The alcalase enzymatic hydrolysates of beta-conglycinin were fractionated by ultrafiltration, and two main fractions, SP1 (<10 kDa) and SP2 (10-20 kDa), were obtained. The effects of these two fractions on the growth, development of epithelial cells, and formation of intercellular tight junctions were tested on an in vitro Caco-2 cell culture system. The inhibitory effects of SP1 and SP2 on the penetration of Salmonella typhimurium into Caco-2 epithelial cells were also examined. The results showed that the addition of >0.05 g/L of SP2 improved epithelial cell growth and that a concentration of 0.5 g/L of SP2 increased intercellular tight junction formation, which resulted in increased of transepithelial monolayer resistance (TER) values. Moreover, a lower S. typhimurium count compared to control was obtained when Caco-2 cells were grown in 0.05 and 0.5 g/L of SP2. These results show that beta-conglycinin hydrolysates play an important role in resisting S. typhimurium penetration into intestinal epithelial cells and that high molecular mass peptides (10-20 kDa) were more effective overall than low molecular mass peptides.

  1. Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar

    2014-01-01

    2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081

  2. Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle.

    PubMed

    Lin, Wei; Zheng, Liangpu; Zhuang, Qunchuan; Shen, Aling; Liu, Liya; Chen, Youqin; Sferra, Thomas J; Peng, Jun

    2013-10-01

    Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer.

  3. Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle

    PubMed Central

    LIN, WEI; ZHENG, LIANGPU; ZHUANG, QUNCHUAN; SHEN, ALING; LIU, LIYA; CHEN, YOUQIN; SFERRA, THOMAS J.; PENG, JUN

    2013-01-01

    Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer. PMID:24137475

  4. Cytotoxic and anti-inflammatory effects of onion peel extract on lipopolysaccharide stimulated human colon carcinoma cells.

    PubMed

    Kim, Jungmi; Kim, Ji-Sang; Park, Eunju

    2013-12-01

    The present study investigated the cytotoxic activity of ethanol extract of onion peel (OPE) in HT-29 human colon carcinoma cells. High-performance liquid chromatography (HPLC) analysis was performed to determine the amounts of phenolic acids and flavonoids in OPE. In addition, the influence of OPE on antioxidant- and inflammation-associated gene expression was also determined in a model of lipopolysaccharide (LPS)-stimulated HT-29 cells. HPLC analysis showed that OPE contained well-known antioxidant compounds, including p-coumaric acid, vanillic acid, epicatechin, and morin. After incubation with OPE, HT-29 cells showed either a loss of normal nuclear architecture or detachability from each other. The cytotoxic effects of OPE on HT-29 cells were confirmed by MTT and LDH release assays. LPS-induced oxidative conditions effectively downregulated TNF-α mRNA expression in OPE pretreated HT-29 cells compared with cells only stimulated with LPS. In addition, the expression of heme oxygenase-1 (HO-1) and glutathione S-transferase (GSTs) detoxification genes (i.e., GSTM1, GSTT1, and GSTP1) was upregulated after treatment with LPS at sublethal concentrations. However, the LPS-induced mRNA expression of HO-1 and GSTs was significantly attenuated by treatment with OPE. Therefore, onion peel extract is a promising component of future nutraceuticals and value-added products.

  5. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  6. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

    PubMed Central

    Liu, Yuxia; Shen, Hua; Pang, Lifang; Yin, Duanzhi; Wang, Yongxian; Li, Shanqun; Shi, Hongcheng

    2013-01-01

    As large amount of vasoactive intestinal peptide (VIP) receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R8, 15, 21, L17]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R8,15,21, L17]-VIP was produced with the radiochemical yield being as high as 33.6% ± 3% (decay-for-corrected, n = 5) achieved within 100 min, a specific activity of 255 GBq/μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R8,15,21, L17]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor. PMID:24459669

  7. Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance.

    PubMed Central

    Stein, U.; Walther, W.; Shoemaker, R. H.

    1996-01-01

    Reversal of multidrug resistance (MDR) may offer a means of increasing the effectiveness of tumour chemotherapy. A variety of recent evidence indicates that cytokines may be particularly useful in this endeavour. To investigate the molecular mechanism by which cytokines may sensitise multidrug-resistant colon carcinoma cells, HCT15 and HCT116, to treatment with MDR-related drugs, we evaluated the effects of the human cytokines tumour necrosis factor alpha (TNF alpha), interleukin 2 (IL-2) and interferon gamma (IFN gamma) on mdr1 gene expression at the mRNA level by reverse transcription-polymerase chain reaction (RT-PCR) and at the protein level with monoclonal antibodies by immuno flow cytometry. P-glycoprotein function was examined after accumulation of the fluorescent drug, doxorubicin, by flow cytometry. Chemosensitivity to doxorubicin and vincristine was analysed using the XTT assay. All three cytokines were found to modulate the MDR characteristics on mdr1 expression levels, P-glycoprotein function and measured chemosensitivity to MDR-associated anti-cancer drugs. This cytokine-induced reversal of MDR was strongly time dependent, with maximal effects after 48 and 72 h of cytokine treatment. If similar modulation of MDR phenotype can be obtained in in vivo models, it may be possible to verify the time course for modulation by cytokine treatment and to design appropriate clinical trials of this strategy for MDR reversal. Images Figure 1 PMID:8912533

