Sample records for colonization induces type

  1. Butyrate-induced apoptotic cascade in colonic carcinoma cells: modulation of the beta-catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin.

    PubMed

    Bordonaro, M; Mariadason, J M; Aslam, F; Heerdt, B G; Augenlicht, L H

    1999-10-01

    Short-chain fatty acids play a critical role in colonic homeostasis because they stimulate pathways of growth arrest, differentiation, and apoptosis. These effects have been well characterized in colonic cell lines in vitro. We investigated the role of beta-catenin-Tcf signaling in these responses to butyrate and other well-characterized inducers of apoptosis of colonic epithelial cells. Unlike wild-type APC, which down-regulates Tcf activity, butyrate, as well as sulindac and trichostatin A, all inducers of G0-G1 cell cycle arrest and apoptosis in the SW620 colonic carcinoma cell line, up-regulate Tcf activity. In contrast, structural analogues of butyrate that do not induce cell cycle arrest or apoptosis and curcumin, which stimulates G2-M arrest without inducing apoptosis, do not alter Tcf activity. Similar to the cell cycle arrest and apoptotic cascade induced by butyrate, the up-regulation of Tcf activity is dependent upon the presence of a mitochondrial membrane potential, unlike the APC-induced down-regulation, which is insensitive to collapse of the mitochondrial membrane potential. Moreover, the butyrate-induced increase in Tcf activity, which is reflected in an increase in beta-catenin-Tcf complex formation, is independent of the down-regulation caused by expression of wild-type APC. Thus, butyrate and wild-type APC have different and independent effects on beta-catenin-Tcf signaling. These data are consistent with other reports that suggest that the absence of wild-type APC, associated with the up-regulation of this signaling pathway, is linked to the probability of a colonic epithelial cell entering an apoptotic cascade.

  2. Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype.

    PubMed

    Fenton, Jenifer I; Wolff, Margaret S; Orth, Michael W; Hord, Norman G

    2002-06-01

    Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may induce cells heterozygous for Apc to overcome defective cell migration, a phenotype associated with cell differentiation and apoptosis.

  3. Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer

    PubMed Central

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko

    2014-01-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)–induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR–dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor κ-light-chain-enhancer of activated B cells–mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events. PMID:25277138

  4. Magnolol inhibits colonic motility through down-regulation of voltage-sensitive L-type Ca2+ channels of colonic smooth muscle cells in rats.

    PubMed

    Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang

    2013-11-15

    This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Pathogenic bacteria induce colonic PepT1 expression: an implication in host defense response

    PubMed Central

    Nguyen, Hang Thi Thu; Dalmasso, Guillaume; Powell, Kimberly R.; Yan, Yutao; Bhatt, Shantanu; Kalman, Daniel; Sitaraman, Shanthi; Merlin, Didier

    2009-01-01

    Background & Aims Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions, however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. Methods Human colonic HT29-Cl.19A cells were infected with the attaching and effacing (A/E) enteropathogenic E. coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine A/E pathogen related to EPEC. Results EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of NF-κB and MAP kinase and production of IL-8. Accordingly, ex vivo and in vivo experiments revealed that C. rodentium induced colonic PepT1 expression and that, compared to their wild-type counterparts, PepT1 transgenic mice infected with C. rodentium exhibited decreased bacterial colonization, production of pro-inflammatory cytokines, and neutrophil infiltration into the colon. Conclusions Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathological conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation. PMID:19549526

  6. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats.

    PubMed

    Lu, Ping; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Tang, Qincai; Yu, Guang; Chen, Wei; Xia, Hong

    2016-04-01

    The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Type III TGF-β Receptor Enhances Colon Cancer Cell Migration and Anchorage-Independent Growth12

    PubMed Central

    Gatza, Catherine E; Holtzhausen, Alisha; Kirkbride, Kellye C; Morton, Allyson; Gatza, Michael L; Datto, Michael B; Blobe, Gerard C

    2011-01-01

    The type III TGF-β receptor (TβRIII or betagylcan) is a TGF-β superfamily coreceptor with emerging roles in regulating TGF-β superfamily signaling and cancer progression. Alterations in TGF-β superfamily signaling are common in colon cancer; however, the role of TβRIII has not been examined. Although TβRIII expression is frequently lost at the message and protein level in human cancers and suppresses cancer progression in these contexts, here we demonstrate that, in colon cancer, TβRIII messenger RNA expression is not significantly altered and TβRIII expression is more frequently increased at the protein level, suggesting a distinct role for TβRIII in colon cancer. Increasing TβRIII expression in colon cancer model systems enhanced ligand-mediated phosphorylation of p38 and the Smad proteins, while switching TGF-β and BMP-2 from inhibitors to stimulators of colon cancer cell proliferation, inhibiting ligand-induced p21 and p27 expression. In addition, increasing TβRIII expression increased ligand-stimulated anchorage-independent growth, a resistance to ligand- and chemotherapy-induced apoptosis, cell migration and modestly increased tumorigenicity in vivo. In a reciprocal manner, silencing endogenous TβRIII expression decreased colon cancer cell migration. These data support a model whereby TβRIII mediates TGF-β superfamily ligand-induced colon cancer progression and support a context-dependent role for TβRIII in regulating cancer progression. PMID:21847367

  8. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes

    PubMed Central

    Nair, Aswathy; Bhargava, Sujata

    2012-01-01

    Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680

  9. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells

    PubMed Central

    Iessi, Elisabetta; Zischler, Luciana; Etringer, Aurélie; Bergeret, Marion; Morlé, Aymeric; Jacquemin, Guillaume; Morizot, Alexandre; Shirley, Sarah; Lalaoui, Najoua; Elifio-Esposito, Selene L.; Fais, Stefano; Garrido, Carmen; Solary, Eric; Micheau, Olivier

    2015-01-01

    Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells. PMID:26010871

  10. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    PubMed

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Interleukin-6 (IL-6) mediated the increased contraction of distal colon in streptozotocin-induced diabetes in rats via IL-6 receptor pathway

    PubMed Central

    Chang, Xin-Wen; Qin, Ying; Jin, Zhi; Xi, Tao-Fang; Yang, Xiao; Lu, Ze-Hao; Tang, Yu-Ping; Cai, Wen-Ting; Chen, Shao-Jun; Xie, Dong-Ping

    2015-01-01

    Colonic dysmotility occurs in diabetes and blood plasma interleukin (IL)-6 levels are significantly elevated in type 1 diabetes mellitus. The aim of this study was to investigate whether IL-6 and the IL-6 receptor pathway mediates colonic dysfunction in type 1 diabetes mellitus. Male SD rats were treated with a single intraperitoneally injected dose of streptozotocin (STZ), and those displaying sustained high blood glucose were selected as diabetes mellitus models. Longitudinal muscle strips of colon were prepared to monitor colonic contraction in vitro. Contractile responses of strips of colon were recorded following treatment with IL-6 in control animals, and following anti IL-6 antibody treatment in STZ-induced diabetes in rats. Concentration of IL-6 in plasma and colon were determined by ELISA. Expressions of IL-6 α-receptor and IL-6 β-receptor in colon tissues were determined by immunohistochemistry or Western blot analysis. The non-diabetes rats treated with IL-6 and the untreated diabetes rats showed increased contraction of distal colon, whereas the diabetes rats treated with anti-IL-6 antibody showed decreased contraction of distal colon compared with the untreated diabetes rats. The IL-6 levels of plasma but not colon increased in diabetes rats. The expression of IL-6 α-receptor increased in diabetes rats. These results indicate that diabetes rats show an increase in the contractions of distal colon partly via the IL-6-IL-6 receptor pathway. PMID:26191141

  12. Warfare between Host Immunity and Bacterial Weapons.

    PubMed

    Yu, Manda; Lai, Erh-Min

    2017-01-11

    Bacterial pathogens deploy protein secretion systems to facilitate infection and colonization of their hosts. In this issue of Cell Host & Microbe, Chen et al. (2017) report a new role for a type VI secretion effector in promoting bacterial colonization by preventing inflammasome activation induced by a type III secretion system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2011-09-01

    Inulin-type fructans are not digested and reach the human colon intact, where they are selectively fermented by the colon microbiota, in particular bifidobacteria. As a result, they are converted, directly or indirectly, to short-chain fatty acids and other organic acids, as well as gases, and lead to both bifidogenic and butyrogenic health-promoting effects. Bifidobacteria display phenotypic variation on strain level as to their capacity to degrade inulin-type fructans. Also, different chain lengths of inulin-type fructans may stimulate different subgroups within the bifidobacterial population. The end-metabolites of inulin-type fructan degradation by bifidobacteria reflect their growth rates on these polymers. Other colon bacteria are also able to degrade inulin-type fructans, as is the case for lactobacilli, Bacteroides, certain enterobacteria, and butyrate producers. Bacterial cross-feeding mechanisms in the colon lay at the basis of overall butyrate production, a functional characteristic of several colon bacteria that is always accompanied by gas production. Finally, specificity of polysaccharide use by the colon microbiota may determine diet-induced alterations in the microbiota and consequent metabolic effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression. PMID:17850650

  15. Salmonella induces prominent gene expression in the rat colon.

    PubMed

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2007-09-12

    Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.

  16. Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer.

    PubMed

    Saxena, Arpit; Fayad, Raja; Kaur, Kamaljeet; Truman, Samantha; Greer, Julian; Carson, James A; Chanda, Anindya

    2017-04-03

    Selenium (Se) is an essential dietary micronutrient that has been examined for protection against different types of cancers including colon cancer. Despite an established inverse association between Se and chronic inflammation induced colon cancer (CICC), the mechanistic understanding of Se's protective effects requires additional in-vivo studies using preclinical animal models of CICC. Adiponectin (APN) is an adipocytokine that is protective against CICC as well. However, its role in the anti-mutagenic effects of the Se-diet remains unknown. To address this knowledge gap, here we examine the ability of dietary Se in reducing CICC in APN knockout mice (KO) and its wild-type C57BL/6. CICC was induced with the colon cancer agent 1,2 dimethyl hydrazine (DMH) along with dextran sodium sulfate (DSS). Se-enhanced diet increased selenoproteins, Gpx-1 and Gpx-2, in the colon tissues, thereby reducing oxidative stress. Se-mediated reduction of CICC was evident from the histopathological studies in both mouse models. In both mice, reduction in inflammation and tumorigenesis associated well with reduced p65 phosphorylation and elevated 53 phosphorylation. Finally, we show that in both models Se-administration promotes goblet cell differentiation with a concomitant increase in the levels of associated proteins, Muc-2 and Math-1. Our findings suggest that Se's protection against CICC involves both colonic epithelial protection and anti-tumor effects that are independent of APN.

  17. Cathelicidin Signaling via the Toll-Like Receptor Protects Against Colitis in Mice

    PubMed Central

    Koon, Hon Wai; Shih, David Quan; Chen, Jeremy; Bakirtzi, Kyriaki; Hing, Tressia C; Law, Ivy; Ho, Samantha; Ichikawa, Ryan; Zhao, Dezheng; Xu, Hua; Gallo, Richard; Dempsey, Paul; Cheng, Genhong; Targan, Stephan R; Pothoulakis, Charalabos

    2011-01-01

    Background & Aims Cathelicidin (encoded by Camp) is an anti-microbial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease; we investigated its signaling mechanisms. Methods Quantitative, real-time, reverse transcription PCR, bacterial 16S PCR, immunofluorescence, and small interfering (si)RNA analyses were performed. Colitis was induced in mice using sodium dextran sulfate (DSS); levels of cathelicidin were measured in human primary monocytes. Results Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis, compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to E coli DNA induced expression of Camp mRNA, which required signaling by ERK; expression was reduced by siRNAs against toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9 −/− mice with DSS-induced colitis. Compared with wild-type mice, Camp −/− mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. Conclusions Cathelicidin protects against colitis induction in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9–ERK signaling by bacterial DNA. This pathway might be involved in pathogenesis of ulcerative colitis. PMID:21762664

  18. Contribution of Bordetella bronchiseptica Filamentous Hemagglutinin and Pertactin to Respiratory Disease in Swine▿ †

    PubMed Central

    Nicholson, Tracy L.; Brockmeier, Susan L.; Loving, Crystal L.

    2009-01-01

    Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica are based on isolates derived from hosts other than pigs. Two well-studied virulence factors implicated in the adhesion process are filamentous hemagglutinin (FHA) and pertactin (PRN). We hypothesized that both FHA and PRN would serve critical roles in the adhesion process and be necessary for colonization of the swine respiratory tract. To investigate the role of FHA and PRN in Bordetella pathogenesis in swine, we constructed mutants containing an in-frame deletion of the FHA or the PRN structural gene in a virulent B. bronchiseptica swine isolate. Both mutants were compared to the wild-type swine isolate for their ability to colonize and cause disease in swine. Colonization of the FHA mutant was lower than that of the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, the PRN mutant caused similar disease severity relative to the wild type; however, colonization of the PRN mutant was reduced relative to the wild type during early and late infection and induced higher anti-Bordetella antibody titers. Together, our results indicate that despite inducing different pathologies and antibody responses, both FHA and PRN are necessary for optimal colonization of the swine respiratory tract. PMID:19237531

  19. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  20. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  1. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis

    PubMed Central

    Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas

    2015-01-01

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773

  2. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    PubMed Central

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927

  3. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota.

    PubMed

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F

    2015-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  4. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota

    PubMed Central

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L.; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F.

    2016-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota. PMID:26835435

  5. Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori

    PubMed Central

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L.; Schumacher, Michael A.; Engevik, Amy C.; Zavros, Yana; Ottemann, Karen M.; Montrose, Marshall H.

    2014-01-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (106) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (106) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases the injured tissue towards sustained gastric damage. PMID:25033386

  6. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    PubMed

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L; Schumacher, Michael A; Engevik, Amy C; Zavros, Yana; Ottemann, Karen M; Montrose, Marshall H

    2014-07-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (10(6)) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6)) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases the injured tissue towards sustained gastric damage.

  7. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages.

    PubMed

    Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae

    2014-12-02

    Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  9. Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis.

    PubMed

    Macdonald, Marcia L E; Bissada, Nagat; Vallance, Bruce A; Hayden, Michael R

    2009-12-01

    Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.

  10. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.

    PubMed

    Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D

    2016-11-01

    The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.

  11. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation.

    PubMed

    Jin, Bo-Ram; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Minho; Hwang, Soonjae; Noh Hwang, Sam; Rhee, Ki-Jong; An, Hyo-Jin

    2017-04-06

    Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic inflammatory disorder of the colon. Although UC is generally treated with anti-inflammatory drugs or immunosuppressants, most of these treatments often prove to be inadequate. Rosmarinic acid (RA) is a phenolic ester included in various medicinal herbs such as Salvia miltiorrhiz and Perilla frutescens. Although RA has many biological and pharmacological activities, the anti-inflammatory effect of RA in colonic tissue remains unclear. In this study, we investigated the anti-inflammatory effects and underlying molecular mechanism of RA in mice with dextran sulphate sodium (DSS)-induced colitis. In the DSS-induced colitis model, RA significantly reduced the severity of colitis, as assessed by disease activity index (DAI) scores, colonic damage, and colon length. In addition, RA resulted in the reduction of the inflammatory-related cytokines, such as IL-6, IL-1β, and IL-22, and protein levels of COX-2 and iNOS in mice with DSS-induced colitis. Furthermore, RA effectively and pleiotropically inhibited nuclear factor-kappa B and signal transducer and activator of transcription 3 activation, and subsequently reduced the activity of pro-survival genes that depend on these transcription factors. These results demonstrate that RA has an ameliorative effect on colonic inflammation and thus a potential therapeutic role in colitis.

  12. The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria.

    PubMed

    Hirotani, Tomonori; Lee, Pui Y; Kuwata, Hirotaka; Yamamoto, Masahiro; Matsumoto, Makoto; Kawase, Ichiro; Akira, Shizuo; Takeda, Kiyoshi

    2005-03-15

    Macrophages play an important role in the pathogenesis of chronic colitis. However, it remains unknown how macrophages residing in the colonic lamina propria are regulated. We characterized colonic lamina proprial CD11b-positive cells (CLPMphi). CLPMphi of wild-type mice, but not IL-10-deficient mice, displayed hyporesponsiveness to TLR stimulation in terms of cytokine production and costimulatory molecule expression. We compared CLPMphi gene expression profiles of wild-type mice with IL-10-deficient mice, and identified genes that are selectively expressed in wild-type CLPMphi. These genes included nuclear IkappaB proteins such as Bcl-3 and IkappaBNS. Because Bcl-3 has been shown to specifically inhibit LPS-induced TNF-alpha production, we analyzed the role of IkappaBNS in macrophages. Lentiviral introduction of IkappaBNS resulted in impaired LPS-induced IL-6 production, but not TNF-alpha production in the murine macrophage cell line RAW264.7. IkappaBNS expression led to constitutive and intense DNA binding of NF-kappaB p50/p50 homodimers. IkappaBNS was recruited to the IL-6 promoter, but not to the TNF-alpha promoter, together with p50. Furthermore, small interference RNA-mediated reduction in IkappaBNS expression in RAW264.7 cells resulted in increased LPS-induced production of IL-6, but not TNF-alpha. Thus, IkappaBNS selectively suppresses LPS-induced IL-6 production in macrophages. This study established that nuclear IkappaB proteins differentially regulate LPS-induced inflammatory cytokine production in macrophages.

  13. Protein kinase C βII and TGFβRII in ω-3 fatty acid–mediated inhibition of colon carcinogenesis

    PubMed Central

    Murray, Nicole R.; Weems, Capella; Chen, Lu; Leon, Jessica; Yu, Wangsheng; Davidson, Laurie A.; Jamieson, Lee; Chapkin, Robert S.; Thompson, E. Aubrey; Fields, Alan P.

    2002-01-01

    Încreasing evidence demonstrates that protein kinase C βII (PKCβII) promotes colon carcinogenesis. We previously reported that colonic PKCβII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCβII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression and reduces sensitivity to TGF-β–mediated growth inhibition in intestinal epithelial cells. Transgenic PKCβII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFβRII expression. Chemopreventive dietary ω-3 fatty acids inhibit colonic PKCβII activity in vivo and block PKCβII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFβRII expression in the colonic epithelium of transgenic PKCβII mice. These data indicate that dietary ω-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCβII signaling and restoration of TGF-β responsiveness. PMID:12058013

  14. Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats.

    PubMed

    Chen, J; Winston, J H; Sarna, S K

    2013-09-17

    The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. We used dextran sodium sulfate (DSS) to induce ulcerative colitis-like inflammation and a 9-day heterotypic chronic stress protocol in rats. DSS upregulated Nav1.8 mRNA in colon-responsive dorsal root ganglion (DRG) neurons, TRPV1 in colonic muscularis externae (ME) and BDNF in spinal cord without affecting the spike frequency in spinal afferents or VMR to CRD. By contrast, chronic stress did not induce inflammation but it downregulated Kv1.1 and Kv1.4 mRNA in DRG neurons, and upregulated TRPA1 and nerve growth factor in ME, which mediated the increase of spike frequency and VMR to CRD. Chronic stress following inflammation exacerbated spike frequency in spinal afferent neurons. TRPA1 antagonist suppressed the sensitization of afferent neurons. DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Clostridium perfringens Type E Virulence Traits Involved in Gut Colonization

    PubMed Central

    Redondo, Leandro M.; Carrasco, Juan M. Díaz; Redondo, Enzo A.; Delgado, Fernando; Miyakawa, Mariano E. Fernández

    2015-01-01

    Clostridium perfringens type E disease in ruminants has been characterized by hemorrhagic enteritis or sudden death. Although type E isolates are defined by the production of alpha and iota toxin, little is known about the pathogenesis of C. perfringens type E infections. Thus far, the role of iota toxin as a virulence factor is unknown. In this report, iota toxin showed positive effects on adherence and colonization of C. perfringens type E while having negative effect on the adherence of type A cells. In-vitro and in-vivo models suggest that toxinotype E would be particularly adapted to exploit the changes induced by iota toxin in the surface of epithelial cells. In addition, type E strains produce metabolites that affected the growth of potential intra-specific competitors. These results suggest that the alteration of the enterocyte morphology induced by iota toxin concomitantly with the specific increase of type E cell adhesion and the strong intra-specific growth inhibition of other strains could be competitive traits inherent to type E isolates that improve its fitness within the bovine gut environment. PMID:25799452

  16. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation

    PubMed Central

    Dame, Michael K.; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca2+ supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca2+ concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca2+ or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa. PMID:21104039

  17. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells.

    PubMed

    Zhang, S; Zhang, Y; Qu, J; Che, X; Fan, Y; Hou, K; Guo, T; Deng, G; Song, N; Li, C; Wan, X; Qu, X; Liu, Y

    2017-11-13

    Cetuximab is widely used in patients with metastatic colon cancer expressing wildtype KRAS. However, acquired drug resistance limits its clinical efficacy. Exosomes are nanosized vesicles secreted by various cell types. Tumor cell-derived exosomes participate in many biological processes, including tumor invasion, metastasis, and drug resistance. In this study, exosomes derived from cetuximab-resistant RKO colon cancer cells induced cetuximab resistance in cetuximab-sensitive Caco-2 cells. Meanwhile, exosomes from RKO and Caco-2 cells showed different levels of phosphatase and tensin homolog (PTEN) and phosphor-Akt. Furthermore, reduced PTEN and increased phosphorylated Akt levels were found in Caco-2 cells after exposure to RKO cell-derived exosomes. Moreover, an Akt inhibitor prevented RKO cell-derived exosome-induced drug resistance in Caco-2 cells. These findings provide novel evidence that exosomes derived from cetuximab-resistant cells could induce cetuximab resistance in cetuximab-sensitive cells, by downregulating PTEN and increasing phosphorylated Akt levels.

  18. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis.

    PubMed

    Lai, Ching-Shu; Wu, Jia-Ching; Yu, Shih-Feng; Badmaev, Vladimir; Nagabhushanam, Kalyanam; Ho, Chi-Tang; Pan, Min-Hsiung

    2011-12-01

    Tetrahydrocurcumin (THC), a major metabolite of curcumin (CUR), has been demonstrated to be anti-cancerogenic and anti-angiogenic and prevents type II diabetes. In this present study, we investigated the chemopreventive effects and underlying molecular mechanisms of dietary administration of CUR and THC in azoxymethane (AOM)-induced colon carcinogenesis in mice. All mice were sacrificed at 6 and 23 wk, and colonic tissue was collected and examined. We found that dietary administration of both CUR and THC could reduce aberrant crypt foci and polyps formation, while THC showed a better inhibitory effect than CUR. At the molecular level, results from Western blot analysis and immunohistochemistry staining showed that dietary CUR and THC exhibited anti-inflammatory activity by decreasing the levels of inducible NOS and COX-2 through downregulation of ERK1/2 activation. In addition, both dietary CUR and THC significantly decreased AOM-induced Wnt-1 and β-catenin protein expression, as well as the phosphorylation of GSK-3β in colonic tissue. Moreover, dietary feeding with CUR and THC markedly reduced the protein level of connexin-43, an important molecule of gap junctions, indicating that both CUR and THC might interfer with the intercellular communication of crypt cells. Taken together, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary THC against AOM-induced colonic tumorigenesis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnolol, a Natural Polyphenol, Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Zhao, Ling; Xiao, Hai-Tao; Mu, Huai-Xue; Huang, Tao; Lin, Ze-Si; Zhong, Linda L D; Zeng, Guang-Zhi; Fan, Bao-Min; Lin, Cheng-Yuan; Bian, Zhao-Xiang

    2017-07-20

    Magnolol is a lignan with anti-inflammatory activity identified in Magnolia officinalis . Ulcerative colitis (UC), one of the types of inflammatory bowel disease (IBD), is a disease that causes inflammation and ulcers in the colon. To investigate the effect of magnolol in dextran sulfate sodium (DSS)-induced experimental UC model, male C57 mice were treated with 2% DSS drinking water for 5 consecutive days followed by intragastric administration with magnolol (5, 10 and 15 mg/kg) daily for 7 days. The results showed that magnolol significantly attenuated disease activity index, inhibited colonic shortening, reduced colonic lesions and suppressed myeloperoxidase (MPO) activity. Moreover, colonic pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) induced by colitis were dramatically decreased by magnolol. To further unveil the metabolic signatures upon magnolol treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in mice serum were performed. Compared with controls, abnormality of serum metabolic phenotypes in DSS-treated mice were effectively reversed by different doses of magnolol. In particular, magnolol treatment effectively elevated the serum levels of tryptophan metabolites including kynurenic acid (KA), 5-hydroxyindoleacetic acid, indoleacetic acid (IAA), indolelactic acid and indoxylsulfuric acid, which are potential aryl hydrocarbon receptor (AHR) ligands to impact colitis. These findings suggest that magnolol exerts anti-inflammatory effect on DSS-induced colitis and its underlying mechanisms are associated with the restoring of tryptophan metabolites that inhibit the colonic inflammation.

  20. Obesity-related colon cancer: dietary factors and their mechanisms of anticancer action.

    PubMed

    Zeng, Huawei; Lazarova, Darina L

    2012-02-01

    Overweight/obesity is an epidemic in the US as well as in other developed countries, affecting two-thirds of Americans and an estimated 2.3 billion people worldwide. Obesity increases the risk for Type 2 diabetes, cardiovascular disease and cancer. For example, epidemiological studies have established a strong association between obesity and colon cancer. It is generally accepted that metabolic changes associated with overweight/obesity, particularly abdominal obesity and changes in adipocyte function, contribute to the increased risk of colon cancer. Understanding the mechanisms underlying this association is important for the development of preventive strategies for colon cancer. Part of these preventive strategies may be based on dietary factors, such as vitamins, minerals (e.g. selenium), fibre, phytochemicals and phenolic compounds. These anticancer nutrients may counteract the molecular changes associated with obesity. The present article reviews the evidence that inflammation and insulin resistance induced by obesity are the molecular mediators of the association between obesity and colon cancer. We also evaluate the evidence for the ability of dietary factors to target the obesity-induced changes and, thus, protect against colon cancer. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  1. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut.

    PubMed

    Howitt, Michael R; Lavoie, Sydney; Michaud, Monia; Blum, Arthur M; Tran, Sara V; Weinstock, Joel V; Gallini, Carey Ann; Redding, Kevin; Margolskee, Robert F; Osborne, Lisa C; Artis, David; Garrett, Wendy S

    2016-03-18

    The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites. Copyright © 2016, American Association for the Advancement of Science.

  2. Cyclophosphamide-induced hemorrhagic cystitis in rats that underwent colocystoplasty: experimental study.

    PubMed

    Rodó, J; Farré, X; Martín, E

    2001-02-01

    Cyclophosphamide and its derivatives induce hemorrhagic cystitis. A substantial number of patients receive bladder augmentation or replacements using bowel. If patients who have undergone colocystoplasty need treatment with cyclophosphamide before or after the operation, does hemorrhagic cystitis develop? We evaluated the histological changes produced in the colon wall and bladder related to cyclophosphamide and its derivatives in rats that underwent colocystoplasty. Sprague-Dawley rats of each sex were grouped according to whether they received a single 200 mg./kg. dose of cyclophosphamide, underwent colocystoplasty, underwent each technique or served as controls. The technique of colocystoplasty was the same in all groups. Results were analyzed according to previously reported criteria, by the gross appearance of the bladder and colon segment used for colocystoplasty, and by histological changes. Two weeks after surgery colocystoplasty had not resulted in secondary changes in the implanted colon segment or original bladder, while there were only nonspecific changes of an inflammatory type in the anastomotic area. After cyclophosphamide administration the animals lost considerable weight and in the bladder area we observed hemorrhagic cystitis that was greater in males than in females, and greater in isolated bladder than when the bladder was sutured to the colon segment. In the colon there was no inflammation or hemorrhage damage of the hemorrhagic cystitis type in the bladder. A total of 12 days after colocystoplasty there were no secondary histological changes except in the anastomotic area. A single 200 mg./kg. dose of cyclophosphamide caused substantial weight loss and hemorrhagic cystitis. Cystitis was quantitatively greater in males than in females and greater in isolated bladder than in bladder anastomosed to the colon. Administering a single dose of cyclophosphamide did not result in lesions in the colon segment used for colocystoplasty analogous to those of the bladder, such as hemorrhagic cystitis.

  3. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  4. Colon carcinogenesis: influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds.

    PubMed

    Kasdagly, Maria; Radhakrishnan, Sridhar; Reddivari, Lavanya; Veeramachaneni, D N Rao; Vanamala, Jairam

    2014-01-01

    Colon cancer strikes more than 1 million people annually and is responsible for more than 500,000 cancer deaths worldwide. Recent evidence suggests that the majority of malignancies, including colon cancer are driven by cancer stem cells (CSCs) that are resistant to current chemotherapeutic approaches leading to cancer relapse. Wnt signaling plays a critical role in colon stem cell renewal and carcinogenesis. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a Wnt target gene, and aldehyde dehydrogenase 1 B1 (ALDH1B1) are good markers for normal and malignant human colon stem cells. Diet contributes to 20% to 42% of all human cancers and 50% to 90% of colon cancer. Recent evidence shows that the Western diet has a causative link to colon cancer; however, mechanisms of action are not fully elucidated. Western diet-induced obesity elevates systemic insulin-like growth factor-1 and insulin levels, which could lead to elevated proliferation and suppressed apoptosis of CSCs through PI3K/AKT/Wnt pathway. Although conventional chemotherapy targets the PI3K/AKT pathways and can significantly reduce tumor size, it fails to eliminate CSCs and has serious side effects. Dietary bioactive compounds such as grape seed extract, curcumin, lycopene, and resveratrol have promising chemopreventive effects, without serious side effects on various types of cancers due to their direct and indirect actions on CSC self-renewal pathways such as the Wnt pathway. Understanding the role of CSCs in diet-induced colon cancer will aid in development of evidence-based dietary chemopreventive strategies and/or therapeutic agents targeting CSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. β-Glucans in food modify colonic microflora by inducing antimicrobial protein, calprotectin, in a Dectin-1-induced-IL-17F-dependent manner.

    PubMed

    Kamiya, T; Tang, C; Kadoki, M; Oshima, K; Hattori, M; Saijo, S; Adachi, Y; Ohno, N; Iwakura, Y

    2018-05-01

    Dectin-1 (gene symbol: Clec7a) is a receptor for β-glucans that play an important role for the host defense against fungi. Recently, we showed that Clec7a -/- mice are resistant against dextran sodium sulfate (DSS)-induced colitis because of regulatory T-cell population expansion in the colon. The regulatory T-cell expansion is caused by expansion of commensal Lactobacillus murinus whose growth is suppressed by an antimicrobial protein, calprotectin S100A8/A9. In this report, we showed that S100A8 was mainly produced by mouse colonic epithelial cells. S100A8 was not induced directly by Dectin-1 but by Dectin-1-induced cytokines, especially interleukin-17F (IL-17F), that were produced by several types of innate immune cells including CD11c + /CD11b + myeloid cells in colonic lamina propria. S100A8/A9 heterodimer preferentially suppressed the growth of L. murinus that was increased in both Clec7a -/- and Il17f -/- mice. Furthermore, similar expansion of L. murinus and DSS-colitis resistance were observed in mice fed with β-glucan-free food. These observations suggest that food-derived β-glucans control the specific commensal microbiota via the Dectin-1-IL-17F-calprotectin axis to maintain the intestinal homeostasis.

  6. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    PubMed

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca 2+ by 1,2-bis-( o -aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid. Knockdown of Ca V 1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N -Acetyl l-cysteine (NAC) and l- N G -Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N -terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca 2+ , activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Calcium-Mediated Oxidative Stress: a Common Mechanism in Tight Junction Disruption by Different Types of Cellular Stress

    PubMed Central

    Gangwar, Ruchika; Meena, Avtar S.; Shukla, Pradeep K.; Nagaraja, Archana S.; Dorniak, Piotr L.; Pallikuth, Sandeep; Waters, Christopher M.; Sood, Anil; Rao, RadhaKrishna

    2017-01-01

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction disruption was investigated in Caco-2 cell monolayers in vitro, and restraint stress-induced barrier dysfunction in mouse colon in vivo. Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca2+ by BAPTA. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated tight junction disruption and barrier dysfunction. N-acetyl L-cysteine (NAC) and L-nitroarginine methyl ester (L-NAME) blocked stress-induced tight junction disruption and barrier dysfunction. NAC and L-NAME also blocked stress-induced activation of JNK and c-Src. ROS was co-localized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, tight junction disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and tight junction disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca2+, activation of JNK and c-Src, and disruption of tight junction in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, tight junction disruption and protein thiol oxidation in colonic mucosa. This study demonstrates that oxidative stress is a common signal in the mechanism of tight junction disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo. PMID:28057718

  8. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    PubMed

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  9. Evidence for the putative cannabinoid receptor, GPR55, mediated inhibitory effects on intestinal contractility in mice

    PubMed Central

    Ross, Gracious R; Lichtman, Aron; Dewey, William L; Akbarali, Hamid I

    2012-01-01

    Background Cannabinoids inhibit intestinal motility via presynaptic cannabinoid receptor type I(CB1) in enteric neurons while cannabinoid receptor type II (CB2) receptors are located mainly in immune cells. The recently deorphanized G-protein-coupled receptor, GPR55, has been proposed to be the “third” cannabinoid receptor. Although gene expression of GPR55 is evident in the gut, functional evidence for GPR55 in the gut is unknown. In this study, we tested the hypothesis that GPR55 activation inhibits neurogenic contractions in the gut. Methods We assessed the inhibitory effect of the atypical cannabinoid O-1602, a GPR55 agonist, in mouse colon. Isometric tension recordings in colonic tissue strips were used from either wild type, GPR55−/− or CB1−/−/CB2−/−knock-out mice. Results O-1602 inhibited the electrical field-induced contractions in the colon strips from wild type and CB1−/−/CB2−/− in a concentration–dependent manner, suggesting a non-CB1/CB2-receptor mediated prejunctional effect. The concentration–dependent response of O-1602 was significantly inhibited in GPR55−/− mice. O-1602 did not relax colonic strips pre-contracted with high K+ (80 mmol/l), indicating no involvement of Ca2+ channel blockade in O-1602–induced relaxation. However, 10 μmol/l O-1602 partially inhibited the exogenous acetylcholine (10 μmol/l) –induced contractions. Moreover, we also assessed the inhibitory effects of JWH 015, a CB2/GPR55 agonist on neurogenic contractions of mouse ileum. Surprisingly, the effects of JWH015 were independent of the known cannabinoid receptors. Conclusion These findings taken together suggest that activation of GPR55 leads to inhibition of neurogenic contractions in the gut, and are predominantly prejunctional. PMID:22759743

  10. Antitumor Activity of Human Hydatid Cyst Fluid in a Murine Model of Colon Cancer

    PubMed Central

    Russo, Sofía; Berois, Nora; Fernández, Gabriel; Freire, Teresa; Osinaga, Eduardo

    2013-01-01

    This study evaluates the antitumor immune response induced by human hydatic cyst fluid (HCF) in an animal model of colon carcinoma. We found that anti-HCF antibodies were able to identify cell surface and intracellular antigens in CT26 colon cancer cells. In prophylactic tumor challenge experiments, HCF vaccination was found to be protective against tumor formation for 40% of the mice (P = 0.01). In the therapeutic setting, HCF vaccination induced tumor regression in 40% of vaccinated mice (P = 0.05). This vaccination generated memory immune responses that protected surviving mice from tumor rechallenge, implicating the development of an adaptive immune response in this process. We performed a proteomic analysis of CT26 antigens recognized by anti-HCF antibodies to analyze the immune cross-reactivity between E. granulosus (HCF) and CT26 colon cancer cells. We identified two proteins: mortalin and creatine kinase M-type. Interestingly, CT26 mortalin displays 60% homology with E. granulosus hsp70. In conclusion, our data demonstrate the capacity of HCF vaccination to induce antitumor immunity which protects from tumor growth in an animal model. This new antitumor strategy could open new horizons in the development of highly immunogenic anticancer vaccines. PMID:24023528

  11. Osteopontin Mediates Citrobacter rodentium-Induced Colonic Epithelial Cell Hyperplasia and Attaching-Effacing Lesions

    PubMed Central

    Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G.; Goldberg, Harvey A.; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S.; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M.

    2010-01-01

    Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN+/+ and OPN−/− fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN−/− mice, and spleen enlargement by infection was absent in OPN−/− mice. Rectal administration of OPN to OPN−/− mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN−/− mice, compared with wild-type mice, which was accompanied by reduced attaching–effacing lesions, both in infected OPN−/− mice and OPN−/− mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN−/− cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses. PMID:20651246

  12. Osteopontin mediates Citrobacter rodentium-induced colonic epithelial cell hyperplasia and attaching-effacing lesions.

    PubMed

    Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G; Goldberg, Harvey A; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M

    2010-09-01

    Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN(+/+) and OPN(-/-) fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN(-/-) mice, and spleen enlargement by infection was absent in OPN(-/-) mice. Rectal administration of OPN to OPN(-/-) mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN(-/-) mice, compared with wild-type mice, which was accompanied by reduced attaching-effacing lesions, both in infected OPN(-/-) mice and OPN(-/-) mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN(-/-) cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses.

  13. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  14. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  15. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    PubMed

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.

  16. The Vibrio parahaemolyticus ToxRS Regulator Is Required for Stress Tolerance and Colonization in a Novel Orogastric Streptomycin-Induced Adult Murine Model

    PubMed Central

    Whitaker, W. Brian; Parent, Michelle A.; Boyd, Aoife; Richards, Gary P.

    2012-01-01

    Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a nonpolar mutation in toxRS to determine the role of these genes in V. parahaemolyticus RIMD2210633, an O3:K6 isolate, and showed that compared to the wild type, ΔtoxRS was significantly more sensitive to acid, bile salts, and sodium dodecyl sulfate stresses. We demonstrated that ToxRS is a positive regulator of ompU expression, and that the complementation of ΔtoxRS with ompU restores stress tolerance. Furthermore, we showed that ToxRS also regulates type III secretion system genes in chromosome I via the regulation of the leuO homologue VP0350. We examined the effect of ΔtoxRS in vivo using a new orogastric adult murine model of colonization. We demonstrated that streptomycin-treated adult C57BL/6 mice experienced prolonged intestinal colonization along the entire intestinal tract by the streptomycin-resistant V. parahaemolyticus. In contrast, no colonization occurred in non-streptomycin-treated mice. A competition assay between the ΔtoxRS and wild-type V. parahaemolyticus strains marked with the β-galactosidase gene lacZ demonstrated that the ΔtoxRS strain was defective in colonization compared to the wild-type strain. This defect was rescued by ectopically expressing ompU. Thus, the defect in stress tolerance and colonization in ΔtoxRS is solely due to OmpU. To our knowledge, the orogastric adult murine model reported here is the first showing sustained intestinal colonization by V. parahaemolyticus. PMID:22392925

  17. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    USDA-ARS?s Scientific Manuscript database

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  18. Triflavin, an Arg‐Gly‐Asp‐containing Antiplatelet Peptide Inhibits Cell‐substratum Adhesion and Melanoma Cell‐induced Lung Colonization

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Chung, Jih L.; Teng, Che M.

    1992-01-01

    Triflavin, an Arg‐Gly‐Asp (RGD) containing peptide purified from Trimeresurus flavoviridis snake venom, inhibits human platelet aggregation by blocking fibrinogen binding to fibrinogen receptors associated with glycoprotein Ilb/IIIa complex. In this study, we show that triflavin (1‐30 μg/mouse) inhibits B16‐F10 melanoma cell‐induced lung colonization in C57BL/6 mice in a dose‐dependent manner. In vitro, triflavin dose‐dependently inhibits adhesion of B16‐F10 melanoma cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, vitronectin, and collagen type I). Triflavin is approximately 600‐800 times more potent than GRGDS at inhibiting cell adhesion. In addition, triflavin dose‐dependently inhibits B16‐F10 cell‐induced platelet aggregation. These results imply that the inhibitory effect of triflavin on the adhesion of tumor cells to ECMs (e.g., fibronectin, vitronectin and collagen type I) and/or tumor cell‐induced platelet aggregation may be partially responsible for its antimetastatic activity in C57BL/6 mice. PMID:1399825

  19. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    PubMed

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-09-10

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.