  8. Interleukin-10 Enhances the Intestinal Epithelial Barrier in the Presence of Corticosteroids through p38 MAPK Activity in Caco-2 Monolayers: A Possible Mechanism for Steroid Responsiveness in Ulcerative Colitis

    PubMed Central

    Lorén, Violeta; Cabré, Eduard; Ojanguren, Isabel; Domènech, Eugeni; Pedrosa, Elisabet; García-Jaraquemada, Arce; Mañosa, Miriam; Manyé, Josep

    2015-01-01

    Glucocorticosteroids are the first line therapy for moderate-severe flare-ups of ulcerative colitis. Despite that, up to 60% of patients do not respond adequately to steroid treatment. Previously, we reported that low IL-10 mRNA levels in intestine are associated with a poor response to glucocorticoids in active Crohn’s disease. Here, we test whether IL-10 can favour the response to glucocorticoids by improving the TNFα-induced intestinal barrier damage (assessed by transepithelial electrical resistance) in Caco-2 monolayers, and their possible implications on glucocorticoid responsiveness in active ulcerative colitis. We show that the association of IL-10 and glucocorticoids improves the integrity of TNFα-treated Caco-2 cells and that p38 MAPK plays a key role. In vitro, IL-10 facilitates the nuclear translocation of p38 MAPK-phosphorylated thereby modulating glucocorticoids-receptor-α, IL-10-receptor-α and desmoglein-2 expression. In glucocorticoids-refractory patients, p38 MAPK phosphorylation and membrane desmoglein-2 expression are reduced in colonic epithelial cells. These results suggest that p38 MAPK-mediated synergism between IL-10 and glucocorticoids improves desmosome straightness contributing to the recovery of intestinal epithelium and reducing luminal antigens contact with lamina propria in ulcerative colitis. This study highlights the link between the intestinal epithelium in glucocorticoids-response in ulcerative colitis. PMID:26090671

  9. Interleukin-10 Enhances the Intestinal Epithelial Barrier in the Presence of Corticosteroids through p38 MAPK Activity in Caco-2 Monolayers: A Possible Mechanism for Steroid Responsiveness in Ulcerative Colitis.

    PubMed

    Lorén, Violeta; Cabré, Eduard; Ojanguren, Isabel; Domènech, Eugeni; Pedrosa, Elisabet; García-Jaraquemada, Arce; Mañosa, Miriam; Manyé, Josep

    2015-01-01

    Glucocorticosteroids are the first line therapy for moderate-severe flare-ups of ulcerative colitis. Despite that, up to 60% of patients do not respond adequately to steroid treatment. Previously, we reported that low IL-10 mRNA levels in intestine are associated with a poor response to glucocorticoids in active Crohn's disease. Here, we test whether IL-10 can favour the response to glucocorticoids by improving the TNFα-induced intestinal barrier damage (assessed by transepithelial electrical resistance) in Caco-2 monolayers, and their possible implications on glucocorticoid responsiveness in active ulcerative colitis. We show that the association of IL-10 and glucocorticoids improves the integrity of TNFα-treated Caco-2 cells and that p38 MAPK plays a key role. In vitro, IL-10 facilitates the nuclear translocation of p38 MAPK-phosphorylated thereby modulating glucocorticoids-receptor-α, IL-10-receptor-α and desmoglein-2 expression. In glucocorticoids-refractory patients, p38 MAPK phosphorylation and membrane desmoglein-2 expression are reduced in colonic epithelial cells. These results suggest that p38 MAPK-mediated synergism between IL-10 and glucocorticoids improves desmosome straightness contributing to the recovery of intestinal epithelium and reducing luminal antigens contact with lamina propria in ulcerative colitis. This study highlights the link between the intestinal epithelium in glucocorticoids-response in ulcerative colitis.

  10. Sulindac modulates secreted protein expression from LIM1215 colon carcinoma cells prior to apoptosis.

    PubMed

    Greening, David W; Ji, Hong; Kapp, Eugene A; Simpson, Richard J

    2013-11-01

    Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1mM sulindac over 16h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433-451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1mM sulindac treatment for 8h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30K, 3K and 1K). Proteins isolated in the >30K and 3-30K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1-3K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS-MS. Collectively, our data show that LIM1215 cells treated with 1mM sulindac for 8h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5AC, 6

  11. Histological healing favors lower risk of colon carcinoma in extensive ulcerative colitis

    PubMed Central

    Korelitz, Burton I; Sultan, Keith; Kothari, Megha; Arapos, Leo; Schneider, Judy; Panagopoulos, Georgia