  20. Exosomes Derived from Dendritic Cells Treated with Schistosoma japonicum Soluble Egg Antigen Attenuate DSS-Induced Colitis

    PubMed Central

    Wang, Lifu; Yu, Zilong; Wan, Shuo; Wu, Feng; Chen, Wei; Zhang, Beibei; Lin, Datao; Liu, Jiahua; Xie, Hui; Sun, Xi; Wu, Zhongdao

    2017-01-01

    Exosomes are 30–150 nm small membrane vesicles that are released into the extracellular medium via cells that function as a mode of intercellular communication. Dendritic cell (DC)-derived exosomes modulate immune responses and prevent the development of autoimmune diseases. Moreover, Schistosoma japonicum eggs show modulatory effects in a mouse model of colitis. Therefore, we hypothesized that exosomes derived from DCs treated with S. japonicum soluble eggs antigen (SEA; SEA-treated DC exosomes) would be useful for treating inflammatory bowel disease (IBD). Exosomes were purified from the supernatant of DCs treated or untreated with SEA and identified via transmission electron microscopy, western blotting and NanoSight. Acute colitis was induced via the administration of dextran sulfate sodium (DSS) in drinking water (5.0%, wt/vol). Treatment with exosomes was conducted via intraperitoneal injection (i.p.; 50 μg per mouse) from day 0 to day 6. Clinical scores were calculated based on weight loss, stool type, and bleeding. Colon length was measured as an indirect marker of inflammation, and colon macroscopic characteristics were determined. Body weight loss and the disease activity index of DSS-induced colitis mice decreased significantly following treatment with SEA-treated DC exosomes. Moreover, the colon lengths of SEA-treated DC exosomes treated colitis mice improved, and their mean colon macroscopic scores decreased. In addition, histologic examinations and histological scores showed that SEA-treated DC exosomes prevented colon damage in acute DSS-induced colitis mice. These results indicate that SEA-treated DC exosomes attenuate the severity of acute DSS-induced colitis mice more effectively than DC exosomes. The current work suggests that SEA-treated DC exosomes may be useful as a new approach to treat IBD. PMID:28959207

  1. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vendramini-Costa, Débora Barbosa, E-mail: vendrami

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTNmore » on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression. • GTN induces intrinsic apoptosis in HT-29 cells, involving ROS, MAPK and caspases. • These results highlight GTN as a potential chemopreventive agent for colon cancer.« less

  2. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less

  3. TRPA1 and substance P mediate colitis in mice.

    PubMed

    Engel, Matthias A; Leffler, Andreas; Niedermirtl, Florian; Babes, Alexandru; Zimmermann, Katharina; Filipović, Miloš R; Izydorczyk, Iwona; Eberhardt, Mirjam; Kichko, Tatjana I; Mueller-Tribbensee, Sonja M; Khalil, Mohammad; Siklosi, Norbert; Nau, Carla; Ivanović-Burmazović, Ivana; Neuhuber, Winfried L; Becker, Christoph; Neurath, Markus F; Reeh, Peter W

    2011-10-01

    The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P. We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons. Colitis was induced in wild-type, knockout, and desensitized mice. TNBS induced TRPA1-dependent release of colonic substance P and CGRP, influx of Ca2+, and sustained ionic inward currents in colonic sensory neurons and transfected HEK293t cells. Analysis of mutant forms of TRPA1 revealed that TNBS bound covalently to cysteine (and lysine) residues in the cytoplasmic N-terminus. A stable sulfinic acid transformation of the cysteine-SH group, shown by mass spectrometry, might contribute to sustained sensitization of TRPA1. Mice with colitis had increased colonic neuropeptide release, mediated by TRPA1. Endogenous products of inflammatory lipid peroxidation also induced TRPA1-dependent release of colonic neuropeptides; levels of 4-hydroxy-trans-2-nonenal increased in each model of colitis. Colitis induction by TNBS or dextran-sulfate-sodium-salt was inhibited or reduced in TRPA1-/- mice and by 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopro-pylphenyl)-acetamide, a pharmacologic inhibitor of TRPA1. Substance P had a proinflammatory effect that was dominant over CGRP, based on studies of knockout mice. Ablation of extrinsic sensory neurons prevented or attenuated TNBS-induced release of neuropeptides and both forms of colitis. Neuroimmune interactions control intestinal inflammation. Activation and sensitization of TRPA1 and release of substance P induce and maintain colitis in mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Synthesis of cytochrome C oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death.

    PubMed

    Wanka, C; Brucker, D P; Bähr, O; Ronellenfitsch, M; Weller, M; Steinbach, J P; Rieger, J

    2012-08-16

    P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53(V135A) increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in an SCO2-dependent manner. Targeting SCO2 may therefore represent a valuable strategy to enhance sensitivity towards hypoxia and may complement strategies targeting glucose metabolism.

  5. Apigenin sensitizes colon cancer cells to anti-tumor activity of ABT-263

    PubMed Central

    Shao, Huanjie; Jing, Kai; Mahmoud, Esraa; Huang, Haihong; Fang, Xianjun; Yu, Chunrong

    2013-01-01

    Apigenin is an edible plant-derived flavonoid that shows modest anti-tumor activities in vitro and in vivo. Apigenin treatment resulted in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between apigenin and ABT-263 in colon cancer cells. We observed a synergistic effect between apigenin and ABT-263 on apoptosis of colon cancer cells. ABT-263 alone induced limited cell death while upregulating expression of Mcl-1, a potential mechanism for the acquired resistance to ABT-263. The presence of apigenin antagonized ABT-263-induced Mcl-1 upregulation and dramatically enhanced ABT-263-induced cell death. Meanwhile, apigenin suppressed AKT and ERK activation. Inactivation of either AKT or ERK by lentivirus-transduced shRNA or treatment with specific small molecule inhibitors of these pathways enhanced ABT-263-induced cell death, mirroring the effect of apigenin. Moreover, the combination response was associated with upregulation of Bim and activation of Bax. Downregulation of Bax eliminated the synergistic effect of apigenin and ABT-263 on cell death. Xenograft studies in SCID mice showed that the combined treatment with apigenin and ABT-263 inhibited tumor growth by up to 70% without obvious adverse effects, while either agent only inhibited around 30%. Our results demonstrate a novel strategy to enhance ABT-263 induced anti-tumor activity in human colon cancer cells by apigenin via inhibition of the Mcl-1, AKT and ERK pro-survival regulators. PMID:24126433

  6. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis.

    PubMed

    Conacci-Sorrell, Maralice E; Ben-Yedidia, Tamar; Shtutman, Michael; Feinstein, Elena; Einat, Paz; Ben-Ze'ev, Avri

    2002-08-15

    beta-catenin and plakoglobin (gamma-catenin) are homologous molecules involved in cell adhesion, linking cadherin receptors to the cytoskeleton. beta-catenin is also a key component of the Wnt pathway by being a coactivator of LEF/TCF transcription factors. To identify novel target genes induced by beta-catenin and/or plakoglobin, DNA microarray analysis was carried out with RNA from cells overexpressing either protein. This analysis revealed that Nr-CAM is the gene most extensively induced by both catenins. Overexpression of either beta-catenin or plakoglobin induced Nr-CAM in a variety of cell types and the LEF/TCF binding sites in the Nr-CAM promoter were required for its activation by catenins. Retroviral transduction of Nr-CAM into NIH3T3 cells stimulated cell growth, enhanced motility, induced transformation, and produced rapidly growing tumors in nude mice. Nr-CAM and LEF-1 expression was elevated in human colon cancer tissue and cell lines and in human malignant melanoma cell lines but not in melanocytes or normal colon tissue. Dominant negative LEF-1 decreased Nr-CAM expression and antibodies to Nr-CAM inhibited the motility of B16 melanoma cells. The results indicate that induction of Nr-CAM transcription by beta-catenin or plakoglobin plays a role in melanoma and colon cancer tumorigenesis, probably by promoting cell growth and motility.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Kyung; Gwak, Jungsug; Song, Im-Sook

    Highlights: {yields} TopIn activates p53-dependent transcription in colon cancer cells. {yields} TopIn induces apoptosis in colon cancer cells. {yields} TopIn selectively inhibits topoisomerase I activity. {yields} TopIn does not affect the activity of BCRP and MDR-1. -- Abstract: The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizingmore » the p53 protein. Furthermore, TopIn upregulated the expression of p21{sup WAF1/CIP1}, a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.« less

  8. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors.

    PubMed

    Antonioli, Luca; Pellegrini, Carolina; Fornai, Matteo; Tirotta, Erika; Gentile, Daniela; Benvenuti, Laura; Giron, Maria Cecilia; Caputi, Valentina; Marsilio, Ilaria; Orso, Genny; Bernardini, Nunzia; Segnani, Cristina; Ippolito, Chiara; Csóka, Balázs; Németh, Zoltán H; Haskó, György; Scarpignato, Carmelo; Blandizzi, Corrado; Colucci, Rocchina

    2017-12-01

    Adenosine A 2B receptors (A 2B R) regulate several enteric functions. However, their implication in the pathophysiology of intestinal dysmotility associated with high-fat diet (HFD)-induced obesity has not been elucidated. We investigated the expression of A 2B R in mouse colon and their role in the mechanisms underlying the development of enteric dysmotility associated with obesity. Wild-type C57BL/6J mice were fed with HFD (60% kcal from fat) or normocaloric diet (NCD; 18% kcal from fat) for 8 weeks. Colonic A 2B R localization was examined by immunofluorescence. The role of A 2B R in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). In NCD mice, A 2B R were predominantly located in myenteric neurons; in HFD animals, their expression increased throughout the neuromuscular layer. Functionally, the A 2B R antagonist MRS1754 enhanced electrically induced NK 1 -mediated tachykininergic contractions in LMPs from HFD mice, while it was less effective in tissues from NCD mice. The A 2B receptor agonist BAY 60-6583 decreased colonic tachykininergic contractions in LMPs, with higher efficacy in preparations from obese mice. Both A 2B R ligands did not affect contractions elicited by exogenous substance P. Obesity is related with a condition of colonic inflammation, leading to an increase of A 2B R expression. A 2B R, modulating the activity of excitatory tachykininergic nerves, participate to the enteric dysmotility associated with obesity.

  9. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility.

    PubMed

    Ge, Xiaolong; Ding, Chao; Zhao, Wei; Xu, Lizhi; Tian, Hongliang; Gong, Jianfeng; Zhu, Minsheng; Li, Jieshou; Li, Ning

    2017-01-13

    The gastrointestinal motility is affected by gut microbiota and the relationship between them has become a hot topic. However, mechanisms of microbiota in regulating motility have not been well defined. We thus investigated the effect of microbiota depletion by antibiotics on gastrointestinal motility, colonic serotonin levels, and bile acids metabolism. After 4 weeks with antibiotics treatments, gastrointestinal and colon transit, defecation frequency, water content, and other fecal parameters were measured and analyzed in both wild-type and antibiotics-treated mice, respectively. Contractility of smooth muscle, serotonin levels, and bile acids levels in wild-type and antibiotics-treated mice were also analyzed. After antibiotics treatment, the richness and diversity of intestinal microbiota decreased significantly, and the fecal of mice had less output (P < 0.01), more water content (P < 0.01), and longer pellet length (P < 0.01). Antibiotics treatment in mice also resulted in delayed gastrointestinal and colonic motility (P < 0.05), and inhibition of phasic contractions of longitudinal muscle from isolated proximal colon (P < 0.01). In antibiotics-treated mice, serotonin, tryptophan hydroxylase 1, and secondary bile acids levels were decreased. Gut microbiota play an important role in the regulation of intestinal bile acids and serotonin metabolism, which could probably contribute to the association between gut microbiota and gastrointestinal motility as intermediates.

  10. Antagonizing pathways leading to differential dynamics in colon carcinogenesis in Shugoshin1 (Sgo1)-haploinsufficient chromosome instability model.

    PubMed

    Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Dai, Wei; Yamada, Hiroshi Y

    2016-05-01

    Colon cancer is the second most lethal cancer. It is predicted to claim 50,310 lives in 2014. Chromosome Instability (CIN) is observed in 80-90% of colon cancers, and is thought to contribute to colon cancer progression and recurrence. However, there are no animal models of CIN that have been validated for studies of colon cancer development or drug testing. In this study, we sought to validate a mitotic error-induced CIN model mouse, the Shugoshin1 (Sgo1) haploinsufficient mouse, as a colon cancer study model. Wild-type and Sgo1(-/+) mice were treated with the colonic carcinogen, azoxymethane (AOM). We tracked colon tumor development 12, 24, and 36 wk after treatment to assess progression of colon tumorigenesis. Initially, more precancerous lesions, Aberrant Crypt Foci (ACF), developed in Sgo1(-/+) mice. However, the ACF did not develop straightforwardly into larger tumors. At the 36-wk endpoint, the number of gross tumors in Sgo1(-/+) mice was no different from that in wild-type controls. However, Copy Number Variation (CNV) analysis indicated that fully developed colon tumor in Sgo1(-/+) mice carried 13.75 times more CNV. Immunohistological analyses indicated that Sgo1(-/+) mice differentially expressed IL-6, Bcl2, and p16(INK4A) . We propose that formation of ACF in Sgo1(-/+) mice is facilitated by the IL6-STAT3-SOCS3 oncogenic pathway and by the Bcl2-anti-apoptotic pathway, yet further development of the ACF to tumors is inhibited by the p16(INK4A) tumor suppressor pathway. Manipulating these pathways would be beneficial for inhibiting development of colon cancer with CIN. © 2015 Wiley Periodicals, Inc.

  11. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    PubMed

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  12. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter

    PubMed Central

    Gjymishka, Altin; Salido, Eduardo C.; Allison, Milton J.; Freel, Robert W.

    2011-01-01

    Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691–698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter formigenes could enhance enteric oxalate secretion and effectively reduce the hyperoxaluria associated with this genetic disease. Wild-type (WT) mice and mice deficient in liver alanine-glyoxylate aminotransferase (Agxt) exhibiting hyperoxalemia and hyperoxaluria were used in these studies. We compared the unidirectional and net fluxes of oxalate across isolated, short-circuited large intestine of artificially colonized and noncolonized mice. In addition, plasma and urinary oxalate was determined. Our results demonstrate that the cecum and distal colon contribute significantly to enteric oxalate excretion in Oxalobacter-colonized Agxt and WT mice. In colonized Agxt mice, urinary oxalate excretion was reduced 50% (to within the normal range observed for WT mice). Moreover, plasma oxalate concentrations in Agxt mice were also normalized (reduced 50%). Colonization of WT mice was also associated with marked (up to 95%) reductions in urinary oxalate excretion. We conclude that segment-specific effects of Oxalobacter on intestinal oxalate transport in the PH1 mouse model are associated with a normalization of plasma oxalate and urinary oxalate excretion in otherwise hyperoxalemic and hyperoxaluric animals. PMID:21163900

  13. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  14. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells.

    PubMed

    Watson, Jane L; Hill, Richard; Yaffe, Paul B; Greenshields, Anna; Walsh, Mark; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W

    2010-11-01

    Curcumin from the rhizome of theCurcuma longa plant has chemopreventative activity and inhibits the growth of neoplastic cells. Since p53 has been suggested to be important for anticancer activity by curcumin, we investigated curcumin-induced cytotoxicity in cultures of p53(+/+) and p53(-/-) HCT-116 colon cancer cells, as well as mutant p53 HT-29 colon cancer cells. Curcumin killed wild-type p53 HCT-116 cells and mutant p53 HT-29 cells in a dose- and time-dependent manner. In addition, curcumin-treated p53(+/+) HCT-116 cells and mutant p53 HT-29 cells showed upregulation of total and activated p53, as well as increased expression of p53-regulated p21, PUMA (p53 upregulated modulator of apoptosis), and Bax; however, an equivalent cytotoxic effect by curcumin was observed in p53(+/+) and p53(-/-) HCT-116 cells, demonstrating that curcumin-induced cytotoxicity was independent of p53 status. Similar results were obtained when the cytotoxic effect of curcumin was assessed in wild-type p53 HCT-116 cells after siRNA-mediated p53 knockdown. Chromatin condensation, poly (ADP-ribose) polymerase-1 cleavage and reduced pro-caspase-3 levels in curcumin-treated p53(+/+) and p53(-/-) HCT-116 cells suggested that curcumin caused apoptosis. In addition, exposure to curcumin resulted in superoxide anion production and phosphorylation of oxidative stress proteins in p53(+/+) and p53(-/-) HCT-116 cells. Collectively, our results indicate that, despite p53 upregulation and activation, curcumin-induced apoptosis in colon cancer cells was independent of p53 status and involved oxidative stress. Curcumin may therefore have therapeutic potential in the management of colon cancer, especially in tumorsthatare resistant to conventional chemotherapydue todefects inp53 expression or function. 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Diabetes-induced mechanophysiological changes in the small intestine and colon

    PubMed Central

    Zhao, Mirabella; Liao, Donghua; Zhao, Jingbo

    2017-01-01

    The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients. PMID:28694926

  16. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  17. HSPRO Controls Early Nicotiana attenuata Seedling Growth during Interaction with the Fungus Piriformospora indica1[C][W][OA

    PubMed Central

    Schuck, Stefan; Camehl, Iris; Gilardoni, Paola A.; Oelmueller, Ralf; Baldwin, Ian T.; Bonaventure, Gustavo

    2012-01-01

    In a previous study aimed at identifying regulators of Nicotiana attenuata responses against chewing insects, a 26-nucleotide tag matching the HSPRO (ORTHOLOG OF SUGAR BEET Hs1pro-1) gene was found to be strongly induced after simulated herbivory (Gilardoni et al., 2010). Here we characterized the function of HSPRO during biotic interactions in transgenic N. attenuata plants silenced in its expression (ir-hspro). In wild-type plants, HSPRO expression was not only induced during simulated herbivory but also when leaves were inoculated with Pseudomonas syringae pv tomato DC3000 and roots with the growth-promoting fungus Piriformospora indica. Reduced HSPRO expression did not affect the regulation of direct defenses against Manduca sexta herbivory or P. syringae pv tomato DC3000 infection rates. However, reduced HSPRO expression positively influenced early seedling growth during interaction with P. indica; fungus-colonized ir-hspro seedlings increased their fresh biomass by 30% compared with the wild type. Grafting experiments demonstrated that reduced HSPRO expression in roots was sufficient to induce differential growth promotion in both roots and shoots. This effect was accompanied by changes in the expression of 417 genes in colonized roots, most of which were metabolic genes. The lack of major differences in the metabolic profiles of ir-hspro and wild-type colonized roots (as analyzed by liquid chromatography time-of-flight mass spectrometry) suggested that accelerated metabolic rates were involved. We conclude that HSPRO participates in a whole-plant change in growth physiology when seedlings interact with P. indica. PMID:22892352

  18. Dextran Sulfate Sodium-Induced Colonic Histopathology, but not Altered Epithelial Ion Transport, Is Reduced by Inhibition of Phosphodiesterase Activity

    PubMed Central

    Diaz-Granados, Natalia; Howe, Kathryn; Lu, Jun; McKay, Derek M.

    2000-01-01

    Inhibition of phosphodiesterase (PDE) activity is beneficial in models of arthritis and airway inflammation. Here we assessed the ability of PDE inhibitors to modulate colitis by exposing mice to 4% (w/v) dextran sulfate sodium (DSS) drinking water for 5 days with or without rolipram, an inhibitor of PDE type 4, or the nonselective PDE inhibitor, pentoxifylline (both at 5 mg/kg, i.p., twice daily). Controls received saline, vehicle, or drug only. Colonic histology, myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) levels, and epithelial ion transport (baseline and stimulated by electrical nerve stimulation, carbachol, and forskolin) were examined. DSS-treated mice displayed a variable diarrhea, significant histopathology in the mid-distal colon, elevated MPO activity, and reduced (>50%) responses to all three pro-secretory stimuli. Treatment with rolipram, and to a lesser extent pentoxifylline, significantly reduced the severity of the colonic histopathology and MPO levels. Neither PDE inhibitor had any affect on the diminished ion transport events caused by DSS-induced colitis. However, although stimulated ion transport events were still reduced 3 days after DSS treatment, colonic segments from DSS + rolipram-treated mice displayed enhanced recovery in their secretory responsiveness, particularly to carbachol. These findings indicate that specific PDE4 inhibition can significantly reduce the tissue damage that accompanies colitis and enhance recovery of normal colonic function. PMID:10854237

  19. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    PubMed Central

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  20. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  1. Expression of the neurokinin type 1 receptor in the human colon.

    PubMed

    Boutaghou-Cherid, Hikma; Porcher, Christophe; Liberge, Martine; Jule, Yvon; Bunnett, Nigel W; Christen, Marie-Odile

    2006-01-30

    The distribution of the neurokinin type 1 receptor (NK1r) in human intestine, mapped in a few immunohistochemical investigations in the antrum and the duodenum, is comparable to that widely studied in rodents. Importantly, despite pharmacological evidence of their presence in mammalian intestinal muscle, their immunohistochemical visualization in smooth muscle cells remains to be determined in human digestive tract. In the present work, we studied the distribution of NK1r in the human colon, with a particular view to visualize their expression in muscle cells. With this aim, part of colonic segments were incubated with nicardipine and TTX in order to induce accumulation of the NK1r on cell membrane. NK1r were visualized by using immunohistochemistry combined with fluorescence and confocal microscopy. Without incubation, NK1r-IR was clearly observed on the membrane and the cytoplasm of myenteric and submucous neurons and interstitial cells of Cajal, but could not be clearly determined in the longitudinal and circular muscle. NK1r-IR-expressing neurons and interstitial cells were closely surrounded by substance P (SP) immunoreactive nerves. Incubation of colonic segments with nicardipine and TTX at 4 degrees C for 1 h with SP allowed to reveal a strong NK1r-IR at the surface of muscle cells. Incubation with SP (10(-6) M) at 37 degrees C for 1 min induced a relocation of NK1r-IR into the cytoplasm of muscle. This is interpreted as an internalization of NK1r induced by the binding of SP on muscular NK1r. The present data contribute to emphasize the role of NK1r in tachykinin-mediated neuronal processes regulating intestinal motility.

  2. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  3. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  4. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihong; Xu, Bin; Yao, Yiting

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administrationmore » of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.« less

  5. Colorectal perforation by self-induced hydrostatic pressure: a report of two cases.

    PubMed

    Choi, Pyong Wha

    2013-02-01

    Most iatrogenic colorectal perforations occur as a result of endoscopic or fluoroscopic studies. Accidents associated with hydrostatic pressure-induced perforation are rarely reported, and self-induced hydrostatic pressure is an extremely rare cause of perforation because the anal sphincter complex may provide a protective barrier against perianal hydrostatic pressure. We present two cases of rectosigmoid colon perforation secondary to self-induced hydrostatic pressure. A 61-year-old man and a 45-year-old man presented with abdominal pain after forceful entry of tap water into the rectum, during rinsing of the anus after defecation in the first case, and during self-administered enema in the second case. Emergency operations were performed with the suspicion of hydrostatic pressure-induced rectal injury, and showed rectosigmoid mesenteric perforation in both cases. Resection of the diseased segment and end colostomy (Hartmann's procedure) was performed in the first case, and primary resection and anastomosis in the second case. The pathologic results showed abrupt loss of the colonic wall in the mesenteric border, without evidence of other inflammatory disease; these findings were consistent with acute mechanical colon injury. The postoperative course in both cases was uneventful. These cases put forth an unusual type of colorectal injury, caused specifically by hydrostatic pressure, thus adding to the available literature on hydrostatic pressure-induced injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Oxalobacter formigenes–Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells

    PubMed Central

    Arvans, Donna; Jung, Yong-Chul; Antonopoulos, Dionysios; Koval, Jason; Granja, Ignacio; Bashir, Mohamed; Karrar, Eltayeb; Roy-Chowdhury, Jayanta; Musch, Mark; Asplin, John; Chang, Eugene

    2017-01-01

    Hyperoxaluria is a major risk factor for kidney stones and has no specific therapy, although Oxalobacter formigenes colonization is associated with reduced stone risk. O. formigenes interacts with colonic epithelium and induces colonic oxalate secretion, thereby reducing urinary oxalate excretion, via an unknown secretagogue. The difficulties in sustaining O. formigenes colonization underscore the need to identify the derived factors inducing colonic oxalate secretion. We therefore evaluated the effects of O. formigenes culture conditioned medium (CM) on apical 14C-oxalate uptake by human intestinal Caco-2-BBE cells. Compared with control medium, O. formigenes CM significantly stimulated oxalate uptake (>2.4-fold), whereas CM from Lactobacillus acidophilus did not. Treating the O. formigenes CM with heat or pepsin completely abolished this bioactivity, and selective ultrafiltration of the CM revealed that the O. formigenes–derived factors have molecular masses of 10–30 kDa. Treatment with the protein kinase A inhibitor H89 or the anion exchange inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid completely blocked the CM-induced oxalate transport. Knockdown of the oxalate transporter SLC26A6 also significantly restricted the induction of oxalate transport by CM. In a mouse model of primary hyperoxaluria type 1, rectal administration of O. formigenes CM significantly reduced (>32.5%) urinary oxalate excretion and stimulated (>42%) distal colonic oxalate secretion. We conclude that O. formigenes–derived bioactive factors stimulate oxalate transport in intestinal cells through mechanisms including PKA activation. The reduction in urinary oxalate excretion in hyperoxaluric mice treated with O. formigenes CM reflects the in vivo retention of biologic activity and the therapeutic potential of these factors. PMID:27738124

  7. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer.

    PubMed

    Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin

    2015-07-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.

  8. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actinmore » induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF-β1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased expression of F-actin in SW-480 cells.« less

  9. Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer.

    PubMed

    Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I; Reis, Henning; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2011-12-01

    The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Toll-like Receptor 4 Variant D299G Induces Features of Neoplastic Progression in Caco-2 Intestinal Cells and Is Associated With Advanced Human Colon Cancer

    PubMed Central

    Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I.; Reis, Henning; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke

    2012-01-01

    Background & Aims The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. Methods We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Results Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. Conclusions TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. PMID:21920464

  11. Inulin-type fructans: functional food ingredients.

    PubMed

    Roberfroid, Marcel B

    2007-11-01

    A food (ingredient) is regarded as functional if it is satisfactorily demonstrated to affect beneficially 1 or more target functions in the body beyond adequate nutritional effects. The term inulin-type fructans covers all beta(2<--1) linear fructans including native inulin (DP 2-60, DP(av) = 12), oligofructose (DP 2-8, DP(av) = 4), and inulin HP (DP 10-60, DP(av) = 25) as well as Synergy 1, a specific combination of oligofructose and inulin HP. Inulin-type fructans resist digestion and function as dietary fiber improving bowel habits. But, unlike most dietary fibers, their colonic fermentation is selective, thus causing significant changes in the composition of the gut microflora with increased and reduced numbers of potentially health-promoting bacteria and potentially harmful species, respectively. Both oligofructose and inulin act in this way and thus are prebiotic: they also induce changes in the colonic epithelium and in miscellaneous colonic functions. In particular, the claim "inulin-type fructans enhance calcium and magnesium absorption" is scientifically substantiated, and the most active product is oligofructose-enriched inulin (Synergy 1). A series of studies furthermore demonstrate that inulin-type fructans modulate the secretion of gastrointestinal peptides involved in appetite regulation as well as lipid metabolism. Moreover, a large number of animal studies and preliminary human data show that inulin-type fructans reduce the risk of colon carcinogenesis and improve the management of inflammatory bowel diseases. Inulin-type fructans are thus functional food ingredients that are eligible for enhanced function claims, but, as more human data become available, risk reduction claims will become scientifically substantiated.

  12. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluatemore » CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via inhibition of geranylgeranylation and RhoA activation. Thus, statins, such as simvastatin, might be effective tools to antagonize CCL17-dependent migration and metastasis of colon cancer cells.« less

  13. Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocarbon Receptor.

    PubMed

    Oh-Oka, Kyoko; Kojima, Yuko; Uchida, Koichiro; Yoda, Kimiko; Ishimaru, Kayoko; Nakajima, Shotaro; Hemmi, Jun; Kano, Hiroshi; Fujii-Kuriyama, Yoshiaki; Katoh, Ryohei; Ito, Hiroyuki; Nakao, Atsuhito

    2017-07-01

    Mesalamine is a first-line drug for treatment of inflammatory bowel diseases (IBD). However, its mechanisms are not fully understood. CD4 + Foxp3 + regulatory T cells (Tregs) play a potential role in suppressing IBD. This study determined whether the anti-inflammatory activity of mesalamine is related to Treg induction in the colon. We examined the frequencies of Tregs in the colons of wild-type mice, mice deficient for aryl hydrocarbon receptor ( AhR -/- mice), and bone marrow-chimeric mice lacking AhR in hematopoietic cells (BM- AhR -/- mice), following oral treatment with mesalamine. We also examined the effects of mesalamine on transforming growth factor (TGF)-β expression in the colon. Treatment of wild-type mice with mesalamine increased the accumulation of Tregs in the colon and up-regulated the AhR target gene Cyp1A1 , but this effect was not observed in AhR -/- or BM- AhR -/- mice. In addition, mesalamine promoted in vitro differentiation of naive T cells to Tregs, concomitant with AhR activation. Mice treated with mesalamine exhibited increased levels of the active form of TGF-β in the colon in an AhR-dependent manner and blockade of TGF-β signaling suppressed induction of Tregs by mesalamine in the colon. Furthermore, mice pretreated with mesalamine acquired resistance to dextran sodium sulfate-induced colitis. We propose a novel anti-inflammatory mechanism of mesalamine for colitis: induction of Tregs in the colon via the AhR pathway, followed by TGF-β activation.

  14. Murine P-glycoprotein Deficiency Alters Intestinal Injury Repair and Blunts Lipopolysaccharide-Induced Radioprotection

    PubMed Central

    Staley, Elizabeth M.; Yarbrough, Vanisha R.; Schoeb, Trenton R.; Daft, Joseph G.; Tanner, Scott M.; Steverson, Dennis; Lorenz, Robin G.

    2012-01-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE2) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a−/− mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a−/−mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a−/−distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a−/− animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1−/− animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS. PMID:22780103

  15. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  16. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  17. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  18. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

    PubMed

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R

    2015-03-24

    Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. Treatment and prevention strategies for bacterial diseases rely heavily on traditional antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment. Copyright © 2015 Gebhart et al.

  19. G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis.

    PubMed

    Steury, Michael D; Kang, Ho Jun; Lee, Taehyung; Lucas, Peter C; McCabe, Laura R; Parameswaran, Narayanan

    2018-06-01

    G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2 +/+ ) and GRK2 heterozygous (GRK +/- ) mice in their drinking water for 7 days. As predicted, GRK2 +/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2 +/+ vs. 11% loss in GRK2 +/- ). lower disease activity index (GRK2 +/+ 9.1 vs GRK2 +/- 4.1), and increased colon lengths (GRK2 +/+ 4.7 cm vs GRK2 +/- 5.3 cm). To examine the mechanisms by which GRK2 +/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2 +/- mice compared with GRK2 +/+ . To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

  20. Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy.

    PubMed

    Ling, Youguo; Zhang, Xiaojuan; Bai, Yuanyuan; Li, Ping; Wei, Congwen; Song, Ting; Zheng, Zirui; Guan, Kai; Zhang, Yanhong; Zhang, Buchang; Liu, Xuedong; Ma, Runlin Z; Cao, Cheng; Zhong, Hui; Xu, Quanbin

    2014-08-08

    The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells.

    PubMed

    Xiong, Xiaopeng; Wen, Yang-An; Mitov, Mihail I; C Oaks, Mary; Miyamoto, Shigeki; Gao, Tianyan

    2017-01-01

    Increased glucose metabolism is considered as one of the most important metabolic alterations adapted by cancer cells in order to generate energy as well as high levels of glycolytic intermediates to support rapid proliferation. PH domain leucine-rich repeat protein phosphatase (PHLPP) belongs to a novel family of Ser/Thr protein phosphatases that function as tumor suppressors in various types of human cancer. Here we determined the role of PHLPP in regulating glucose metabolism in colon cancer cells. Knockdown of PHLPP increased the rate of glucose consumption and lactate production, whereas overexpression of PHLPP had the opposite effect. Bioenergetic analysis using Seahorse Extracelluar Flux Analyzer revealed that silencing PHLPP expression induced a glycolytic shift in colon cancer cells. Mechanistically, we found that PHLPP formed a complex with Akt and hexokinase 2 (HK2) in the mitochondrial fraction of colon cancer cells and knockdown of PHLPP enhanced Akt-mediated phosphorylation and mitochondrial localization of HK2. Depletion of HK2 expression or treating cells with Akt and HK2 inhibitors reversed PHLPP loss-induced increase in glycolysis. Furthermore, PHLPP knockdown cells became addicted to glucose as a major energy source in that glucose starvation significantly decreased cancer cell survival. As HK2 is the key enzyme that determines the direction and magnitude of glucose flux, our study identified PHLPP as a novel regulator of glucose metabolism by controlling HK2 activity in colon cancer cells.

  2. PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells

    PubMed Central

    Xiong, Xiaopeng; Wen, Yang-An; Mitov, Mihail I; C Oaks, Mary; Miyamoto, Shigeki; Gao, Tianyan

    2017-01-01

    Increased glucose metabolism is considered as one of the most important metabolic alterations adapted by cancer cells in order to generate energy as well as high levels of glycolytic intermediates to support rapid proliferation. PH domain leucine-rich repeat protein phosphatase (PHLPP) belongs to a novel family of Ser/Thr protein phosphatases that function as tumor suppressors in various types of human cancer. Here we determined the role of PHLPP in regulating glucose metabolism in colon cancer cells. Knockdown of PHLPP increased the rate of glucose consumption and lactate production, whereas overexpression of PHLPP had the opposite effect. Bioenergetic analysis using Seahorse Extracelluar Flux Analyzer revealed that silencing PHLPP expression induced a glycolytic shift in colon cancer cells. Mechanistically, we found that PHLPP formed a complex with Akt and hexokinase 2 (HK2) in the mitochondrial fraction of colon cancer cells and knockdown of PHLPP enhanced Akt-mediated phosphorylation and mitochondrial localization of HK2. Depletion of HK2 expression or treating cells with Akt and HK2 inhibitors reversed PHLPP loss-induced increase in glycolysis. Furthermore, PHLPP knockdown cells became addicted to glucose as a major energy source in that glucose starvation significantly decreased cancer cell survival. As HK2 is the key enzyme that determines the direction and magnitude of glucose flux, our study identified PHLPP as a novel regulator of glucose metabolism by controlling HK2 activity in colon cancer cells. PMID:28179998

  3. Colon preneoplasia after carcinogen exposure is enhanced and colonic serotonergic system is suppressed by food deprivation.

    PubMed

    Kannen, Vinicius; Fernandes, Cleverson R; Stopper, Helga; Zanette, Dalila L; Ferreira, Frederico R; Frajacomo, Fernando T; Carvalho, Milene C; Brandão, Marcus L; Elias Junior, Jorge; Jordão Junior, Alceu Afonso; Uyemura, Sérgio Akira; Waaga-Gasser, Ana Maria; Garcia, Sérgio B

    2013-10-04

    Calorie restriction regimens usually promote health and extend life-span in mammals. This is partially related to their preventive effects against malignancies. However, certain types of nutritional restriction failed to induce beneficial effects. The American Institute of Nutrition defines calorie restriction as diets which have only 40% fewer calories, but provide normal amounts of necessary food components such as protein, vitamins and minerals; whereas, food restriction means 40% less of all dietary ingredients plus 40% less calories. Our study aimed to test the hypothesis that the latter type of food deprivation (40% less food than consumed by standard fed rats) might increase cancer risk instead of reducing it, as is generally assumed for all dietary restrictive regimens. Since the endogenous modulation of the colon serotonergic system has been observed to play a role during the early steps of carcinogenesis we also investigated whether the serotoninergic system could be involved in the food intake modulation of cancer risk. For this, rats were exposed to a carcinogen and subjected to food deprivation for 56 days. Triglyceride levels and visceral adipose tissue were reduced while hepatic and colonic lipid peroxidation was increased. This dietary restriction also decreased serotonin levels in colon, and gene expression of its intestinal transporter and receptors. Finally, the numbers of preneoplastic lesions in the colon tissue of carcinogen-exposed rats were increased. Our data suggest that food deprivation enhances formation of early tumorigenic lesions by suppressing serotonergic activity in colon tissue. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A Proteinaceous Elicitor Sm1 from the Beneficial Fungus Trichoderma virens Is Required for Induced Systemic Resistance in Maize1[W

    PubMed Central

    Djonović, Slavica; Vargas, Walter A.; Kolomiets, Michael V.; Horndeski, Michelle; Wiest, Aric; Kenerley, Charles M.

    2007-01-01

    We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acid- and green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as non-Trichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity. PMID:17885089

  5. In Silico Analysis of Usher Encoding Genes in Klebsiella pneumoniae and Characterization of Their Role in Adhesion and Colonization

    PubMed Central

    Khater, Fida; Balestrino, Damien; Charbonnel, Nicolas; Dufayard, Jean François; Brisse, Sylvain; Forestier, Christiane

    2015-01-01

    Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches. PMID:25751658

  6. 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soon Young; Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701; Hyun, Jiye

    2011-08-01

    Natural flavonoids have diverse pharmacological activities, including anti-oxidative, anti-inflammatory, and anti-cancer activities. In this study, we investigated the molecular mechanism underlying the action of 5-methoxyflavanone (5-MF) which has a strong bioavailability and metabolic stability. Our results show that 5-MF inhibited the growth and clonogenicity of HCT116 human colon cancer cells, and that it activated DNA damage responses, as revealed by the accumulation of p53 and the phosphorylation of DNA damage-sensitive proteins, including ataxia-telangiectasia mutated (ATM) at Ser1981, checkpoint kinase 2 (Chk2) at Thr68, and histone H2AX at Ser139. 5-MF-induced DNA damage was confirmed in a comet tail assay. We alsomore » found that 5-MF increased the cleavage of caspase-2 and -7, leading to the induction of apoptosis. Pretreatment with the ATM inhibitor KU55933 enhanced 5-MF-induced {gamma}-H2AX formation and caspase-7 cleavage. HCT116 cells lacking p53 (p53{sup -/-}) or p21 (p21{sup -/-}) exhibited increased sensitivity to 5-MF compared to wild-type cells. 5-MF further induced autophagy via an ERK signaling pathway. Blockage of autophagy with the MEK inhibitor U0126 potentiated 5-MF-induced {gamma}-H2AX formation and caspase-2 activation. These results suggest that a caspase-2 cascade mediates 5-MF-induced anti-tumor activity, while an ATM/Chk2/p53/p21 checkpoint pathway and ERK-mediated autophagy act as a survival program to block caspase-2-mediated apoptosis induced by 5-MF. - Graphical abstract: Display Omitted Highlights: > 5-MF inhibits the proliferation of HCT116 colon cancer cells. > 5-MF inhibits cell cycle progression and induces apoptosis. > Inhibition of autophagy triggers 5-MF-induced apoptosis. > Inhibition of ERK signaling blocks 5-MF-induced autophagy but activates apoptosis. > Treatment with 5-MF in combination with an ERK inhibitor may be a potential therapeutic strategy in human colon cancer.« less

  7. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota

    PubMed Central

    Stecher, Bärbel; Westendorf, Astrid M; Barthel, Manja; Kremer, Marcus; Chaffron, Samuel; Macpherson, Andrew J; Buer, Jan; Parkhill, Julian; Dougan, Gordon; von Mering, Christian; Hardt, Wolf-Dietrich

    2007-01-01

    Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen. PMID:17760501

  8. The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare).

    PubMed

    Khaosaad, Thanasan; Staehelin, Christian; Steinkellner, Siegrid; Hage-Ahmed, Karin; Ocampo, Juan Antonio; Garcia-Garrido, Jose Manuel; Vierheilig, Horst

    2010-11-01

    Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234. Copyright © Physiologia Plantarum 2010.

  9. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    PubMed Central

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  10. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    PubMed Central

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  11. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com; Wang, Ting; Zhou, Feng

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentarymore » group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory response. • Exercise prevents colonic inflammation in obesity by up-regulating PPAR-γ.« less

  12. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice

    PubMed Central

    Wang, Lihong; Shi, Yan; Cao, Hanwei; Liu, Liping; Washington, M. Kay; Chaturvedi, Rupesh; Israel, Dawn A.; Cao, Hailong; Wang, Bangmao; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2012-01-01

    Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. PMID:22173918

  13. 5-HT4 receptor agonists enhance both cholinergic and nitrergic activities in human isolated colon circular muscle.

    PubMed

    Cellek, S; John, A K; Thangiah, R; Dass, N B; Bassil, A K; Jarvie, E M; Lalude, O; Vivekanandan, S; Sanger, G J

    2006-09-01

    Previous studies have demonstrated mixed inhibitory and facilitatory effects of 5-hydroxytryptamine-4 (5-HT(4)) receptor agonists on electrical field stimulation (EFS)-induced responses in human isolated colon. Here we report three types of responses to EFS in human isolated colon circular muscle: monophasic cholinergic contraction during EFS, biphasic response (nitrergic relaxation during EFS followed by cholinergic contraction after termination of EFS) and triphasic response (cholinergic contraction followed by nitrergic relaxation during EFS and a tachykininergic contraction after EFS). The effects of two 5-HT(4) receptor agonists, prucalopride and tegaserod were then investigated on monophasic responses only. Each compound inhibited contractions during EFS in a concentration-dependent manner. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) however, prucalopride and tegaserod enhanced the contractions in a concentration-dependent manner. In strips where the tone was elevated with substance-P and treated with scopolamine, EFS-induced relaxations were enhanced by the two agonists. The above observed effects by the two agonists were abolished by 5-HT(4) receptor antagonist SB-204070. The two agonists did not alter the tone raised by substance-P in the presence of scopolamine and l-NAME and did not affect carbachol-induced contractions in the presence of tetrodotoxin. These results suggest that in the circular muscle of human colon, 5-HT(4) receptor agonists simultaneously facilitate the activity of neurones which release the inhibitory and excitatory neurotransmitters, nitric oxide and acetylcholine respectively.

  14. Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Kim, Min Jeong; Sung, Bokyung; Suh, Hongsuk; Jung, Jee H; Chung, Hae Young; Kim, Nam Deuk

    2017-01-01

    Resveratrol, a polyphenolic compound, is a naturally occurring phytochemical and is found in a variety of plants, including grapes, berries and peanuts. It has gained much attention for its potential anticancer activity against various types of human cancer. However, the usefulness of resveratrol as a chemotherapeutic agent is limited by its photosensitivity and metabolic instability. In this study the effects of a synthetic analogue of resveratrol, HS-1793, on the proliferation and apoptotic cell death were investigated using HCT116 human colon cancer cells. Although this compound has been reported to have anticancer activities in several human cancer cell lines, the therapeutic effects of HS-1793 on human colon cancer and its mechanisms of action have not been extensively studied. HS-1793 inhibited cell growth and induced apoptotic cell death in a concentration-dependent fashion. Induction of apoptosis was determined by morphological changes, cleavage of poly(ADP-ribose) polymerase, alteration of Bax/Bcl-2 expression ratio, and caspase activations. Flow cytometric analysis revealed that HS-1793 induced G2/M arrest in the cell cycle progression in HCT116 cells. Furthermore, HS-1793 showed more potent anticancer effects in several aspects than resveratrol in HCT116 cells. In addition, HS-1793 suppressed Akt and the phosphatidylinositol-3 kinase/Akt inhibitor LY294002 was found to enhance its induction of apoptosis. Thus, these findings suggest that HS-1793 have potential as a candidate chemotherapeutic agent against human colon cancer.

  15. Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudek, B.; Bird, R.P.; Bruce, W.R.

    1989-03-01

    Aberrant crypt foci can be identified in the colons of rodents treated 3 wk earlier with azoxymethane, a known colon carcinogen. These crypts can easily be visualized in the unsectioned methylene blue-stained colons under light microscopy, where they are distinguished by their increased size, more prominent epithelial cells, and pericryptal space. They occur as single aberrant crypts or as two, three, or four aberrant crypts in a cluster. We compared the reported ability of carcinogens associated with the human diet to induce colon cancer with the measured rate of induction of aberrant crypts in female CF1 mice and Sprague-Dawley rats.more » The carcinogens used were 1,2-dimethylhydrazine, methyl nitrosourea, N-nitrosodimethylamine, benzo(a)pyrene, aflatoxin B1, 2-amino-6-methyldipyrido(1,2-alpha:3',2'-d)imidazole, 2-amino-3-methylimidazo(4,5-P)quinoline, 2-amino-3,4-dimethylimidazo(4,5-P)quinoline, and 3-amino-1-methyl-5H-pyrido(4,3-b)indole. Graded doses of these compounds were given to the animals by gavage twice with a 4-day interval, and the animals were terminated 3 wk later. All colon carcinogens induced aberrant crypts in a dose-related fashion. N-Nitrosodimethylamine and 3-amino-1-methyl-5H-pyrido(4,3-b)indole, carcinogenic compounds that do not induce colon cancer, did not induce them. The ability of the studied compounds to induce aberrant crypts was species specific; e.g., aflatoxin B1 and 2-amino-3,4-dimethylimidazo(4,5-P)quinoline induce about 20 times more in rats than mice. This relationship was consistent with their reported ability to induce colon cancer in these species. Results of the present study support the use of the aberrant crypt assays to screen colon-specific carcinogens and to study the process of colon carcinogenesis.« less

  16. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    PubMed Central

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  17. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis.

    PubMed

    Gavert, Nancy; Sheffer, Michal; Raveh, Shani; Spaderna, Simone; Shtutman, Michael; Brabletz, Thomas; Barany, Francis; Paty, Phillip; Notterman, Daniel; Domany, Eytan; Ben-Ze'ev, Avri

    2007-08-15

    L1-CAM, a neuronal cell adhesion receptor, is also expressed in a variety of cancer cells. Recent studies identified L1-CAM as a target gene of beta-catenin-T-cell factor (TCF) signaling expressed at the invasive front of human colon cancer tissue. We found that L1-CAM expression in colon cancer cells lacking L1-CAM confers metastatic capacity, and mice injected in their spleen with such cells form liver metastases. We identified ADAM10, a metalloproteinase that cleaves the L1-CAM extracellular domain, as a novel target gene of beta-catenin-TCF signaling. ADAM10 overexpression in colon cancer cells displaying endogenous L1-CAM enhanced L1-CAM cleavage and induced liver metastasis, and ADAM10 also enhanced metastasis in colon cancer cells stably transfected with L1-CAM. DNA microarray analysis of genes induced by L1-CAM in colon cancer cells identified a cluster of genes also elevated in a large set of human colon carcinoma tissue samples. Expression of these genes in normal colon epithelium was low. These results indicate that there is a gene program induced by L1-CAM in colon cancer cells that is also present in colorectal cancer tissue and suggest that L1-CAM can serve as target for colon cancer therapy.

  18. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030

    PubMed Central

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-01-01

    Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723

  19. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.

    PubMed

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-07-12

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.

  20. A Type II Arabinogalactan from Anoectochilus formosanus for G-CSF Production in Macrophages and Leukopenia Improvement in CT26-Bearing Mice Treated with 5-Fluorouracil.

    PubMed

    Yang, Li-Chan; Lu, Ting-Jang; Lin, Wen-Chuan

    2013-01-01

    Anoectochilus formosanus is an herb well known in Asian countries. The polysaccharide isolated from A. formosanus consists of type II arabinogalactan (AGAF), with branched 3,6-Gal as the major moiety. In this study, AGAF was examined for the granulocyte colony-stimulating factor (G-CSF) production and related protein expression in RAW 264.7 murine macrophages. The signaling pathway of G-CSF production involves AGAF and mitogen-activated protein kinases (MAPKs) inhibitors and pattern-recognition receptor antibodies. AGAF was evaluated to ease the leukopenia in CT26-colon-cancer-bearing mice treated with 5-fluorouracil (5-FU). The results of this study showed that AGAF was a stimulant for Toll-like receptor 2 and Dectin-1 and that it induced G-CSF production, through p38 and ERK MAPK, and NF- κ B pathways. In vivo examination showed that the oral administration of AGAF mitigated the side effects of leukopenia caused by 5-FU in colon-cancer-bearing mice. In conclusion, the botanic type II AGAF in this study was a potent G-CSF inducer in vivo and in vitro.

  1. Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats.

    PubMed

    Lamine, F; Eutamène, H; Fioramonti, J; Buéno, L; Théodorou, V

    2004-12-01

    It has recently been shown that Lactobacillus farciminis treatment exerts an anti-inflammatory effect in trinitrobenzene sulphonic acid (TNBS)-induced colitis partly through a nitric oxide release by this strain. The aim of this study was to evaluate whether L. farciminis treatment shares also the general mechanisms of action involved in the beneficial effect of probiotics in the colonic inflammatory process. Rats received L. farciminis for 15 days before and 4 days after intracolonic administration of TNBS or vehicle. The following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase activity, cytokine mucosal levels, bacterial profile in colonic content and mucosa, bacterial translocation and colonic paracellular permeability. In the absence of TNBS, L. farciminis treatment reduced colonic paracellular permeability and increased the IL-10 level in the colonic wall. TNBS administration induced colonic macroscopic damage, associated with an increase of myeloperoxidase activity, bacterial translocation, colonic paracellular permeability and IL-1beta mucosal level, and a decrease in IL-10 mucosal level. Moreover, the bacterial profile of colonic content and mucosa was modified. All these alterations were abolished or significantly reduced by L. farciminis treatment. As previously shown, L. farciminis treatment improves TNBS-induced colitis. This study indicates that, in addition to the nitric oxide released by this bacterial strain, the anti-inflammatory action of L. farciminis involves also normalization of colonic microflora, prevention of bacterial translocation, enhancement of barrier integrity and a decrease in the IL-1beta mucosal level.

  2. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats.

    PubMed

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L A; Wold, A E

    1999-05-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R alpha-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum + E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity.

  3. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    PubMed

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  4. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    PubMed Central

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-01-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots. PMID:12228558

  5. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  6. A Modified R-Type Bacteriocin Specifically Targeting Clostridium difficile Prevents Colonization of Mice without Affecting Gut Microbiota Diversity

    PubMed Central

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J.; Lawley, Trevor D.

    2015-01-01

    ABSTRACT Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin (“diffocin”) from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. PMID:25805733

  7. Krüppel-Like Factor 5 Protects Against Dextran Sulfate Sodium-Induced Colonic Injury by Promoting Epithelial Repair in Mice

    PubMed Central

    McConnell, Beth B.; Kim, Samuel S.; Bialkowska, Agnieszka B.; Yu, Ke; Sitaraman, Shanthi V.; Yang, Vincent. W.

    2010-01-01

    BACKGROUND & AIMS Krüppel-like factor 5 (KLF5) is a transcription factor that promotes proliferation; is highly expressed in dividing crypt cells of the gastrointestinal epithelium and is induced by various stress stimuli. We sought to determine the role of KLF5 in colonic inflammation and recovery by studying mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Wild-type (WT) and Klf5+/− mice were given DSS in the drinking water to induce colitis. For recovery experiments, mice were given normal drinking water for 5 days after DSS administration. The extent of colitis was determined using established clinical and histological scoring systems. Immunohistochemical and immunoblotting analyses were used to examine proliferation, migration, and expression of the epidermal growth factor receptor (EGFR). RESULTS Klf5 expression was increased in colonic tissues of WT mice given DSS; induction of Klf5 was downstream of mitogen-activated protein kinase signaling. In DSS-induced colitis, Klf5+/− mice exhibited greater sensitivity to DSS than WT mice, with significantly higher clinical and histological colitis scores. In recovery experiments, Klf5+/− mice showed poor recovery, with continued weight loss and higher mortality than WT mice. Klf5+/− mice from the recovery period had reduced epithelial proliferation and cell migration at sites of ulceration compared to WT mice; these reductions correlated with reduced expression of EGFR. CONCLUSIONS Epithelial repair is an important aspect of recovery from DSS-induced colitis. The transcription factor KLF5 regulates mucosal healing through its effects on epithelial proliferation and migration. PMID:21078320

  8. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9

    PubMed Central

    Kubota, Kunitsugu; Ohtake, Nobuhiro; Ohbuchi, Katsuya; Mase, Akihito; Imamura, Sachiko; Sudo, Yuka; Miyano, Kanako; Yamamoto, Masahiro; Kono, Toru

    2015-01-01

    Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive “squeezing” motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-β sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced “LDC,” but not lidocaine-induced “RPR,” was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus. PMID:25634809

  9. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Multimodal Narcotic Limited Perioperative Pain Control With Colorectal Surgery

    ClinicalTrials.gov

    2017-03-16

    Colon Cancer; Colon Diverticulosis; Colonic Neoplasms; Colonic Diverticulitis; Pain, Postoperative; Ileus; Ileus Paralytic; Ileus; Mechanical; Constipation Drug Induced; Constipation; Rectum Cancer; Rectum Neoplasm

  11. Impaired Self-Renewal and Increased Colitis and Dysplastic Lesions in Colonic Mucosa of AKR1B8 Deficient Mice

    PubMed Central

    Shen, Yi; Ma, Jun; Yan, Ruilan; Ling, Hongyan; Li, Xiaoning; Yang, Wancai; Gao, John; Huang, Chenfei; Bu, Yiwen; Cao, Yu; He, Yingchun; Wan, Laxiang; Zu, Xuyu; Liu, Jianghua; Huang, Mei Chris; Stenson, William F; Liao, Duan-Fang; Cao, Deliang

    2015-01-01

    Purpose Ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Aldo-keto reductase 1B10 (AKR1B10) is specifically expressed in the colonic epithelium, but down-regulated in colorectal cancer. This study was aimed to investigate the etiopathogenic role of AKR1B10 in UC and CAC. Experimental design UC and CAC biopsies (paraffin-embedded sections) and frozen tissues were collected to examine AKR1B10 expression. Aldo-keto reductase 1B8 (the ortholog of human AKR1B10) knockout (AKR1B8 −/−) mice were produced to estimate its role in the susceptibility and severity of chronic colitis and associated dysplastic lesions, induced by dextran sulfate sodium (DSS) at a low dose (2%). Genome-wide Exome sequencing was used to profile DNA damage in DSS-induced colitis and tumors. Results AKR1B10 expression was markedly diminished in over 90% of UC and CAC tissues. AKR1B8 deficiency led to reduced lipid synthesis from butyrate and diminished proliferation of colonic epithelial cells. The DSS-treated AKR1B8 −/− mice demonstrated impaired injury repair of colonic epithelium and more severe bleeding, inflammation, and ulceration. These AKR1B8 −/− mice had more severe oxidative stress and DNA damage, and dysplasias were more frequent and at a higher grade in the AKR1B8 −/− mice than in wild type mice. Palpable masses were seen in the AKR1B8 −/− mice only, not in wild type. Conclusion AKR1B8 is a critical protein in the proliferation and injury repair of the colonic epithelium and in the pathogenesis of UC and CAC, being a new etiopathogenic factor of these diseases. PMID:25538260

  12. Tachykinin NK2 receptors and enhancement of cholinergic transmission in the inflamed rat colon: an in vivo motility study

    PubMed Central

    Carini, F; Lecci, A; Tramontana, M; Giuliani, S; Maggi, C A

    2001-01-01

    In the gastrointestinal tract, tachykinin NK2 receptors are localized both on smooth muscle and nerve fibres. NK2 receptor antagonists reduce exaggerated intestinal motility in various diarrhoea models but the site of action contributing to this effect is unknown. In this study we investigated the effects of atropine (1.4 μmol kg−1, i.v.), hexamethonium (13.5 μmol kg−1, i.v.), and nepadutant (0.1 μmol kg−1, i.v.), a selective tachykinin NK2 receptor antagonist, on distension (0.5 and 1 ml)-, or irritation (acetic acid, 0.5 ml of 7.5% v v−1)-induced motility in the rat distal colon in vivo. The effects of atropine, hexamethonium or Nω-nitro-L-argininemethylester (L-NAME, 1.85 μmol kg−1, i.v.) on [βAla8]NKA(4-10) (10 nmol kg−1, i.v.)-induced colonic contractions were also investigated.When the colonic balloon was filled with a subthreshold volume (0.5 ml), the intraluminal instillation of acetic acid triggered a high-amplitude phasic colonic motility which was partially reduced by nepadutant and suppressed by either hexamethonium or atropine. Filling of the balloon with 1 ml evoked reflex (hexamethonium-sensitive), atropine-sensitive phasic colonic motility: nepadutant had no significant effect on the distension-evoked motility.Neither hexamethonium nor atropine significantly reduced [βAla8]NKA(4-10)-induced colonic contractions, whereas nepadutant suppressed them. Following L-NAME pretreatment, [βAla8]NKA(4-10)-induced colonic contractions were inhibited by both atropine and hexamethonium. In hexamethonium-pretreated animals, an atropine-sensitive component of [βAla8]NKA(4-10)-induced colonic contractions was also evident.These results indicate that the application of irritants onto the colonic mucosa induces the release of endogenous tachykinins which enhance excitatory cholinergic mechanisms through the stimulation of NK2 receptors. PMID:11487522

  13. Colonic inflammation increases the contribution of muscarinic M2 receptors to carbachol-induced contraction of the rat colon.

    PubMed

    Jragh, Dina M; Khan, Islam; Oriowo, Mabayoje A

    2011-01-01

    Carbachol-induced contraction of the rat colon is impaired in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. The main objective of this study was to examine the effect of colitis on the expression and function of muscarinic (M) receptor subtypes in the rat colon. Rats (n = 80) were treated with TNBS and used 5 days later for measurement of contractility, myeloperoxidase activity, histology and expression of muscarinic receptor isoforms using Western blot analysis. Carbachol produced concentration-dependent contractions of colonic segments from control (n = 40) and TNBS-treated (n = 40) rats with no significant difference in potency. However, the maximum response to carbachol was significantly reduced in colon segments of TNBS-treated rats. The selective muscarinic receptor antagonists 4-diphenylacetoxy-N-methyl piperidine (4-DAMP, M(3)), pirenzepine (M(1)) and methoctramine (M(2)) antagonized carbachol-induced contraction in control (9.1 ± 0.1, 6.7 ± 0.3 and 6.0 ± 0.1, respectively) and TNBS-treated rats (9.2 ± 0.2, 6.9 ± 0.2, 6.7 ± 0.2). The -logK(B) values in control rats are consistent with an action of carbachol on muscarinic M(3) receptors. There was no significant difference in -logK(B) values for 4-DAMP and pirenzepine in control and TNBS-treated rats, but methoctramine was fivefold more potent in TNBS-treated rats, possibly indicating an increased contribution of muscarinic M(2) receptors to carbachol-induced contraction in the inflamed colon. The expression of M(2) receptors was also significantly increased in colon segments from TNBS-treated rats, confirming the increased role of muscarinic M(2) receptors in the inflamed colon. The data show that while only M(3) receptors appeared to mediate carbachol-induced contraction in control segments, expression of both M(2) and M(3) receptors was increased in the inflamed rat colon. Copyright © 2011 S. Karger AG, Basel.

  14. Changes in colonic motility induced by sennosides in dogs: evidence of a prostaglandin mediation.

    PubMed Central

    Staumont, G; Fioramonti, J; Frexinos, J; Bueno, L

    1988-01-01

    The effects of sennosides on colonic motility were investigated in eight conscious dogs chronically fitted with two strain gauge transducers in the proximal colon, an intracolonic silicone catheter and a polyethylene catheter implanted in a branch of the right colonic artery. Oral sennosides (30 mg/kg) inhibited colonic motility for 12 to 18 h after a three to six hours delay, and associated with giant contractions and diarrhoea. The minimal oral dose of sennosides to produce such changes varied from 5 to 15 mg/kg. Intracolonic sennosides at the minimal effective dose and at 30 mg/kg reproduced the effects of oral sennosides, but with a shorter latency (0.5-1.5 h). Intracolonic PGE2 (100 micrograms/kg) in viscous gel medium or intra-arterial PGE2 (10 micrograms/h) inhibited colonic motility and induced giant contractions often associated with defecation. The colonic motor changes induced by intracolonic sennosides at the minimal effective dose, but not those induced by intracolonic PGE2, were blocked by intra-arterial indomethacin (10 micrograms/h) or piroxicam (5 micrograms/h). These results suggest that colonic motor actions of sennosides are mediated through a local prostaglandins synthesis, as they were blocked by cyclooxygenase inhibitor and reproduced by PGE2. PMID:3197991

  15. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.

    PubMed

    Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y

    1999-11-01

    Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.

  16. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  17. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model.

    PubMed

    Inoue, Ken; Naito, Yuji; Takagi, Tomohisa; Hayashi, Natsuko; Hirai, Yasuko; Mizushima, Katsura; Horie, Ryusuke; Fukumoto, Kohei; Yamada, Shinya; Harusato, Akihito; Hirata, Ikuhiro; Omatsu, Tatsushi; Yoshida, Naohisa; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Wakabayashi, Naoki; Yagi, Nobuaki; Ichikawa, Hiroshi; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-01-01

    Heat shock protein (HSP) 47 may play an important role in the pathogenesis of intestinal fibrosis. Daikenchuto (DKT), a traditional Japanese herbal (Kampo) medicine, has been reported to ameliorate intestinal inflammation. The aims of this study were to determine time-course profiles of several parameters of fibrosis in a rat model, to confirm the HSP47-expressing cells in the colon, and finally to evaluate DKT's effects on intestinal fibrosis. Colitis was induced in male Wistar rats weighing 200 g using an enema of trinitrobenzene sulfonic acid (TNBS). HSP47 localization was determined by immunohistochemistry. Colonic inflammation and fibrosis were assessed by macroscopic, histological, morphometric, and immunohistochemical analyses. Colonic mRNA expression of transforming growth factor β1 (TGF-β1), HSP47, and collagen type I were assessed by real time-polymerase chain reaction (PCR). DKT was administered orally once a day from 8 to 14 d after TNBS administration. The colon was removed on the 15th day. HSP47 immunoreactivity was coexpressed with α-smooth muscle actin-positive cells located in the subepithelial space. Intracolonic administration of TNBS resulted in grossly visible ulcers. Colonic inflammation persisted for 6 weeks, and fibrosis persisted for 4 weeks after cessation of TNBS treatment. The expression levels of mRNA and proteins for TGF-β1, HSP47, and collagen I were elevated in colonic mucosa treated with TNBS. These fibrosis markers indicated that DKT treatment significantly inhibited TNBS-induced fibrosis. These findings suggest that DKT reduces intestinal fibrosis associated with decreasing expression of HSP47 and collagen content in the intestine.

  18. Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms. PMID:25689154

  19. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    PubMed

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms.

  20. Peroxisome proliferator-activated receptor gamma agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in Apc1638 N/+ Mlh1+/- double mutant mice.

    PubMed

    Yang, Kan; Fan, Kun-Hua; Lamprecht, Sergio A; Edelmann, Winfried; Kopelovich, Levy; Kucherlapati, Raju; Lipkin, Martin

    2005-09-10

    The role of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in colon tumorigenesis remains controversial. Notwithstanding evidence that PPAR-gamma ligands impede murine colorectal carcinogenesis, PPAR-gamma agonists have been shown to enhance in vivo tumor formation in mouse models of human colon cancer. Our study was designed to determine whether troglitazone (TGZ) induces colonic tumor formation in normal C57BL/6J mice and enhances colorectal carcinogenesis in double mutant Apc1638N/+ Mlh1+/- mice fed a standard AIN-76A diet. We report herein that not only does TGZ enhance carcinogenesis in the large intestine of mutant mice predisposed to intestinal carcinogenesis but TGZ also induces colonic tumors in normal mice without gene targeting or carcinogen administration. This observation indicates that preexisting mutational events are not necessary for induction of colonic tumors by activated PPAR-gamma in vivo. (c) 2005 Wiley-Liss, Inc.

  1. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats

    PubMed Central

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L Å; Wold, A E

    1999-01-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R α-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum+ E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity. PMID:10337020

  2. Adipokine regulation of colon cancer: adiponectin attenuates interleukin-6-induced colon carcinoma cell proliferation via STAT-3

    PubMed Central

    Fenton, Jenifer I; Birmingham, Janette M

    2010-01-01

    Obesity results in increased circulating levels of specific adipokines which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin and IGF-1 and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6 induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential targeted therapies. PMID:20564347

  3. Influence of dietary fat type on benzo(a)pyrene [B(a)P] biotransformation in a B(a)P-induced mouse model of colon cancer

    PubMed Central

    Diggs, Deacqunita L.; Myers, Jeremy N.; Banks, Leah D.; Niaz, Mohammad S.; Hood, Darryl B.; Roberts, L. Jackson; Ramesh, Aramandla

    2013-01-01

    In the US alone, around 60,000 lives/year are lost due to colon cancer. Diet and environment have been implicated in the development of sporadic colon tumors. The objective of this study was to determine how dietary fat potentiates the development of colon tumors through altered B(a)P biotransformation, using the Adenomatous polyposis coli with Multiple intestinal neoplasia mouse model. Benzo(a)pyrene was administered to mice through tricaprylin, and unsaturated (USF; peanut oil) and saturated (SF; coconut oil) fats at doses of 50 and 100 μg/kg via oral gavage over a 60-day period. Blood, colon, and liver were collected at the end of exposure period. The expression of B(a)P biotransformation enzymes [cytochrome P450 (CYP)1A1, CYP1B1 and glutathione-S-transferase] in liver and colon were assayed at the level of protein, mRNA and activities. Plasma and tissue samples were analyzed by reverse phase high-performance liquid chromatography for B(a)P metabolites. Additionally, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the 32P-postlabeling method using a thin-layer chromatography system. Benzo(a)pyrene exposure through dietary fat altered its metabolic fate in a dose-dependent manner, with 100 μg/kg dose group registering an elevated expression of B(a)P biotransformation enzymes, and greater concentration of B(a)P metabolites, compared to the 50 μg/kg dose group (P<.05). This effect was more pronounced for SF group compared to USF group (P<.05). These findings establish that SF causes sustained induction of B(a)P biotransformation enzymes and extensive metabolism of this toxicant. As a consequence, B(a)P metabolites were generated to a greater extent in colon and liver, whose concentrations also registered a dose-dependent increase. These metabolites were found to bind with DNA and form B(a)P-DNA adducts, which may have contributed to colon tumors in a subchronic exposure regimen. PMID:24231098

  4. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    PubMed

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  5. In vitro characterization of the effects of rat/mouse hemokinin-1 on mouse colonic contractile activity: a comparison with substance P.

    PubMed

    Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui

    2009-06-01

    Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.

  6. Effects of substance P on spontaneous contraction in the flexure region of the guinea pig colon.

    PubMed

    Chowdhury, J U; Nahar, N S

    2007-01-01

    Effects of Substance P on spontaneous contractions of the circular muscle of the flexure region of guinea pig colon were studied by mechanical tension recording. Substance P (3 nM-10 nM) produced tonic contraction associated with phasic activities but the contraction was found stronger at higher concentration. Verapamil (3 microM), a voltage dependent L-type Ca(2+) channel blocker completely blocked the spontaneous activities and also Substance P induced contraction. These results suggest that Substance P produce contraction by Ca(2+) influx and the Ca(2+) influx occurs by activating verapamil sensitive Ca(2+) channel.

  7. Hypothalamic beta-endorphin neurons suppress preneoplastic and neoplastic lesions development in 1,2-dimethylhydrazine induced rat colon cancer model.

    PubMed

    Murugan, Sengottuvelan; Dave, Yatee; Rakhit, Ankush; Sarkar, Dipak K

    2017-01-01

    In recent years, experimental studies demonstrated negative impacts of impaired body stress response on colonic pathologies. In this study, we tested if reducing body stress response by the use of β-endorphin (BEP) neuronal transplants in the hypothalamus suppresses pre-neoplastic and neoplastic lesions. Colon cancer was induced by injecting 1,2-dimethylhydrazine (DMH) for sixteen weeks in Sprague Dawley rats with BEP neuron transplants or control neuron transplants, and their colonic histopathologies, colon tissue levels of pro-inflammatory cytokines and epithelial-mesenchymal transition (EMT) proteins and splenic levels of cytotoxic proteins were measured. Our results revealed that DMH induced tumors in colon at 100% incidence in control rats but failed to induce colonic tumors in 70% of animal with BEP neuronal transplants. The mean volume of tumor at the colon was smaller in BEP neurons transplanted rats than those in controls. Histopathologies of colon tissues revealed that BEP neurons transplanted animals had lesser tissue lesions such as aberrant crypt foci (ACF) and adenocarcinoma development in the colon than those in control groups. Immunohistochemical and western blot analyses identified reduced expression of Ki-67, TNF-α and NF-κB nuclear translocation in colonic tissues of BEP neurons transplanted rats than those in controls. BEP neurons transplanted rats also showed reduced expressions of transcription factors linked to EMT like Snail, Twist, and N-cadherin, but increased the levels of an epithelial cell marker E-cadherin in colon tissue. Furthermore, splenic NK cells cytolytic proteins such as perforin, granzyme B and IFN-γ levels in BEP neurons transplanted rats were higher than those in control rats. These data suggest that BEP neuron transplants suppress the growth and progression of colonic tumors possibly by decreasing inflammatory mileu and EMT via activation of innate immune responses.

  8. Death induction by recombinant native TRAIL and its prevention by a caspase 9 inhibitor in primary human esophageal epithelial cells.

    PubMed

    Kim, Seok-Hyun; Kim, Kunhong; Kwagh, Jae G; Dicker, David T; Herlyn, Meenhard; Rustgi, Anil K; Chen, Youhai; El-Deiry, Wafik S

    2004-09-17

    The cytotoxic death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a tumor-specific agent under development as a novel anticancer therapeutic agent. However, some reports have demonstrated toxicity of certain TRAIL preparations toward human hepatocytes and keratinocytes through a caspase-dependent mechanism that involves activation of the extrinsic death pathway and Type II signaling through the mitochondria. We have isolated and purified both His-tagged protein and three versions of native recombinant human TRAIL protein from Escherichia coli. We found that 5 mm dithiothreitol in the purification process enhanced oligomerization of TRAIL and resulted in the formation of hyper-oligomerized TRAILs, including hexamers and nonomers with an extremely high potency in apoptosis induction. Although death-inducing signaling complex formation was much more efficient in cells treated with hyper-oligomerized TRAILs, this did not convert TRAIL-sensitive Type II HCT116 colon tumor cells to a Type I death pattern as judged by their continued sensitivity to a caspase 9 inhibitor. Moreover, TRAIL-resistant Type II Bax-null colon carcinoma cells were not converted to a TRAIL-sensitive Type I state by hyper-oligomerized TRAIL. Primary human esophageal epithelial 2 cells were found to be sensitive to all TRAIL preparations used, including trimer TRAIL. TRAIL-induced death in esophageal epithelial 2 cells was prevented by caspase 9 inhibition for up to 4 h after TRAIL exposure. This result suggests a possible therapeutic application of caspase 9 inhibition as a strategy to reverse TRAIL toxicity. Hyper-oligomerized TRAIL may be considered as an alternative agent for testing in clinical trials.

  9. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2.

    PubMed

    Nagendraprabhu, Ponnuraj; Sudhandiran, Ganapasam

    2011-04-01

    Colon cancer is the third most malignant neoplasm in the world and it remains an important cause of mortality in Asian and Western countries. Astaxanthin (AST), a major component of carotenoids possesses attractive remedial features. The purpose of this study is to investigate the possible mechanism of action of astaxanthin against 1, 2 dimethyl hydrazine (DMH)-induced rat colon carcinogenesis. Wistar male rats were randomized into five groups, group 1 were control rats, group 2 were rats that received AST (15 mg/kg body wt p.o. everyday), rats in group 3 were induced with DMH (40 mg/kg body wt, s.c.), DMH-induced rats in groups 4 and 5 were either pre or post initiated with AST, respectively as in group 2. DMH-induced rats exhibited elevated expressions of Nuclear factor kappa B-p65 (NF-κB-p65), Cyclooxygenase-2 (COX-2), Matrixmetallo proteinases (MMP) 2/9, Proliferating cell nuclear antigen (PCNA), and Extracellular signal-regulated kinase-2 (ERK-2) as confirmed by immunofluorescence. Further, Westernblot analysis of MMPs-2/9, ERK-2 and Protein kinase B (Akt) revealed increased expressions of these proteins in DMH-induced groups of rats. AST-treatment decreased the expressions of all these vital proteins, involved in colon carcinogenesis. The ability of AST to induce apoptosis in the colon of DMH-induced rats was confirmed by Annexin-V/PI staining in a confocal microscopy, DNA fragmentation analysis and expression of caspase-3 by Western blotting. In conclusion, astaxanthin exhibits anti-inflammatory and anti-cancer effects by inducing apoptosis in DMH-induced rat colon carcinogenesis by modulating the expressions of NFkB, COX-2, MMPs-2/9, Akt and ERK-2.

  10. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis.

    PubMed

    Hou, Yu-Chen; Wu, Jin-Ming; Wang, Ming-Yang; Wu, Ming-Hsun; Chen, Kuen-Yuan; Yeh, Sung-Ling; Lin, Ming-Tsan

    2014-01-01

    Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  11. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice

    PubMed Central

    Kasaian, Marion T; Page, Karen M; Fish, Susan; Brennan, Agnes; Cook, Timothy A; Moreira, Karen; Zhang, Melvin; Jesson, Michael; Marquette, Kimberly; Agostinelli, Rita; Lee, Julie; Williams, Cara M M; Tchistiakova, Lioudmila; Thakker, Paresh

    2014-01-01

    Interleukin-4 (IL-4) and IL-13 are critical drivers of immune activation and inflammation in ulcerative colitis, asthma and other diseases. Because these cytokines may have redundant function, dual targeting holds promise for achieving greater efficacy. We have recently described a bifunctional therapeutic targeting IL-4 and IL-13 developed on a novel protein scaffold, generated by combining specific binding domains in an optimal configuration using appropriate linker regions. In the current study, the bifunctional IL-4/IL-13 antagonist was evaluated in the murine oxazolone-induced colitis model, which produces disease with features of ulcerative colitis. The bifunctional IL-4/IL-13 antagonist reduced body weight loss throughout the 7-day course of the model, and ameliorated the increased colon weight and decreased colon length that accompany disease. Colon tissue gene expression was modulated in accordance with the treatment effect. Concentrations of serum amyloid P were elevated in proportion to disease severity, making it an effective biomarker. Serum concentrations of the bifunctional IL-4/IL-13 antagonist were inversely proportional to disease severity, colon tissue expression of pro-inflammatory genes, and serum amyloid P concentration. Taken together, these results define a panel of biomarkers signifying engagement of the IL-4/IL-13 pathway, confirm the T helper type 2 nature of disease in this model, and demonstrate the effectiveness of dual cytokine blockade. PMID:24831554

  12. Epigenetic silencing of miR-137 contributes to early colorectal carcinogenesis by impaired Aurora-A inhibition

    PubMed Central

    Huang, Yu-Chuan; Liu, Yao-Wen; Chen, Ying-Jen; Tseng, Joseph T.; Kang, Jui-Wen; Sheu, Bor-Shyang; Lin, Bo-Wen; Hung, Liang-Yi

    2016-01-01

    MicorRNA-137 is silenced in human colorectal cancer tissues and colon polyps. Our study showed that the decreased expression of miR-137 is significantly different in various types of polyp which maintain different potentials to lead to CRC development. The expression of miR-137 gradually decreases during the process of colorectal carcinogenesis. Receiver operating characteristic curve (ROC) analysis indicates that the loss of miR-137 expression in colon polyps can serve as a biomarker to predict the predisposition of colorectal carcinogenesis. By cell model and xenograft animal model, the enforced expression of miR-137 in colorectal cancer cells can inhibit cell proliferation and tumor formation, induce G2/M arrest, and lead to apoptosis. The expression pattern of miR-137 and Aurora-A or PTGS2 is negatively correlated in human colorectal cancer tissues and colon polyps. Those effects induced by overexpressed miR-137 can be rescued by the overexpression of Aurora-A. In summary, our study suggests that the loss of miR-137 expression in colon polyps can serve as a biomarker to predict the tendency toward to CRC formation through the impaired inhibitory effect of Aurora-A. The investigation of the regulatory mechanism of miR-137-mediated Aurora-A inhibition may shed new light on the early prognosis of cancer therapy for CRC in the future. PMID:27764771

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Marc, E-mail: Marc.dufour@chuv.ch; Faes, Seraina, E-mail: Seraina.faes@chuv.ch; Dormond-Meuwly, Anne, E-mail: Anne.meuwly-Dormond@chuv.ch

    Highlights: • PGE{sub 2} activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE{sub 2} induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE{sub 2} induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E{sub 2} (PGE{sub 2}) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE{sub 2} directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized.more » In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE{sub 2}-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE{sub 2} increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE{sub 2} EP{sub 4} receptor was responsible for transducing the signal to mTORC1. Moreover, PGE{sub 2} increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE{sub 2}-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE{sub 2} increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE{sub 2} mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.« less

  14. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice.

    PubMed

    Burkitt, Michael D; Hanedi, Abdalla F; Duckworth, Carrie A; Williams, Jonathan M; Tang, Joseph M; O'Reilly, Lorraine A; Putoczki, Tracy L; Gerondakis, Steve; Dimaline, Rod; Caamano, Jorge H; Pritchard, D Mark

    2015-07-01

    NF-κB signalling is an important factor in the development of inflammation-associated cancers. Mouse models of Helicobacter-induced gastric cancer and colitis-associated colorectal cancer have demonstrated that classical NF-κB signalling is an important regulator of these processes. In the stomach, it has also been demonstrated that signalling involving specific NF-κB proteins, including NF-κB1/p50, NF-κB2/p52, and c-Rel, differentially regulate the development of gastric pre-neoplasia. To investigate the effect of NF-κB subunit loss on colitis-associated carcinogenesis, we administered azoxymethane followed by pulsed dextran sodium sulphate to C57BL/6, Nfkb1(-/-), Nfkb2(-/-), and c-Rel(-/-) mice. Animals lacking the c-Rel subunit were more susceptible to colitis-associated cancer than wild-type mice, developing 3.5 times more colonic polyps per animal than wild-type mice. Nfkb2(-/-) mice were resistant to colitis-associated cancer, developing fewer polyps per colon than wild-type mice (median 1 compared to 4). To investigate the mechanisms underlying these trends, azoxymethane and dextran sodium sulphate were administered separately to mice of each genotype. Nfkb2(-/-) mice developed fewer clinical signs of colitis and exhibited less severe colitis and an attenuated cytokine response compared with all other groups following DSS administration. Azoxymethane administration did not fully suppress colonic epithelial mitosis in c-Rel(-/-) mice and less colonic epithelial apoptosis was also observed in this genotype compared to wild-type counterparts. These observations demonstrate different functions of specific NF-κB subunits in this model of colitis-associated carcinogenesis. NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover following DNA damage. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  15. Hydrostatic pressure-induced colon trauma from a pool whip.

    PubMed

    Tong, T K; McGill, L; Tilden, S J

    1989-03-01

    Hydrostatic pressure-induced colon injury is a rare occurrence in the pediatric population. We present a case of massive hydroperitoneum following a pool whip-induced injury. Although tension pneumoperitoneum or hydroperitoneum is rare, prompt recognition and surgical intervention are essential.

  16. Curcumin reverses attenuated carbachol-induced contraction of the colon in a rat model of colitis.

    PubMed

    Lubbad, Asmaa S; Oriowo, Mabayoje A; Khan, Islam

    2009-01-01

    Curcumin ameliorates colitis whether it reverses colitis-induced reduction in colonic contractility remains to be investigated. To investigate the effect of curcumin on colitis-induced reduction of carbachol-induced contraction in colon segments from rats treated with trinitrobenzenesulphonic acid. Colitis was induced in rats by intra rectal administration of trinitrobenzenesulphonic acid and followed for 5 days. A group of animals which received trinitobenzene sulphonic acids was treated with curcumin (100 mg/Kg and 200 mg/kg body weight) 2 hrs prior to induction of colitis. The controls received phosphate buffered saline in a similar fashion. Markers of inflammation and contractility of colon were assayed using standard procedures. Induction of colitis was associated with increased myeloperoxidase activity and malondialdehyde levels, gross histological changes characterized by infiltration of inflammatory cells. All these changes were prevented by treatment with curcumin (100 mg/kg). Treatment with curcumin also reduced the histological scores from 3.34+/-0.40 to 1.75+/-0.30 confirming an anti-inflammatory effect of curcumin in this experimental model of colitis. Colonic reactivity to carbachol was decreased in colitis affecting the maximum response but not sensitivity. Treatment with curcumin had no effect on sensitivity of the colon to carbachol in any of the preparations. Curcumin however reversed the decrease in carbachol-induced contraction associated with trinitrobenzenesulphonic acid treatment. The same dose of curcumin had no effect on either the potency of or the maximum response to carbachol in control rats. Tissue expression of NF-kB was increased in colon segments from trinitrobenzenesulphonic acid -treated rats and this was inhibited in rats treated with curcumin. Based on these findings it is concluded that curcumin prevented the reduction in carbachol-induced contraction in trinitrobenzenesulphonic acid -treated rats by modulating NF-kB signaling pathway.

  17. Genome-wide profiling of chemoradiation‑induced changes in alternative splicing in colon cancer cells.

    PubMed

    Xiong, Wei; Gao, Depei; Li, Yunfeng; Liu, Xin; Dai, Peiling; Qin, Jiyong; Wang, Guanshun; Li, Kangming; Bai, Han; Li, Wenhui

    2016-10-01

    Alternative splicing is a key mechanism that regulates protein diversity and has been found to be associated with colon cancer progression and metastasis. However, the function of alternative splicing in chemoradiation‑resistant colon cancer remains elusive. In this study, we constructed a chemoradiation‑resistant colon cancer cell line. Through RNA-sequencing of normal and chemoradiation‑resistant colon cancer cells (HCT116), we found 818 genes that were highly expressed in the normal HCT116 cells, whereas 285 genes were highly expressed in the chemoradiation-resistant HCT116 (RCR-HCT116) cells. Gene ontology (GO) analysis showed that genes that were highly expressed in the HCT116 cells were enriched in GO categories related to cell cycle and cell division, whereas genes that were highly expressed in the RCR-HCT116 cells were associated with regulation of system processes and response to wounding. Analysis of alternative splicing events revealed that exon skipping was significantly increased in the chemoradiation‑resistant colon cancer cells. Moreover, we identified 323 alternative splicing events in 293 genes that were significantly different between the two different HCT116 cell types. These alternative splicing‑related genes were clustered functionally into several groups related with DNA replication, such as deoxyribonucleotide metabolic/catabolic processes, response to DNA damage stimulus and helicase activity. These findings enriched our knowledge by elucidating the function of alternative splicing in chemoradiation-resistant colon cancer.

  18. Group B Streptococcus β-hemolysin/Cytolysin Breaches Maternal-Fetal Barriers to Cause Preterm Birth and Intrauterine Fetal Demise in Vivo

    PubMed Central

    Randis, Tara M.; Gelber, Shari E.; Hooven, Thomas A.; Abellar, Rosanna G.; Akabas, Leor H.; Lewis, Emma L.; Walker, Lindsay B.; Byland, Leah M.; Nizet, Victor; Ratner, Adam J.