    2014-01-01

    AIM: To search for the answer in extensive ulcerative colitis as to whether histological inflammation persisting despite endoscopic mucosal healing serves to increase the risk of colon cancer (CC) or high grade dysplasia (HGD). METHODS: This is a single center (Lenox Hill Hospital) retrospective cohort and descriptive study of extensive ulcerative colitis (UC) for 20 years or more with a minimum of 3 surveillance colonoscopies and biopsies performed after the first 10 years of UC diagnosis. Data analyzed included: duration of UC, date of diagnosis of (CC) or (HGD), number of surveillance colonoscopies, and biopsies showing histological inflammation and its severity in each of 6 segments when endoscopic appearance is normal. Two subgroups of patients were compared: group 1 patients who developed CC/HGD and group 2 patients who did not develop CC/HGD. RESULTS: Of 115 patients with longstanding UC reviewed, 68 patients met the inclusion criteria. Twenty patients were in group 1 and 48 in group 2. We identified the number of times for each patient when the endoscopic appearance was normal but biopsies nevertheless showed inflammation. Overall, histological disease activity in the absence of gross/endoscopic disease was found in 31.2% (95%CI: 28%-35%) of colonoscopies performed on the entire cohort of 68 patients. Histological disease activity when the colonoscopy showed an absence of gross disease activity was more common in group 1 than group 2 patients, 88% (95%CI: 72%-97%) vs 59% (95%CI: 53%-64%). Only 3/20 (15%) of patients in group 1 ever had a colonoscopy completely without demonstrated disease activity (i.e., no endoscopic or histological activity) as compared to 37/48 (77%) of patients in group 2, and only 3.3% (95%CI: 0.09%-8.3%) of colonoscopies in group 1 had no histological inflammation compared to 23% (95%CI: 20%-27%) in group 2. CONCLUSION: Progression to HGD or CC in extensive ulcerative colitis of long standing was more frequently encountered among

  12. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    PubMed Central

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto

    2015-01-01

    ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and

  13. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    SciTech Connect

    Lee, Seung-Min; Attieh, Zouhair K.; Son, Hee Sook; Chen, Huijun; Bacouri-Haidar, Mhenia; Vulpe, Chris D.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  14. Oligoarginine-based prodrugs with self-cleavable spacers for caco-2 cell permeation.

    PubMed

    Takayama, Kentaro; Suehisa, Yuka; Fujita, Takuya; Nguyen, Jeffrey-Tri; Futaki, Shiroh; Yamamoto, Akira; Kiso, Yoshiaki; Hayashi, Yoshio

    2008-11-01

    In the development of oligoarginine-based prodrugs with self-cleavable spacers for intestinal absorption, we previously reported a series of spacers with variable half-lives of parent compound release based on a neighboring group participation mechanism from an amino acid side-chain structure next to the succinyl moiety. In the present study, to diversify the half-life of the spacer, we first synthesized several additional fluorescein isothiocyanate ethanolamine (FE)-heptaarginine conjugates (4d--g) and evaluated their conversion time. To investigate the overall cellular uptake of FE-heptaarginine conjugates, the cellular uptakes of FE-heptaarginines 4a and 4b possessing the longest and shortest half-lives, respectively, were evaluated using HeLa cells by confocal microscopy and flow cytometry. Conjugate 4a with a longer half-life was more efficiently taken up by the cells than conjugate 4b. However, in term of the transport rate of parent FE 1 in in vitro Caco-2 cell permeation assay, conjugate 4b with a short half-life could function more efficiently that conjugate 4a. To understand the reason for this discrepant finding, fluorescence on the basal side medium after treatment with conjugate 4b in the permeation assay was determined. It became apparent that the fluorescence was mostly from the parent FE 1 itself, and not conjugate 4b, suggesting that the conjugate was cleaved inside the cells. Moreover, the conversion time of conjugate 4b (t1/2=9.4 min at pH 7.4) was significantly extended in slightly acidic media. These results suggest that the conversion rate was slowed in the relatively acidic endosomal environment where the conjugate was transferred after endocytosis, and resulted in a favorable migration time across the cells. The other conjugates, including conjugate 4a, were more stable inside of the cell, resulting in very long conversion times that were ineffective in increasing the permeation rate. Therefore, spacers with shorter half lives, in order to

  15. S18 family of mitochondrial ribosomal proteins: evolutionary history and Gly132 polymorphism in colon carcinoma.

    PubMed

    Mushtaq, Muhammad; Ali, Raja Hashim; Kashuba, Vladimir; Klein, George; Kashuba, Elena

    2016-08-23

    S18 family of mitochondrial ribosomal proteins (MRPS18, S18) consists of three members, S18-1 to -3. Earlier, we found that overexpression of S18-2 protein resulted in immortalization and eventual transformation of primary rat fibroblasts. The S18-1 and -3 have not exhibited such abilities. To understand the differences in protein properties, the evolutionary history of S18 family was analyzed. The S18-3, followed by S18-1 and S18-2 emerged as a result of ancient gene duplication in the root of eukaryotic species tree, followed by two metazoan-specific gene duplications. However, the most conserved metazoan S18 homolog is the S18-1; it shares the most sequence similarity with S18 proteins of bacteria and of other eukaryotic clades. Evolutionarily conserved residues of S18 proteins were analyzed in various cancers. S18-2 is mutated at a higher rate, compared with S18-1 and -3 proteins. Moreover, the evolutionarily conserved residue, Gly132 of S18-2, shows genetic polymorphism in colon adenocarcinomas that was confirmed by direct DNA sequencing.Concluding, S18 family represents the yet unexplored important mitochondrial ribosomal proteins.