    2014-01-01

    Background. Maternal vaginal colonization with Streptococcus agalactiae (Group B Streptococcus [GBS]) is a precursor to chorioamnionitis, fetal infection, and neonatal sepsis, but the understanding of specific factors in the pathogenesis of ascending infection remains limited. Methods. We used a new murine model to evaluate the contribution of the pore-forming GBS β-hemolysin/cytolysin (βH/C) to vaginal colonization, ascension, and fetal infection. Results. Competition assays demonstrated a marked advantage to βH/C-expressing GBS during colonization. Intrauterine fetal demise and/or preterm birth were observed in 54% of pregnant mice colonized with wild-type (WT) GBS and 0% of those colonized with the toxin-deficient cylE knockout strain, despite efficient colonization and ascension by both strains. Robust placental inflammation, disruption of maternal-fetal barriers, and fetal infection were more frequent in animals colonized with WT bacteria. Histopathologic examination revealed bacterial tropism for fetal lung and liver. Conclusions. Preterm birth and fetal demise are likely the direct result of toxin-induced damage and inflammation rather than differences in efficiency of ascension into the upper genital tract. These data demonstrate a distinct contribution of βH/C to GBS chorioamnionitis and subsequent fetal infection in vivo and showcase a model for this most proximal step in GBS pathogenesis. PMID:24474814

  19. Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi.

    PubMed

    Feddermann, Nadja; Boller, Thomas; Salzer, Peter; Elfstrand, Sara; Wiemken, Andres; Elfstrand, Malin

    2008-02-01

    Different arbuscular mycorrhizal fungi (AMF) alter growth and nutrition of a given plant differently. Plant gene expression patterns in response to fungal colonization show a certain overlap when colonized by fungi of the Glomeraceae. However, little is known of plant responses to fungi of different fungal taxa, e.g. the Gigasporaceae. We therefore compared the impact of colonization by three taxonomically different AMF species (Glomus intraradices, Glomus mosseae and Scutellospora castanea) on Medicago truncatula at the physiological and transcriptional level using quantitative-PCR. Each AMF developed a species-typical colonization pattern, with a colonization degree of 60% for G. intraradices and 30% for G. mosseae. Both species developed appressoria, intraradical hyphae, arbuscules and vesicles. S. castanea showed a colonization degree of 10% and developed appressoria, intraradical hyphae, arbuscules and arbusculate coils. All AMF enhanced the plant biomass accumulation and nutritional status although not in correlation with the colonization degree. The expression of 10 mycorrhiza-specific or mycorrhiza-associated plant genes could be separated into two clusters. The first cluster, containing arbuscule-induced genes, was highly induced in interactions with G. intraradices and G. mosseae but also slightly induced by S. castanea. The second cluster of genes contained genes that were induced primarily by S. castanea. In conclusion, genes that respond to colonization by fungi of the genus Glomus also respond to Scutellospora. However, there is also a group of genes that is significantly induced only by Scutellospora and not by Glomus species in this study. Our data indicate that genes may be differentially regulated in response to the different AM fungi.

  20. Increased expression of chemokine receptor CCR3 and its ligands in ulcerative colitis: the role of colonic epithelial cells in in vitro studies.

    PubMed

    Manousou, P; Kolios, G; Valatas, V; Drygiannakis, I; Bourikas, L; Pyrovolaki, K; Koutroubakis, I; Papadaki, H A; Kouroumalis, E

    2010-11-01

    Human colonic epithelial cells express T helper type 1 (Th1)-associated chemoattractants, yet little is known about the production of Th2-associated chemoattractants. CCL11/eotaxin-1, CCL24/eotaxin-2 and CCL26/eotaxin-3 are known to attract CCR3-expressing, Th2-polarized lymphocytes. We studied constitutive and inflammation-induced expression and production of CCR3 together with its ligands in the colon and peripheral blood of patients with inflammatory bowel disease (IBD) by flow cytometry, reverse transcription–polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA). We further defined the regulated expression of these chemokines by RT–PCR and ELISA using cultured human epithelial cell lines. A higher fraction of peripheral T lymphocytes were found to be positive for CCR3 in patients with ulcerative colitis (UC) compared to Crohn’s disease (CD), while almost no CCR3(+) T cells were found in normal controls (NC). Similarly, higher and more frequent expression of CCR3 was observed in colonic biopsies from patients with UC, regardless of the disease activity, when compared to CD or NCs. Serum CCL11/eotaxin-1 was increased significantly in UC (306 ± 87 pg/ml) and less so in CD (257 ± 43 pg/ml), whereas CCL24/eotaxin-2, and CCL26/eotaxin-3 were increased only in UC. Colonic expression of the three chemokines was minimal in NCs but high in inflammatory bowel diseases (especially UC) and was independent of disease activity. Th2, and to a lesser extent Th1, cytokines were able to induce expression and production of all three eotaxins from colonic epithelial cells in culture. CCR3 and ligands over-expression would appear to be a characteristic of UC. The production of CCR3 ligands by human colonic epithelial cells suggests further that epithelium can play a role in modulating pathological T cell-mediated mucosal inflammation.

  1. The B. bronchiseptica type III secretion system does not negatively affect the protective immunity induced by influenza A virus vaccines

    USDA-ARS?s Scientific Manuscript database

    B. bronchiseptica is a widely prevalent respiratory bacterial pathogen that infects a variety of wild and domesticated animals, including swine. Infection results in long-term colonization of the upper respiratory tract resulting in a range of clinical outcomes from asymptomatic carriage to lethal p...

  2. Effect of royal jelly on experimental colitis induced by acetic acid and alteration of mast cell distribution in the colon of rats

    PubMed Central

    Karaca, T.; Bayiroglu, F.; Yoruk, M.; Kaya, M.S.; Uslu, S.; Comba, B.; Mis, L.

    2010-01-01

    This study investigated the effects of royal jelly (RJ) on acetic acid-induced colitis in rats. Twenty adult female Wistar albino rats were divided into four treatment groups of 5 animals each, including a control group (Group I); Group II was treated orally with RJ (150 mg kg−1 body weight); Group III had acetic acid-induced colitis; and Group IV had acetic acid-induced colitis treated orally with RJ (150 mg kg−1 body weight) for 4 weeks. Colitis was induced by intracolonic instillation of 4% acetic acid; the control group received physiological saline (10 mL kg−1). Colon samples were obtained under deep anaesthesia from animals in all groups. Tissues were fixed in 10% formalin neutral buffer solution for 24 h and embedded in paraffin. Six-micrometre-thick sections were stained with Mallory’s triple stain and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for Mast Cells). RJ was shown to protect the colonic mucosa against the injurious effect of acetic acid. Colitis (colonic damage) was confirmed histomorphometrically as significant increases in the number of mast cells (MC) and colonic erosions in rats with acetic acid-induced colitis. The RJ treatment significantly decreased the number of MC and reduced the area of colonic erosion in the colon of RJ-treated rats compared with rats with untreated colitis. The results suggest that oral treatment with RJ could be used to treat colitis. PMID:21263740

  3. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts

    PubMed Central

    2014-01-01

    Background Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Methods Eighty Sprague–Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Results Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. Conclusions The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities. PMID:24533833

  4. [Chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine].

    PubMed

    Ríos-León, Karla; Fuertes-Ruiton, Cesar; Arroyo, Jorge; Ruiz, Julio

    2017-01-01

    To determine the toxicity and chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine (DMH). The alkaloid extract was obtained from the fleshy part of M. bellavistensis, and an acute toxicity test was then carried out on 30 mice of the Balb C57 strain. To assess its chemoprotective effect, colon cancer was induced in 45 Holtzman rats using DMH according to the following experimental design: one control group received 2 mL/kg sodium polysorbate, and four groups received 20 mg/kg DMH plus 0, 1, 5, or 10 mg/kg M. bellavistensis alkaloid extract. With a sample of 5 g of alkaloid extract, an LD50 greater than 1000 mg/mL was determined in the acute toxicity test. Histological indicators revealed that the 5 and 10 mg/kg doses had significant anti-tumor activity with 100% neoplasia inhibition against DMH- induced colon cancer in rats. Under experimental conditions, the alkaloid extract of M. bellavistensis has a chemoprotective effect against DMH-induced colon cancer in rats.

  5. Suppression of dextran sulfate sodium-induced colitis in mice by radon inhalation.

    PubMed

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m³ from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon.

  6. Suppression of Dextran Sulfate Sodium-Induced Colitis in Mice by Radon Inhalation

    PubMed Central

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m3 from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon. PMID:23365486

  7. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis.

    PubMed

    Zhang, Junru; Feng, Zhiguo; Wang, Chunhua; Zhou, Huiping; Liu, Weidong; Kanchana, Karvannan; Dai, Xuanxuan; Zou, Peng; Gu, Junlian; Cai, Lu; Liang, Guang

    2017-01-01

    Colon cancer is characterized by its fast progression and poor prognosis, and novel agents of treating colon cancer are urgently needed. WZ35, a synthetic curcumin derivative, has been reported to exhibit promising antitumor activity. Here, we investigated the in vitro and in vivo activities of WZ35 and explored the underlying mechanisms in colon cancer cell lines. WZ35 treatment significantly decreased the cell viability associated with G2/M cell cycle arrest and apoptosis induction in colon cancer cell lines. We also show that WZ35 is highly effective in inhibiting tumor growth in a CT26 xenograft mouse model. Mechanistically, WZ35 treatment significantly induced reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress in CT26 cells. Abrogation of ROS production by N-acetylcysteine (NAC) co-treatment almost totally reversed the WZ35-induced cell apoptosis and ER stress activation. Inhibition of p-PERK by GSK2606414 can significantly reverse WZ35-induced cell apoptosis in CT26 cells. Taken together, the curcumin derivative WZ35 exhibited anti-tumor effects in colon cancer cells both in vitro and in vivo, via a ROS-ER stress-mediated mechanism. These findings indicate that activating ROS generation could be an important strategy for the treatment of colon cancers.

  8. Intracolonic capsaicin stimulates colonic motility and defecation in conscious dogs.

    PubMed

    Hayashi, Keiichi; Shibata, Chikashi; Nagao, Munenori; Sato, Manabu; Kakyo, Masayuki; Kinouchi, Makoto; Saijo, Fumito; Miura, Koh; Ogawa, Hitoshi; Sasaki, Iwao

    2010-06-01

    The aim of this study was to investigate the effects of intracolonic capsaicin on colonic motility and defecation. The effects of capsaicin (1, 2, 5, and 10 mg) administrated into the proximal colon on ileocolonic motility and defecation were studied in neurally intact dogs with or without various antagonists (atropine, hexamethonium, ondansetron, propranolol, and FK224), dogs with extrinsic denervation of an ileocolonic segment, and dogs with enterically isolated ileocolonic loops equipped with strain gauge force transducers. Capsaicin at 5 and 10 mg evoked giant migrating contractions in a dose-independent manner, and it induced defecations with more than 90% probability in neurally intact dogs. These effects of capsaicin were abolished by atropine and hexamethonium. Ondansetron inhibited the capsaicin-induced increase in colonic motility but did not affect the induction of defecation. The other antagonists had no effect. In dogs with extrinsic denervation, capsaicin did not evoke giant migrating contractions in the colon but still induced defecation in 30-40% of experiments. In dogs with ileocolonic loops, capsaicin did not stimulate colonic motility nor induce defecation. These results indicate that intracolonic capsaicin causes giant migrating contractions and defecation. Intact extrinsic innervation, continuity of the colon, and intraluminal contents were considered necessary for this effect. Copyright 2010 Mosby, Inc. All rights reserved.

  9. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    PubMed Central

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  10. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice

    PubMed Central

    Dinh, Chi H. L.; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-01-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. PMID:26920068

  11. Oral administration of a recombinant cholera toxin B subunit promotes mucosal healing in the colon.

    PubMed

    Baldauf, K J; Royal, J M; Kouokam, J C; Haribabu, B; Jala, V R; Yaddanapudi, K; Hamorsky, K T; Dryden, G W; Matoba, N

    2017-07-01

    Cholera toxin B subunit (CTB) is a component of a licensed oral cholera vaccine. However, CTB has pleiotropic immunomodulatory effects whose impacts on the gut are not fully understood. Here, we found that oral administration in mice of a plant-made recombinant CTB (CTBp) significantly increased several immune cell populations in the colon lamina propria. Global gene expression analysis revealed that CTBp had more pronounced impacts on the colon than the small intestine, with significant activation of TGFβ-mediated pathways in the colon epithelium. The clinical relevance of CTBp-induced impacts on colonic mucosa was examined. In a human colon epithelial model using Caco2 cells, CTBp, but not the non-GM1-binding mutant G33D-CTBp, induced TGFβ-mediated wound healing. In a dextran sodium sulfate (DSS) acute colitis mouse model, oral administration of CTBp protected against colon mucosal damage as manifested by mitigated body weight loss, decreased histopathological scores, and blunted escalation of inflammatory cytokine levels while inducing wound healing-related genes. Furthermore, biweekly oral administration of CTBp significantly reduced disease severity and tumorigenesis in the azoxymethane/DSS model of ulcerative colitis and colon cancer. Altogether, these results demonstrate CTBp's ability to enhance mucosal healing in the colon, highlighting its potential application in ulcerative colitis therapy besides cholera vaccination.

  12. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival

    PubMed Central

    Fink, Stephen P.; Myeroff, Lois L.; Kariv, Revital; Platzer, Petra; Xin, Baozhong; Mikkola, Debra; Lawrence, Earl; Morris, Nathan; Nosrati, Arman; Willson, James K. V.; Willis, Joseph; Veigl, Martina; Barnholtz-Sloan, Jill S.; Wang, Zhenghe; Markowitz, Sanford D.

    2015-01-01

    Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target. PMID:26437221

  13. Intestinal Cell Proliferation and Senescence Are Regulated by Receptor Guanylyl Cyclase C and p21*

    PubMed Central

    Basu, Nirmalya; Saha, Sayanti; Khan, Imran; Ramachandra, Subbaraya G.; Visweswariah, Sandhya S.

    2014-01-01

    Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c−/−, mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence. PMID:24217248

  14. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  15. Trinitrobenzenesulfonic Acid Colitis Induces Changes in the Contractile Response of Circular Smooth Muscle in the Distal Colon

    DTIC Science & Technology

    1996-03-27

    contractile response of circular smooth muscle in the rat distal colon" Name of Candidate: Jeanette M. Hosseini Doctor of Philosophy Degree 27 March 1996... muscle in the rat distal colon" beyond brief excerpts is with the pennission of the copyright owner, and will save and hold harmless the Unifonned...induces changes in the contractile response of circular smooth muscle 10 the rat colon. Jeanette Marie Hosseini, 1996 Dissertation directed by: Terez

  16. TGFβ-Id1 Signaling Opposes Twist1 and Promotes Metastatic Colonization Via a Mesenchymal-to-Epithelial Transition

    PubMed Central

    Stankic, Marko; Pavlovic, Svetlana; Chin, Yvette; Brogi, Edi; Padua, David; Norton, Larry; Massague, Joan; Benezra, Robert

    2014-01-01

    SUMMARY ID genes are required for breast cancer colonization of the lungs, but the mechanism remains poorly understood. Here, we show that Id1 expression induces a stem-like phenotype in breast cancer cells, while retaining epithelial properties, contrary to the notion that cancer stem-like properties are inextricably linked to the mesenchymal state. During metastatic colonization, Id1 induces a mesenchymal-to-epithelial transition (MET), specifically in cells whose mesenchymal state is dependent on the Id1 target protein Twist1 but not at the primary site, where this state is controlled by the zinc-finger protein Snail1. Knockdown of Id expression in metastasizing cells prevents MET and dramatically reduces lung colonization. Furthermore, Id1 is induced by TGFβ only in cells that have first undergone EMT, demonstrating that EMT is a pre-requisite for subsequent Id1-induced MET during lung colonization. Collectively, these studies underscore the importance of Id-mediated phenotypic switching during distinct stages of breast cancer metastasis. PMID:24332369

  17. The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo.

    PubMed

    Gao, Chang; Sun, Rui; Xie, Ya-Rong; Jiang, An-Li; Lin, Mei; Li, Min; Chen, Zheng-Wang; Zhang, Ping; Jin, Honglin; Feng, Jue-Ping

    2017-05-01

    Vglycin, a novel natural polypeptide isolated from pea seeds, possesses antidiabetic properties. Our previous studies have shown that Vglycin can induce the differentiation of human colon adenocarcinoma cells. We aimed to determine the anticancer activity of Vglycin against colon cancer cells and to elucidate related apoptosis-inducing mechanisms. Treatment with purified Vglycin significantly reduced growth, viability, and colony formation of CT-26, SW480, and NCL-H716 colon cancer cells in a dose-dependent manner while down-regulating the expression of proliferating cell nuclear antigen. Mouse xenograft studies showed a 38% inhibition of colon cancer growth in mice treated with Vglycin (20 mg/kg/day) at day 21. Furthermore, the potential mechanisms involved in Vglycin-induced cell apoptosis were examined using cell cycle studies, ultrastructural examination, as well as apoptosis-associated pathway analysis. The results showed that Vglycin significantly promoted apoptosis and G1/S phase cell cycle arrest. As revealed by Western blot, the expression of CDK2 and Cyclin D1 was down-regulated in all three Vglycin-treated colon cancer cells, indicating that the CDK2/Cyclin D1 cell cycle pathway involved in the initiation and progression of colon cancer. Moreover, the inhibition of Vglycin-induced cell proliferation in colon cancer cells was accompanied by alteration of the expression levels of the apoptosis-related proteins Bax, Bcl-2 and Mcl-1, and an increase of caspase-3 activity. Together, our results suggest that Vglycin may be another plant-derived peptide that suppresses colon cancer, supporting the continued investigation of Vglycin as therapeutic agent for colon cancer. Impact statement The antidiabetic properties and the capability of inducing differentiation of human colon adenocarcinoma cells of Vglycin have been reported in our previous studies. However, the anticancer potential of Vglycin on colon cancer cells and its possible related mechanisms were still unknown. In this study, we found that Vglycin could reduce growth, viability, and colony formation or colony size of CT-26, SW480, and NCL-H716 colon cancer cells. Moreover, Vglycin decreased tumor volume by 38% in xenograft mice transplanted with CT-26 cells. The mechanisms of these phenomena may be due to the down-regulated CDK2 and Cyclin D1, G1/S phase cell cycle arrest, and the dysregulated expression of Bax, Bcl-2, and Mcl-1. The findings highlight the anticancer potential of Vglycin against colon cancer cells, and suggest Vglycin may be another colon cancer potential suppressive component of plant-derived peptides.

  18. Prostaglandin E2-stimulated prostanoid EP4 receptors induce prolonged de novo prostaglandin E2 synthesis through biphasic phosphorylation of extracellular signal-regulated kinases mediated by activation of protein kinase A in HCA-7 human colon cancer cells.

    PubMed

    Fujino, Hiromichi; Seira, Naofumi; Kurata, Naoki; Araki, Yumi; Nakamura, Hiroyuki; Regan, John W; Murayama, Toshihiko

    2015-12-05

    Approximately two decades have passed since E-type prostanoid 4 (EP4) receptors were cloned, and the signaling pathways mediated by these receptors have since been implicated in cancer development through the alliance of Gαi-protein/phosphatidylinositol 3-kinase (PI3K)/extracellular signal-regulated kinases (ERKs) activation. Although prostanoid EP4 receptors were initially identified as Gαs-coupled receptors, the specific/distinctive role(s) of prostanoid EP4 receptor-induced cAMP/protein kinase A (PKA) pathways in cancer development have not yet been elucidated in detail. We previously reported using HCA-7 human colon cancer cells that prostaglandin E2 (PGE2)-stimulated prostanoid EP4 receptors induced cyclooxygenase-2 (COX-2) as an initiating event in development of colon cancer. Moreover, this induction of COX-2 was mediated by transactivation of epidermal growth factor (EGF) receptors. However, direct activation of EGF receptors by EGF also induced similar amounts of COX-2 in this cell line. Thus, the emergence of unique role(s) for prostanoid EP4 receptors is expected by clarifying the different signaling mechanisms between PGE2-stimulated prostanoid EP4 receptors and EGF-stimulated EGF receptors to induce COX-2 and produce PGE2. We here demonstrated that prostanoid EP4 receptor activation by PGE2 in HCA-7 cells led to PKA-dependent re-activation of ERKs, which resulted in prolonged de novo synthesis of PGE2. Although EGF-stimulated EGF receptors in cells also induced COX-2 and the de novo synthesis of PGE2, the activation of this pathway was transient and not mediated by PKA. Therefore, the novel mechanism underlying prolonged de novo synthesis of PGE2 has provided an insight into the importance of prostanoid EP4 receptor-mediated Gαs-protein/cAMP/PKA pathway in development of colon cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp.

    PubMed

    Ampomah, Osei Yaw; Jensen, John Beck

    2014-03-01

    Competitiveness for nodulation is a desirable trait in rhizobia strains used as inoculant. In Sinorhizobium meliloti 1021 mutation in either of the trehalose utilization genes thuA or thuB influences its competitiveness for root colonization and nodule occupancy depending on the interacting host. We have therefore investigated whether mutation in the thuA ortholog in Mesorhizobium loti MAFF303099 also leads to a similar competitive phenotype on its hosts. The results show that M. loti thuA mutant Ml7023 was symbiotically effective and was as competitive as the wild type in colonization and nodule occupancy on Lotus corniculatus and Lotus japonicus. The thuA gene in M. loti was not induced during root colonization or in the infection threads unlike in S. meliloti, despite its induction by trehalose and high osmolarity in in vitro assays.

  20. Characterisation of colonic dysplasia-like epithelial atypia in murine colitis

    PubMed Central

    Randall-Demllo, Sarron; Fernando, Ruchira; Brain, Terry; Sohal, Sukhwinder Singh; Cook, Anthony L; Guven, Nuri; Kunde, Dale; Spring, Kevin; Eri, Rajaraman

    2016-01-01

    AIM To determine if exacerbation of pre-existing chronic colitis in Winnie (Muc2 mutant) mice induces colonic dysplasia. METHODS Winnie mice and C57BL6 as a genotype control, were administered 1% w/v dextran sulphate sodium (DSS) orally, followed by drinking water alone in week-long cycles for a total of three cycles. After the third cycle, mice were killed and colonic tissue collected for histological and immunohistochemical evaluation. Inflammation and severity of dysplasia in the colonic mucosa were assessed in H&E sections of the colon. Epithelial cell proliferation was assessed using Ki67 and aberrant β-catenin signalling assessed with enzyme-based immunohistochemistry. Extracted RNA from colonic segments was used for the analysis of gene expression using real-time quantitative PCR. Finally, the distribution of Cxcl5 was visualised using immunohistochemistry. RESULTS Compared to controls, Winnie mice exposed to three cycles of DSS displayed inflammation mostly confined to the distal-mid colon with extensive mucosal hyperplasia and regenerative atypia resembling epithelial dysplasia. Dysplasia-like changes were observed in 100% of Winnie mice exposed to DSS, with 55% of these animals displaying changes similar to high-grade dysplasia, whereas high-grade changes were absent in wild-type mice. Occasional penetration of the muscularis mucosae by atypical crypts was observed in 27% of Winnie mice after DSS. Atypical crypts however displayed no evidence of oncogenic nuclear β-catenin accumulation, regardless of histological severity. Expression of Cav1, Trp53 was differentially regulated in the distal colon of Winnie relative to wild-type mice. Expression of Myc and Ccl5 was increased by DSS treatment in Winnie only. Furthermore, increased Ccl5 expression correlated with increased complexity in abnormal crypts. While no overall difference in Cxcl5 mucosal expression was observed between treatment groups, epithelial Cxcl5 protein appeared to be diminished in the atypical epithelium. CONCLUSION Alterations to the expression of Cav1, Ccl5, Myc and Trp53 in the chronically inflamed Winnie colon may influence the transition to dysplasia. PMID:27729740

  1. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis.

    PubMed

    Myung, Seung-Jae; Rerko, Ronald M; Yan, Min; Platzer, Petra; Guda, Kishore; Dotson, Angela; Lawrence, Earl; Dannenberg, Andrew J; Lovgren, Alysia Kern; Luo, Guangbin; Pretlow, Theresa P; Newman, Robert A; Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D

    2006-08-08

    15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a prostaglandin-degrading enzyme that is highly expressed in normal colon mucosa but is ubiquitously lost in human colon cancers. Herein, we demonstrate that 15-PGDH is active in vivo as a highly potent suppressor of colon neoplasia development and acts in the colon as a required physiologic antagonist of the prostaglandin-synthesizing activity of the cyclooxygenase 2 (COX-2) oncogene. We first show that 15-PGDH gene knockout induces a marked 7.6-fold increase in colon tumors arising in the Min (multiple intestinal neoplasia) mouse model. Furthermore, 15-PGDH gene knockout abrogates the normal resistance of C57BL/6J mice to colon tumor induction by the carcinogen azoxymethane (AOM), conferring susceptibility to AOM-induced adenomas and carcinomas in situ. Susceptibility to AOM-induced tumorigenesis is mediated by a marked induction of dysplasia, proliferation, and cyclin D1 expression throughout microscopic aberrant crypt foci arising in 15-PGDH null colons and is concomitant with a doubling of prostaglandin E(2) in 15-PGDH null colonic mucosa. A parallel role for 15-PGDH loss in promoting the earliest steps of colon neoplasia in humans is supported by our finding of a universal loss of 15-PGDH expression in microscopic colon adenomas recovered from patients with familial adenomatous polyposis, including adenomas as small as a single crypt. These models thus delineate the in vivo significance of 15-PGDH-mediated negative regulation of the COX-2 pathway and moreover reveal the particular importance of 15-PGDH in opposing the neoplastic progression of colonic aberrant crypt foci.

  2. Role of Mrx Fimbriae of Xenorhabdus nematophila in Competitive Colonization of the Nematode Host ▿

    PubMed Central

    Snyder, Holly; He, Hongjun; Owen, Heather; Hanna, Chris; Forst, Steven

    2011-01-01

    Xenorhabdus nematophila engages in mutualistic associations with the infective juvenile (IJ) stage of specific entomopathogenic nematodes. Mannose-resistant (Mrx) chaperone-usher-type fimbriae are produced when the bacteria are grown on nutrient broth agar (NB agar). The role of Mrx fimbriae in the colonization of the nematode host has remained unresolved. We show that X. nematophila grown on LB agar produced flagella rather than fimbriae. IJs propagated on X. nematophila grown on LB agar were colonized to the same extent as those propagated on NB agar. Further, progeny IJs were normally colonized by mrx mutant strains that lacked fimbriae both when bacteria were grown on NB agar and when coinjected into the insect host with aposymbiotic nematodes. The mrx strains were not competitively defective for colonization when grown in the presence of wild-type cells on NB agar. In addition, a phenotypic variant strain that lacked fimbriae colonized as well as the wild-type strain. In contrast, the mrx strains displayed a competitive colonization defect in vivo. IJ progeny obtained from insects injected with comixtures of nematodes carrying either the wild-type or the mrx strain were colonized almost exclusively with the wild-type strain. Likewise, when insects were coinjected with aposymbiotic IJs together with a comixture of the wild-type and mrx strains, the resulting IJ progeny were predominantly colonized with the wild-type strain. These results revealed that Mrx fimbriae confer a competitive advantage during colonization in vivo and provide new insights into the role of chaperone-usher fimbriae in the life cycle of X. nematophila. PMID:21856828

  3. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  4. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction.

    PubMed

    Ait-Belgnaoui, A; Han, W; Lamine, F; Eutamene, H; Fioramonti, J; Bueno, L; Theodorou, V

    2006-08-01

    Stress induced increase in colonic paracellular permeability results from epithelial cell cytoskeleton contraction and is responsible for stress induced hypersensitivity to colorectal distension (CRD). The probiotic Lactobacillus farciminis releases spontaneously nitric oxide (NO) in the colonic lumen in vivo and exerts anti-inflammatory effects. This study aimed: (i) to evaluate the effects of L farciminis on stress induced hypersensitivity to CRD and increase in colonic paracellular permeability; and (ii) to ascertain whether these effects are NO mediated and related to changes in colonocyte myosin light chain phosphorylation (p-MLC). Female Wistar rats received either 10(11) CFU/day of L farciminis or saline orally over 15 days before partial restraint stress (PRS) or sham-PRS application. Visceral sensitivity to CRD and colonic paracellular permeability was assessed after PRS or sham-PRS. Haemoglobin was used as an NO scavenger. Western blotting for MLC kinase, MLC, and p-MLC were performed in colonic mucosa from L farciminis treated and control rats after PRS or sham-PRS. PRS significantly increased the number of spike bursts for CRD pressures of 30-60 mm Hg as well as colonic paracellular permeability. L farciminis treatment prevented both effects, while haemoglobin reversed the protective effects of L farciminis. p-MLC expression increased significantly from 15 to 45 minutes after PRS, and L farciminis treatment prevented this increase. L farciminis treatment prevents stress induced hypersensitivity, increase in colonic paracellular permeability, and colonocyte MLC phosphorylation. This antinociceptive effect occurs via inhibition of contraction of colonic epithelial cell cytoskeleton and the subsequent tight junction opening, and may also involve direct or indirect effects of NO produced by this probiotic.

  5. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction

    PubMed Central

    Ait‐Belgnaoui, A; Han, W; Lamine, F; Eutamene, H; Fioramonti, J; Bueno, L; Theodorou, V

    2006-01-01

    Background Stress induced increase in colonic paracellular permeability results from epithelial cell cytoskeleton contraction and is responsible for stress induced hypersensitivity to colorectal distension (CRD). The probiotic Lactobacillus farciminis releases spontaneously nitric oxide (NO) in the colonic lumen in vivo and exerts anti‐inflammatory effects. This study aimed: (i) to evaluate the effects of L farciminis on stress induced hypersensitivity to CRD and increase in colonic paracellular permeability; and (ii) to ascertain whether these effects are NO mediated and related to changes in colonocyte myosin light chain phosphorylation (p‐MLC). Methods Female Wistar rats received either 1011 CFU/day of L farciminis or saline orally over 15 days before partial restraint stress (PRS) or sham‐PRS application. Visceral sensitivity to CRD and colonic paracellular permeability was assessed after PRS or sham‐PRS. Haemoglobin was used as an NO scavenger. Western blotting for MLC kinase, MLC, and p‐MLC were performed in colonic mucosa from L farciminis treated and control rats after PRS or sham‐PRS. Results PRS significantly increased the number of spike bursts for CRD pressures of 30–60 mm Hg as well as colonic paracellular permeability. L farciminis treatment prevented both effects, while haemoglobin reversed the protective effects of L farciminis. p‐MLC expression increased significantly from 15 to 45 minutes after PRS, and L farciminis treatment prevented this increase. Conclusion L farciminis treatment prevents stress induced hypersensitivity, increase in colonic paracellular permeability, and colonocyte MLC phosphorylation. This antinociceptive effect occurs via inhibition of contraction of colonic epithelial cell cytoskeleton and the subsequent tight junction opening, and may also involve direct or indirect effects of NO produced by this probiotic. PMID:16507583

  6. Importance of the Evaluation of N-Acetyltransferase Enzyme Activity Prior to 5-Aminosalicylic Acid Medication for Ulcerative Colitis.

    PubMed

    Matthis, Andrea L; Zhang, Bin; Denson, Lee A; Yacyshyn, Bruce R; Aihara, Eitaro; Montrose, Marshall H

    2016-08-01

    5-aminosalicylic acid (5-ASA) is a classic anti-inflammatory drug for the treatment of ulcerative colitis. N-acetyltransferase (NAT) enzymes convert 5-ASA to its metabolite N-acetyl-5-ASA, and it is unresolved whether 5-ASA or N-acetyl-5-ASA is the effective therapeutic molecule. We previously demonstrated that colonic production of N-acetyl-5-ASA (NAT activity) is decreased in dextran sulfate sodium-induced colitis. Our hypothesis is that 5-ASA is the therapeutic molecule to improve colitis, with the corollary that altered NAT activity affects drug efficacy. Since varying clinical effectiveness of 5-ASA has been reported, we also ask if NAT activity varies with inflammation in pediatric or adult patients. Acute colonic inflammation was induced in C57BL/6 NAT wild-type (WT) or knockout mice, using 3.5% dextran sulfate sodium (w/v) concurrent with 5-ASA treatment. Adult and pediatric rectosigmoid biopsies were collected from control or patients with ulcerative colitis. Tissue was analyzed for NAT and myeloperoxidase activity. Dextran sulfate sodium-induced colitis was of similar severity in both NAT WT and knockout mice, and NAT activity was significantly decreased in NAT WT mice. In the setting of colitis, 5-ASA significantly restored colon length and decreased myeloperoxidase activity in NAT knockout but not in WT mice. Myeloperoxidase activity negatively correlated with NAT activity in pediatric patients, but correlation was not observed in adult patients. Inflammation decreases NAT activity in the colon of mice and human pediatric patients. Decreased NAT activity enhances the therapeutic effect of 5-ASA in mice. A NAT activity assay could be useful to help predict the efficacy of 5-ASA therapy.

  7. High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice

    PubMed Central

    Aguiar, Sarah Leão Fiorini; Miranda, Mariana Camila Gonçalves; Guimarães, Mauro Andrade Freitas; Santiago, Helton Costa; Queiroz, Camila Pereira; Cunha, Pricila da Silva; Cara, Denise Carmona; Foureaux, Giselle; Ferreira, Anderson José; Cardoso, Valbert Nascimento; Barros, Patrícia Aparecida; Maioli, Tatiani Uceli; Faria, Ana Maria Caetano

    2018-01-01

    Excess intake of sodium is often associated with high risk for cardiovascular disease. More recently, some studies on the effects of high-salt diets (HSDs) have also demonstrated that they are able to activate Th17 cells and increase severity of autoimmune diseases. The purpose of the present study was to evaluate the effects of a diet supplemented with NaCl in the colonic mucosa at steady state and during inflammation. We showed that consumption of HSD by mice triggered a gut inflammatory reaction associated with IL-23 production, recruitment of neutrophils, and increased frequency of the IL-17-producing type 3 innate lymphoid cells (ILC3) in the colon. Moreover, gut inflammation was not observed in IL-17–/– mice but it was present, although at lower grade, in RAG−/− mice suggesting that the inflammatory effects of HSD was dependent on IL-17 but only partially on Th17 cells. Expression of SGK1, a kinase involved in sodium homeostasis, increased 90 min after ingestion of 50% NaCl solution and decreased 3 weeks after HSD consumption. Colitis induced by oral administration of either dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid was exacerbated by HSD consumption and this effect was associated with increased frequencies of RORγt+ CD4+ T cells and neutrophils in the colon. Therefore, our results demonstrated that consumption of HSD per se triggered a histologically detectable inflammation in the colon and also exacerbated chemically induced models of colitis in mice by a mechanism dependent on IL-17 production most likely by both ILC3 and Th17 cells. PMID:29379505

  8. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC(1638N/+) Mice.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Strawn, Steve J; Thakor, Hemang; Fan, Ziling; Shay, Jerry W; Fornace, Albert J; Datta, Kamal

    2016-05-01

    There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Male and female APC(1638N/+) mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, (12)C, (28)Si, or (56)Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. The highest number of tumors was observed after (28)Si, followed by (56)Fe and (12)C radiation, and tumorigenesis showed a male preponderance, especially after (28)Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with (28)Si, and lower doses showed greater RBE relative to higher doses. We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effect of gingerol on colonic motility via inhibition of calcium channel currents in rats.

    PubMed

    Cai, Zheng-Xu; Tang, Xu-Dong; Wang, Feng-Yun; Duan, Zhi-Jun; Li, Yu-Chun; Qiu, Juan-Juan; Guo, Hui-Shu

    2015-12-28

    To investigate the effect of gingerol on colonic motility and the action of L-type calcium channel currents in this process. The distal colon was cut along the mesenteric border and cleaned with Ca(2+)-free physiological saline solution. Muscle strips were removed and placed in Ca(2+)-free physiological saline solution, which was oxygenated continuously. Longitudinal smooth muscle samples were prepared by cutting along the muscle strips and were then placed in a chamber. Mechanical contractile activities of isolated colonic segments in rats were recorded by a 4-channel physiograph. Colon smooth muscle cells were dissociated by enzymatic digestion. L-type calcium currents were recorded using the conventional whole-cell patch-clamp technique. Gingerol inhibited the spontaneous contraction of colonic longitudinal smooth muscle in a dose-dependent manner with inhibition percentages of 13.3% ± 4.1%, 43.4% ± 3.9%, 78.2% ± 3.6% and 80.5% ± 4.5% at 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L, respectively (P < 0.01). Nifedipine, an L-type calcium channel blocker, diminished the inhibition of colonic motility by gingerol. Gingerol inhibited L-type calcium channel currents in colonic longitudinal myocytes of rats. At a 75 μmol/L concentration of gingerol, the percentage of gingerol-induced inhibition was diminished by nifedipine from 77.1% ± 4.2% to 42.6% ± 3.6% (P < 0.01). Gingerol suppressed IBa in a dose-dependent manner, and the inhibition rates were 22.7% ± 2.38%, 35.77% ± 3.14%, 49.78% ± 3.48% and 53.78% ± 4.16% of control at 0 mV, respectively, at concentrations of 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L (P < 0.01). The steady-state activation curve was shifted to the right by treatment with gingerol. The value of half activation was -14.23 ± 1.12 mV in the control group and -10.56 ± 1.04 mV in the 75 μmol/L group (P < 0.05) with slope factors, Ks, of 7.16 ± 0.84 and 7.02 ± 0.93 (P < 0.05) in the control and 75 μmol/L groups, respectively. However, the steady-state inactivation curve was not changed, with a half-inactivation voltage, 0.5 V, of -27.43 ± 1.26 mV in the control group and -26.56 ± 1.53 mV in the 75 μmol/L gingerol group (P > 0.05), and a slope factor, K, of 13.24 ± 1.62 in the control group and 13.45 ± 1.68 (P > 0.05) in the 75 μmol/L gingerol group. Gingerol inhibits colonic motility by preventing Ca(2+) influx through L-type calcium channels.

  10. Effect of gingerol on colonic motility via inhibition of calcium channel currents in rats

    PubMed Central

    Cai, Zheng-Xu; Tang, Xu-Dong; Wang, Feng-Yun; Duan, Zhi-Jun; Li, Yu-Chun; Qiu, Juan-Juan; Guo, Hui-Shu

    2015-01-01

    AIM: To investigate the effect of gingerol on colonic motility and the action of L-type calcium channel currents in this process. METHODS: The distal colon was cut along the mesenteric border and cleaned with Ca2+-free physiological saline solution. Muscle strips were removed and placed in Ca2+-free physiological saline solution, which was oxygenated continuously. Longitudinal smooth muscle samples were prepared by cutting along the muscle strips and were then placed in a chamber. Mechanical contractile activities of isolated colonic segments in rats were recorded by a 4-channel physiograph. Colon smooth muscle cells were dissociated by enzymatic digestion. L-type calcium currents were recorded using the conventional whole-cell patch-clamp technique. RESULTS: Gingerol inhibited the spontaneous contraction of colonic longitudinal smooth muscle in a dose-dependent manner with inhibition percentages of 13.3% ± 4.1%, 43.4% ± 3.9%, 78.2% ± 3.6% and 80.5% ± 4.5% at 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L, respectively (P < 0.01). Nifedipine, an L-type calcium channel blocker, diminished the inhibition of colonic motility by gingerol. Gingerol inhibited L-type calcium channel currents in colonic longitudinal myocytes of rats. At a 75 μmol/L concentration of gingerol, the percentage of gingerol-induced inhibition was diminished by nifedipine from 77.1% ± 4.2% to 42.6% ± 3.6% (P < 0.01). Gingerol suppressed IBa in a dose-dependent manner, and the inhibition rates were 22.7% ± 2.38%, 35.77% ± 3.14%, 49.78% ± 3.48% and 53.78% ± 4.16% of control at 0 mV, respectively, at concentrations of 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L (P < 0.01). The steady-state activation curve was shifted to the right by treatment with gingerol. The value of half activation was -14.23 ± 1.12 mV in the control group and -10.56 ± 1.04 mV in the 75 μmol/L group (P < 0.05) with slope factors, Ks, of 7.16 ± 0.84 and 7.02 ± 0.93 (P < 0.05) in the control and 75 μmol/L groups, respectively. However, the steady-state inactivation curve was not changed, with a half-inactivation voltage, 0.5 V, of -27.43 ± 1.26 mV in the control group and -26.56 ± 1.53 mV in the 75 μmol/L gingerol group (P > 0.05), and a slope factor, K, of 13.24 ± 1.62 in the control group and 13.45 ± 1.68 (P > 0.05) in the 75 μmol/L gingerol group. CONCLUSION: Gingerol inhibits colonic motility by preventing Ca2+ influx through L-type calcium channels. PMID:26730157

  11. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  12. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.

    PubMed

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.

  13. Maize Root Lectins Mediate the Interaction with Herbaspirillum seropedicae via N-Acetyl Glucosamine Residues of Lipopolysaccharides

    PubMed Central

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823

  14. Intracolonic Administration of the TRPA1 Agonist Allyl Isothiocyanate Stimulates Colonic Motility and Defecation in Conscious Dogs.