  16. S18 family of mitochondrial ribosomal proteins: evolutionary history and Gly132 polymorphism in colon carcinoma

    PubMed Central

    Mushtaq, Muhammad; Ali, Raja Hashim; Kashuba, Vladimir; Klein, George; Kashuba, Elena

    2016-01-01

    S18 family of mitochondrial ribosomal proteins (MRPS18, S18) consists of three members, S18-1 to −3. Earlier, we found that overexpression of S18-2 protein resulted in immortalization and eventual transformation of primary rat fibroblasts. The S18-1 and −3 have not exhibited such abilities. To understand the differences in protein properties, the evolutionary history of S18 family was analyzed. The S18-3, followed by S18-1 and S18-2 emerged as a result of ancient gene duplication in the root of eukaryotic species tree, followed by two metazoan-specific gene duplications. However, the most conserved metazoan S18 homolog is the S18-1; it shares the most sequence similarity with S18 proteins of bacteria and of other eukaryotic clades. Evolutionarily conserved residues of S18 proteins were analyzed in various cancers. S18-2 is mutated at a higher rate, compared with S18-1 and −3 proteins. Moreover, the evolutionarily conserved residue, Gly132 of S18-2, shows genetic polymorphism in colon adenocarcinomas that was confirmed by direct DNA sequencing. Concluding, S18 family represents the yet unexplored important mitochondrial ribosomal proteins. PMID:27489352

  17. Hemorrhoids, anal fissure, and carcinoma of the colon, rectum, and anus during pregnancy.

    PubMed

    Medich, D S; Fazio, V W

    1995-02-01

    The pregnant patient afflicted with a variety of colorectal conditions merits special consideration for reasons related to the safety and timeliness of operation while preserving fetal viability and fertility. The literature is scanty with respect to hemorrhoids, fissures, and colorectal and anal carcinoma. Therefore, the patient has to have a forthright discussion with her physician(s) about the pros and cons of operative and nonoperative approaches, which can result in either therapeutic abortion and timely surgery versus preserving the fetus and taking on the unknown factor of whether delay in treatment will cause an adverse outcome. This underscores the need for a frank discussion with the patient with regard to anticipated outcomes. In benign conditions, there is more latitude to adopt a conservative approach, as the patient's ability to tolerate the symptoms of her condition would dictate the need for definitive operative therapy. In the patient with malignancy, delaying surgical or radiation therapy carries an unknown risk to the patient. Here, the patient's personal views regarding abortion and future fertility dictate the timing of definitive treatment.

  18. Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: caspase-8 and caspase-9 is associated with poor prognosis.

    PubMed

    Sträter, Jörn; Herter, Ines; Merkel, Gaby; Hinz, Ulf; Weitz, Jürgen; Möller, Peter

    2010-08-15

    Apoptosis protease activating factor-1 (APAF-1), caspase-8 and caspase-9 are important factors in the execution of death signals. To study their prognostic influence in colon carcinoma, expression of APAF-1, caspase-8 and caspase-9 was determined by immunohistochemistry in normal colon mucosa (n = 8) and R0-resected stage II/III colon carcinomas (n >or= 124) using a semiquantitative score. Staining results were correlated with disease-free survival by Kaplan-Meier estimates, and multivariate Cox analyses were performed. In normal colon, APAF-1 and caspase-8 are most strongly expressed in the luminal surface epithelium, whereas caspase-9 is expressed all along the crypt axis. In colon carcinomas, there is considerable variability in the expression of these proapoptotic factors, although complete loss of caspase-8 and caspase-9 is rare. APAF-1 expression did not correlate with disease-free survival. Instead, both expression of caspase-9 and high-level expression of caspase-8 in a majority of tumor cells were significantly associated with adverse prognosis (p = 0.004 and p = 0.029, respectively). The influence of caspase-8 expression was mainly seen in patients with stage III colon carcinoma (p = 0.011), whereas the prognostic influence of caspase-9 expression was significant in stage II cases (p = 0.037) and just failed to be significant in stage III tumors (p = 0.0581). After adjusting for confounding factors in a multivariate Cox analysis, the effect of caspase-9 in predicting disease-free survival was confirmed (p = 0.003). Our data suggest that, in colon carcinomas, expression of caspase-8 and caspase-9 is significantly associated with poor survival. Caspase-9 may be an independent prognosticator in colon carcinoma.

  19. The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs.

    PubMed

    Paduch, Roman; Kandefer-Szerszeń, Martyna; Piersiak, Tomasz

    2010-01-01

    In colorectal cancers, the local cytokine network and the levels of nitric oxide (NO) and reactive oxygen species (ROS) are known to be closely related to cancer progression and metastasis, but the influence of the currently administered therapies on the cancer microenvironment is not completely understood. We analyzed the levels of reactive oxygen species (ROS), nitric oxide (NO), and cachexia-mediated cytokines (IL-1beta, IL-6, TNF-alpha) in cocultures of human colon carcinoma spheroids prepared with cells derived from tumors of different grades with human normal colon epithelial and myofibroblast cells and normal endothelial cells. We also analyzed the influence of standard chemotherapy with 5-fluorouracil (5-FU) and leucovorin (LV) combined with camptothecin (CPT-11) (IFL regimen with drug concentrations adjusted to in vitro conditions) on these parameters. The results indicated that adhesion of colon carcinoma spheroids to colon epithelium and myofibroblast monolayers induced O2- anion production but decreased NO levels compared to the sum of the radicals released by monocultures of the two types of cells. Coculture of colon carcinoma spheroids with endothelium was an exception to this rule, as only HT29 cells decreased NO production. In cocultures, anticancer drugs additionally, though only slightly and insignificantly, increased the production of the radicals compared to a nontreated coculture, but in monocultures, the drugs, and especially CPT-11, were ROS inducers and simultaneously NO production inhibitors. However, the levels of released ROS and NO were dependent on the stage of colon carcinoma that the cells were derived from. LS180 cells (grade B) grown in monocultures produced the lowest ROS levels but were the best producers of NO. Adhesion of tumor spheroids to normal cells influenced the microenvironmental cytokine network compared to monocultures, decreasing IL-1beta and TNF-alpha secretion but significantly enhancing L-6 levels. The addition of

  20. Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface

    PubMed Central

    1984-01-01

    After 24 h of continuous labeling with radioactive precursors, a high molecular weight heparan sulfate proteoglycan (HS-PG) was isolated from both the medium and cell layer of human colon carcinoma cells (WiDr) in culture. The medium HS-PG eluted from a diethylaminoethyl anion exchange column with 0.45-0.50 M NaCl, had an average density of 1.46- 1.49 g/ml on dissociative CsCl density-gradient ultracentrifugation, and eluted from Sepharose CL-2B with a Kav = 0.57. This proteoglycan had an estimated Mr of congruent to 8.5 X 10(5), with glycosaminoglycan chains of Mr = 3 X 10(4) which were all susceptible to HNO2 deaminative cleavage. Deglycosylation of the HS-PG with polyhydrogen fluoride resulted in a 3H-core protein with Mr congruent to 2.4 X 10(5). The cell layer contained a population of HS-PG with characteristics almost identical to that released into the medium but with a larger Mr = 9.5 X 10(5). Furthermore, an intracellular pool contained smaller heparan sulfate chains (Mr congruent to 1 X 10(4)) which were mostly devoid of protein core. In pulse chase experiments, only the large cell- associated HS-PG was released (approximately 58%) into the medium as intact proteoglycan and/or internalized and degraded (approximately 42%), with a t1/2 = 6 h. However, the small intracellular component was never released into the medium and was degraded at a much slower rate. When the cells were subjected to mild proteolytic treatment, only the large cell-associated HS-PG, but none of the small component, was displaced. Addition of exogenous heparin did not displace any HS-PG into the medium. Both light and electron microscopic immunocytochemistry revealed that the cell surface reacted with antibody against an HS-PG isolated from a basement membrane-producing tumor. Electron microscopic histochemistry using ruthenium red and/or cuprolinic blue revealed numerous 10-50-nm diam granules and 70-220-nm- long electron-dense filaments, respectively, on the surface of the tumor

  1. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells.

    PubMed

    Vahedi Larijani, Laleh; Ghasemi, Maryam; AbedianKenari, Saeid; Naghshvar, Farshad

    2014-01-01

    Most patients with gastrointestinal cancers refer to the health centers at advanced stages of the disease and conventional treatments are not significantly effective for these patients. Therefore, using modern therapeutic approaches with lower toxicity bring higher chance for successful treatment and reduced adverse effects in such patients. The aim of this study is to evaluate the effect of avocado fruit extracts on inhibition of the growth of cancer cells in comparison with normal cells. In an experimental study, ethanol, chloroform, ethyl acetate, and petroleum extracts of avocado (Persea americana) fruit were prepared. Then, the effects if the extracts on the growth of esophageal squamous cell carcinoma and colon adenocarcinoma cell lines were evaluated in comparison with the control group using the MTT test in the cell culture medium. Effects of the four extracts of avocado fruit on three cells lines of peripheral blood mononuclear cells, esophageal squamous cell carcinoma, and colon adenocarcinoma were tested. The results showed that avocado fruit extract is effective in inhibition of cancer cell growth in comparison with normal cells (P<0.05). Avocado fruit is rich in phytochemicals, which play an important role in inhibition of growth of cancer cells. The current study for the first time demonstrates the anti-cancer effect of avocado fruit extracts on two cancers common in Iran. Therefore, it is suggested that the fruit extracts can be considered as appropriate complementary treatments in treatment of esophageal and colon cancers.

  2. Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model.

    PubMed

    Ruotsalainen, J J; Kaikkonen, M U; Niittykoski, M; Martikainen, M W; Lemay, C G; Cox, J; De Silva, N S; Kus, A; Falls, T J; Diallo, J-S; Le Boeuf, F; Bell, J C; Ylä-Herttuala, S; Hinkkanen, A E; Vähä-Koskela, M J

    2015-01-01

    In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon in vitro upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant in vivo, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.

  3. Ameliorative effects of pyrazinoic acid against oxidative and metabolic stress manifested in rats with dimethylhydrazine induced colonic carcinoma.