    PubMed

    Someya, Soutoku; Nagao, Munenori; Shibata, Chikashi; Tanaka, Naoki; Sasaki, Hiroyuki; Kikuchi, Daisuke; Miyachi, Tomohiro; Naitoh, Takeshi; Unno, Michiaki

    2015-07-01

    The aim of the present study was to investigate the effects of the intracolonic transient receptor potential (TRP) A1 agonist allyl isothiocyanate (AITC) on colonic motility and defecation. The effects of AITC administered into the proximal colonic lumen on colonic motility and defecation were studied in neurally intact dogs equipped with strain-gauge force transducers on the colon, with or without various antagonists. Effects of intracolonic AITC were also studied in dogs with either transection/re-anastomosis (T/R) between the proximal and middle colon and complete extrinsic denervation of an ileocolonic segment. AITC increased colonic motility and induced giant migrating contractions (GMCs) with defecations in 75% of experiments in neurally intact dogs. These effects were inhibited by atropine, hexamethonium, ondansetron, and HC-030031 but unaltered by capsazepine. In dogs with T/R, the increase in colonic motility was inhibited in the middle-distal colon. In dogs with extrinsic denervation, the increase in colonic motility in the distal colon was decreased. Intracolonic AITC stimulates colonic motility and defecation via cholinergic, serotonergic, and TRPA1 pathways. Continuity of colonic enteric neurons plays an essential role in the intracolonic AITC-induced colonic motor response, while extrinsic nerves are important in occurrence and propagation of GMCs.

  15. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat.

    PubMed

    Hamdan-Partida, Aida; González-García, Samuel; de la Rosa García, Estela; Bustos-Martínez, Jaime

    2018-06-01

    Colonization by Staphylococcus aureus is an important factor in infections caused by this microorganism. Among the colonization niches of staphylococci are the nose, skin, intestinal tract, and, recently, the throat has been given relevance. Infections caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) can be fatal. Persistence of S. aureus is an important process in the pathogenesis of this microorganism and must be studied. The aim of this study was to determine the persistence of S. aureus in the throat, and characterized the strains. We studied the persistence of S. aureus for 6 years in the throat of apparently healthy people. The isolated strains from the persistent carriers were characterized through PFGE, spa-typing, SCCmec typing, resistance to methicillin, presence of virulence genes (adhesins and toxins), and the formation of biofilm. We found persistent and intermittent carriers of S. aureus in the throat, with methicillin-sensitive (MSSA), methicillin-resistant (MRSA) strains, and confirmed for the first time that CA-MRSA colonizes this niche. These strains can colonize persistently the throat for four years or more. Typification of strains through PFGE and spa-typing revealed that some carriers present the same strain, whereas others present different strains along the period of persistence. Almost all strains induced a strong biofilm formation. All strains presented adhesin and toxin genes, but no shared genotype was found. We conclude that S. aureus, including CA-MRSA strains, can remain persistently in the throat, finding a wide variability among the persistent strains. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells culturedmore » in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.« less

  17. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: Implications for obesity-associated colon carcinogenesis.

    PubMed

    Song, Na-Young; Lee, Yeon-Hwa; Na, Hye-Kyung; Baek, Jeong-Heum; Surh, Young-Joon

    2018-07-01

    Leptin, a representative adipokine secreted from the white adipose tissue, is considered as a potential linker between obesity and cancer. SIRT1 is an NAD + -dependent histone/protein deacetylase speculated to function as an oncogene. In the present study, we found that leptin signaling-defective ob/ob and db/db mice had lower colonic expression of SIRT1 compared with leptin signaling-intact C57BL/6J mice, implying that leptin signaling is crucial for SIRT1 expression in vivo. Moreover, leptin induced up-regulation of SIRT1 in human colon cancer (HCT-116) cells. Leptin stimulated migration and invasion of cultured HCT-116 cells and tumor growth in the xenograft assay, and these effects were abrogated by a SIRT1 inhibitor sirtinol, suggesting that SIRT1 plays a role in leptin-induced colon carcinogenesis. Leptin-induced SIRT1 expression was regulated by the redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2). Leptin stimulated nuclear accumulation of Nrf2 as well as its binding to the antioxidant response elements located in the SIRT1 promoter. Moreover, siRNA knockdown of Nrf2 abrogated the leptin-induced SIRT1 expression. Notably, SIRT1 was significantly reduced in colon tissues of Nrf2-null mice, lending further support to Nrf2-dependent SIRT1 expression. Expression of leptin, Nrf2 and SIRT1 was coordinately increased in human colon tumor tissues. In conclusion, leptin might play a role in colon carcinogenesis by inducing Nrf2-dependent SIRT1 overexpression. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice.

    PubMed

    Chaudhary, Ghanshyam; Mahajan, Umesh B; Goyal, Sameer N; Ojha, Shreesh; Patil, Chandragouda R; Subramanya, Sandeep B

    2017-01-01

    The protective effect of methanolic extract of Lagerstroemia speciosaleaves (LS) was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis in C57BL/6 mice. The administration of DSS (2.5% in drinking water ad libitum) in C57BL/6 mice induced ulcerative colitis in 7 days. The LS was orally administered for 7 days at daily doses of 100 and 200 mg/kg. At the end of 7 days of treatment the animals were sacrificed, colonic tissues were removed and processed for further analysis of oxidative stress, and histopathology. In DSS treated mice the oxidative stress markers were elevated compared to controls. There was also significant reduction in the anti-oxidant defense levels marked by reduced cellular glutathione, catalase, and superoxide dismutase. The DSS-induced damage to the colon epithelium was evident from a significant increase in the lipid peroxidation. The histology of colon sections revealed inflammatory changes and marked impairment in the integrity of the mucosal lining with inflammatory changes. Both the doses of LS significantly prevented DSS-induced inflammatory and ulcerative damages of the colon, reduced lipid peroxidation and also restored the levels of innate antioxidants in the colon tissue. These findings indicate the protective effects of LS against the DSS-induced inflammatory and oxidative damage in the mouse colon. Further investigation involving bioactivity guided fractionation of the LS can yield potent constituent which may have a significant role in the treatment of inflammatory bowel disease and ulcerative colitis.

  19. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells.

    PubMed

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-04-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-kappaB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation.

  20. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells

    PubMed Central

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-01-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-κB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation. PMID:19221016

  1. Cytokine-Induction of Tumor Necrosis Factor Receptor 2 (TNFR2) is Mediated by STAT3 in Colon Cancer Cells

    PubMed Central

    Hamilton, Kathryn E.; Simmons, James G.; Ding, Shengli; Van Landeghem, Laurianne; Lund, P. Kay

    2011-01-01

    The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNFR2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined IL-6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα-induced TNFR2 were decreased by pharmacological STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα-induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a -1578 STAT response element in the TNFR2 promoter, but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Over-expression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the -1578 STAT response element. SOCS3 over-expression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells over-expressing TNFR2. Collectively, these studies demonstrate that IL-6 and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3, and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3. PMID:21994466

  2. Inhibition of autophagy enhances DENSpm-induced apoptosis in human colon cancer cells in a p53 independent manner.

    PubMed

    Gurkan, Ajda Coker; Arisan, Elif Damla; Yerlikaya, Pinar Obakan; Ilhan, Halime; Unsal, Narcin Palavan

    2018-06-01

    One of the recently developed polyamine (PA) analogues, N 1 ,N 11 -diethylnorspermine (DENSpm), has been found to act as an apoptotic inducer in melanoma, breast, prostate and colon cancer cells. Also, its potential to induce autophagy has been established. Unfolded protein responses and starvation of amino acids are known to trigger autophagy. As yet, however, the molecular mechanism underlying PA deficiency-induced autophagy is not fully clarified. Here, we aimed to determine the apoptotic effect of DENSpm after autophagy inhibition by 3-methyladenine (3-MA) or siRNA-mediated Beclin-1 silencing in colon cancer cells. The apoptotic effects of DENSpm after 3-MA treatment or Beclin-1 silencing were determined by PI and AnnexinV/PI staining in conjunction with flow cytometry. Intracellular PA levels were measured by HPLC, whereas autophagy and the expression profiles of PA key players were determined in HCT116, SW480 and HT29 colon cancer cells by Western blotting. We found that DENSpm-induced autophagy was inhibited by 3-MA treatment and Beclin-1 silencing, and that apoptotic cell death was increased by PA depletion and spermidine/spermine N 1 -acetyltransferase (SSAT) upregulation. We also found that autophagy inhibition led to DENSpm-induced apoptosis through Atg5 down-regulation, p62 degradation and LC3 lipidation in both HCT116 and SW480 cells. p53 deficiency did not alter the response of the colon cancer cells to DENSpm-induced apoptotic cell death under autophagy suppression conditions. From our results we conclude that DENSpm-induced apoptotic cell death is increased when autophagy is inhibited by 3-MA or Beclin-1 siRNA through PA depletion and PA catabolic activation in colon cancer cells, regardless p53 mutation status.

  3. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway.

    PubMed

    Wang, Qiuyu; Wang, Peng; Xiao, Zhigang

    2018-04-01

    Resistant starch is as common soluble fiber that escapes digestion in the small intestine and can regulate intestinal function, metabolism of blood glucose and lipids, and may prevent tumorigenesis of gastrointestinal cancer. Epidemiology and other evidence have suggested that resistant starch may prevent colon cancer development. The aim of the current study was to explore the ameliorative effects and potential mechanisms of resistant starch in the tumorigenesis of colon tumors induced by dimethylhydrazine in C57BL/6 mice. Western blot analysis, ELISA, microscopy, immunofluorescence and immunohistochemistry were used to analyze the efficacy of resistant starch on the metabolic balance in the colon and tumorigenesis of colon tumors. The results demonstrated that a diet containing resistant starch decreased the animal body weight and reduced free ammonia, pH and short chain fatty acids in feces compared with mice that received a standard diet. Resistant starch reduced the incidence of colon tumors and suppressed the expression of carcinogenesis‑associated proteins, including heat shock protein 25, protein kinase C‑d and gastrointestinal glutathione peroxidase in colon epithelial cells compared with standard starch and control groups. Colon tumor cells proliferation and dedifferentiation were significantly decreased by a resistant starch diet. The results also demonstrated that resistant starch increased the apoptosis of colon tumor cells through regulation of apoptosis‑associated gene expression levels in colon tumor cells. Oxidative stress and endoplasmic reticulum stress were upregulated, and elevation eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor‑4 and secretase‑β expression levels were increased in the resistant starch diet group. Additionally, the activity of eIF2α and PERK were increased in colon tumor cells from mice that had received resistant starch. Increasing DNA damage‑inducible transcript 3 protein (CHOP), binding immunoglobulin protein (BIP) and caspase‑12 expression levels upregulated by resistant starch diet may contribute to the resistant starch‑induced apoptosis of colon tumor cells induced by 1,2‑dimethylhydrazine. In vitro assays demonstrated that knockdown of eIF2α inhibited apoptosis of colon tumor cells isolated from mice fed with resistant starch, which also downregulated CHOP, BIP and caspase‑3 expression levels compared with controls. Furthermore, long‑term survival of experimental mice was prolonged by the resistant starch diet compared with the standard diet group. In conclusion, the results indicate that resistant starch in the diet may prevent carcinogenesis of colon epithelial cells, mediated by enhancing apoptosis through an endoplasmic reticulum stress‑mediated mitochondrial apoptosis pathway.

  4. Contribution of Urease to Colonization by Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Steyert, Susan R.

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3 produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC. PMID:22665380

  5. Ugene, a newly identified protein that is commonly over-expressed in cancer, and that binds uracil DNA-glycosylase

    PubMed Central

    Guo, Chunguang; Zhang, Xiaodong; Fink, Stephen P; Platzer, Petra; Wilson, Keith; Willson, James K. V.; Wang, Zhenghe; Markowitz, Sanford D

    2008-01-01

    Expression microarrays identified a novel transcript, designated as Ugene, whose expression is absent in normal colon and colon adenomas, but that is commonly induced in malignant colon cancers. These findings were validated by real-time PCR and Northern blot analysis in an independent panel of colon cancer cases. In addition, Ugene expression was found to be elevated in many other common cancer types, including, breast, lung, uterus, and ovary. Immunofluorescence of V5-tagged Ugene revealed it to have a nuclear localization. In a pull-down assay, uracil DNA-glycosylase 2 (UNG2), an important enzyme in the base excision repair pathway, was identified as a partner protein that binds to Ugene. Co-immunoprecipitation and Western blot analysis confirmed the binding between the endogenous Ugene and UNG2 proteins. Using deletion constructs, we find that Ugene binds to the first 25 amino acids of the UNG2 NH2-terminus. We suggest Ugene induction in cancer may contribute to the cancer phenotype by interacting with the base excision repair pathway. PMID:18676834

  6. Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor-{alpha} and PTGS2.

    PubMed

    Dougherty, Urszula; Cerasi, Dario; Taylor, Ieva; Kocherginsky, Masha; Tekin, Ummuhan; Badal, Shamiram; Aluri, Lata; Sehdev, Amikar; Cerda, Sonia; Mustafi, Reba; Delgado, Jorge; Joseph, Loren; Zhu, Hongyan; Hart, John; Threadgill, David; Fichera, Alessandro; Bissonnette, Marc

    2009-11-15

    Colon cancer is a major cause of cancer deaths. Dietary factors contribute substantially to the risk of this malignancy. Western-style diets promote development of azoxymethane-induced colon cancer. Although we showed that epidermal growth factor receptors (EGFR) controlled azoxymethane tumorigenesis in standard fat conditions, the role of EGFR in tumor promotion by high dietary fat has not been examined. A/J x C57BL6/J mice with wild-type Egfr (Egfr(wt)) or loss-of-function waved-2 Egfr (Egfr(wa2)) received azoxymethane followed by standard (5% fat) or western-style (20% fat) diet. As F(1) mice were resistant to azoxymethane, we treated mice with azoxymethane followed by one cycle of inflammation-inducing dextran sulfate sodium to induce tumorigenesis. Mice were sacrificed 12 weeks after dextran sulfate sodium. Tumors were graded for histology and assessed for EGFR ligands and proto-oncogenes by immunostaining, Western blotting, and real-time PCR. Egfr(wt) mice gained significantly more weight and had exaggerated insulin resistance compared with Egfr(wa2) mice on high-fat diet. Dietary fat promoted tumor incidence (71.2% versus 36.7%; P < 0.05) and cancer incidence (43.9% versus 16.7%; P < 0.05) only in Egfr(wt) mice. The lipid-rich diet also significantly increased tumor and cancer multiplicity only in Egfr(wt) mice. In tumors, dietary fat and Egfr(wt) upregulated transforming growth factor-alpha, amphiregulin, CTNNB1, MYC, and CCND1, whereas PTGS2 was only increased in Egfr(wt) mice and further upregulated by dietary fat. Notably, dietary fat increased transforming growth factor-alpha in normal colon. EGFR is required for dietary fat-induced weight gain and tumor promotion. EGFR-dependent increases in receptor ligands and PTGS2 likely drive diet-related tumor promotion.

  7. Different cytokine response of primary colonic epithelial cells to commensal bacteria.

    PubMed

    Lan, Jing-Gang; Cruickshank, Sheena-Margaret; Singh, Joy-Carmelina-Indira; Farrar, Mark; Lodge, James-Peter-Alan; Felsburg, Peter-John; Carding, Simon-Richard

    2005-06-14

    To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1alpha/beta and betadefensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2alpha expression, respectively. TNFalpha, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.

  8. Different cytokine response of primary colonic epithelial cells to commensal bacteria

    PubMed Central

    Lan, Jing-Gang; Cruickshank, Sheena Margaret; Singh, Joy Carmelina Indira; Farrar, Mark; Lodge, James Peter Alan; Felsburg, Peter John; Carding, Simon Richard

    2005-01-01

    AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo. PMID:15948242

  9. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    PubMed

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in diaminothiazole class of compounds for further follow-up.

  10. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    PubMed

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  11. Oleuropein Prevents Azoxymethane-Induced Colon Crypt Dysplasia and Leukocytes DNA Damage in A/J Mice.

    PubMed

    Sepporta, Maria Vittoria; Fuccelli, Raffaela; Rosignoli, Patrizia; Ricci, Giovanni; Servili, Maurizio; Fabiani, Roberto

    2016-08-19

    Previous studies have shown that the precursor of olive oil secoiridoids, Oleuropein (OL) has several in vitro chemopreventive properties. OL inhibits proliferation and induces apoptosis in breast, thyroid, prostate, and colorectal cancer (CRC) cells. Much less is known about the effects of OL on animal models of carcinogenesis. In this study, we investigated the ability of OL to prevent the azoxymethane (AOM)-induced colon cancer upset and DNA damage in mice. Animals, fed with a basal diet either enriched or not with OL (125 mg/kg), were injected with AOM (10 mg/kg, once a week for 6 weeks) and sacrificed after either 7 weeks for histological analysis of colon crypt dysplasia and evaluation of DNA damage in leukocytes or 17 weeks for counting the macroscopically observable colon tumors. An OL-enriched diet prevented the AOM-induced preneoplastic lesions in different colon segments, reducing the severity of crypt dysplasia and DNA damage in peripheral leukocytes. In addition, OL significantly reduced the AOM-induced tumor incidence from 57% to 14% (P < .05, chi-square test) in the medial colon segment. This study shows that OL is able to prevent CRC and DNA damage in mice treated with the carcinogen AOM. These results stimulate further human cancer prevention studies with OL-enriched food supplements that are actually available on the market.

  12. BAG3-dependent expression of Mcl-1 confers resistance of mutant KRAS colon cancer cells to the HSP90 inhibitor AUY922.

    PubMed

    Wang, Chun Yan; Guo, Su Tang; Croft, Amanda; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2018-02-01

    Past studies have shown that mutant KRAS colon cancer cells are susceptible to apoptosis induced by the HSP90 inhibitor AUY922. Nevertheless, intrinsic and acquired resistance remains an obstacle for the potential application of the inhibitor in the treatment of the disease. Here we report that Mcl-1 is important for survival of colon cancer cells in the presence of AUY922. Mcl-1 was upregulated in mutant KRAS colon cancer cells selected for resistance to AUY922-induced apoptosis. This was due to its increased stability mediated by Bcl-2-associated athanogene domain 3 (BAG3), which was also increased in resistant colon cancer cells by heat shock factor 1 (HSF1) as a result of chronic endoplasmic reticulum (ER) stress. Functional investigations demonstrated that inhibition of Mcl-1, BAG3, or HSF1 triggered apoptosis in resistant colon cancer cells, and rendered AUY922-naïve colon cancer cells more sensitive to the inhibitor. Together, these results identify that the HSF1-BAG3-Mcl-1 signal axis is critical for protection of mutant KRAS colon cancer cells from AUY922-induced apoptosis, with potential implications for targeting HSF1/BAG3/Mcl-1 to improve the efficacy of AUY922 in the treatment of colon cancer. © 2017 Wiley Periodicals, Inc.

  13. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice.

    PubMed

    Dinh, Chi H L; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-04-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. © 2016 The Histochemical Society.

  14. Ischemic or toxic injury: A challenging diagnosis and treatment of drug-induced stenosis of the sigmoid colon.

    PubMed

    Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui

    2017-06-07

    A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids.

  15. Ischemic or toxic injury: A challenging diagnosis and treatment of drug-induced stenosis of the sigmoid colon

    PubMed Central

    Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui

    2017-01-01

    A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids. PMID:28638234

  16. Cytotoxicity of p-chloroamphetamine in dimethylhydrazine-induced carcinomata of rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1979-01-01

    Previous studies have shown that several serotonin-related compounds are cytotoxic to dimethylhydrazine-induced carcinomata of the colon of rat. This paper reports the cytotoxicity of another serotonin-related compound, p-chloroamphetamine.

  17. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu; Cheng, Kunrong; Saxena, Neeraj

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasionmore » of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination.« less

  18. Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus-Induced Diarrhea

    PubMed Central

    Ritchie, Jennifer M.; Rui, Haopeng; Zhou, Xiaohui; Iida, Tetsuya; Kodoma, Toshio; Ito, Susuma; Davis, Brigid M.; Bronson, Roderick T.; Waldor, Matthew K.

    2012-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. PMID:22438811

  19. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon.

    PubMed

    Matsumoto, Kenjiro; Kurosawa, Emi; Terui, Hiroyuki; Hosoya, Takuji; Tashima, Kimihito; Murayama, Toshihiko; Priestley, John V; Horie, Syunji

    2009-08-01

    We investigated immunohistochemical differences in the distribution of TRPV1 channels and the contractile effects of capsaicin on smooth muscle in the mouse rectum and distal, transverse, and proximal colon. In the immunohistochemical study, TRPV1 immunoreactivity was found in the mucosa, submucosal, and muscle layers and myenteric plexus. Large numbers of TRPV1-immunoreactive axons were observed in the rectum and distal colon. In contrast, TRPV1-positive axons were sparsely distributed in the transverse and proximal colon. The density of TRPV1-immunoreactive axons in the rectum and distal colon was much higher than those in the transverse and proximal colon. Axons double labeled with TRPV1 and protein gene product (PGP) 9.5 were detected in the myenteric plexus, but PGP 9.5-immunoreactive cell bodies did not colocalize with TRPV1. In motor function studies, capsaicin induced a fast transient contraction, followed by a large long-lasting contraction in the rectum and distal colon, whereas in the transverse and proximal colon only the transient contraction was observed. The capsaicin-induced transient contraction from the proximal colon to the rectum was moderately inhibited by an NK1 or NK2 receptor antagonist. The capsaicin-induced long-lasting contraction in the rectum and distal colon was markedly inhibited by an NK2 antagonist, but not by an NK1 antagonist. The present results suggest that TRPV1 channels located on the rectum and distal colon play a major role in the motor function in the large intestine.

  20. Cyclic phosphatidic acid induces G0/G1 arrest, inhibits AKT phosphorylation, and downregulates cyclin D1 expression in colorectal cancer cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2015-03-01

    Lysophosphatidic acid (LPA) and its analogs are well-known mitogens for various cell types. Many reports have confirmed that several types of cancer cell produce LPA to promote survival, growth and tumorigenesis. This indicates that the interface between the LPA signaling pathway and the cell cycle signaling system is critical to the control of cancer cell proliferation. However, our previous study indicated that cyclic phosphatidic acid (cPA), which is structurally similar to LPA, inhibits the proliferation and migration of colon cancer cells. It has been reported that cPA shows several biological activities not shown by LPA. However, understanding of the detailed molecular and cellular mechanism underlying the regulation of the cell cycle by cPA is still in its infancy. In this study, we investigated the effect of cPA treatment on human DLD-1 colon cancer cells by analyzing cell cycle dynamics, gene expression, and AKT phosphorylation. Our findings indicate that cPA inhibits cell cycle progression in DLD-1 colon cancer cells via the downregulation of cyclin D1 and the inhibition of AKT phosphorylation.

  1. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models.

    PubMed

    Rivera-Huerta, Marisol; Lizárraga-Grimes, Vania Lorena; Castro-Torres, Ibrahim Guillermo; Tinoco-Méndez, Mabel; Macías-Rosales, Lucía; Sánchez-Bartéz, Francisco; Tapia-Pérez, Graciela Guadalupe; Romero-Romero, Laura; Gracia-Mora, María Isabel

    2017-01-01

    Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin "Synergy 1®" and inulin from Mexican agave "Metlin®" in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra) in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.

  2. Intragastric Dai-Kenchu-To, a Japanese herbal medicine, stimulates colonic motility via transient receptor potential cation channel subfamily V member 1 in dogs.

    PubMed

    Kikuchi, Daisuke; Shibata, Chikashi; Imoto, Hirofumi; Naitoh, Takeshi; Miura, Koh; Unno, Michiaki

    2013-08-01

    Japanese herbal medicine, also known as Kampo, is used for various diseases in Japan. One of those medicines, Dai-Kenchu-To (DKT), is considered clinically effective for adhesive bowel obstruction and chronic constipation. Although scientific evidence of DKT to improve adhesive bowel obstruction was shown in several previous reports, mechanism of DKT to improve constipation remains unknown. Our aim was to study the effect of intragastric DKT on colonic motility and defecation, and the involvement of various receptors in DKT-induced colonic contractions. Five beagle dogs were instructed with serosal strain-gauge force transducers to measure circular muscle activity at the proximal, middle, and distal colon. Dogs are suitable for a present study to administer the drugs repeatedly to the same individual and look at its effect on colonic motility. We studied the effects of DKT (2.5 or 5 g) administered into the stomach on colonic motility. Muscarinic receptor antagonist atropine, nicotinic receptor antagonist hexamthonium, or 5-hydroxytryptamine-3 receptor antagonist ondansetron was injected intravenously 10 min before DKT administration. Capsazepine, an antagonist to transient receptor potential cation channel subfamily V member 1 (TRPV1), was administered into the stomach 5 min before DKT administration. Intragastric DKT (2.5 or 5 g) induced colonic contractions within 10 min after administration but did not induce defecation. Pretreatment with atropine, hexamthonium, ondansetron, or capsazepine inhibited DKT-induced colonic contractions. These results indicate that orally administered DKT stimulates colonic motility via TRPV1, muscarinic, nicotinic, and 5-hydroxytryptamine-3 receptors, thereby providing scientific support for the efficacy of oral DKT in chronic constipation.

  3. Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model.

    PubMed

    Quan, Xiaojing; Luo, Hesheng; Fan, Han; Tang, Qincai; Chen, Wei; Cui, Ning; Yu, Guang; Xia, Hong

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.

  4. Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis.

    PubMed

    Zhang, Xuemei; Ai, Feiyan; Li, Xiayu; She, Xiaoling; Li, Nan; Tang, Anliu; Qin, Zailong; Ye, Qiurong; Tian, Li; Li, Guiyuan; Shen, Shourong; Ma, Jian

    2015-12-15

    The aberrant expression of S100A8 and S100A9 is linked to nonresolving inflammation and ultimately to carcinogenesis, whereas the underlying mechanism that allows inflammation to progress to specific cancer types remains unknown. Here, we report that S100A8 was induced by inflammation and then promoted colorectal tumorigenesis downstream by activating Id3 (inhibitor of differentiation 3). Using gene expression profiling and immunohistochemistry, we found that both S100A8 and S100A9 were upregulated in the chemically-induced colitis-associated cancer mouse model and in human colorectal cancer specimens. Furthermore, we showed that S100A8 and S100A9 acted as chemoattractant proteins by recruiting macrophages, promoting the proliferation and invasion of colon cancer cell, as well as spurring the cycle that culminates in the acceleration of cancer metastasis in a nude mouse model. S100A8 regulated colon cancer cell cycle and proliferation by inducing Id3 expression while inhibiting p21. Id3 expression was regulated by Smad5, which was directly phosphorylated by Akt1. Our study revealed a novel mechanism in which inflammation-induced S100A8 promoted colorectal tumorigenesis by acting upstream to activate the Akt1-Smad5-Id3 axis. © 2015 UICC.

  5. An Ahemolytic Pneumolysin of Streptococcus Pneumoniae Manipulates Human Innate and CD4+ T-Cell Responses and Reduces Resistance to Colonization in Mice in a Serotype-Independent Manner

    PubMed Central

    Khan, M. Nadeem; Coleman, John Robert; Vernatter, Joshua; Varshney, Avanish Kumar; Dufaud, Chad; Pirofski, Liise-anne

    2014-01-01

    Background. Some Streptococcus pneumoniae serotypes express an ahemolytic pneumolysin (PLYa). Serotypes that commonly express PLYa, including serotype 8 (ST8) and ST1, are often associated with a low prevalence during colonization but a higher propensity to cause invasive disease. We sought to study the host response to ST8 PLYa in a homologous and heterologous capsular background. Methods. We genetically exchanged the PLYa of ST8 strain 6308 with the hemolytic PLY (PLYh) of ST3 A66.1 and vice versa and determined the impact of the exchange on nasopharyngeal colonization in mice. Then, to compare the response of human cells to PLYa-expressing and PLYh-expressing strains, we infected human peripheral blood mononuclear cells (PBMCs) with PLY-switched strains and assessed dendritic cell and CD4+ T-cell responses by intracellular cytokine staining. Result. Mice colonized with PLYa-expressing strains had significantly higher colonization densities than those colonized with PLYh-expressing strains, irrespective of capsular background. Compared with infection of PBMCs with PLYh-expressing strains, infection with PLYa-expressing strains induced diminished innate (dendritic cell cytokines, costimulatory receptor, and apoptotic) and adaptive (CD4+ T-cell proliferative and memory interleukin 17A) responses. Conclusion. Our findings demonstrate that PLYa has the potential to manipulate host immunity irrespective of capsule type. PLY exchange between STs expressing PLYa and PLYh could lead to unexpected colonization or invasion phenotypes. PMID:25001458

  6. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility.

    PubMed

    Maldonado-González, M Mercedes; Schilirò, Elisabetta; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-09-01

    Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham mice as the immunized mice induced insufficient intestinal anti-LT antibody to neutralize the activity of the enterotoxin. These results show that our ETEC vaccine induced serum and mucosal antibody responses to CFA/I and LT after mucosal administration which then acted to protect the immunized mice against lung and intestinal colonization, as well as, intestinal fluid accumulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, T.-Y.; Division of Gastroenterology and Hepatology, Tri-Service General Hospital, Taipei, Taiwan; Chu, H.-C.

    2009-05-15

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitricmore » oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.« less

  9. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities.

    PubMed

    McIntosh, Freda M; Maison, Nathalie; Holtrop, Grietje; Young, Pauline; Stevens, Valerie J; Ince, Jennifer; Johnstone, Alexandra M; Lobley, Gerald E; Flint, Harry J; Louis, Petra

    2012-08-01

    Bacterial β-glucuronidase in the human colon plays an important role in cleaving liver conjugates of dietary compounds and xenobiotics, while other glycosidase activities are involved in the conversion of dietary plant glycosides. Here we detected an increase in β-glucuronidase activity in faecal samples from obese volunteers following a high-protein moderate carbohydrate weight-loss diet, compared with a weight maintenance diet, but little or no changes were observed when the type of fermentable carbohydrate was varied. Other faecal glycosidase activities showed little or no change over a fivefold range of dietary NSP intake, although α-glucosidase increased on a resistant starch-enriched diet. Two distinct groups of gene, gus and BG, have been reported to encode β-glucuronidase activity among human colonic bacteria. Degenerate primers were designed against these genes. Overall, Firmicutes were found to account for 96% of amplified gus sequences, with three operational taxonomic units particularly abundant, whereas 59% of amplified BG sequences belonged to Bacteroidetes and 41% to Firmicutes. A similar distribution of operational taxonomic units was found in a published metagenome dataset involving a larger number of volunteers. Seven cultured isolates of human colonic bacteria that carried only the BG gene gave relatively low β-glucuronidase activity that was not induced by 4-nitrophenyl-β-D-glucuronide. By comparison, in three of five isolates that possessed only the gus gene, β-glucuronidase activity was induced. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Therapeutic effect of kakkonto in a mouse model of food allergy with gastrointestinal symptoms.

    PubMed

    Yamamoto, Takeshi; Fujiwara, Kanae; Yoshida, Minako; Kageyama-Yahara, Natsuko; Kuramoto, Hirofumi; Shibahara, Naotoshi; Kadowaki, Makoto

    2009-01-01

    The number of patients with food allergy has increased dramatically over the last several decades. However, there is no effective drug for food allergies. In the present study, we evaluated the effects of kakkonto, a traditional Japanese herbal medicine, in a mouse model of food allergy with gastrointestinal symptoms. BALB/c mice were systemically sensitized twice with ovalbumin (OVA) and then were repeatedly given OVA by oral intubation (OVA mice). Kakkonto was administered orally before the OVA challenges. The OVA mice developed allergic diarrhea (91.8 +/- 3.8% after 6 OVA challenges), and myeloperoxidase (MPO) activity was dramatically elevated in the colons of the OVA mice. Kakkonto significantly suppressed the occurrence of allergic diarrhea and MPO activity in the OVA mice. Furthermore, the number of mucosal mast cells was greatly increased in the proximal colons of the OVA mice, and this was also suppressed by kakkonto. Interestingly, mRNA expression of helper T cell type 1 (Th1) cytokines (IFN-gamma) and Th2 cytokines (IL-4, IL-5 and IL-10) were significantly upregulated in the proximal colons of the OVA mice, an effect which was also reduced by kakkonto. Transcriptome analysis detected increased mRNA expression of suppressor of cytokine signaling-3 in the proximal colons of OVA mice, which was decreased by kakkonto administration. Kakkonto has immunosuppressive effects and interferes with the infiltration of mucosal mast cells in the colons of mice with induced food allergy, leading to improvement of allergic symptoms. Kakkonto has potential as a therapeutic drug for treatment of allergic symptoms induced by the disruption of intestinal mucosal immunity. (c) 2008 S. Karger AG, Basel.

  11. Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesis in female F344 rats: influence of amount and source of dietary fat.

    PubMed

    Reddy, B S; Maeura, Y

    1984-03-01

    The promoting effect of dietary corn oil (CO), safflower oil (SO), olive oil (OO), coconut oil (CC), and medium-chain triglycerides (MCT) on azoxymethane (AOM)-induced colon tumors was studied in female F344 rats. The animals were fed low-fat diets containing 5% CO, 5% SO, or 5% OO 2 weeks before, during, and 1 week after sc injection of 20 mg AOM/kg body weight. One week after the AOM treatment, groups of animals were transferred to high-fat diets containing 23.52% CO, 23.52% SO, 23.52% OO, and 23.52% CC, or 5.88% CO + 17.64% MCT; the remaining animals were continued on 5% fat diets. All animals were fed these diets until the termination of the experiment. Body weights and intakes of calories, protein, and micronutrients were comparable among the various dietary groups. The incidence of colon tumors was increased in rats fed diets containing high-CO and high-SO compared to those fed low-CO and low-SO diets, whereas the diets containing high OO, CC, or MCT had no promoting effect on colon tumor incidence. There was a significant increase in the excretion of fecal deoxycholic acid, lithocholic acid, and 12-ketolithocholic acid in animals fed the high-CO and high-SO diets and no difference in these secondary bile acids excretion in animals fed the high-OO and high-CC diets compared to those animals fed their respective 5% fat diets. This study thus indicates that not only the amount of dietary fat but also the fatty acid composition (type) of fat are important factors in the determination of the promoting effect in colon carcinogenesis.

  12. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    PubMed

    Liang, Lu; Dong, Chunlan; Chen, Xiaojun; Fang, Zhihong; Xu, Jie; Liu, Meng; Zhang, Xiaoguang; Gu, Dong Sheng; Wang, Ding; Du, Weiting; Zhu, Delin; Han, Zhong Chao

    2011-01-01

    Mesenchymal stem cells (MSCs), which are poorly immunogenic and have potent immunosuppressive activities, have emerged as a promising candidate for cellular therapeutics for the treatment of disorders caused by abnormal immune responses. In this study we investigated whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could ameliorate colitis in a trinitrobenzene sulfonic acid (TNBS)-induced colitis model. TNBS-treated colitic mice were infused with hUC-MSCs or vehicle control. The mice were sacrificed on day 1, 3, and 5 after infusion, and their clinical and pathological conditions were evaluated by body weight, colon length, and histological analysis. The expression levels of proinflammatory cytokine proteins in colon were examined by ELISA. The homing of hUC-MSCs was studied by live in vivo imaging and immunofluorescent microscopy. hUC-MSCs were found to migrate to the inflamed colon and effectively treated the colitic mice with improved clinical and pathological signs. The levels of IL-17 and IL-23 as well as IFN-γ and IL-6 were significantly lower in the colon tissues of the hUC-MSC-treated mice in comparison with the vehicle-treated mice. Coculture experiments showed that hUC-MSCs not only could inhibit IFN-γ expression but also significantly inhibit IL-17 production by lamina propria mononuclear cells (LPMCs) or splenocytes of the colitic mice or by those isolated from normal animals and stimulated with IL-23. Systemically infused hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis.

  13. Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals.

    PubMed

    Albert-Baskar, Arul; Ignacimuthu, Savarimuthu

    2010-07-01

    The present study was aimed at evaluating the chemopreventive property of Cynodon dactylon. The antioxidant, antiproliferative and apoptotic potentials of the plant were investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, nitric oxide radical scavenging activity (NO(-)) and MTT assay on four cancer cell lines (COLO 320 DM, MCH-7, AGS, A549) and a normal cell line (VERO). In vivo chemopreventive property of the plant extract was studied in DMH-induced colon carcinogenesis. The methanolic extract of C. dactylon was found to be antiproliferative and antioxidative at lower concentrations and induced apoptotic cell death in COLO 320 DM cells. Treatment with methanolic extract of C. dactylon increased the levels of antioxidant enzymes and reduced the number of dysplastic crypts in DMH-induced colon of albino rats. The present investigation revealed the anticancer potential of methanolic extract of C. dactylon in COLO 320 DM cells and experimentally induced colon carcinogenesis in rats.

  14. Does senna extract promote growth of aberrant crypt foci and malignant tumors in rat colon?

    PubMed

    Mascolo, N; Mereto, E; Borrelli, F; Orsi, P; Sini, D; Izzo, A A; Massa, B; Boggio, M; Capasso, F

    1999-11-01

    Current evidence suggests that aberrant crypt foci (ACF) can be used to evaluate agents for their potential colon carcinogenic activity. The aim of the present study was to determine whether senna pod extract (SE) itself induces ACF and tumors in the rat colon or increases the development of ACF and tumors induced by azoxymethane (AOM). A daily administration of SE 10 mg/kg by mouth for 13-28 weeks produced a weak laxative effect but did not itself cause the appearance of ACF or tumors. The numbers of ACF and tumors induced by AOM were, however, increased by a dose of SE (100 mg/kg) able to induce chronic diarrhea over three months. These results suggest that SE does not cause the appearance of ACF or tumors in the rat colon nor does it have a promoting effect when given to rats at a dose that produces laxation (10 mg/kg), whereas a diarrhogenic dose (100 mg/kg) increases the appearance of tumors induced by AOM.

  15. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats.

    PubMed

    Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku

    2012-05-01

    Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.

  16. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  17. Wasabi 6-(methylsulfinyl)hexyl isothiocyanate induces apoptosis in human colorectal cancer cells through p53-independent mitochondrial dysfunction pathway.

    PubMed

    Yano, Satoshi; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2018-05-14

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Wasabi [Wasabia japonica (Miq.) Matsum.], has revealed the inhibitory effect on colon carcinogenesis in rat cancer model although the underlying mechanism is unclear. In this study, we used two types of human colorectal cancer cells (HCT116 p53 +/+ and HCT116 p53 -/- ) to investigate the anticancer activity and molecular mechanisms of 6-MSITC. Interestingly, 6-MSITC inhibited the cell proliferation in both types of cells with similar IC 50 value although a light increase in the phosphorylation and accumulation of P53 protein was observed in HCT116 p53 +/+ cells at 24 h after treatment. In addition, 6-MSITC increased the ratio of proapoptotic cells in both types of cells with the same fashion in a p53-independent manner. The data from mitochondrial analysis revealed that 6-MSITC enhanced the ratio of proapoptotic B-cell lymphoma-2-associated X protein/antiapoptotic myeloid cell leukemia 1, and sequentially caused mitochondrial membrane potential (ΔΨ m ) loss, cytochrome c release, and caspase-3 activation in both types of cells. Taken together, Wasabi 6-MSITC induced apoptosis of human colorectal cancer cells in p53-independent mitochondrial dysfunction pathway. These findings suggest that 6-MSITC might be a potential agent for colon cancer chemoprevention although with p53 mutation. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  18. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons.

    PubMed

    Kaneko, Takao; Tahara, Shoichi; Takabayashi, Fumiyo

    2007-11-01

    The effects of esculetin (6,7-dihydroxycoumarin) and its 6-glycoside, esculin, on 8-oxo-2'-deoxyguanosine (8-oxodG) formation and carcinogenesis induced by a chemical carcinogen, 1,2-dimethylhydrazine (DMH), were examined in the colons of male Fischer 344 rats. Animals were given water containing esculetin or esculin for 7 d before subcutaneous injection of DMH (20 mg/kg body wt), killed 24 h after DMH treatment, and the levels of thiobarbituric acid reactive substances (TBARS) and 8-oxodG in the colons were determined. Both esculetin and esculin suppressed significantly the DMH-induced increases in 8-oxodG and TBARS in rat colon mucosa. We further investigated the modifying effect of esculin intake on the development of DMH-induced colonic aberrant crypt foci (ACF). Animals were given DMH once a week for 4 weeks to induce ACF. They then received water containing esculin ad libitum for 5 weeks (initiation phase) or 11 weeks after DMH treatment (post-initiation phase). Animals in the positive control group received tap water throughout the experiment. At the end of the experiment (16 weeks), the ingestion of esculin during the initiation phase significantly reduced the incidence of gross tumors, the number of ACF per rat and the mean number of AC per focus, while the esculin treatment during the post-initiation phase significantly decreased only the number of ACF per rat. These results suggest that esculin intake has an inhibitory effect on DMH-induced oxidative DNA damage and carcinogenesis in rat colons.

  20. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells.

    PubMed

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-02-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.

  1. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells

    PubMed Central

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-01-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008

  2. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice.

    PubMed

    He, Xiao-Qiong; Duan, Jia-Li; Zhou, Jin; Song, Zhong-Yu; Cichello, Simon Angelo

    2015-01-01

    Faecal pH and cholate are two important factors that can affect colon tumorigenesis, and can be modified by diet. In this study, the effects of two Chinese traditional cooking oils (pork oil and canola/rapeseed oil) on the pH and the cholic acid content in feces, in addition to colon tumorigenesis, were studied in mice. Kunming mice were randomized into various groups; negative control group (NCG), azoxymethane control group (ACG), pork oil group (POG), and canola oil Ggroup (COG). Mice in the ACG were fed a basic rodent chow; mice in POG and COG were given 10% cooking oil rodent chow with the respective oil type. All mice were given four weekly AOM (azoxymethane) i.p. injections (10 mg/kg). The pH and cholic acid of the feces were examined every two weeks. Colon tumors, aberrant crypt foci and organ weights were examined 32 weeks following the final AOM injection. The results showed that canola oil significantly decreased faecal pH in female mice (P<0.05), but had no influence on feces pH in male mice (P>0.05). Pork oil significantly increased the feces pH in both male and female mice (P<0.05). No significant change was found in feces cholic acid content when mice were fed 10% pork oil or canola oil compared with the ACG. Although Kunming mice were not susceptible to AOM-induced tumorigenesis in terms of colon tumor incidence, pork oil significantly increased the ACF number in male mice. Canola oil showed no influence on ACF in either male or female mice. Our results indicate that cooking oil effects faecal pH, but does not affect the faecal cholic acid content and thus AOM-induced colon neoplastic ACF is modified by dietary fat.

  3. Time-course microarray analysis for identifying candidate genes involved in obesity-associated pathological changes in the mouse colon.

    PubMed

    Bae, Yun Jung; Kim, Sung-Eun; Hong, Seong Yeon; Park, Taesun; Lee, Sang Gyu; Choi, Myung-Sook; Sung, Mi-Kyung

    2016-01-01

    Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log 2 fold change of ≥1 or ≤-1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Our data indicate that Apoa4 , Ppap2b , Cel , and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon.

  4. Whey proteins protect more than red meat against azoxymethane induced ACF in Wistar rats.

    PubMed

    Belobrajdic, D P; McIntosh, G H; Owens, J A

    2003-07-30

    Protein type and density have been shown to influence colon cancer risk using a carcinogen-induced rat model. It is suggested that red meat may promote colon cancer risk more than whey proteins. The aim of this study was to evaluate the influence of red meat, whey protein and their density in the diet on the number of aberrant crypt foci (ACF), preneoplastic markers in Wistar rats. The sources of protein, red meat as barbecued kangaroo muscle meat, and whey protein concentrate were fed to rats to provide 8, 16 and 32% protein by weight in a modified AIN-93 diet with low fiber, low calcium and high polyunsaturated fat. Adult Wistar rats (13 weeks of age) were fed these diets for 4 weeks and then two s.c. injections of azoxymethane, 15 mg/kg BW, were administered 1 week apart. Diets were fed for a further 8 weeks, rats were then killed, their colons fixed in formalin saline and stained with methylene blue to quantify ACF number. Fecal samples were collected and the fecal water was isolated for quantification of heme and thiobarbituric acid reactive substances. Increasing red meat density correlated positively, while increasing dairy protein density correlated negatively with rate of weight gain (p<0.05). Dietary intake was not significantly affected by protein type or density. The 32% whey protein group had significantly less ACF in the proximal colon in comparison to the 16 and 32% red meat groups (p<0.05). This reduction in ACF number in the whey protein group may be caused by hormones associated with the reduction in weight gain, and/or by components of whey protein concentrate such as cysteine, lactose and conjugated linoleic acid which have been shown to have anti-cancer effects. Using ACF number as an index, whey protein appeared to be more protective than red meat.

  5. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    PubMed

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  6. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells.

    PubMed

    Kaewkorn, Waraporn; Limpeanchob, Nanteetip; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2012-01-01

    Sericin is a silk protein woven from silkworm cocoons (Bombyx mori). In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.

  7. β1/2 or M2/3 Receptors Are Required for Different Gastrointestinal Motility Responses Induced by Acupuncture at Heterotopic or Homotopic Acupoints

    PubMed Central

    Yu, Xiaochun; Cui, Changxiang; Yang, Zhaokun; Shi, Hong; Jing, Xianghong; Zhu, Bing

    2016-01-01

    Acupuncture at homotopic acupoints or heterotopic acupoints is known to either inhibit or facilitate gastrointestinal motility, depending on the acupoint location. However, little effort has been made to investigate the roles of specific receptors (such as adrenergic and muscarinic acetylcholine receptors) in mediating the effects of acupuncture at heterotopic and homotopic acupoints. Different adrenergic receptor subtypes or cholinergic receptor subtypes are predominantly expressed in various sections of the gut, resulting in variations between the effects of acupuncture at heterotopic or homotopic acupoints on gastrointestinal motility. Here, we investigated the role of β1/β2 receptors and M2/M3 receptors in gastrointestinal motility regulated by acupuncture at ST37, a heterotopic acupoint, and ST25, a homotopic acupoint, by simultaneously recording intraluminal pressures in the distal colon and stomach or jejunum and examining fecal phenol red excretion in β1/2 receptor-knockout mice and M2/3 receptor-knockout mice. We found that knockout of the M2/3 receptor significantly inhibited ST37 acupuncture-induced enhancement of gastric motility, jejunal motility, and colonic motility. Additionally, knocking out of the β1/2 receptor significantly diminished the ST25 acupuncture-induced inhibition of gastric motility and jejunal motility without significantly altering the enhancement of colonic motility induced by acupuncture at ST25. Acupuncture at ST37 significantly accelerated gastrointestinal transition in β1/2 receptor-knockout mice and their wild-type littermates. However, this acceleration of gastrointestinal transition was markedly diminished in M2/3 receptor-knockout mice relative to their wild-type littermates. Acupuncture at ST25 significantly increased gastrointestinal transition in β1/2 receptor-knockout mice and significantly decreased gastrointestinal transition in M2/3 receptor-knockout mice without altering gastrointestinal transition in wild-type littermates of either. Our study revealed that M2/3 receptors are required for the gastrointestinal motility associated with whole gastrointestinal transition enhanced by acupuncture at heterotopic acupoints, whereas β1/2 receptors are required for the same gastrointestinal motility processes inhibited by acupuncture at homotopic acupoints. Therefore, our findings reveal important biological mechanisms underlying acupuncture treatment of disorders involving gastrointestinal motility dysfunction. PMID:27978539

  8. Cytomegalovirus-induced colonic stricture presenting as acute intestinal obstruction in an immunocompetent adult.

    PubMed

    Dinesh, B V; Selvaraju, Karthikeyan; Kumar, Sampath; Thota, Sumath

    2013-09-10

    Cytomegalovirus (CMV) infection causes significant morbidty and mortality in immunopromised patients. Though it is usually silent in immunocompetent adults, rarely it can cause serious life-threatening complications. Gastrointestinal tract is one of the commonly involved organs, where it produces a spectrum of clinical manifestation ranging from mild non-specific abdominal pain and diarrhoea to severe infection with toxic megacolon and death. We present a 65-year-old immunocompetent male patient admitted with acute colonic obstruction secondary to CMV-induced colonic stricture, highlighting the importance of considering it as a differential diagnosis for colonic obstruction and reviewing its management.

  9. Lesioning of TRPV1 Expressing Primary Afferent Neurons Prevents PAR-2 Induced Motility, but Not Mechanical Hypersensitivity in the Rat Colon

    PubMed Central

    Suckow, Shelby K.; Anderson, Ethan M.; Caudle, Robert M.

    2011-01-01

    Background Proteinase activated receptor 2 (PAR-2) is expressed by many neurons in the colon, including primary afferent neurons that co-express transient receptor potential vanilloid 1 (TRPV1). Activation of PAR-2 receptors was previously found to enhance colonic motility, increase secretion and produce hypersensitivity to mechanical stimuli. This study examined the functional role of TRPV1/PAR-2 expressing neurons that innervate the colon by lesioning TRPV1 bearing neurons with the highly selective and potent TRPV1 agonist resiniferatoxin. Methods Colonic motility in response to PAR-2 activation was evaluated in vitro using isolated segments of descending colon and in vivo using manometry. Colonic mechanical nociceptive thresholds were measured using colorectal distension. TRPV1 expressing neurons were selectively lesioned with resiniferatoxin. Key Results In vitro the PAR-2 agonists trypsin and SLIGRL did not alter contractions of colon segments when applied alone, however, the agents enhanced acetylcholine stimulated contraction. In vivo, PAR-2 agonists administered intraluminally induced contractions of the colon and produced hypersensitivity to colorectal distention. The PAR-2 agonist enhancement of colonic contraction was eliminated when TRPV1 expressing neurons were lesioned with resiniferatoxin, but the PAR-2 agonist induced hypersensitivity remained in the lesioned animals. Conclusions and Inferences Our findings indicate that TRPV1/PAR-2 expressing primary afferent neurons mediate an extrinsic motor reflex pathway in the colon. These data, coupled with our previous studies, also indicate that the recently described colospinal afferent neurons are nociceptive, suggesting that these neurons may be useful targets for the pharmacological control of pain in diseases such as irritable bowel syndrome. PMID:22168801

  10. Lesioning of TRPV1 expressing primary afferent neurons prevents PAR-2 induced motility, but not mechanical hypersensitivity in the rat colon.

    PubMed

    Suckow, S K; Anderson, E M; Caudle, R M

    2012-03-01

    Proteinase activated receptor 2 (PAR-2) is expressed by many neurons in the colon, including primary afferent neurons that co-express transient receptor potential vanilloid 1 (TRPV1). Activation of PAR-2 receptors was previously found to enhance colonic motility, increase secretion and produce hypersensitivity to mechanical stimuli. This study examined the functional role of TRPV1/PAR-2 expressing neurons that innervate the colon by lesioning TRPV1 bearing neurons with the highly selective and potent TRPV1 agonist resiniferatoxin. Colonic motility in response to PAR-2 activation was evaluated in vitro using isolated segments of descending colon and in vivo using manometry. Colonic mechanical nociceptive thresholds were measured using colorectal distension. Transient receptor potential vanilloid 1 expressing neurons were selectively lesioned with resiniferatoxin. In vitro, the PAR-2 agonists, trypsin and SLIGRL did not alter contractions of colon segments when applied alone, however, the agents enhanced acetylcholine stimulated contraction. In vivo, PAR-2 agonists administered intraluminally induced contractions of the colon and produced hypersensitivity to colorectal distention. The PAR-2 agonist enhancement of colonic contraction was eliminated when TRPV1 expressing neurons were lesioned with resiniferatoxin, but the PAR-2 agonist induced hypersensitivity remained in the lesioned animals. Our findings indicate that TRPV1/PAR-2 expressing primary afferent neurons mediate an extrinsic motor reflex pathway in the colon. These data, coupled with our previous studies, also indicate that the recently described colospinal afferent neurons are nociceptive, suggesting that these neurons may be useful targets for the pharmacological control of pain in diseases such as irritable bowel syndrome. © 2011 Blackwell Publishing Ltd.

  11. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis.

    PubMed

    Tsuchiya, Naoto; Ochiai, Masako; Nakashima, Katsuhiko; Ubagai, Tsuneyuki; Sugimura, Takashi; Nakagama, Hitoshi

    2007-10-01

    Colon cancers have been shown to develop after accumulation of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establishment of widely diverse phenotypes. Transcriptional and posttranscriptional regulation of gene expression by small RNA species, such as the small interfering RNA and microRNA and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. SND1, also called Tudor-SN and p100 and recently reported to be a component of RISC, is among the list of highly expressed genes in human colon cancers. In the present study, we showed remarkable up-regulation of SND1 mRNA in human colon cancer tissues, even in early-stage lesions, and also in colon cancer cell lines. When mouse Snd1 was stably overexpressed in IEC6 rat intestinal epithelial cells, contact inhibition was lost and cell growth was promoted, even after the cells became confluent. Intriguingly, IEC6 cells with high levels of Snd1 also showed an altered distribution of E-cadherin from the cell membrane to the cytoplasm, suggesting loss of cellular polarity. Furthermore, the adenomatous polyposis coli (Apc) protein was coincidentally down-regulated, with no significant changes in the Apc mRNA level. Immunohistochemical analysis using chemically induced colonic lesions developed in rats revealed overexpression of Snd1 not only in colon cancers but also in aberrant crypt foci, putative precancerous lesions of the colon. Up-regulation of SND1 may thus occur at a very early stage in colon carcinogenesis and contribute to the posttranscriptional regulation of key players in colon cancer development, including APC and beta-catenin.

  12. MUC1-C ACTIVATES THE TAK1 INFLAMMATORY PATHWAY IN COLON CANCER

    PubMed Central

    Takahashi, Hidekazu; Jin, Caining; Rajabi, Hasan; Pitroda, Sean; Alam, Maroof; Ahmad, Rehan; Raina, Deepak; Hasegawa, Masanori; Suzuki, Yozo; Tagde, Ashujit; Bronson, Roderick T.; Weichselbaum, Ralph; Kufe, Donald

    2015-01-01

    The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1+/−/IL-10−/− mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1→NF-κB pathway, downregulates BCL-XL, and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1→NF-κB signaling contributes to intestinal inflammation and colon cancer progression. PMID:25659581

  13. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors.

    PubMed

    Nakamura, Akihiro; Tanaka, Takahiro; Imanishi, Akio; Kawamoto, Makiko; Toyoda, Masao; Mizojiri, Gaku; Tsukimi, Yasuhiro

    2011-01-01

    In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.

  14. The steroidal Na+/K+ ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD) induces potent pro-apoptotic responses in colonic tumor cells.

    PubMed

    Alkahtani, Saad Hussin

    2014-06-01

    Recently, potent anticancer actions of the steroidal Na(+)/K(+) ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative 3 (3-R-POD) have been reported for multiple cell lines, including prostate and lung cancer cells. In the present study, the anticancer action of 3-R-POD was addressed in colonic tumor cells. Treatment of Caco2 colonic tumor cells with increasing concentrations of 3-R-POD induced potent, dose-dependent inhibition of cell growth as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the APOpercentage apoptosis assay revealed significant pro-apoptotic responses, suggesting that the anticancer activity of this steroidal Na(+)/K(+) ATPase inhibitor in colonic tumors takes places mainly through the induction of strong pro-apoptotic effects. Focussing on the molecular mechanism that may regulate these interactions, 3-R-POD was shown to induce significant early actin re-organization and late Protein Kinase B (AKT) de-phosphorylation. Finally, the 3-R-POD-induced inhibition of cell growth and early actin reorganization in colonic cancer cells remained unchanged when cells were pre-treated with pertussis toxin, thus excluding possible interactions of this inhibitor with G-coupled receptors. These results indicate that 3-R-POD induces potent pro-apoptotic responses in colonic tumor cells governed by actin re-organization and inhibition of AKT pro-survival signaling. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. [6]-Gingerol Induces Caspase-Dependent Apoptosis and Prevents PMA-Induced Proliferation in Colon Cancer Cells by Inhibiting MAPK/AP-1 Signaling

    PubMed Central

    Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570

  16. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  17. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    PubMed

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  18. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    PubMed Central

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  19. Active Ingredients of Hange-shashin-to, Baicalelin and 6-Gingerol, Inhibit 5-Fluorouracil-Induced Upregulation of CXCL1 in the Colon to Attenuate Diarrhea Development.

    PubMed

    Sakai, Hiroyasu; Tabata, Shoko; Kimura, Minami; Yabe, Saori; Isa, Yosuke; Kai, Yuki; Sato, Fumiaki; Yumoto, Tetsuro; Miyano, Kanako; Narita, Minoru; Uezono, Yasuhito

    2017-01-01

    5-Fluorouracil (5-FU) is widely used as an anti cancer drug and is known to cause severe diarrhea. Recently we suggested that levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and neutrophil recruitment in the colonic mucosa were drastically increased by the 5-FU administration in mice. Hange-shashin-to (HST) is prescribed in Japan for treat gastritis, stomatitis, and inflammatory diarrhea. We therefore examined the effects of HST and its active ingredients on 5-FU-induced CXCL1 upregulation in cultured colon tissue, and also examined the effects of HST on 5-FU-induced diarrhea development in the mouse. The distal colon isolated from the mouse was incubated with 5-FU and HST. Mice were given 5-FU (50 mg/kg, intraperitoneally (i.p.)) daily for four days. HST (300 mg/kg, per os (p.o.)) was administered 30 min before mice received 5-FU. mRNA levels of CXCL1 in the colon were examined using quantitative RT-PCR. 5-FU enhanced CXCL1 mRNA in the colon but the effect by 5-FU was markedly suppressed by application of HST and its active ingredients, baicalein and 6-gingerol. Nuclear factor kappa B (NF-κB) was activated by 5-FU treatment in cultured colon tissue, which was also suppressed by HST and the combination of baicalein and 6-gingerol. Furthermore, HST reduced 5-FU-induced diarrhea development. Under such experimental condition, CXCL1 gene, protein levels of neutrophil elastase and myeloperoxidase upregulation induced by 5-FU in the colon was attenuated by HST. These findings suggest that HST, especially baicalein and 6-gingerol, prevent the development of neutrophil recruitment and diarrhea by the inhibition of NF-κB activity.

  20. Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion.

    PubMed

    Plummer, Paul; Sahin, Orhan; Burrough, Eric; Sippy, Rachel; Mou, Kathy; Rabenold, Jessica; Yaeger, Mike; Zhang, Qijing

    2012-02-01

    Previous studies on Campylobacter jejuni have demonstrated the role of LuxS in motility, cytolethal distending toxin production, agglutination, and intestinal colonization; however, its direct involvement in virulence has not been reported. In this study, we demonstrate a direct role of luxS in the virulence of C. jejuni in two different animal hosts. The IA3902 strain, a highly virulent sheep abortion strain recently described by our laboratory, along with its isogenic luxS mutant and luxS complement strains, was inoculated by the oral route into both a pregnant guinea pig virulence model and a chicken colonization model. In both cases, the IA3902 luxS mutant demonstrated a complete loss of ability to colonize the intestinal tract. In the pregnant model, the mutant also failed to induce abortion, while the wild-type strain was highly abortifacient. Genetic complementation of the luxS gene fully restored the virulent phenotype in both models. Interestingly, when the organism was inoculated into guinea pigs by the intraperitoneal route, no difference in virulence (abortion induction) was observed between the luxS mutant and the wild-type strain, suggesting that the defect in virulence following oral inoculation is likely associated with a defect in colonization and/or translocation of the organism out of the intestine. These studies provide the first direct evidence that LuxS plays an important role in the virulence of C. jejuni using an in vivo model of natural disease.

  1. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  2. Platinum(IV) complex LA-12 exerts higher ability than cisplatin to enhance TRAIL-induced cancer cell apoptosis via stimulation of mitochondrial pathway.

    PubMed

    Jelínková, Iva; Šafaříková, Barbora; Vondálová Blanářová, Olga; Skender, Belma; Hofmanová, Jiřina; Sova, Petr; Moyer, Mary Pat; Kozubík, Alois; Kolář, Zdeněk; Ehrmann, Jiří; Hyršlová Vaculová, Alena

    2014-12-01

    In search for novel strategies in colon cancer treatment, we investigated the unique ability of platinum(IV) complex LA-12 to efficiently enhance the killing effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and compared it with the sensitizing action of cisplatin. We provide the first evidence that LA-12 primes human colon cancer cells for TRAIL-induced cytotoxicity by p53-independent activation of the mitochondrial apoptotic pathway. The cooperative action of LA-12 and TRAIL was associated with stimulation of Bax/Bak activation, drop of mitochondrial membrane potential, caspase-9 activation, and a shift of the balance among Bcl-2 family proteins in favor of the pro-apoptotic members. In contrast to cisplatin, LA-12 was a potent inducer of ERK-mediated Noxa and BimL protein upregulation, and more effectively enhanced TRAIL-induced apoptosis in the absence of Bax. The cooperative action of LA-12 and TRAIL was augmented following the siRNA-mediated silencing of Mcl-1 in both Bax proficient/deficient cells. We newly demonstrated that LA-12 induced ERK-mediated c-Myc upregulation, and proved that c-Myc silencing inhibited the mitochondrial activation and apoptosis in colon cancer cells treated with LA-12 and TRAIL. The LA-12-mediated sensitization to TRAIL-induced apoptosis was demonstrated in several colon cancer cell lines, further underscoring the general relevance of our findings. The selective action of LA-12 was documented by preferential priming of cancer but not normal colon cancer cells to TRAIL killing effects. Our work highlights the promising potential of LA-12 over cisplatin to enhance the colon cancer cell sensitivity to TRAIL-induced apoptosis, and provides new mechanistic insights into their cooperative action. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  4. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  5. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. Conclusion The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24507431

  6. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Abuohashish, Hatem M; Ola, Mohammed S; Parmar, Mihir Y; Ahmed, Mohammed M

    2014-02-10

    Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property.

  7. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons

    PubMed Central

    Xu, J-D; Liu, S; Wang, W; Li, L-S; Li, X-F; Li, Y; Guo, H; Ji, T; Feng, X-Y; Hou, X-L; Zhang, Y; Zhu, J-X

    2012-01-01

    BACKGROUND AND PURPOSE Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active component of many herb-based laxatives. However, its mechanism of action is unclear. The aim of the present study was to investigate the role of mast cells and enteric neurons in emodin-induced ion secretion in the rat colon. EXPERIMENTAL APPROACH Short-circuit current (ISC) recording was used to measure epithelial ion transport. A scanning ion-selective electrode technique was used to directly measure Cl- flux (JCl−) across the epithelium. RIA was used to measure emodin-induced histamine release. KEY RESULTS Basolateral addition of emodin induced a concentration-dependent increase in ISC in colonic mucosa/submucosa preparations, EC50 75 µM. The effect of emodin was blocked by apically applied glibenclamide, a Cl- channel blocker, and by basolateral application of bumetanide, an inhibitor of the Na+-K+-2Cl- cotransporter. Emodin-evoked JCl− in mucosa/submucosa preparations was measured by scanning ion-selective electrode technique, which correlated to the increase in ISC and was significantly suppressed by glibenclamide and bumetanide. Pretreatment with tetrodotoxin and the muscarinic receptor antagonist atropine had no effect on emodin-induced ΔISC in mucosa-only preparations, but significantly reduced emodin-induced ΔISC and JCl− in mucosa/submucosa preparations. The COX inhibitor indomethacin, the mast cell stabilizer ketotifen and H1 receptor antagonist pyrilamine significantly reduced emodin-induced ΔISC in mucosa and mucosa/submucosa preparations. The H2 receptor antagonist cimetidine inhibited emodin-induced ΔISC and JCl− only in the mucosa/submucosa preparations. Furthermore, emodin increased histamine release from the colonic mucosa/submucosa tissues. CONCLUSIONS AND IMPLICATIONS The results suggest that emodin-induced colonic Cl- secretion involves mast cell degranulation and activation of cholinergic and non-cholinergic submucosal neurons. PMID:21718311

  8. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion.

    PubMed

    Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep; Raufman, Jean-Pierre

    2011-05-01

    Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.

  9. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion

    PubMed Central

    Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep

    2011-01-01

    Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion. PMID:21273532

  10. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    PubMed

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  11. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon

    PubMed Central

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-01

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea. PMID:29316651

  12. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon.

    PubMed

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-06

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea.

  13. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    PubMed

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  14. In vivo evidence for the involvement of tachykinin NK3 receptors in the hexamethonium-resistant inhibitory transmission in the rat colon.

    PubMed

    Lecci, A; Giuliani, S; Tramontana, M; Meini, S; De Giorgio, R; Maggi, C A

    1996-05-01

    In urethane-anaesthetized rats, moderate colonic distention (0.5 ml) induced reflex rhythmic contractions (5 mm Hg amplitude and 1.1 cycles/min frequency). Senktide (1-10 nmol/kg, i.v.), a tachykinin NK3 receptor selective agonist, transiently suppressed distension-induced contractions. SR 142,801 (1-10 mumol/kg i.v.), a non-peptide tachykinin NK3 receptor antagonist, had no effect on distension-induced contractions but prevented the inhibitory effect of senktide. Infusion of N-omega-nitro-1-arginine methyl esther hydrochloride (L-NAME, 20 mumol/ml/h, i.v) increased the amplitude of colonic contractions and decreased the inhibitory effect of senktide. Hexamethonium (15 mumol/ml/h, i.v.) or atropine (1 mumol/ml/h, i.v.) inhibited the distension-induced contractions. In hexamethonium- or atropine-treated rats, senktide (10 nmol/kg) transiently and selectively enhanced the amplitude of contractions. Also SR 142,801 (10 mumol/kg), but not its inactive enantiomer SR 142,806, increased both amplitude and frequency of contractions. During continuous infusion of L-NAME and hexamethonium or atropine both frequency and amplitude of distension-induced colonic contractions were higher than when in hexamethonium or atropine only. Senktide (10 nmol/kg) had no effect and SR 142,801 (10 mumol/kg) produced a slight enhancement of colonic contractions. Infusion of sodium nitroprusside (3 mumol/ml/h, i.v.) decreased amplitude and frequency of distension-induced contractions. SR 142,801 had no effect in the presence of the nitric oxide (NO) donor. We conclude that tachykinins acting through NK3 receptors exert at least four different actions on colonic motility activated by distension: 1) a hexamethonium-resistant, NO-dependent, suppressant effect on contractions; 2) a hexamethonium-sensitive, NO-independent inhibitory effect on the amplitude of contractions; 3) a hexamethonium-resistant, NO-independent inhibitory effect on the amplitude of contractions and 4) a hexamethonium resistant and L-NAME-sensitive excitatory effect on amplitude of contractions. The prevalent inhibitory effect evoked in normal conditions along with the excitatory activity induced by SR 142,801 on hexamethonium-resistant colonic motility indicates that tachykinins, acting through neuronal NK3 receptors, activate NO-dependent and NO-independent inhibitory neurotransmission in the rat colon.

  15. Increase in neurokinin-1 receptor-mediated colonic motor response in a rat model of irritable bowel syndrome.

    PubMed

    La, Jun-Ho; Kim, Tae-Wan; Sung, Tae-Sik; Kim, Hyn-Ju; Kim, Jeom-Yong; Yang, Il-Suk

    2005-01-14

    Irritable bowel syndrome (IBS) is a functional bowel disorder. Its major symptom is bowel dysmotility, yet the mechanism of the symptom is poorly understood. Since the neurokinin-1 receptor (NK1R)-mediated signaling in the gut is important in the control of normal bowel motor function, we aimed to investigate whether the NK1R-mediated bowel motor function was altered in IBS, using a rat IBS model that was previously reported to show colonic dysmotility in response to restraint stress. IBS symptoms were produced in male Sprague-Dawley rats by inducing colitis with acetic acid. Rats were left to recover from colitis for 6 d, and used for experiments 7 d post-induction of colitis. Motor activities of distal colon were recorded in vitro. The contractile sensitivity of isolated colon to a NK1R agonist (Sar9,Met(O2)11)-substance P (1-30 nmol/L) was higher in IBS rats than that in normal rats. After the enteric neurotransmission was blocked by tetrodotoxin (TTX, 1 micromol/L), the contractile sensitivity to the NK1R agonist was increased in normal colon but not in IBS rat colon. The NK1R agonist-induced contraction was not different between the two groups when the agonist was challenged to the TTX-treated colon or the isolated colonic myocytes. A nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/L) augmented the NK1R agonist-induced contraction only in normal rat colon. These results suggest that the NK1R-meidated colonic motor response is increased in IBS rats, due to the decrease in the nitrergic inhibitory neural component.

  16. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-01-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.

  17. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    PubMed

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  18. Acetyl-CoA Carboxylase-α Inhibitor TOFA Induces Human Cancer Cell Apoptosis

    PubMed Central

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-fang; Cao, Deliang

    2009-01-01

    Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0–20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. PMID:19450551

  19. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging

    PubMed Central

    Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline

    2017-01-01

    AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195

  20. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus.

    PubMed

    Poulsen, Katrine H; Nagy, Réka; Gao, Ling-Ling; Smith, Sally E; Bucher, Marcel; Smith, F Andrew; Jakobsen, Iver

    2005-11-01

    A Lycopersicon esculentum mutant (rmc) is resistant to colonization by most arbuscular mycorrhizal fungi (AMF), but one Glomus intraradices isolate (WFVAM 23) develops arbuscules and vesicles in the rmc cortex. It is unknown whether the symbiotic phosphate (Pi)-uptake pathway is operational in this interaction. Hyphal uptake of (32)Pi and expression of plant Pi transporter genes were investigated in the rmc mutant and its wild-type progenitor (76R) associated with three AMF. Hyphae transferred (32)Pi in all symbioses with 76R and in the rmc-G. intraradices WFVAM 23 symbiosis. The other AMF did not colonize rmc. The Pi transporter-encoding LePT1 and LePT2 were expressed constitutively or in P-starved roots, respectively. The mycorrhiza-inducible Pi transporters LePT3 and LePT4 were expressed only in plants with AMF colonization and symbiotic (32)Pi transfer. LePT3 and LePT4 transcripts were reliable markers for a functional mycorrhizal uptake pathway in rmc. Our novel approach to the physiology and molecular biology of P transport can be applied to other arbuscular-mycorrhizal symbioses, irrespective of the size of plant responses.

  1. Does colonization of Helicobacter pylori in the heterotopic gastric mucosa play a role in bleeding of Meckel's diverticulum?

    PubMed

    Ergün, Orkan; Celik, Ahmet; Akarca, Ulus S; Sen, Teoman; Alkanat, Murat; Erdener, Ata

    2002-11-01

    Helicobacter pylori is a microorganism known to colonize in gastric type of mucosa and is associated with gastritis and peptic ulceration. The aim of the study was to determine whether colonization of H pylori in heterotopic gastric mucosa plays a role in bleeding of Meckel's diverticulum. Histopathologic slides of patients who had undergone resection of Meckel's diverticulum in recent 5 years were reexamined for the presence of H pylori in heterotopic gastric mucosa. Polimerase chain reaction (PCR) test was used to trace the genetic material of urease gene and 16s rDNA amplifications for H pylori. Thirteen of the 30 histopathologic slides of Meckel's diverticula had heterotopic gastric mucosa. Ten of the 13 patients presented with acute bleeding of the diverticula, whereas 3 of them were asymptomatic. None of the 13 gastric mucosa bearing diverticula were colonized with H pylori. PCR was unable to show any trace of genetic material for H pylori. Although the role of H pylori is well established in the gastric mucosal ulceration, its presence is not essentially required to induce "heterotopic gastritis" that may result in bleeding of the Meckel's diverticulum. . Copyright 2002, Elsevier Science (USA). All rights reserved.

  2. Influence of simethicone and alverine on stress-induced alterations of colonic permeability and sensitivity in rats: beneficial effect of their association.

    PubMed

    Bueno, Lionel; Beaufrand, Catherine; Theodorou, Vassilia; Andro-Delestrain, Marie-Christine

    2013-04-01

    Alverine, an antispasmodic agent for the treatment of irritable bowel syndrome (IBS), may be combined with simethicone, a protective agent of the mucosa. Stress is a major factor triggering abdominal pain in IBS and causing hypersensitivity to colonic distension in animals through an increased colonic permeability. The antinociceptive effects of alverine and simethicone, separately or in association, were evaluated on stress-induced colonic hypersensitivity to distension in rats. The influence of simethicone on altered permeability was also tested. Groups of 8-10 female adult Wistar rats (200-250 g) housed individually were used. Gut paracellular permeability was evaluated after 2 h of partial restraint stress using oral gavage with ⁵¹Cr-EDTA and 24 h of urine collection. The number of abdominal cramps during colonic distension was evaluated in animals equipped with electrodes on their abdominal striated muscles. At 200 mg/kg p.o. twice a day, but not at lower doses, simethicone reduced stress-induced increase of colonic permeability and hypersensitivity to distension. Administered alone at 10 mg/kg p.o., alverine also reduced stress-induced hypersensitivity to distension; lower doses were inactive. However, alverine administered at an inactive dose with simethicone suppressed stress-induced hypersensitivity to distension. We conclude that both simethicone and alverine have visceral antinociceptive effects by two different mechanisms and that simethicone exerts a potentiating effect on the antinociceptive action of alverine. © 2013 The Authors. JPP © 2013. Royal Pharmaceutical Society.

  3. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  4. Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis.

    PubMed

    Wang, Shuguang; Augé, Robert M; Toler, Heather D

    2017-07-01

    We quantitatively evaluated the effects of elevated O 3 on arbuscular mycorrhiza (AM) formation and on AM role in promoting plant growth in regard to several moderating variables (O 3 levels, O 3 exposure duration, plant types, AM fungi family, and additional stress) by means of meta-analysis of published data. The analysis consisted of 117 trials representing 20 peer-reviewed articles and 16 unpublished trials. Relative to non-mycorrhizal controls, AM inoculation did not significantly alter plant growth (shoot biomass, root biomass, total biomass and plant height) when O 3 concentration was less than 80 ppb, but at concentrations above 80 ppb symbiosis was associated with increases of 68% in shoot biomass and 131% in root biomass. AM effects on plant growth were affected by the duration of O 3 exposure but did not differ much with AM fungi taxa or plant type. AM symbiosis has also led to higher yields under O 3 stress, relative to the non-mycorrhizal plants, and the AM effects have been more pronounced as O 3 concentration increases. As with biomass, AM effects on yield have been affected by the duration of O 3 exposure, with the greatest increase (100%) occurring at 61-90 d. AM-induced promotion of yield differed with fungal species but not with plant type or other abiotic stress. Colonization of roots by AM fungi has been negatively affected by elevated O 3 compared to ambient O 3 ; total mycorrhizal colonization rate (MCR), arbuscular MCR, vesicular MCR and hyphal coil MCR declined as O 3 levels rose. AM colonization rates were affected by duration of O 3 exposure, plant type, AM fungal taxa and other concurrent stresses in most cases. The analysis showed that AM inoculation has the potential to ameliorate detrimental effects of elevated O 3 on plant growth and productivity, despite colonization rates being negatively affected by elevated O 3 . Copyright © 2017. Published by Elsevier Ltd.

  5. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice.

    PubMed

    DeCoffe, Daniella; Quin, Candice; Gill, Sandeep K; Tasnim, Nishat; Brown, Kirsty; Godovannyi, Artem; Dai, Chuanbin; Abulizi, Nijiati; Chan, Yee Kwan; Ghosh, Sanjoy; Gibson, Deanna L

    2016-06-01

    Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    PubMed

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  7. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    PubMed

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  8. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    PubMed Central

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  9. Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum

    PubMed Central

    Hikichi, Yasufumi; Mori, Yuka; Ishikawa, Shiho; Hayashi, Kazusa; Ohnishi, Kouhei; Kiba, Akinori; Kai, Kenji

    2017-01-01

    A soil-borne bacterium Ralstonia solanacearum invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, R. solanacearum strain OE1-1 attaches to host cells and expression of the hrp genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. R. solanacearum strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among R. solanacearum strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. R. solanacearum produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling via ralfuranones influences the QS, contributing to pathogen virulence. PMID:28642776

  10. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens N.; van der Lelie D.; Boulet, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promotemore » growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.« less

  11. Lack of chemoprevention of dietary Agaricus blazei against rat colonic aberrant crypt foci.

    PubMed

    Ziliotto, L; Barbisan, L F; Rodrigues, M A M

    2008-06-01

    The mushroom Agaricus blazei (Ab) has been widely used in folk medicine to treat various diseases including cancer. No information is available on its possible protective effects on the development of colon cancer. The potential blocking effect of Ab intake on the initiation stage of colon carcinogenesis was investigated in a short-term (4-week) bioassay using aberrant crypt foci (ACF) as biomarker. Male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg bw, twice a week), during 2 weeks to induce ACF. The diet containing Ab at 5% was given 2 weeks before and during carcinogen treatment to investigate the potential beneficial effects of this edible mushroom on DMH-induced ACF. All groups were killed at the end of the fourth week. The colons were analyzed for ACF formation in 1% methylene blue whole-mount preparations and for cell proliferation in histological sections immunohistochemically stained for the proliferating cell nuclear antigen (PCNA). All DMH-treated rats developed ACF mainly in the middle and distal colon. Agaricus blazei intake at 5% did not alter the number of ACF induced by DMH or the PCNA indices in the colonic mucosa. Thus, the results of the present study did not confirm a chemopreventive activity of Ab on the initiation stage of rat colon carcinogenesis.

  12. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  13. Colonization of fish skin is vital for Vibrio anguillarum to cause disease.

    PubMed

    Weber, Barbara; Chen, Chang; Milton, Debra L

    2010-02-01

    Vibrio anguillarum causes a fatal haemorrhagic septicaemia in marine fish. During initial stages of infection, host surfaces are colonized; however, few virulence factors required for colonization of the host are identified. In this study, in vivo bioluminescent imaging was used to analyse directly the colonization of the whole rainbow trout animal by V. anguillarum. The wild type rapidly colonized both the skin and the intestines by 24 h; however, the bacterial numbers on the skin were significantly higher than in the intestines indicating that skin colonization may be important for disease to occur. Mutants defective for the anguibactin iron uptake system, exopolysaccharide transport, or Hfq, an RNA chaperone, were attenuated for virulence, did not colonize the skin, and penetrated skin mucus less efficiently than the wild type. These mutants, however, did colonize the intestines and were as resistant to 2% bile salts as is the wild type. Moreover, exopolysaccharide mutants were significantly more sensitive to lysozyme and antimicrobial peptides, while the Hfq and anguibactin mutants were sensitive to lysozyme compared with the wild type. Vibrio anguillarum encodes several mechanisms to protect against antimicrobial components of skin mucus enabling an amazingly abundant growth on the skin enhancing its disease opportunities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Study shows colon and rectal tumors constitute a single type of cancer

    Cancer.gov

    The pattern of genomic alterations in colon and rectal tissues is the same regardless of anatomic location or origin within the colon or the rectum, leading researchers to conclude that these two cancer types can be grouped as one, according to The Cancer

  15. Oral colonization by Streptococcus mutans and caries development is reduced upon deletion of carbonic anhydrase VI expression in saliva

    PubMed Central

    Culp, David J.; Robinson, Bently; Parkkila, Seppo; Pan, Pei-wen; Cash, Melanie N.; Truong, Helen N.; Hussey, Thomas W.; Gullett, Sarah L.

    2011-01-01

    Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6−/− mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6−/− mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6−/− mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6−/− mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6−/− mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6−/− mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. PMID:21945428

  16. Oral colonization by Streptococcus mutans and caries development is reduced upon deletion of carbonic anhydrase VI expression in saliva.

    PubMed

    Culp, David J; Robinson, Bently; Parkkila, Seppo; Pan, Pei-Wen; Cash, Melanie N; Truong, Helen N; Hussey, Thomas W; Gullett, Sarah L

    2011-12-01

    Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6(-/-) mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6(-/-) mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6(-/-) mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6(-/-) mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6(-/-) mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6(-/-) mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC{sup 1638N/+} Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun

    Purpose: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Methods and Materials: Male and female APC{sup 1638N/+} mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, {sup 12}C, {sup 28}Si, or {sup 56}Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxicmore » doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. Results: The highest number of tumors was observed after {sup 28}Si, followed by {sup 56}Fe and {sup 12}C radiation, and tumorigenesis showed a male preponderance, especially after {sup 28}Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with {sup 28}Si, and lower doses showed greater RBE relative to higher doses. Conclusions: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.« less

  18. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 singlemore » KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.« less

  19. Protective effects of Fc-fused PD-L1 on two different animal models of colitis.

    PubMed

    Song, Mi-Young; Hong, Chun-Pyo; Park, Seong Jeong; Kim, Jung-Hwan; Yang, Bo-Gie; Park, Yunji; Kim, Sae Won; Kim, Kwang Soon; Lee, Ji Yeung; Lee, Seung-Woo; Jang, Myoung Ho; Sung, Young-Chul

    2015-02-01

    Programmed death-ligand 1 (PD-L1) has been shown to negatively regulate immune responses via its interaction with PD-1 receptor. In this study, we investigated the effects of PD-L1-Fc treatment on intestinal inflammation using two murine models of inflammatory colitis induced by dextran sulfate sodium (DSS) and T-cell transfer. The anti-colitis effect of adenovirus expressing Fc-conjugated PD-L1 (Ad/PD-L1-Fc) and recombinant PD-L1-Fc protein was evaluated in DSS-treated wild-type and Rag-1 knockout (KO) mice. We examined differentiation of T-helper cells, frequency of innate immune cells, and cytokine production by dendritic cells (DCs) in the colon from DSS-treated mice after PD-L1-Fc administration. In Rag-1 KO mice reconstituted with CD4 CD45RB(high) T cells, we assessed the treatment effect of PD-L1-Fc protein on the development of colitis. Administration of Ad/PD-L1-Fc significantly ameliorated DSS-induced colitis, which was accompanied by diminished frequency of interleukin (IL)-17A-producing CD4 T cells and increased interferon-γ-producing CD4 T cells in the colon of DSS-fed mice. The anti-colitic effect of PD-L1-Fc treatment was also observed in DSS-treated Rag-1 KO mice, indicating lymphoid cell independency. PD-L1-Fc modulated cytokine production by colonic DCs and the effect was dependent on PD-1 expression. Furthermore, PD-L1-Fc protein could significantly reduce the severity of colitis in CD4 CD45RB(high) T-cell-transferred Rag-1 KO mice. Based on the protective effect of PD-L1-Fc against DSS-induced and T-cell-induced colitis, our results suggest that PD-1-mediated inhibitory signals have a crucial role in limiting the development of colonic inflammation. This implicates that PD-L1-Fc may provide a novel therapeutic approach to treat inflammatory bowel disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease

    PubMed Central

    LIU, TIAN-JING; SHI, YONG-YAN; WANG, EN-BO; ZHU, TONG; ZHAO, QUN

    2016-01-01

    Angiotensin II, which is the main effector of the renin-angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proin-flammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3. PMID:26676112

  1. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    PubMed

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.