    PubMed

    Sahdev, Anil K; Raj, Vinit; Singh, Ashok K; Rai, Amit; Keshari, Amit K; De, Arnab; Samanta, Amalesh; Kumar, Umesh; Rawat, Atul; Kumar, Dinesh; Nath, Sneha; Prakash, Anand; Saha, Sudipta

    2017-03-30

    Pyrazinoic acid (PA) is structurally similar to nicotinic acid which acts on G-protein-coupled receptor (GPR109A). GPR109A expresses in colonic and intestinal epithelial sites, and involves in DNA methylation and cellular apoptosis. Therefore, it may be assumed that PA has similar action like nicotinic acid and may be effective against colorectal carcinoma (CRC). CRC was produced via subcutaneous injection of dimethylhydrazine (DMH) at 40 mg/kg body weight once in a week for four weeks. After that, PA was administered orally at two doses of 10 and 25 mg/kg daily for 15 days to observe the antiproliferative effect. Various physiological, oxidative stress, molecular parameters, histopathology, RT-PCR and NMR based metabolomics were performed to evaluate the antiproliferative potential of PA. Our results collectively suggested that PA reduced body weight, tumor volume and incidence no. to normal. It restored various oxidative stress parameters and normalized IL-2, IL-6, and COX-2 as compared to carcinogen control. In molecular level, over expressed IL-6 and COX-2 genes became normal after PA administration. Again, normal tissue architecture was prominent after PA administration. Score plots of PLS-DA models exhibited that PA treated groups were significantly different from CRC group. We found that CRC rat sera have increased levels of acetate, glutamine, o-acetyl-glycoprotein, succinate, citrulline, choline, o-acetyl choline, tryptophan, glycerol, creatinine, lactate, citrate and decreased levels of 3-hydroxy butyrate, dimethyl amine, glucose, maltose, myoinositol. Further the PA therapy has ameliorated the CRC-induced metabolic alterations, signifying its antiproliferative properties. In conclusion, our study provided the evidence that PA demonstrated good antiproliferative effect on DMH induced CRC and thus demonstrated the potential of PA as a useful drug for future anticancer therapy.

  4. Dual role of macrophages in the response of C26 colon carcinoma cells to 5-fluorouracil administration

    PubMed Central

    Patras, Laura; Sesarman, Alina; Licarete, Emilia; Luca, Lavinia; Alupei, Marius Costel; Rakosy-Tican, Elena; Banciu, Manuela

    2016-01-01

    Previous studies have demonstrated that tumor-associated macrophages (TAMs) are pivotal players in tumor progression via modulation of tumor angiogenesis, inflammation, metastasis and oxidative stress, as well as of the response of cancer cells to cytotoxic drugs. Nevertheless, the role of TAMs in the prognosis of colorectal cancer remains controversial. Therefore, the present study aimed to investigate how TAMs mediate the response of C26 colon carcinoma cells to the cytotoxic drug 5-fluorouracil (5-FU), upon TAM co-cultivation with these cancer cells in vitro. In this respect, 5-FU cytotoxicity was assessed in C26 cells in standard culture and in a co-culture with peritoneal macrophages, the production of NF-κB was determined by western blot analysis, and the production of angiogenic/inflammatory proteins in each experimental model was evaluated by protein array analysis. To gain further evidence of the effect of TAMs on oxidative stress, malondialdehyde was measured through high-performance liquid chromatography, and the total nonenzymatic antioxidant levels and the production of nitrites were measured through colorimetric assays. The results demonstrated that TAMs exerted a dual role in the response of C26 cells to 5-FU administration in the co-culture model. Thus, on one side, TAMs sensitized C26 cells to 5-FU administration through inhibition of the production of inflammatory and angiogenic proteins in these cancer cells; however, they also protected cancer cells against 5-FU-induced oxidative stress. Collectively, the present findings suggest that the combined administration of 5-FU with pharmacological agents that prevent TAMs to maintain the physiological range of tumor cell oxidative stress may highly improve the therapeutic potential of this drug. PMID:27446416

  5. MK571 inhibits phase-2 conjugation of flavonols by Caco-2/TC7 cells, but does not specifically inhibit their apical efflux☆

    PubMed Central

    Barrington, Robert D.; Needs, Paul W.; Williamson, Gary; Kroon, Paul A.

    2015-01-01

    MK571 is a multidrug resistance protein-2 (ABCC2, Mrp2) inhibitor and has been widely used to demonstrate the role of Mrp2 in the cellular efflux of drugs, xenobiotics and their conjugates. Numerous reports have described modulation of Caco-2 cellular efflux and transport of flavonoids in the presence of MK571. Since flavonoids are efficiently conjugated by Caco-2/TC7 cells, we investigated the effects of MK571 on the efflux of flavonoid conjugates. The flavonol aglycones kaempferol, quercetin and galangin were efficiently taken up, conjugated and effluxed by Caco-2/TC7 cells. Apically-applied MK571 caused significant reductions in both the apical and basolateral efflux of flavonol conjugates from Caco-2/TC7 monolayers. MK571 did not significantly alter the apical:basolateral efflux ratio for flavonol conjugates, however, which is not consistent with MK571 specifically inhibiting only apical Mrp2. Since MK571 decreased the total amounts of conjugates formed, and increased cellular flavonol aglycone concentrations, we explored the possibility that MK571 also inhibits phase-2 conjugation of flavonols. MK571 dose-dependently inhibited the intracellular biosynthesis of all flavonol glucuronides and sulphates by Caco-2 cells. MK571 significantly inhibited phase-2 conjugation of kaempferol by cell-free extracts of Caco-2, and production of kaempferol-4′-O-glucuronide was competitively inhibited. These data show that MK571, in addition to inhibiting MRP2, is a potential inhibitor of enterocyte phase-2 conjugation. PMID:25801004