  2. Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.

    PubMed

    Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N

    1994-05-01

    We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.

  3. Effects of Activin and TGFβ on p21 in Colon Cancer

    PubMed Central

    Cabral, Jennifer; Gomez, Jessica; Jung, Barbara

    2012-01-01

    Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21cip1/waf1). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention. PMID:22761777

  4. Effect of entacapone on colon motility and ion transport in a rat model of Parkinson's disease.

    PubMed

    Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia

    2015-03-28

    To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson's disease (PD) rats. Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC ) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl(-) channel blocker diphenylamine-2, 2'-dicarboxylic acid, basolateral application of Na(+)-K(+)-2Cl(-)co-transporter antagonist bumetanide, elimination of Cl(-) from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl(-) flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl(-) secretion in the PD rat.

  5. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2 , 5-HT3 , 5-HT4 and 5-HT7 receptor antagonists reduced or blocked the contractile response evoked by 5-HT. We postulate that TLR2 and TLR4 modulate the serotonin contractile motor response in mouse colon in an opposing manner by modifying the expression of several serotonin receptors. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  6. Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients.

    PubMed

    Al-Attas, Safia A; Amro, Soliman O

    2010-01-01

    Candidal colonization in diabetics is a matter of debate. The aim of this study is to investigate oral candidal colonization, strain diversity, antifungal susceptibility, and the influence of local and systemic host factors on candidal colonization in adult diabetics. We conducted a case-control study that compared 150 diabetics (49 type 1, 101 type 2) with 50 healthy controls. Two salivary samples were collected, using the oral rinse sampling method: one for salivary flow rate and pH determination, and the other for candidal colonization assessment. The candidal isolates were identified and tested in vitro for antifungal susceptibility using the commercial kit, Candifast. The relationship between specific host factors and candidal colonization was also investigated. Diabetics had a higher candidal carriage rate compared to controls, but not density. Candida albicans was the most frequently isolated species, but diabetics had a variety of other candidal species present. None of the control samples were resistant to any tested antifungal, while the diabetic samples had differing resistances to azole antifungals. Although there was a significant positive correlation between glycemic control and candidal colonization in type 2 diabetics, there was a negative correlation between salivary pH and candidal carriage in the controls versus density in type 2 diabetics. Diabetic patients not only had a higher candidal carriage rate, but also a variety of candidal species that were resistant to azole antifungals. Oral candidal colonization was significantly associated with glycemic control, type of diabetes, and salivary pH.

  7. Possible Protective Effects of Quercetin and Sodium Gluconate Against Colon Cancer Induction by Dimethylhydrazine in Mice.

    PubMed

    Saleem, T H; Attya, A M; Ahmed, E A; Ragab, S M M; Ali Abdallah, M A; Omar, H M

    2015-01-01

    Micronutrients in food have been found to have chemopreventive effects, supporting the conclusions from epidemiologie studies that consumption of fresh fruits and vegetables reduces cancer risk. The present study was carried out to evaluate the role of querctin (Q) and sodium gluconate (GNA) supplementation separately or in combination in ameliorating promotion of colon tumor development by dimethyl-hydrazine (DMH) in mice. Histopathological observation of colons in mice treated with DMH showed goblet cell dysplasia with inflammatory cell infiltration. This pathological finding was associated with significant alteration in oxidative stress markers in colon tissues and carcinoembryonic antigen (CEA) levels in plasma. Mice co-treated with GNA and Q showed mild changes of absorptive and goblet cells and inflammatory cell infiltration in lamina properia, with improvement in oxidative stress markers. In conclusion, findings of the present study indicate significant roles for reactive oxygen species (ROS) in pathogenesis of DMH-induced colon toxicity and initiation of colon cancer. Also, they suggest that Q, GNA or the combination of both have a positive beneficial effect against DMH induced colonic cancer induction in mice.

  8. Investigation of mitigating effect of colon-specific prodrugs of boswellic acid on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in Wistar rats: Design, kinetics and biological evaluation

    PubMed Central

    Sarkate, Ajinkya; Dhaneshwar, Suneela S

    2017-01-01

    AIM To develop a colon-targeting bioreversible delivery system for β-boswellic acid (BBA) and explore utility of its prodrugs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. METHODS Synthesis of 4 co-drugs of BBA with essential amino acids was achieved by CDI coupling, followed by their spectral characterization. In vitro kinetics were studied by HPLC in aqueous buffers, homogenates of gastrointestinal tract and fecal matter. In vivo kinetic studies were performed in Wistar rat plasma, urine and feces. The prodrugs were screened in TNBS-induced colitis modeled Wistar rats. Statistical significance was assumed at P < 0.05, P < 0.01, P < 0.001 when compared with disease controls using one-way and two-way ANOVAs. RESULTS Prodrugs were stable in 0.05 mol/L HCl buffer (pH 1.2) and stomach homogenates. Negligible hydrolysis was observed in phosphate buffer and intestinal homogenates. Substantial release (55%-72% and 68%-86%) of BBA was achieved in rat fecal matter and homogenates of colon. In vivo studies of BBA with L-tryptophan (BT) authenticated colon-specific release of BBA. But, surprisingly substantial concentration of BBA was seen to reach the systemic circulation due to probable absorption through colonic mucosa. Site-specifically enhanced bioavailability of BBA could be achieved in colon, which resulted in demonstration of significant mitigating effect on TNBS-induced colitis in rats without inducing any adverse effects on stomach, liver and pancreas. Prodrug of BT was found to be 1.7% (P < 0.001) superior than sulfasalazine in reducing the inflammation to colon among all prodrugs tested. CONCLUSION The outcome of this study strongly suggests that these prodrugs might have dual applicability to inflammatory bowel disease and chronotherapy of rheumatoid arthritis. PMID:28275295

  9. Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F.

    PubMed

    Oliveira, Amanda; Beyer, Georg; Chugh, Rohit; Skube, Steven J; Majumder, Kaustav; Banerjee, Sulagna; Sangwan, Veena; Li, Lihua; Dawra, Rajinder; Subramanian, Subbaya; Saluja, Ashok; Dudeja, Vikas

    2015-06-01

    Despite significant progress in diagnostics and therapeutics, over 50 thousand patients die from colorectal cancer annually. Hence, there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies, colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase release, and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F-dependent genes, E2F1- retinoblastoma protein (Rb) binding, and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically, we demonstrate that at low concentrations triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Therefore, we conclude that Triptolide and Minnelide are effective against colon cancer in multiple pre-clinical models.

  10. Using Bayesian modelling to investigate factors governing antibiotic-induced Candida albicans colonization of the GI tract

    PubMed Central

    Shankar, Jyoti; Solis, Norma V.; Mounaud, Stephanie; Szpakowski, Sebastian; Liu, Hong; Losada, Liliana; Nierman, William C.; Filler, Scott G.

    2015-01-01

    Receipt of broad-spectrum antibiotics enhances Candida albicans colonization of the GI tract, a risk factor for haematogenously-disseminated candidiasis. To understand how antibiotics influence C. albicans colonization, we treated mice orally with vancomycin or a combination of penicillin, streptomycin, and gentamicin (PSG) and then inoculated them with C. albicans by gavage. Only PSG treatment resulted in sustained, high-level GI colonization with C. albicans. Furthermore, PSG reduced bacterial diversity in the colon much more than vancomycin. Both antibiotic regimens significantly reduced IL-17A, IL-21, IL-22 and IFN-γ mRNA levels in the terminal ileum but had limited effect on the GI fungal microbiome. Through a series of models that employed Bayesian model averaging, we investigated the associations between antibiotic treatment, GI microbiota, and host immune response and their collective impact on C. albicans colonization. Our analysis revealed that bacterial genera were typically associated with either C. albicans colonization or altered cytokine expression but not with both. The only exception was Veillonella, which was associated with both increased C. albicans colonization and reduced IL-21 expression. Overall, antibiotic-induced changes in the bacterial microbiome were much more consistent determinants of C. albicans colonization than either the GI fungal microbiota or the GI immune response. PMID:25644850

  11. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis.

    PubMed

    Byun, So-Young; Kim, Dan-Bi; Kim, Eunjung

    2015-08-01

    An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway.

    PubMed

    Larrosa, Mar; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2006-09-01

    Polyphenol-rich dietary foodstuffs have attracted attention due to their cancer chemopreventive and chemotherapeutic properties. Ellagitannins (ETs) belong to the so-called hydrolysable tannins found in strawberries, raspberries, walnuts, pomegranate, oak-aged red wine, etc. Both ETs and their hydrolysis product, ellagic acid (EA), have been reported to induce apoptosis in tumour cells. Ellagitannins are not absorbed in vivo but reach the colon and release EA that is metabolised by the human microflora. Our aim was to investigate the effect of a dietary ET [pomegranate punicalagin (PUNI)] and EA on human colon cancer Caco-2 and colon normal CCD-112CoN cells. Both PUNI and EA provoked the same effects on Caco-2 cells: down-regulation of cyclins A and B1 and upregulation of cyclin E, cell-cycle arrest in S phase, induction of apoptosis via intrinsic pathway (FAS-independent, caspase 8-independent) through bcl-XL down-regulation with mitochondrial release of cytochrome c into the cytosol, activation of initiator caspase 9 and effector caspase 3. Neither EA nor PUNI induced apoptosis in normal colon CCD-112CoN cells (no chromatin condensation and no activation of caspases 3 and 9 were detected). In the case of Caco-2 cells, no specific effect can be attributed to PUNI since it was hydrolysed in the medium to yield EA, which entered into the cells and was metabolised to produce dimethyl-EA derivatives. Our study suggests that the anticarcinogenic effect of dietary ETs could be mainly due to their hydrolysis product, EA, which induced apoptosis via mitochondrial pathway in colon cancer Caco-2 cells but not in normal colon cells.

  13. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner

    PubMed Central

    Lee, Ju Yup; Nam, Ryoung Hee; Sohn, Sung Hwa; Lee, Sun Min; Choi, Daeun; Yoon, Hyuk; Kim, Yong Sung; Lee, Hye Seung; Lee, Dong Ho

    2017-01-01

    The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats. PMID:29244820

  14. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner.

    PubMed

    Lee, Ju Yup; Kim, Nayoung; Nam, Ryoung Hee; Sohn, Sung Hwa; Lee, Sun Min; Choi, Daeun; Yoon, Hyuk; Kim, Yong Sung; Lee, Hye Seung; Lee, Dong Ho

    2017-01-01

    The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats.

  15. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  16. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion.

    PubMed

    Miller, Florence; Lécuyer, Hervé; Join-Lambert, Olivier; Bourdoulous, Sandrine; Marullo, Stefano; Nassif, Xavier; Coureuil, Mathieu

    2013-04-01

    The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed. © 2012 Blackwell Publishing Ltd.

  17. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells

    PubMed Central

    Kim, A D; Kang, K A; Kim, H S; Kim, D H; Choi, Y H; Lee, S J; Kim, H S; Hyun, J W

    2013-01-01

    Compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Whereas blockade of compound K-induced autophagy by 3-methyladenein and bafilomycin A1 significantly increased cell viability. In addition, compound K augmented the time-dependent expression of the autophagy-related proteins Atg5, Atg6, and Atg7. However, knockdown of Atg5, Atg6, and Atg7 markedly inhibited the detrimental impact of compound K on LC3-II accumulation and cell vitality. Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the antioxidant N-acetylcysteine. Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas downregulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression. Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells. PMID:23907464

  18. Dynamics of 'Candidatus Liberibacter asiaticus' Colonization of New Growth of Citrus.

    PubMed

    Hilf, Mark E; Luo, Weiqi

    2018-05-14

    'Candidatus Liberibacter asiaticus' is a phloem-colonizing intracellular bacterial pathogen of citrus associated with the disease huanglongbing. A study of patterns of colonization and bacterial population growth in new growth of different citrus types was conducted by pruning infected citron, sweet orange, sour orange, mandarin, citrange and Citrus macrophylla trees to force the growth of axillary and adventitious shoots. The first three leaves on newly emerged shoots were collected at 30, 60 and 90 days to assess colonization and population growth of 'Ca. L. asiaticus' using real time PCR (qPCR). Single trials were conducted with mandarin and citron, two trials each for citrange, sour orange and sweet orange, and four trials for C. macrophylla. In citron the proportion of colonized leaves increased significantly over time, with 67, 85 and 96% of leaves colonized at 30, 60 and 90 days, respectively. For the other citrus types the exact proportion of colonized leaves differed, but colonization exceeded 60% in mandarin, sour orange, and citrange, and exceeded 80% at 30 days in two trials with sweet orange and three trials with C. macrophylla, but there was no significant increase in the proportion of colonized leaves at 60 and 90 days. Bacteria were readily detected by 30 days in new leaves of all citrus types. Differences in the growth of the bacterial population between citrus types and at different times of the year were noted, but common trends were apparent. In general, bacterial titers peaked at 60 days, except in leaves of C. macrophylla where bacterial titers peaked at 30 days. The early and consistently high proportion of leaf colonization observed for new growth of sweet orange during two trials and for C. macrophylla during three trials indicates a near synchronous colonization of new leaves by 30 days.

  19. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer✩

    PubMed Central

    Liu, Zhenhua; Brooks, Ryan S.; Ciappio, Eric D.; Kim, Susan J.; Crott, Jimmy W.; Bennett, Grace; Greenberg, Andrew S.; Mason, Joel B.

    2014-01-01

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer. PMID:22209007

  20. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment.

    PubMed

    Wagner, Anika E; Will, Olga; Sturm, Christine; Lipinski, Simone; Rosenstiel, Philip; Rimbach, Gerald

    2013-12-01

    The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level. © 2013.

  1. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer.

    PubMed

    Liu, Zhenhua; Brooks, Ryan S; Ciappio, Eric D; Kim, Susan J; Crott, Jimmy W; Bennett, Grace; Greenberg, Andrew S; Mason, Joel B

    2012-10-01

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Central apelin mediates stress-induced gastrointestinal motor dysfunction in rats.

    PubMed

    Bülbül, Mehmet; İzgüt-Uysal, V Nimet; Sinen, Osman; Birsen, İlknur; Tanrıöver, Gamze

    2016-02-15

    Apelin, an endogenous ligand for APJ receptor, has been reported to be upregulated in paraventricular nucleus (PVN) following stress. Central apelin is known to stimulate release of corticotropin-releasing factor (CRF) via APJ receptor. We tested the hypothesis that stress-induced gastrointestinal (GI) dysfunction is mediated by central apelin. We also assessed the effect of exogenous apelin on GI motility under nonstressed (NS) conditions in conscious rats. Prior to solid gastric emptying (GE) and colon transit (CT) measurements, APJ receptor antagonist F13A was centrally administered under NS conditions and following acute stress (AS), chronic homotypic stress (CHS), and chronic heterotypic stress (CHeS). Plasma corticosterone was assayed. Strain gage transducers were implanted on serosal surfaces of antrum and distal colon to record postprandial motility. Stress exposure induced coexpression of c-Fos and apelin in hypothalamic PVN. Enhanced hypothalamic apelin and CRF levels in microdialysates were detected following AS and CHeS, which were negatively and positively correlated with GE and CT, respectively. Central F13A administration abolished delayed GE and accelerated CT induced by AS and CHeS. Central apelin-13 administration increased the plasma corticosterone and inhibited GE and CT by attenuating antral and colonic contractions. The inhibitory effect elicited by apelin-13 was abolished by central pretreatment of CRF antagonist CRF9-41 in antrum, but not in distal colon. Central endogenous apelin mediates stress-induced changes in gastric and colonic motor functions through APJ receptor. The inhibitory effects of central exogenous apelin-13 on GI motility appear to be partly CRF dependent. Apelin-13 inhibits colon motor functions through a CRF-independent pathway. Copyright © 2016 the American Physiological Society.

  3. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non–Small Cell Lung Cancer Cells

    PubMed Central

    He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-01-01

    Non–small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non–small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non–small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle–associated proteins by Western blot analysis and found immature colon carcinoma transcript 1–mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non–small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non–small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non–small cell lung cancer. PMID:27413166

  4. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice.

    PubMed

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I; Dohi, Taeko

    2017-09-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro . Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum . Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro . In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

  5. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I.; Dohi, Taeko

    2017-01-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro. Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum. Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro. In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation. PMID:28955126

  6. Effects of methanolic extract from leaves of Rubus imperialis in DSS-induced colitis in mice.

    PubMed

    da Silva, Luisa Mota; Somensi, Lincon Bordignon; Boeing, Thaise; Barp, Cristiane; Cechinel-Filho, Valdir; Niero, Rivaldo; de Andrade, Sérgio Faloni

    2016-12-01

    This study investigated the effects of Rubus imperialis, a berry known as "amora-branca", in colitis dextran sulfate sodium (DSS)-induced in mice. Animals were treated orally with vehicle (water), 5-aminosalicylic acid (100 mg/kg) or methanolic extract from leaves of R. imperialis (MERI, 100 mg/kg), once a day during seven days. The disease activity index (DAI) was observed daily. Colons were collected for histological, histochemical and biochemical analysis. The administration of MERI exacerbated colitis, as indicated by DAI heightened weight loss and increased histological colonic injury. MERI also decreased the colon mucin levels and increased colonic TNF content. The colonic levels of reduced glutathione and the superoxide dismutase activity in colitic group treated with MERI were decreased. Despite the worsening of colitis, MERI not altered the intestinal transit, body weight, colon length or organs weight in normal mice. Tormentic acid (TA) and 2β,3β,19α-trihydroxyursolic acid (THA), compounds isolated from MERI, reduced the L929 cells viability. Thus, MERI may have aggravated the DSS-induced colitis through intense intestinal mucus barrier impairment, which would lead to inflammatory responses, TA and THA contribute to the intestinal damage verified suggesting caution about the use of R. imperialis preparations, particularly in inflammatory bowel diseases.

  7. AZD8055 Exerts Antitumor Effects on Colon Cancer Cells by Inhibiting mTOR and Cell-cycle Progression.

    PubMed

    Chen, Yun; Lee, Cheng-Hung; Tseng, Bor-Yuan; Tsai, Ya-Hui; Tsai, Huang-Wen; Yao, Chao-Ling; Tseng, Sheng-Hong

    2018-03-01

    AZD8055 is an inhibitor of mammalian target of rapamycin (mTOR) that can suppress both mTOR complex 1 (mTORC1) and mTORC2. This study investigated the antitumor effects of AZD8055 on colon cancer. The effects of AZD8055 on proliferation, apoptosis, and cell cycle of colon cancer cells, and tumor growth in a mouse colon cancer model were studied. AZD8055 significantly inhibited proliferation and induced apoptosis of colon cancer cells (p<0.05). The phosphorylation of both AKT and S6 kinase 1 (S6K1) was suppressed by AZD8055. AZD8055 also induced G 0 /G 1 cell-cycle arrest, reduced cyclin D1 and increased p27 expression, and suppressed the levels of phospho-cyclin-dependent kinase 2 and phospho-retinoblastoma. Compared to the control, oral administration of AZD8055 significantly suppressed tumor growth in mice (p<0.05). AZD8055 induces cytotoxicity, apoptosis, and cell-cycle arrest of colon cancer cells, and exerts an antitumor effect in mice. It also inhibits the mTOR signaling pathway and mTOR-dependent cell-cycle progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  9. Impact of novel sorghum bran diets on DSS-induced colitis

    USDA-ARS?s Scientific Manuscript database

    Background. Repeated bouts of inflammation are known to promote colon cancer. We have reported that polyphenol-rich sorghum bran diets decrease formation of colon aberrant crypt foci, however, little is known regarding their effect during colonic inflammation. Objective. We hypothesized that sorgh...

  10. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  11. Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR

    PubMed Central

    Lindén, Sara K.; Alwan, Ala H.; Scholte, Bob J.; Hansson, Gunnar C.; Sjövall, Henrik

    2016-01-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K+ channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K+ channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules. PMID:25139191

  12. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

    PubMed

    Gustafsson, Jenny K; Lindén, Sara K; Alwan, Ala H; Scholte, Bob J; Hansson, Gunnar C; Sjövall, Henrik

    2015-07-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.

  13. Resveratrol (Trans-3,5,4′-trihydroxystilbene) Induces Silent Mating Type Information Regulation-1 and Down-Regulates Nuclear Transcription Factor-κB Activation to Abrogate Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi

    2010-01-01

    Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103

  14. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    PubMed

    Bassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Lu, Pinyi; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno W; Mane, Shrinivasrao P; Mohapatra, Saroj K; Horne, William T; Guri, Amir J; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel

    2012-01-01

    There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(-) strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  15. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice.

    PubMed

    Koh, Seong-Joon; Choi, Youn-I; Kim, Yuri; Kim, Yoo-Sun; Choi, Sang Woon; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae

    2018-05-09

    Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer. COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10 -/- mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption. WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10 -/- mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC). WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.

  16. Steroid Receptor Coactivator 3 Contributes to Host Defense against Enteric Bacteria by Recruiting Neutrophils via Upregulation of CXCL2 Expression.

    PubMed

    Chen, Wenbo; Lu, Xuqiang; Chen, Yuan; Li, Ming; Mo, Pingli; Tong, Zhangwei; Wang, Wei; Wan, Wei; Su, Guoqiang; Xu, Jianming; Yu, Chundong

    2017-02-15

    Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors and some other transcription factors to enhance their effects on target gene transcription. We reported previously that SRC-3-deficient (SRC-3 -/- ) mice are extremely susceptible to Escherichia coli-induced septic peritonitis as a result of uncontrolled inflammation and a defect in bacterial clearance. In this study, we observed significant upregulation of SRC-3 in colonic epithelial cells in response to Citrobacter rodentium infection. Based on these findings, we hypothesized that SRC-3 is involved in host defense against attaching and effacing bacterial infection. We compared the responses of SRC-3 -/- and wild-type mice to intestinal C. rodentium infection. We found that SRC-3 -/- mice exhibited delayed clearance of C. rodentium and more severe tissue pathology after oral infection with C. rodentium compared with wild-type mice. SRC-3 -/- mice expressed normal antimicrobial peptides in the colons but exhibited delayed recruitment of neutrophils into the colonic mucosa. Accordingly, SRC-3 -/- mice showed a delayed induction of CXCL2 and CXCL5 in colonic epithelial cells, which are responsible for neutrophil recruitment. At the molecular level, we found that SRC-3 can activate the NF-κB signaling pathway to promote CXCL2 expression at the transcriptional level. Collectively, we show that SRC-3 contributes to host defense against enteric bacteria, at least in part via upregulating CXCL2 expression to recruit neutrophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal colon but not in the middle part of the colon.

  18. Group X Phospholipase A2 Stimulates the Proliferation of Colon Cancer Cells by Producing Various Lipid Mediators

    PubMed Central

    Surrel, Fanny; Jemel, Ikram; Boilard, Eric; Bollinger, James G.; Payré, Christine; Mounier, Carine M.; Talvinen, Kati A.; Laine, Veli J. O.; Nevalainen, Timo J.; Gelb, Michael H.

    2009-01-01

    Among mammalian secreted phospholipases A2 (sPLA2s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA2 [mouse (m)GX] is one of the most highly expressed PLA2 in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA2s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA2 inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA2α and M-type sPLA2 receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA2 mitogenic effects. Together, our results indicate that group X sPLA2 may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression. PMID:19602573

  19. Group X phospholipase A2 stimulates the proliferation of colon cancer cells by producing various lipid mediators.

    PubMed

    Surrel, Fanny; Jemel, Ikram; Boilard, Eric; Bollinger, James G; Payré, Christine; Mounier, Carine M; Talvinen, Kati A; Laine, Veli J O; Nevalainen, Timo J; Gelb, Michael H; Lambeau, Gérard

    2009-10-01

    Among mammalian secreted phospholipases A2 (sPLA(2)s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA(2) [mouse (m)GX] is one of the most highly expressed PLA(2) in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA(2)s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA(2) inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA(2)alpha and M-type sPLA(2) receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA(2) mitogenic effects. Together, our results indicate that group X sPLA(2) may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression.

  20. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats.

    PubMed

    Goodrich, Katheryn M; Fundaro, Gabrielle; Griffin, Laura E; Grant, Ar'quette; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2012-10-01

    Animal studies have demonstrated the potential of grape seed extract (GSE) to prevent metabolic syndrome, obesity, and type 2 diabetes. Recently, metabolic endotoxemia induced by bacterial endotoxins produced in the colon has emerged as a possible factor in the etiology of metabolic syndrome. Improving colonic barrier function may control endotoxemia by reducing endotoxin uptake. However, the impact of GSE on colonic barrier integrity and endotoxin uptake has not been evaluated. We performed a secondary analysis of samples collected from a chronic GSE feeding study with pharmacokinetic end points to examine potential modulation of biomarkers of colonic integrity and endotoxin uptake. We hypothesized that a secondary analysis would indicate that chronic GSE administration increases colonic expression of intestinal tight junction proteins and reduces circulating endotoxin levels, even in the absence of an obesity-promoting stimulus. Wistar Furth rats were administered drinking water containing 0.1% GSE for 21 days. Grape seed extract significantly increased the expression of gut junction protein occludin in the proximal colon and reduced fecal levels of the neutrophil protein calprotectin, compared with control. Grape seed extract did not significantly reduce serum or fecal endotoxin levels compared with control, although the variability in serum levels was widely increased by GSE. These data suggest that the improvement of gut barrier integrity and potential modulation of endotoxemia warrant investigation as a possible mechanism by which GSE prevents metabolic syndrome and associated diseases. Further investigation of this mechanism in high-fat feeding metabolic syndrome and obesity models is therefore justified. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  2. Mast Cells and Serotonin Synthesis Modulate Chagas Disease in the Colon: Clinical and Experimental Evidence.

    PubMed

    Kannen, Vinicius; Sakita, Juliana Y; Carneiro, Zumira A; Bader, Michael; Alenina, Natalia; Teixeira, Regina R; de Oliveira, Enio C; Brunaldi, Mariângela O; Gasparotto, Bianca; Sartori, Daniela C; Fernandes, Cleverson R; Silva, João S; Andrade, Marcus V; Silva, Wilson A; Uyemura, Sergio A; Garcia, Sérgio B

    2018-06-01

    Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-Kit W-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-Kit W-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.

  3. PROMOTION OF TRIHALOMETHANE-INDUCED COLON, ABERRANT CRYPT FOCI (ACF) BY A HIGH FAT DIET

    EPA Science Inventory

    Abstract:

    Bromodichloromethane (BOCM) and tribromomethane (TBM) enhanced neoplasia in the large intestine of rats when given by corn oil gavage; BOCM in the drinking water to male rats did not induce colon tumors, but did increase liver tumors. However, TBM and a mixture o...

  4. Purple rice extract supplemented diet reduces DMH- induced aberrant crypt foci in the rat colon by inhibition of bacterial β-glucuronidase.

    PubMed

    Summart, Ratasark; Chewonarin, Teera

    2014-01-01

    Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial β-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited β-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.

  5. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.

    PubMed

    Tan, Shumin; Noto, Jennifer M; Romero-Gallo, Judith; Peek, Richard M; Amieva, Manuel R

    2011-05-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.

  6. Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface

    PubMed Central

    Tan, Shumin; Noto, Jennifer M.; Romero-Gallo, Judith; Peek, Richard M.; Amieva, Manuel R.

    2011-01-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche. PMID:21589900

  7. New rodent models for studies of chemopreventive agents.

    PubMed

    Lipkin, M

    1997-01-01

    Some recent studies of the effects of chemopreventive agents have begun to use new rodent models to improve the analysis of stages of colonic preneoplasia, and how chemopreventive agents modify progressive abnormal cell development. In one of the models of inherited predisposition to colon cancer, mice carrying a truncated Apc allele with a nonsense mutation in exon 15 have been generated by gene targeting and embryonic stem cell technology (Apc1638 mice). These mice develop multiple gastrointestinal lesions, including adenomas and carcinomas, focal areas of high-grade dysplasia (FAD), and polypoid hyperplasias with FADS. The incidence of inherited colonic neoplasms has now been modulated by a chemopreventive regimen. Colonic lesions significantly increased in Apc1638 mice on a Western-style diet, which has higher fat content and lower calcium and vitamin D compared to the same mice on AIN-76A diet. In another rodent model, Min mice were treated with sulindac, which markedly reduced the incidence of intestinal tumors. A third new rodent model containing a targeted mutation in the gene Mcc (mutated in colorectal cancer) recently became available for chemoprevention studies. These mice develop multiple types of neoplasms including adenocarcinomas, focal areas of gastrointestinal dysplasia, papillomas of the forestomach, and tumors in other organs including lung, liver, and lymphoid tissue. Feeding a Western-style diet to the Mcc mutant mice also resulted in significantly increased gastrointestinal lesions. These nutrient modifications also have been given to normal mice, demonstrating without any chemical carcinogen that a Western-style diet induced colonic tumorigenesis. Western-style diets also have now induced modulation of cell proliferation in other organs including mammary gland, pancreas, and prostate. These findings help develop new preclinical rodent models to aid the analysis of genetic and environmental factors leading to neoplasia, as well as new methods for evaluating the chemopreventive efficacy of specific nutrients and pharmacological agents.

  8. H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.

    PubMed

    Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao

    2017-09-26

    There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.

  9. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    PubMed Central

    Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M.; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10 −/−, Tlr2 −/−, and Myd88 −/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra −/− T cells. B. breve treatment of Tlr2 −/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10 −/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells. PMID:22693446

  10. α-fetoprotein involvement during glucocorticoid-induced precocious maturation in rat colon

    PubMed Central

    Chen, Min; Sun, Peng; Liu, Xiao-Yan; Dong, Dan; Du, Jun; Gu, Luo; Ge, Ying-Bin

    2011-01-01

    AIM: To investigate the role of α-fetoprotein (AFP), a cancer-associated fetal glycoprotein, in glucocorticoid-induced precocious maturation in rat colon. METHODS: Colons from suckling Sprague-Dawley rats were used in this study. Corticosterone acetate at a dose of 100 μg/g body weight was given to normal pups on days 7, 9 and 11 after birth to induce hypercorticoidism. Control animals were injected with identical volumes of normal saline. Some rats receiving corticosterone 7 d after birth were also treated with mifepristone (RU38486), a glucocorticoid cytoplasm receptor antagonist to investigate the effects of glucocorticoids (GCs). The morphological changes of the crypt depth and villous height of the villous zone in colon were observed as indices of colon maturation. Expression levels of AFP in colons were detected by reverse transcriptase polymerase chain reaction and Western blotting. To identify the cellular localization of AFP in developing rat colons, double-immunofluorescent staining was performed using antibodies to specific mesenchymal cell marker and AFP. RESULTS: Corticosterone increased the crypt depth and villous height in the colon of 8- and 10-d-old rats with hypercorticoidism compared with that in the control animals (120% in 8-d-old rats and 118% in 10-d-old rats in villous height, P = 0.021; 145% in 8-d-old rats and 124% in 10-d-old rats in crypt depth, P = 0.017). These increases were accompanied by an increase of AFP expression in both mRNA and protein (2.5-folds in 8-d-old and 2.5-folds in 10-d-old rats higher than in control animals, P = 0.035; 1.8-folds in 8-d-old and 1.3-folds in 10-d-old rats higher than in control animals, P = 0.023). Increased crypt depth and villous height and increased expression of AFP in the colon of rats with hypercorticoidism were blocked by mifepristone. Both had positive staining for AFP or vimentin, and overlapped in mesenchymal cells at each tested colon. CONCLUSION: GCs promote the development of rat colon. AFP appears to be involved, in part, in mediating the effects of GCs in the developmental colon. PMID:21734804

  11. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion.

    PubMed

    Huang, Hsien-Hao; Chen, Liang-Yu; Doong, Ming-Luen; Chang, Shi-Chuan; Chen, Chih-Yen

    2017-01-01

    Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. ICV injection of O - n -octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h ( P <0.01), enhanced non-nutrient semi-liquid gastric emptying ( P <0.001), increased the geometric center and running percentage of small intestinal transit ( P <0.001), accelerated colonic transit time ( P <0.05), and increased fecal pellet output ( P <0.01) and total fecal weight ( P <0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit ( P <0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.

  12. Propolis from Different Geographic Origins Suppress Intestinal Inflammation in a Model of DSS-Induced Colitis is Associated with Decreased Bacteroides spp. in the Gut.

    PubMed

    Wang, Kai; Jin, Xiaolu; Li, Qiangqiang; Sawaya, Alexandra Christine Helena Frankland; Leu, Richard K Le; Conlon, Michael A; Wu, Liming; Hu, Fuliang

    2018-06-11

    Dietary supplementation with polyphenol-rich propolis can protect against experimentally-induced colitis. We examined whether different polyphenol compositions of Chinese propolis (CP) and Brazilian propolis (BP) influences their ability to protect against dextran sulfate sodium (DSS)-induced colitis in rats. HPLC-DAD/Q-TOF-MS analysis confirmed that polyphenol compositions of CP and BP were dissimilar. Rats were given CP or BP by gavage (300 mg/kg body weight) throughout the study, starting 1 week prior to DSS treatment for 1 week followed by 3 d without DSS. CP and BP significantly reduced the colitis disease activity index relative to controls not receiving propolis, prevented significant DSS-induced colonic tissue damage and increased resistance to DSS-induced colonic oxidative stress as shown by reduced malonaldehyde levels and increased T-AOC levels. CP and BP significantly reduced DSS-induced colonic apoptosis. Colonic inflammatory markers IL-1β, IL-6 and MCP-1 were suppressed by CP and BP, whereas only BP induced expression of TGF-β. CP, not BP, increased the diversity and richness of gut microbiota populations. Both forms of propolis significantly reduced populations of Bacteroides spp. Despite the dissimilar polyphenol compositions of CP and BP, their ability to protect against DSS-induced colitis is similar. Nevertheless, some different physiological impacts were observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6Chigh CCR2+ inflammatory monocyte/macrophage-derived CCL11

    PubMed Central

    Waddell, Amanda; Ahrens, Richard; Steinbrecher, Kris; Donovan, Burke; Rothenberg, Marc E.; Munitz, Ariel; Hogan, Simon P.

    2011-01-01

    Recent genome-wide association studies of pediatric IBD have implicated the 17q12 loci, which contains the eosinophil specific chemokine gene CCL11, with early-onset IBD susceptibility. In the present study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that DSS treatment promotes the recruitment of F4/80+CD11b+CCR2+Ly6Chigh inflammatory monocytes into the colon. F4/80+CD11b+CCR2+Ly6Chigh monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6Chigh intestinal inflammatory MΦs revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4 and Cxcl2, and Arg1, Chi3l3, Ccl11 and IL-10, respectively. Attenuation of DSS-induced F4/80+CD11b+CCR2+Ly6Chigh monocyte recruitment to the colon in CCR2−/− mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6ChighCCR2+ inflammatory monocyte/MΦ-derived CCL11. PMID:21498668

  14. [Effects of a new derivative of 5-alkyl-3N-furanones on the colonization resistance of the intestine in albino mice].

    PubMed

    Tomnikov, A Iu; Shub, G M

    1990-05-01

    By its antagonistic function normal microflora provides the intestine with resistance to colonization with exogenic opportunistic and pathogenic microorganisms. The drug was effective in inducing a decrease in the intestine colonization resistance which in its turn leads to filling of free ecological niches with exogenic microflora. In this connection the suggestion that specification of a new chemical agent should include along with other criteria its effect on colonization resistance is valid. It was shown with the use of indicator microorganisms that when administered per os in doses of 40 and 80 mg/kg daily for 3 and 6 days, respectively, a new original compound 1929, a derivative of 5-alkyl-3H-furanones, with high antimicrobial activity induced no significant or more pronounced changes in the colonization resistance of the gastrointestinal tract of noninbred albino mice than furagin used as the reference drug.

  15. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway.

    PubMed

    Wan, Ying; Xin, Yi; Zhang, Cuili; Wu, Dachang; Ding, Dapeng; Tang, Li; Owusu, Lawrence; Bai, Jing; Li, Weiling

    2014-05-01

    Probiotic bacteria are known to exert a wide range of beneficial effects on their animal hosts. Therefore, the present study explored the effect of the supernatants obtained from Lactobacillus delbrueckii fermentation (LBF) on colon cancer. The results indicated that the proliferation of LBF solution-treated colon cancer SW620 cells was arrested and accumulated in the G1 phase in a concentration-dependent manner. The LBF solution efficiently induced apoptosis through the intrinsic caspase 3-depedent pathway, with a corresponding decreased expression of Bcl-2. The activity of matrix metalloproteinase 9, which is associated with the invasion of colon cancer cells, was also decreased in the LBF-treated cells. In conclusion, the results demonstrate the antitumor effect of LBF in vitro and may contribute to the development of novel therapies for the treatment of colon cancer.

  16. Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis

    PubMed Central

    Wang, Li-Shu

    2013-01-01

    Ulcerative colitis (UC) is characterized by chronic inflammation of the colon. During inflammation, NF-κB is increased in colonic epithelial cells and in immune cells, leading to increases in proinflammatory cytokines. These events then increase DNA methyltransferases (DNMTs), which silence a subset of tumor suppressor genes by promoter methylation. Negative regulators of the Wnt pathway are frequently methylated in UC, leading to dysregulation of the pathway and, potentially, to colorectal cancer. We determined if black raspberries (BRBs) influence promoter methylation of suppressors in the Wnt pathway in dextran sodium sulfate (DSS)-induced UC. C57BL/6J mice received 1% DSS and were fed either control or 5% BRB diets. Mice were euthanized on days 7, 14 and 28, and their colons, spleen and bone marrow were collected. Berries reduced ulceration at day 28. This was accompanied by decreased staining of macrophages and neutrophils and decreased NF-κB p65 nuclear localization in the colon at all time points. At day 7, BRBs demethylated the promoter of dkk3, leading to its increased messenger RNA (mRNA) expression in colon, spleen and bone marrow. β-Catenin nuclear localization, c-Myc staining as well as protein expression of DNMT3B, histone deacetylases 1 and 2 (HDAC1 and HDAC2) and methyl-binding domain 2 (MBD2) were all decreased in colon; mRNA expression of these four proteins was decreased in bone marrow cells by BRBs. These results suggest that BRBs suppress colonic ulceration by correcting promoter hypermethylation of suppressor genes in the colon, as well as in the spleen and bone marrow that systematically regulate inflammation. Summary: Our results suggest that dietary BRBs suppress colonic ulceration by correcting promoter hypermethylation of suppressor genes in the colon, as well as in the spleen and bone marrow that systematically regulate inflammation in DSS-induced UC. PMID:24067901

  17. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity.

    PubMed

    Gentile, Daniela; Fornai, Matteo; Colucci, Rocchina; Pellegrini, Carolina; Tirotta, Erika; Benvenuti, Laura; Segnani, Cristina; Ippolito, Chiara; Duranti, Emiliano; Virdis, Agostino; Carpi, Sara; Nieri, Paola; Németh, Zoltán H; Pistelli, Laura; Bernardini, Nunzia; Blandizzi, Corrado; Antonioli, Luca

    2018-01-01

    Apigenin can exert beneficial actions in the prevention of obesity. However, its putative action on obesity-associated bowel motor dysfunctions is unknown. This study examined the effects of apigenin on colonic inflammatory and motor abnormalities in a mouse model of diet-induced obesity. Male C57BL/6J mice were fed with standard diet (SD) or high-fat diet (HFD). SD or HFD mice were treated with apigenin (10 mg/Kg/day). After 8 weeks, body and epididymal fat weight, as well as cholesterol, triglycerides and glucose levels were evaluated. Malondialdehyde (MDA), IL-1β and IL-6 levels, and let-7f expression were also examined. Colonic infiltration by eosinophils, as well as substance P (SP) and inducible nitric oxide synthase (iNOS) expressions were evaluated. Motor responses elicited under blockade of NOS and tachykininergic contractions were recorded in vitro from colonic longitudinal muscle preparations. When compared to SD mice, HFD animals displayed increased body weight, epididymal fat weight and metabolic indexes. HFD mice showed increments in colonic MDA, IL-1β and IL-6 levels, as well as a decrease in let-7f expression in both colonic and epididymal tissues. HFD mice displayed an increase in colonic eosinophil infiltration. Immunohistochemistry revealed an increase in SP and iNOS expression in myenteric ganglia of HFD mice. In preparations from HFD mice, electrically evoked contractions upon NOS blockade or mediated by tachykininergic stimulation were enhanced. In HFD mice, Apigenin counteracted the increase in body and epididymal fat weight, as well as the alterations of metabolic indexes. Apigenin reduced also MDA, IL-1β and IL-6 colonic levels as well as eosinophil infiltration, SP and iNOS expression, along with a normalization of electrically evoked tachykininergic and nitrergic contractions. In addition, apigenin normalized let-7f expression in epididymal fat tissues, but not in colonic specimens. Apigenin prevents systemic metabolic alterations, counteracts enteric inflammation and normalizes colonic dysmotility associated with obesity.

  18. Comparative DNA adduct formation and induction of colonic aberrant crypt foci in mice exposed to 2-amino-9H-pyrido[2,3-b]indole, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline and azoxymethane

    PubMed Central

    Kim, Sangyub; Guo, Jingshu; O’Sullivan, M. Gerald; Gallaher, Daniel D.; Turesky, Robert J.