  6. Forms of selenium affect its transport, uptake and glutathione peroxidase activity in the Caco-2 cell model.

    PubMed

    Wang, Yanbo; Fu, Linglin

    2012-10-01

    The experiment was designed to investigate the effect of selenium (Se) chemical forms (sodium selenite, selenium nanoparticle [nano-Se] and selenomethionine) on the transport, uptake and glutathione peroxidase (GSH-Px) activity in the Caco-2 cell model. The transport and uptake of different forms of Se (0.1 μmol l(-1)) across the Caco-2 cell monolayer were carried out in two directions (apical [AP] to basolateral [BL] and BL to AP) for 2 h, respectively, and the apparent permeability coefficient (P(app)), transport efficiency and uptake efficiency were all calculated. In the present study, the transport and uptake of three forms of Se were time-dependent both in AP to BL and BL to AP directions. By the end of 2 h, the transport efficiencies of selenomethionine and nano-Se were higher than that of sodium selenite (P<0.05). The highest uptake efficiency (P<0.05) was observed in cells treated with nano-Se and significant difference (P<0.05) was also observed between the cells incubated with sodium selenite and selenomethionine. As for the P(app), sodium selenite (P<0.05) had the lowest values compared with that of selenomethionine and nano-Se, in both AP-BL and BL-AP. However, no significant differences were observed in GSH-Px activities. These results indicated that the efficiency of Se in the Caco-2 cells varied with its chemical forms, which might be associated with the differences in Se transport and uptake.

  7. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids.

    PubMed

    Murota, Kaeko; Shimizu, Sumie; Miyamoto, Sayuri; Izumi, Toru; Obata, Akio; Kikuchi, Mamoru; Terao, Junji

    2002-07-01

    Soy isoflavonoids have attracted much attention because of their estrogenic activity. To study the intestinal absorption of the isoflavonoids, we investigated the cellular uptake and metabolism of genistein and daidzein and their glucosides, genistin and daidzin, by Caco-2 cell monolayers as a model of the human intestinal epithelium. When Caco-2 monolayers were incubated with genistein or daidzein at 10 micromol/L from the apical (mucosal) side, aglycone was lost from the apical solution for 2.0 h (P < 0.05) and the glucuronide/sulfates appeared at the level of 1-2 micromol/L. In the basolateral (serosal) solution, both intact aglycones and their glucuronide/sulfates increased (P < 0.05) with time and reached approximately 20 and 15% of the initial dose, respectively. The transport of their glucosides, genistin and daidzin, through Caco-2 monolayers was less than one tenth that of the aglycones. The cellular metabolism of genistein was compared with quercetin, kaempferol, luteolin and apigenin. Only genistein aglycone was transported intact to the basolateral solution. Transport was greater (P < 0.05) than that of flavonoid aglycones and was without an appreciable decrease of transepithelial resistance. Radical scavenging activity was not related to the susceptibility to conjugation of flavonoids/isoflavonoids. Affinity to the liposomal membrane was increased in the order of genistin = daidzin < daidzein < genistein < flavonoid aglycones. These results strongly suggest that isoflavone aglycones are taken up into enterocytes more efficiently than their glucosides because of their moderate lipophilicity. Furthermore, they are generally transported to the basolateral side in intact form in contrast to flavonoids, probably due to their unique isoflavonoid structure.

  8. Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines).

    PubMed

    Severino, Patrícia; Andreani, Tatiana; Jäger, Alessandro; Chaud, Marco V; Santana, Maria Helena A; Silva, Amélia M; Souto, Eliana B

    2014-06-23

    Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.

  9. Bathophenanthrolene disulfonic acid and sodium dithionite effectively remove surface-bound iron from Caco-2 cell monolayers.

    PubMed

    Glahn, R P; Gangloff, M B; Van Campen, D R; Miller, D D; Wien, E M; Norvell, W A

    1995-07-01

    Iron uptake by Caco-2 cell monolayers is commonly assessed by incubating the cells under radiolabeled iron solutions, removing the radiolabeled solution, rinsing to stop uptake and measuring the radioactivity retained by the cells. It is therefore essential to differentiate between iron that is nonspecifically bound to the cell surface from that which has been taken up by the cell. We report here on a method for removal of surface-bound iron from Caco-2 cell monolayers. We used a 140 mmol/L NaCl, 10 mmol/L PIPES, pH 6.7 solution containing 5.0 mmol/L sodium dithionite (Na2S2O4) and 5.0 mmol/L bathophenanthroline disulfonic acid to reduce, remove and chelate iron bound to the cell surface. We validated our method by demonstrating the removal of 97% of an insoluble iron complex from the apical surface of Caco-2 cell monolayers. Our data indicate that the removal solution does not damage the apical membrane and thereby does not have access to intracellular iron; thus only surface bound iron is removed. The remaining cell-associated iron represents that which has been transported into the cell. We present data on the uptake and nonspecific binding of iron from iron complexes of both ferrous and ferric forms, and show that iron removal treatment resulted in uptake measurements that agree more closely with accepted principles of iron uptake by intestinal epithelium. The iron removal method used in this study should provide investigators with a valuable tool for accurately determining iron uptake by epithelial cells in culture.

  10. The intestinal permeability of neolignans from the seeds of Myristica fragrans in the Caco-2 cell monolayer model.

    PubMed

    Yang, Xiu-Wei; Huang, Xin; Ma, Lian; Wu, Qi; Xu, Wei

    2010-10-01

    The intestinal permeability and transport of 10 neolignans isolated from MYRISTICA FRAGRANS were studied by using the Caco-2 cell monolayer model. The 10 neolignans were measured by HPLC. Transport parameters and permeability coefficients were then calculated and compared with those of the model compounds, propranolol and atenolol. Among the 10 neolignans, the 8- O-4'-type neolignans demonstrated high permeability while the benzofuran-type neolignans were of poor to moderate permeability. Among them, eight neolignans were transported mainly VIA passive diffusion. These findings indicate that the 8- O-4'-type neolignans are well-absorbed compounds and can be used as oral leading compounds in drug discovery.

  11. PAMPA--a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones.

    PubMed

    Bermejo, Marival; Avdeef, Alex; Ruiz, Ana; Nalda, Ricardo; Ruell, Jeffrey A; Tsinman, Oksana; González, Isabel; Fernández, Carlos; Sánchez, Gloria; Garrigues, Teresa M; Merino, Virginia

    2004-03-01

    Parallel artificial membrane permeability assay (PAMPA) was used to measure the effective permeability, P(e), as a function of pH from 4 to 10, of 17 fluoroquinolones, including three congeneric series with systematically varied alkyl chain length at the 4'N-position of the piperazine residue. The permeability values spanned over three orders of magnitude. The intrinsic permeability, P(o), and the membrane permeability, P(m), were determined from the pH dependence of the effective permeability. The pK(a) values were determined potentiometrically. The PAMPA method employed stirring, adjusted such that the unstirred water layer (UWL) thickness matched the 30-100 microm range estimated to be in the human small intestine. The intrinsic permeability coefficients (10(-6)cm/s), representing the permeability of the uncharged form of the drug, are for 4'N-R-norfloxacin: 0.7 (R=H), 49 (Me), 132 (n-Pr), 365 (n-Bu); 4'N-R-ciprofloxacin: 2.7 (H), 37 (Me), 137 (n-Pr), 302 (n-Bu); 4'N-R-3'-methylciprofloxacin: 3.8 (H), 20 (Me), 51 (Et), 160 (n-Pr), 418 (n-Bu). Increasing the alkyl chain length in the congeneric series resulted in increased permeability, averaging about 0.34 log units per methylene group, except that of the first (H-to-Me), which was about 1.2 log units. These results were compared to Caco-2 and rat in situ permeability measurements. The in situ closed loop technique used for obtaining permeability values in rat showed a water layer thickness effect quite consistent with in vivo expectations. The rat-PAMPA correlation (r2=0.87) was better than that of rat-Caco-2 (r2=0.63). Caco-2-PAMPA correlation indicated r2=0.66. The latter correlation improved significantly (r2=0.82) when the Caco-2 data were corrected for the UWL effect.

  12. Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria.

    PubMed

    Ganan, M; Carrascosa, A V; de Pascual-Teresa, S; Martinez-Rodriguez, A J

    2012-03-01

    Yeast cell wall (YCW) preparations and yeast mannoprotein extracts have been effective against some enteropathogenic bacteria as Campylobacter jejuni, Escherichia coli, and Salmonella, and they can affect the population of beneficial lactic acid bacteria (LAB). In this work, we studied the effect of a mannoprotein extract on five strains of LAB. This extract was metabolised by the bacteria, enhancing their survival in simulated gastrointestinal juice, and increasing the adherence of Lactobacillus plantarum, L. salivarius, and Enterococcus faecium to Caco-2 cells. Yeast mannoproteins are promising naturally occurring compounds that could be used to enhance LAB intestinal populations and control pathogens.

  13. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: in vitro pharmaceutics and Caco-2 permeability investigations.

    PubMed

    Spinks, Crystal B; Zidan, Ahmed S; Khan, Mansoor A; Habib, Muhammad J; Faustino, Patrick J

    2017-01-01

    Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy. The objectives of the current study were to prepare and pharmaceutically characterize model liposomal tenofovir formulations in an attempt to improve their bioavailability. The entrapment process was performed using film hydration method, and the formulations were characterized in terms of encapsulation efficiency and Caco-2 permeability. An efficient reverse-phase high-performance liquid chromatography method was developed and validated for tenofovir quantitation in both in vitro liposomal formulations and Caco-2 permeability samples. Separation was achieved isocratically on a Waters Symmetry C8 column using 10 mM Na2PO4/acetonitrile pH 7.4 (95:5 v/v). The flow rate was 1 mL/min with a 12 min elution time. Injection volume was 10 µL with ultraviolet detection at 270 nm. The method was validated according to United States Pharmacopeial Convention category I requirements. The obtained result showed that tenofovir encapsulation within the prepared liposomes was dependent on the employed amount of the positive charge-imparting agent. The obtained results indicated that calibration curves were linear with r(2) > 0.9995 over the analytical range of 1-10 µg/mL. Inter- and intraday accuracy and precision values ranged from 95% to 101% and 0.3% to 2.6%, respectively. The method was determined to be specific and robust. Regarding the potential of the prepared vectors to potentiate tenofovir permeability through the Caco-2 model, a 10-fold increase in tenofovir apparent permeability was observed compared to its oral solution. In conclusion, this novel and validated method was

  14. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: in vitro pharmaceutics and Caco-2 permeability investigations

    PubMed Central

    Spinks, Crystal B; Zidan, Ahmed S; Khan, Mansoor A; Habib, Muhammad J; Faustino, Patrick J

    2017-01-01

    Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes wo