    2015-01-01

    Considerable evidence suggests that environmental factors, including diet and cigarette smoke, are involved in the pathogenesis of colon cancer. Carcinogenic nitroso compounds (NOC), such as N-nitrosodimethylamine (NDMA), are present in tobacco and processed red meat, and NOC have been implicated in colon cancer. Azoxymethane (AOM), commonly used for experimental colon carcinogenesis, is an isomer of NDMA, and it produces the same DNA adducts as does NDMA. Heterocyclic aromatic amines (HAAs) formed during the combustion of tobacco and high-temperature cooking of meats are also associated with an elevated risk of colon cancer. The most abundant carcinogenic HAA formed in tobacco smoke is 2-amino-9H-pyrido[2,3-b]indole (AαC), whereas 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) is the most potent carcinogenic HAA formed during the cooking of meat and fish. However, the comparative tumor-initiating potential of AαC, MeIQ, and AOM is unknown. In this report, we evaluate the formation of DNA adducts as a measure of genotoxicity, and the induction of colonic aberrant crypt foci (ACF) and dysplastic ACF, as an early measure of carcinogenic potency of these compounds in the colon of male A/J mice. Both AαC and AOM induced a greater number of DNA adducts than MeIQ in the liver and colon. AOM induced a greater number of ACF and dysplastic ACF than either AαC or MeIQ. Conversely, based on adduct levels, MeIQ-DNA adducts were more potent than AαC- and AOM-DNA adducts at inducing ACF. Long-term feeding studies are required to relate levels of DNA adducts, induction of ACF, and colon cancer by these colon genotoxicants. PMID:26734915

  19. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    PubMed

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  20. Resistant starch modulates in vivo colonic butyrate uptake and its oxidation in rats with dextran sulfate sodium-induced colitis.

    PubMed

    Moreau, Noëlle M; Champ, Martine M; Goupry, Stéphane M; Le Bizec, Bruno J; Krempf, Michel; Nguyen, Patrick G; Dumon, Henri J; Martin, Lucile J

    2004-03-01

    We previously demonstrated improvements of colonic lesions due to dextran sulfate sodium (DSS) in rats after 7 d of supplementation with resistant starch (RS) type 3, a substrate yielding high levels of butyrate (C(4)), a colonic cell fuel source. In the present study, we hypothesized that if inflammation is related to decreased C(4) utilization by the colonic mucosa, RS supplementation should restore C(4) use simultaneously with an increase in the amount of C(4) present in the digestive tract. Hence, we compared, in vivo, the cecocolonic uptake of C(4) and its oxidation into CO(2) and ketone bodies in control and DSS-treated rats fed a fiber-free basal diet (BD) or a RS-supplemented diet. Sprague-Dawley rats (n = 60) were used. DSS treatment was performed to induce acute colitis and then to maintain chronic colitis. After cecal infusion of [1-(13)C]-C(4) (20 micro mol in 1 h), concentrations and (13)C-enrichment of C(4), ketone bodies, and CO(2) were quantified in the abdominal aorta and portal vein. Portal blood flow was recorded. During acute colitis, (13)C(4) uptake and (13)CO(2) production were lower in DSS rats than in controls. During chronic colitis, DSS rats did not differ from controls. After 7 d of chronic colitis, RS-DSS rats exhibited the same C(4) uptake as BD-DSS rats in spite of higher C(4) cecocolonic disposal. After 14 d, C(4) uptake was higher in RS-DSS than in BD-DSS rats. Thus, the increased utilization of C(4) by the mucosa is subsequent to evidence of healing and appears to be a consequence rather than a cause of this RS healing effect.

  1. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress.

    PubMed

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-10-24

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 (CreERT) and Atg5 (flox/flox) mice to generate Atg5 (flox/flox)/K19 (CreERT) mice. Atg5 (flox/flox)/K19 (CreERT) mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 (flox/flox)/K19 (CreERT) mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 (flox/flox)/K19 (CreERT) mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 (flox/flox)/K19 (CreERT) mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. Blocking autophagy has potential in the treatment of colon cancer by inducing apoptosis via p53 and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition.

  2. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.

    PubMed

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  3. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon

    PubMed Central

    Vidyasagar, S; Ramakrishna, B S

    2002-01-01

    Short chain fatty acids, particularly butyrate, stimulate electroneutral NaCl absorption from the colon. Their effect in colonic epithelia lacking basal electroneutral NaCl absorption is unknown. Butyrate is also reported to inhibit active Cl− secretion in the colon. The present studies were undertaken to investigate the inter-relationships between the effects of butyrate on active Na+ and Cl− transport in the colon. Studies were carried out in rabbit distal colon (known to have predominant electrogenic Na+ absorption), rat distal colon (characterised by electroneutral Na+ absorption), and hyperaldosteronaemic rat distal colon (characterised by electrogenic Na+ absorption). The effect of cholera toxin (CT) was also noted. Potential difference, short-circuit current (ISC) and fluxes of Na+ and Cl− were measured in stripped mucosa under voltage-clamp conditions. Butyrate stimulated electroneutral Na+ and Cl− absorption in distal colon of normal and salt-depleted rats, and stimulated Na+ absorption in rabbit distal colon. Amiloride (10−4m) or CT did not inhibit this process. In rabbit distal colon, stimulation of Na+ absorption by butyrate was not dependent on the presence of Cl− in the medium. Butyrate significantly decreased conductance, decreased flux of sodium from serosa to mucosa (particularly in rabbit distal colon), and decreased ISC. Net Cl− secretion, induced by CT, was completely inhibited by butyrate. Stimulation of Na+ absorption was independent of exposure to CT. Bumetanide reversed net Cl− secretion to net absorption, but did not alter Na+ or Cl− fluxes in tissues exposed to butyrate. Thus butyrate stimulates active Na+ absorption in colonic epithelia, with or without expression of basal Na+-H+ exchange. Independently, butyrate inhibits active Cl− secretion induced by cAMP in these epithelia. PMID:11850510

  4. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    PubMed

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis.

    PubMed

    Manoj, G; Thampi, B S; Leelamma, S; Menon, P V

    2001-01-01

    The effects of fiber isolated from black gram (Phaseolus mungo) and coconut (Cocos nucifera) kernel on the metabolic activity of intestinal and fecal beta glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis were studied. The results indicated that the inclusion of fiber from black gram and coconut kernel generally supported lower specific activities and less fecal output of beta-glucuronidase than did the fiber free diet. This study suggests that the fibers isolated from coconut or black gram may potentially play a role in preventing the formation of colon tumors induced by the carcinogen 1,2-dimethylhydrazine by reducing the activity of the intestinal as well as fecal beta-glucuronidase.

  6. Regulation of Deoxycholate Induction of CXCL8 by the Adenomatous Polyposis Coli Gene in Colorectal Cancer

    PubMed Central

    Rial, Nathaniel S; Lazennec, Gwendal; Prasad, Anil R; Krouse, Robert S; Lance, Peter; Gerner, Eugene W

    2009-01-01

    Elevated deoxycholic acid (DCA), mutations in the adenomatous polyposis coli (APC) gene and chronic inflammation are associated with increased risk of colorectal cancer (CRC). APC status was manipulated to determine whether DCA mediates inflammatory molecules in normal or initiated colonic mucosa. DCA increased steady state mRNA and protein levels of CXCL8 in cells which do not express wild type APC. Steady state CXCL8 mRNA and protein were suppressed when cells with conditional expression of wild type APC were exposed to DCA. Immunostaining did not detect CXCL8 in normal human colonic mucosa. CXCL8 was expressed in adenomatous polyps and adenocarcinomas. CXCL8 expression correlated with nuclear β-catenin localization in epithelial cells of adenomas, but was associated with endothelial cells and neutrophils in the adenocarcinomas. DCA-mediated CXCL8 promoter-reporter activity was elevated in a mutant APC background. Wild type APC suppressed this effect. Mutation of activator protein-1 (AP-1) or nuclear factor kappa B (NF-κB) sites suppressed the activation of the CXCL8 promoter-reporter by DCA. Chromatin immunoprecipitation (ChIP) revealed that AP-1 and NF-κB binding to the 5′-promoter of CXCL8 was induced by DCA. The β-catenin transcription factor was bound to the 5′-promoter of CXCL8 in the absence or presence of DCA. Phenotypic assays determined that DCA-mediated invasion was blocked by antibody directed against CXCL8 or wild type-APC. CXCL8 exposure lead to matrix metalloproteinase-2 (MMP-2) production and increased invasion on laminin coated filters. These data suggest that DCA-mediated CXCL8 occurs in initiated colonic epithelium and neutralizing CXCL8 could reduce the invasive potential of tumors. PMID:19173296

  7. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.

    PubMed

    Sturiale, S; Barbara, G; Qiu, B; Figini, M; Geppetti, P; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Collins, S M

    1999-09-28

    Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was approximately 2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was approximately 4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation.

  8. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P

    PubMed Central

    Sturiale, S.; Barbara, G.; Qiu, B.; Figini, M.; Geppetti, P.; Gerard, N.; Gerard, C.; Grady, E. F.; Bunnett, N. W.; Collins, S. M.

    1999-01-01

    Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was ≈2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was ≈4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation. PMID:10500232

  9. The antioxidant and anti-inflammatory activities of tocopherols are independent of Nrf2 in mice.

    PubMed

    Li, Guangxun; Lee, Mao-Jung; Liu, Anna Ba; Yang, Zhihong; Lin, Yong; Shih, Weichung Joe; Yang, Chung S

    2012-04-01

    The present study investigated the antioxidant and anti-inflammatory actions of tocopherols in mice and determined whether the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved in these activities. A mixture of tocopherols (γ-TmT) that is rich in γ-tocopherol was used. Nrf2 knockout (Nrf2 -/-) and wild-type mice were maintained on 0.03, 0.1, or 0.3% γ-TmT-enriched diet starting 2 weeks before the administration of dextran sulfate sodium (DSS) in drinking water (for 1 week, to induce colonic inflammation), until the termination of the experiment at 3 days after the DSS treatment. Dietary γ-TmT dose dependently lowered the levels of 8-oxo-deoxyguanosine, nitrotyrosine, inflammation index, and leukocyte infiltration in colon tissues, as well as 8-isoprostane and prostaglandin E2 in the serum, in both Nrf2 (-/-) and wild-type mice. No significant difference on the inhibitory actions of γ-TmT between the Nrf2 (-/-) and the wild-type mice was observed. The γ-TmT treatment significantly increased the serum levels of γ- and δ-tocopherols. Interestingly, the serum levels of tocopherol metabolites, specifically the γ- and δ-forms of carboxymethylbutyl hydroxychroman and carboxyethyl hydroxychroman, in Nrf2 (-/-) mice were significantly higher than those in wild-type mice. These findings suggest that the antioxidant and anti-inflammatory activities of γ-TmT in the colon are mostly due to the direct action of tocopherols in trapping reactive oxygen and nitrogen species, independent of the antioxidant enzymes and anti-inflammatory proteins that are regulated by Nrf2; however, Nrf2 knockout appears to affect the serum levels of tocopherol metabolites. Copyright © 2011. Published by Elsevier Inc.

  10. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity.

    PubMed

    Collins, James W; Akin, Ali R; Kosta, Artemis; Zhang, Ning; Tangney, Mark; Francis, Kevin P; Frankel, Gad

    2012-11-01

    Citrobacter rodentium, which colonizes the gut mucosa via formation of attaching and effacing (A/E) lesions, causes transmissible colonic hyperplasia. The aim of this study was to evaluate whether prophylactic treatment with Bifidobacterium breve UCC2003 can improve the outcome of C. rodentium infection. Six-week-old albino C57BL/6 mice were pre-treated for 3 days with B. breve, challenged with bioluminescent C. rodentium and administered B. breve or PBS-C for 8 days post-infection; control mice were either administered B. breve and mock-infected with PBS, or mock-treated with PBS-C and mock-infected with PBS. C. rodentium colonization was monitored by bacterial enumeration from faeces and by a combination of both 2D bioluminescence imaging (BLI) and composite 3D diffuse light imaging tomography with µCT imaging (DLIT-µCT). At day 8 post-infection, colons were removed and assessed for crypt hyperplasia, histology by light microscopy, bacterial colonization by immunofluorescence, and A/E lesion formation by electron microscopy. Prophylactic administration of B. breve did not prevent C. rodentium colonization or A/E lesion formation. However, this treatment did alter C. rodentium distribution within the large intestine and significantly reduced colonic crypt hyperplasia at the peak of bacterial infection. These results show that B. breve could not competitively exclude C. rodentium, but reduced pathogen-induced colonic inflammation.

  11. Effective chemotherapy of heterogeneous and drug-resistant early colon cancers by intermittent dose schedules: a computer simulation study.

    PubMed

    Axelrod, David E; Vedula, Sudeepti; Obaniyi, James

    2017-05-01

    The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function. A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function. Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug. An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.

  12. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.

    PubMed

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Wang, Jun; Sailer, Manuela; Theis, Stephan; Verbeke, Kristin; Raes, Jeroen

    2017-11-01

    Contrary to the long-standing prerequisite of inducing selective (ie, bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterisation of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (gas chromatography mass spectrometry) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and faecal metabolites profiles. Faecal samples collected during a double-blind, randomised, cross-over intervention study set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analysed. Faecal microbiota composition and metabolite profiles were linked to the study's clinical outcome as well as to quality-of-life measurements recorded. While faecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition and specific inulin-induced changes in relative abundances of Anaerostipes , Bilophila and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favourable change in constipation-specific quality-of-life measures. Ecosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated with three genera, one of which ( Bilophila ) representing a promising novel target for mechanistic research. NCT02548247. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn's disease.

    PubMed

    Miyoshi, Jun; Yajima, Tomoharu; Okamoto, Susumu; Matsuoka, Katsuyoshi; Inoue, Nagamu; Hisamatsu, Tadakazu; Shimamura, Katsuyoshi; Nakazawa, Atsushi; Kanai, Takanori; Ogata, Haruhiko; Iwao, Yasushi; Mukai, Makio; Hibi, Toshifumi

    2011-09-01

    Host-intestinal microbial interaction plays an important role in the pathogenesis of inflammatory bowel diseases (IBDs). The surface molecules of the intestinal epithelium act as receptors for bacterial adhesion and regulate the intestinal bacteria. Some known receptors are the mucosal blood type antigens, which are regulated by the fucosyltransferase2 (FUT2) gene, and individuals who express these antigens in the gastrointestinal tract are called secretors. Recent research has revealed that the FUT2 gene is associated with Crohn's disease (CD) in western populations. To clarify the contribution of mucosal blood type antigens in IBD, we determined the incidence of five previously reported single-nucleotide polymorphisms of the FUT2 gene in Japanese patients. We also used immunohistochemistry to investigate the antigen expression in mucosal specimens from IBD patients and animal models. Genetic analysis revealed that all of the patients with colonic CD were secretors, whereas the incidence of secretors was 80, 80, 67, and 80%, respectively, for the control, ileocolonic CD, ileal CD, and ulcerative colitis groups (P = 0.036). Abnormal expression of blood type antigens was observed only in colonic CD. Interleukin-10⁻/⁻ mice, but not dextran sulfate sodium colitis mice, had enhanced colonic expression of blood type antigens, and the expression of these antigens preceded the development of colitis in the interleukin-10⁻/⁻ mice. FUT2 secretor status was associated with colonic-type CD. This finding, taken together with the immunohistochemistry data, suggests that the abnormal expression of blood type antigens in the colon may be a unique and essential factor for colonic CD.

  14. Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells.

    PubMed

    Tian, Xia; Liu, Meng; Zhu, Qingxi; Tan, Jie; Liu, Weijie; Wang, Yanfen; Chen, Wei; Zou, Yanli; Cai, Yishan; Han, Zheng; Huang, Xiaodong

    2017-09-01

    The aim of the present study was to explore the signaling pathway of noscapine which induces apoptosis by blocking liver-intestine cadherin (CDH17) gene in colon cancer SW480 cells. Human colon cancer SW480 cells were transfected with CDH17 interference vector and treatment with 10 µmol/L noscapine. The proliferation and apoptosis of SW480 cells were detected by MTT assay and AnnexinV-FITC/PI flow cytometry kit (BD), respectively. Cell invasion were assessed by transwell assays. Apoptosis related proteins (Cyt-c, Bax, Bcl-2 and Bcl-xL) levels were evaluated by western blot. Compared to the noscapine group, the proliferation was decreased significantly and the apoptosis was increased significantly in SW480 cells of the siCDH17+noscapine group. Cyt-c and Bax protein levels in siCDH17+noscapine group was higher than that of the noscapine group, but Bcl-2 and Bcl-xL protein levels in siCDH17+noscapine group were lower than that of the noscapine group. Moreover, up-expression of CDH17 inhibited the efficacy of noscapine-induced apoptosis in SW480 cells. We inferred that down-expression of extrinsic CDH17 gene can conspicuously promote apoptosis-inducing effects of noscapine on human colon cancer SW480 cells, which is a novel strategy to improve chemotherapeutic effects on colon cancer.

  15. Ultraviolet A eye irradiation ameliorates colon carcinoma induced by azoxymethane and dextran sodium sulfate through β-endorphin and methionine-enkephalin.

    PubMed

    Hiramoto, Keiichi; Yokoyama, Satoshi; Yamate, Yurika

    2017-03-01

    We previously reported that ultraviolet (UV) A eye irradiation reduces the ulcerative colitis induced by dextran sodium sulfate (DSS). This study examined the effects of UVA on colon carcinoma induced by azoxymethane (AOM) and DSS. We irradiated the eyes of ICR mice with UVA at a dose of 110 kJ/m 2 using an FL20SBLB-A lamp for the experimental period. In mice treated with these drugs, the symptom of colon carcinoma was reduced by UVA eye irradiation. The levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the blood were increased in AOM + DSS-treated mice; however, those levels were reduced by UVA eye irradiation. The expression of β-endorphin, methionine-enkephalin (OGF), μ-opioid receptor, and opioid growth factor receptor (OGFR) of the colon was increased in the AOM + DSS-treated mice, and these levels were increased further following UVA eye irradiation. When β-endorphin inhibitor was administered, the ameliorative effect of UVA eye irradiation was reduced, and the effect of eye irradiation disappeared entirely following the administration of naltrexone (inhibitor of both opioid receptor and OGFR). These results suggested that UVA eye irradiation exerts major effects on AOM + DSS-induced colon carcinoma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism

    PubMed Central

    Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592

  17. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage.

    PubMed

    Moussa, Lara; Pattappa, Girish; Doix, Bastien; Benselama, Sarra-Louiza; Demarquay, Christelle; Benderitter, Marc; Sémont, Alexandra; Tamarat, Radia; Guicheux, Jérôme; Weiss, Pierre; Réthoré, Gildas; Mathieu, Noëlle

    2017-01-01

    Healthy tissues surrounding abdomino-pelvic tumours can be impaired by radiotherapy, leading to chronic gastrointestinal complications with substantial mortality. Adipose-derived Mesenchymal Stromal Cells (Ad-MSCs) represent a promising strategy to reduce intestinal lesions. However, systemic administration of Ad-MSCs results in low cell engraftment within the injured tissue. Biomaterials, able to encapsulate and withstand Ad-MSCs, can overcome these limitations. A silanized hydroxypropylmethyl cellulose (Si-HPMC) hydrogel has been designed and characterized for injectable cell delivery using the operative catheter of a colonoscope. We demonstrated that hydrogel loaded-Ad-MSCs were viable, able to secrete trophic factors and responsive to the inflammatory environment. In a rat model of radiation-induced severe colonic damage, Ad-MSC + Si-HPMC improve colonic epithelial structure and hyperpermeability compared with Ad-MSCs injected intravenously or locally. This therapeutic benefit is associated with greater engraftment of Si-HPMC-embedded Ad-MSCs in the irradiated colonic mucosa. Moreover, macrophage infiltration near the injection site was less pronounced when Ad-MSCs were embedded in the hydrogel. Si-HPMC induces modulation of chemoattractant secretion by Ad-MSCs that could contribute to the decrease in macrophage infiltrate. Si-HPMC is suitable for cell delivery by colonoscopy and induces protection of Ad-MSCs in the tissue potentiating their therapeutic effect and could be proposed to patients suffering from colon diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    PubMed

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    PubMed

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  20. Gastrointestinal microflora, food components and colon cancer prevention

    PubMed Central

    Davis, Cindy D.; Milner, John A.

    2009-01-01

    Evidence is emerging that the intestinal microbiota is intrinsically linked with overall health, including cancer risk. Moreover, its composition is not fixed, but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics), nondigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols, or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans, and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation; namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex relationship deserves greater attention. Thus, a complex interrelationship exists between the intestinal microbiota and colon cancer risk which can be modified by dietary components and eating behaviors. PMID:19716282

  1. Vanadium inhibits DNA-protein cross-links and ameliorates surface level changes of aberrant crypt foci during 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Kanna, P Suresh; Saralaya, M G; Samanta, K; Chatterjee, M

    2005-01-01

    The trace mineral vanadium inhibits cancer development in a variety of experimental animal models. The present study was to gain insight into a putative anticancer effect of vanadium in a rat model of colon carcinogenesis. The in vivo study was intended to clarify the effect of vanadium on DNA-protein cross-links (DPC), surface level changes of aberrant crypt foci (ACF) and biotransformation status during 1,2-dimethylhydrazine (1,2-DMH) induced preneoplastic rat colon carcinogenesis. The comet assay showed statistically higher mean base values of DNA-protein mass (p<0.01) and mean frequencies of tailed cells (p<0.001) in the carcinogen-induced group after treatment with proteinase K. Treatment with vanadium in the form of ammonium monovanadate supplemented ad libitum in drinking water for the entire experimental period caused a significant (p<0.02) reduction (40%) in DNA-protein cross-links in colon cells. Further, the biotransformation status of vanadium was ascertained measuring the drug metabolising enzymes, glutathione S-transferase (GST) and cytochrome P-450 (Cyt P-450). Significantly, there was an increase in glutathione S-transferase and cytochrome P-450 levels (p<0.01 and p<0.02, respectively) in rats supplemented with vanadium as compared to their carcinogen controls. As an endpoint marker, we also evaluated the effect of vanadium on surface level changes of aberrant crypt foci induced by 1,2-DMH by scanning electron microscopy. Animals induced with 1,2-DMH and supplemented with vanadium showed a marked improvement in colonic architecture with less number of aberrant crypt foci in contrast to the animals induced with 1,2-DMH alone, thereby exhibiting its anti-carcinogenicity by modulating the markers studied herein.

  2. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colonmore » cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.« less

  3. Role of T Cell TGF-β Signaling in Intestinal Cytokine Responses and Helminthic Immune Modulation

    PubMed Central

    Ince, M. Nedim; Elliott, David E.; Setiawan, Tommy; Metwali, Ahmed; Blum, Arthur; Chen, Hung-lin; Urban, Joseph F.; Flavell, Richard A.; Weinstock, Joel V.

    2010-01-01

    Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL-10 or TGF-β that are important in suppressing colitis. Helminths induce mucosal T cell IL-10 secretion and regulate lamina propria mononuclear cell Th1 cytokine generation in an IL-10 dependent manner in wild-type mice. Helminths also stimulate mucosal TGF-β release. As TGF-β exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF-β signaling in helminthic modulation of intestinal immunity. T cell TGF-β signaling is interrupted in TGF-βRII DN mice by T cell-specific over-expression of a dominant negative TGF-β receptor II. We studied lamina propria mononuclear cell responses in wild-type and TGF-βRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF-β signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL-10 secretion requires intact T cell TGF-β signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF-βRII DN mice. Thus, T cell TGF-β signaling is essential for helminthic stimulation of mucosal IL-10 production, helminthic modulation of intestinal interferon-γ generation and H. polygyrus-mediated suppression of chronic colitis. PMID:19544487

  4. Age-related differential responses to curcumin-induced apoptosis during the initiation of colon cancer in rats.

    PubMed

    Kwon, Youngjoo; Magnuson, Bernadene A

    2009-02-01

    Curcumin is a widely-used dietary supplement and a chemopreventive agent for various cancers. Pre-clinical chemopreventive studies rarely consider the effect of aging. We previously reported that unlike young animals, curcumin is ineffective in middle-aged rats for colon chemoprevention. This study investigated whether resistance to apoptosis during cancer initiation contributes to this age-dependent effect. Young, middle-aged, and old F344 rats were fed either curcumin (0.6%) or control diet. Colonic apoptosis was evaluated 0, 8, and 16 h after azoxymethane (AOM) injection. Colonic Hsp70 mRNA levels, caspase-9 activity, cell proliferation, and crypt morphology were measured. In AOM-treated rats, only middle-aged rats were resistant to curcumin-induced apoptosis whereas cell proliferation was reduced by curcumin in all ages. Curcumin-induced apoptosis was mediated by caspase-9 in young but not older rats. Transcriptional Hsp70 expression was induced in only young rats and was suppressed by curcumin. Therefore, the age-related difference in curcumin chemoprevention is due to a differential response in induction of apoptosis. The mitochondria-dependent pathway seems to mediate curcumin-induced apoptosis in young but not older animals. Hsp70 expression was not related with resistance to curcumin-induced apoptosis. Understanding age-related differences in the apoptotic response may lead to improved translation from pre-clinical animal studies to humans.

  5. Evaluating distribution of the left branch of the middle colic artery and the left colic artery by CT angiography and colonography to classify blood supply to the splenic flexure.

    PubMed

    Fukuoka, Asako; Sasaki, Takahiro; Tsukikawa, Satoshi; Miyajima, Nobuyoshi; Ostubo, Takehito

    2017-05-01

    CT angiography has gained widespread acceptance for preoperative evaluation of blood supply in patients with colorectal cancer. However, there have been few reports that pertain to the splenic flexure, for which surgery is technically difficult. We used preoperative CT angiography and CT colonography to evaluate blood supply to the splenic flexure. We defined the splenic flexure as the junction of the distal third of the transverse colon and the proximal third of the descending colon. We reviewed 191 cases and considered the descending colon as divided into the proximal third and the distal two-thirds; we then determined which part of the descending colon the left colic artery (LCA) entered. We also considered the transverse colon as divided into the proximal two-thirds and the distal third, and evaluated which part of the transverse colon the left branch of the middle colic artery entered. We classified blood supply to the splenic flexure into six types, described by the feeder vessels: type 1, the LCA (39.7%); type 2, the left branch of the middle colic artery (17.8%); type 3, the LCA and the left branch of the middle colic artery (9.9%); type 4, the accessory left colic artery (4.1%); type 5, the LCA and the accessory left colic artery (2.6%); and type 6, the marginal artery (25.6%). We classified blood supply to the splenic flexure into more complex types than previous reports had. Because we dissect the lymph nodes according to the type of blood supply, knowing the type before splenic flexure surgery is crucial. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  6. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway.

    PubMed

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan; Lu, Guotao; Ding, Yanbing

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF- α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1 β ) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation.

  8. Tissue-type plasminogen activator-induced fibrinolysis is enhanced in patients with breast, lung, pancreas and colon cancer.

    PubMed

    Nielsen, Vance G; Matika, Ryan W; Ley, Michele L B; Waer, Amy L; Gharagozloo, Farid; Kim, Samuel; Nfonsam, Valentine N; Ong, Evan S; Jie, Tun; Warneke, James A; Steinbrenner, Evangelina B

    2014-04-01

    Although cancer-mediated changes in hemostatic proteins unquestionably promote hypercoagulation, the effects of neoplasia on fibrinolysis in the circulation are less well defined. The goals of the present investigation were to determine if plasma obtained from patients with breast, lung, pancreas and colon cancer was less or more susceptible to lysis by tissue-type plasminogen activator (tPA) compared to plasma obtained from normal individuals. Archived plasma obtained from patients with breast (n = 18), colon/pancreas (n = 27) or lung (n = 19) was compared to normal individual plasma (n = 30) using a thrombelastographic assay that assessed fibrinolytic vulnerability to exogenously added tPA. Plasma samples were activated with tissue factor/celite, had tPA added, and had data collected until clot lysis occurred. Additional, similar samples had potato carboxypeptidase inhibitor added to assess the role played by thrombin-activatable fibrinolysis inhibitor in cancer-modulated fibrinolysis. Rather than inflicting a hypofibrinolytic state, the three groups of cancers demonstrated increased vulnerability to tPA (e.g. decreased time to lysis, increased speed of lysis, decreased clot lysis time). However, hypercoagulation manifested as increased speed of clot formation and strength compensated for enhanced fibrinolytic vulnerability, resulting in a clot residence time that was not different from normal individual thrombi. In sum, enhanced hypercoagulability associated with cancer was in part diminished by enhanced fibrinolytic vulnerability to tPA.

  9. Flagellin Induces β-Defensin 2 in Human Colonic Ex vivo Infection with Enterohemorrhagic Escherichia coli

    PubMed Central

    Lewis, Steven B.; Prior, Alison; Ellis, Samuel J.; Cook, Vivienne; Chan, Simon S. M.; Gelson, William; Schüller, Stephanie

    2016-01-01

    Enterohemorrhagic E.coli (EHEC) is an important foodborne pathogen in the developed world and can cause life-threatening disease particularly in children. EHEC persists in the human gut by adhering intimately to colonic epithelium and forming characteristic attaching/effacing lesions. In this study, we investigated the innate immune response to EHEC infection with particular focus on antimicrobial peptide and protein expression by colonic epithelium. Using a novel human colonic biopsy model and polarized T84 colon carcinoma cells, we found that EHEC infection induced expression of human β-defensin 2 (hBD2), whereas hBD1, hBD3, LL-37, and lysozyme remained unchanged. Infection with specific EHEC deletion mutants demonstrated that this was dependent on flagellin, and apical exposure to purified flagellin was sufficient to stimulate hBD2 and also interleukin (IL)-8 expression ex vivo and in vitro. Flagellin-mediated hBD2 induction was significantly reduced by inhibitors of NF-κB, MAP kinase p38 and JNK but not ERK1/2. Interestingly, IL-8 secretion by polarized T84 cells was vectorial depending on the side of stimulation, and apical exposure to EHEC or flagellin resulted in apical IL-8 release. Our results demonstrate that EHEC only induces a modest immune response in human colonic epithelium characterized by flagellin-dependent induction of hBD2 and low levels of IL-8. PMID:27446815

  10. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    PubMed

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  11. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  12. The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis.

    PubMed

    Venkatachalam, Karthikkumar; Gunasekaran, Sivagami; Jesudoss, Victor Antony Santiago; Namasivayam, Nalini

    2013-05-01

    This study was carried out to investigate the chemopreventive potential of rosmarinic acid (RA) against 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the effect of RA on tumour formation, antioxidant enzymes, cytochrome P450 content, p-nitrophenol hydroxylase and GST activities. Rats were divided into six groups and fed modified pellet diet for the entire experimental period. Group 1 served as control, group 2 received RA (10 mg/kgb.w.). Groups 3-6 were induced colon cancer by injecting DMH (20 mg/kgb.w.) subcutaneously once a week for the first four weeks (groups 3-6). In addition, RA was administered at the doses of 2.5, 5 and 10 mg/kgb.w. to groups 4-6 respectively. DMH treated rats showed large number of colonic tumours; decreased lipid peroxidation; decreased antioxidant status; elevated CYP450 content and PNPH activities; and decreased GST activity in the liver and colon. Supplementation with RA (5 mgkg/b.w.) to DMH treated rats significantly decreased the number of polyps (50%); reversed the markers of oxidative stress (21.0%); antioxidant status (38.55%); CYP450 content (29.41%); and PNPH activities (21.9%). RA at the dose of 5 mg/kgb.w. showed a most pronounced effect and could be used as a possible chemopreventive agent against colon cancer. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  14. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis

    PubMed Central

    Jang, Jong-Chan; Lee, Kang Min

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis. PMID:27293323

  15. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli.

    PubMed

    Reisner, Andreas; Maierl, Mario; Jörger, Michael; Krause, Robert; Berger, Daniela; Haid, Andrea; Tesic, Dijana; Zechner, Ellen L

    2014-03-01

    Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.

  16. Video Imaging and Spatiotemporal Maps to Analyze Gastrointestinal Motility in Mice.

    PubMed

    Swaminathan, Mathusi; Hill-Yardin, Elisa; Ellis, Melina; Zygorodimos, Matthew; Johnston, Leigh A; Gwynne, Rachel M; Bornstein, Joel C

    2016-02-03

    The enteric nervous system (ENS) plays an important role in regulating gastrointestinal (GI) motility and can function independently of the central nervous system. Changes in ENS function are a major cause of GI symptoms and disease and may contribute to GI symptoms reported in neuropsychiatric disorders including autism. It is well established that isolated colon segments generate spontaneous, rhythmic contractions known as Colonic Migrating Motor Complexes (CMMCs). A procedure to analyze the enteric neural regulation of CMMCs in ex vivo preparations of mouse colon is described. The colon is dissected from the animal and flushed to remove fecal content prior to being cannulated in an organ bath. Data is acquired via a video camera positioned above the organ bath and converted to high-resolution spatiotemporal maps via an in-house software package. Using this technique, baseline contractile patterns and pharmacological effects on ENS function in colon segments can be compared over 3-4 hr. In addition, propagation length and speed of CMMCs can be recorded as well as changes in gut diameter and contraction frequency. This technique is useful for characterizing gastrointestinal motility patterns in transgenic mouse models (and in other species including rat and guinea pig). In this way, pharmacologically induced changes in CMMCs are recorded in wild type mice and in the Neuroligin-3(R451C) mouse model of autism. Furthermore, this technique can be applied to other regions of the GI tract including the duodenum, jejunum and ileum and at different developmental ages in mice.

  17. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    PubMed

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  18. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation.

    PubMed

    Pedro, Dalila F N; Ramos, Alice A; Lima, Cristovao F; Baltazar, Fatima; Pereira-Wilson, Cristina

    2016-02-01

    Salvia officinalis and some of its isolated compounds have been found to be preventive of DNA damage and increased proliferation in vitro in colon cells. In the present study, we used the azoxymethane model to test effects of S. officinalis on colon cancer prevention in vivo. The results showed that sage treatment reduced the number of ACF formed only if administered before azoxymethane injection, demonstrating that sage tea drinking has a chemopreventive effect on colorectal cancer. A decrease in the proliferation marker Ki67 and in H2 O2 -induced and azoxymethane-induced DNA damage to colonocytes and lymphocytes were found with sage treatment. This confirms in vivo the chemopreventive effects of S. officinalis. Taken together, our results show that sage treatment prevented initiation phases of colon carcinogenesis, an effect due, at least in part, to DNA protection, and reduced proliferation rates of colon epithelial cell that prevent mutations and their fixation through cell replication. These chemopreventive effects of S. officinalis on colon cancer add to the many health benefits attributed to sage and encourage its consumption. Copyright © 2015 John Wiley & Sons, Ltd.

  19. 5-HT4 receptors facilitate cholinergic neurotransmission throughout the murine gastrointestinal tract.

    PubMed

    Pauwelyn, V; Lefebvre, R A

    2017-08-01

    In the gastrointestinal tract of several species, facilitating 5-HT 4 receptors were proposed on myenteric cholinergic neurons innervating smooth muscle by in vitro study of the effect of the selective 5-HT 4 receptor agonist prucalopride on submaximal cholinergic contractions. This was not yet established in the murine gastrointestinal tract. In circular smooth muscle strips from murine fundus, jejunum and colon, contractions were induced by electrical field stimulation in the presence of guanethidine, L-NAME and for colon also MRS 2500. Submaximal contractions were induced to study the influence of prucalopride. Electrical field stimulation at reduced voltage induced reproducible submaximal neurogenic and cholinergic contractions as the contractions were abolished by tetrodotoxin and atropine. Hexamethonium had no systematic inhibitory effect but mecamylamine reduced the responses, suggesting that part of the cholinergic response is due to activation of preganglionic neurons. Prucalopride concentration-dependently increased the submaximal cholinergic contractions in the three tissue types, reaching maximum from 0.03 μmol/L onwards. The facilitation in the different series with 0.03 μmol/L prucalopride ranged from 41% to 104%, 30% to 76% and 24% to 74% in fundus, jejunum, and colon, respectively. The effect of 0.03 μmol/L prucalopride was concentration-dependently inhibited by GR 113808. In the murine gastrointestinal tract, activation of 5-HT 4 receptors with prucalopride enhances cholinergic contractions, illustrating facilitation of myenteric cholinergic neurotransmission. The degree of enhancement with prucalopride is of similar magnitude as previously reported in other species, but the effective concentrations are lower than those needed in the gastrointestinal tract of other species. © 2017 John Wiley & Sons Ltd.

  20. Opposing effects of low versus high concentrations of water soluble vitamins/dietary ingredients Vitamin C and niacin on colon cancer stem cells (CSCs).

    PubMed

    Sen, Utsav; Shenoy P, Sudheer; Bose, Bipasha

    2017-10-01

    Colorectal cancer is one of the global causes of cancer deaths. Cancer stem cells (CSCs) inside the tumour niche responsible for metastasis and relapses, and hence need to be targeted for cancer therapeutics. Although dietary fibre and lifestyle changes have been recommended as measures for colorectal cancer prevention, no such recommendations are available for using water soluble vitamins as prophylaxis measure for colorectal cancers. High dose of Vitamin C has been proven to selectively kill colon cancer cells having BRAF and KRAS mutations by inducing oxidative stress. In this study, we show for the first time the opposing effects of the low and high dose of Vitamin C and vitamin B3 on colon CSCs isolated from HT-29 and HCT-15 colorectal carcinoma cell lines. At small doses, both of these vitamins exerted a cell proliferative effect only on CSCs, while there was no change in the proliferation status of non-stem cancer cells and wild-type (WT) populations. On the other hand, the death effects induced by high doses of Vitamin C and B3 were of the order of 50-60% and ∼30% on CSCs from HT-29 and HCT15, respectively. Interestingly, the control fibroblast cell line (NIH3T3) was highly refractory all the tested concentrations of Vitamin C and B3, except for the highest dose - 10,000 μg of Vitamin C that induced only 15% of cell death. Hence, these results indicate the future scope of use of therapeutic doses of Vitamin C and B3 especially in patients with advanced colorectal cancer. © 2017 International Federation for Cell Biology.

  1. Effects of glucocorticoid hormones on cell proliferation in dimethylhydrazine-induced tumours in rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1981-01-01

    Adrenocortical hormones have previously been shown to influence cell proliferation in many tissues. In this report, their influence on cell proliferation in the colonic crypt epithelium and in colonic adenocarcinomata is compared. Colonic tumour cell proliferation was found to be retarded following adrenalectomy and this retardation was reversible by administration of hydrocortisone, or by administration of synthetic steroids with predominantly glucocorticoid activity. Tumour cell proliferation in adrenalectomized rats was not promoted by the mineralocorticoid hormone aldosterone. Neither adrenalectomy, nor adrenocortical hormone treatment, significantly influenced colonic crypt cell proliferation.

  2. Curative effect of Terminalia chebula extract on acetic acid-induced experimental colitis: role of antioxidants, free radicals and acute inflammatory marker.

    PubMed

    Gautam, M K; Goel, Shalini; Ghatule, R R; Singh, A; Nath, G; Goel, R K

    2013-10-01

    The present study has evaluated the healing effects of extract of dried fruit pulp of Terminalia chebula (TCE) on acetic acid (AA)-induced colitis in rats. TCE (600 mg/kg) showed healing effects against AA-induced colonic damage score and weight when administered orally daily for 14 days. TCE was further studied for its effects on various physical (mucus/blood in stool and stool frequency, food and water intake and body weight changes), histology, antibacterial activity and free radicals (NO and LPO), antioxidants (SOD, CAT and GSH) and myeloperoxidase in colonic tissue. Intra-colonic AA administration increased colonic mucosal damage and inflammation, mucus/bloody diarrhoea, stool frequency, but decreased body weight which were reversed by TCE and sulfasalazine (SS, positive control) treatments. TCE showed antibacterial activity and both TCE and SS enhanced the antioxidants, but decreased free radicals and myeloperoxidase activities affected in acetic acid-induced colitis. TCE indicated the presence of active principles with proven antioxidants, anti-inflammatory, immunomodulatory, and free radical scavenging and healing properties. Thus, TCE seemed to be safe and effective in healing experimental colitis.

  3. A Transient Exposure to Symbiosis-Competent Bacteria Induces Light Organ Morphogenesis in the Host Squid.

    PubMed

    Doino, J A; McFall-Ngai, M J

    1995-12-01

    Recent studies of the symbiotic association between the Hawaiian sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri have shown that colonization of juvenile squid with symbiosis-competent bacteria induces morphogenetic changes of the light organ. These changes occur over a 4-day period and include cell death and tissue regression of the external ciliated epithelium. In the absence of bacterial colonization, morphogenesis does not occur. To determine whether the bacteria must be present throughout the morphogenetic process, we used the antibiotic chloramphenicol to clear the light organ of bacteria at various times during the initial colonization. We provide evidence in this study that a transient, 12-hour exposure to symbiosis-competent bacteria is necessary and sufficient to induce tissue regression in the light organ over the next several days. Further, we show that successful entrance into the light organ is necessary to induce morphogenesis, suggesting that induction results from bacterial interaction with internal crypt cells and not with the external ciliated epithelium. Finally, no difference in development was observed when the light organ was colonized by a mutant strain of V. fischeri that did not produce autoinducer, a potential light organ morphogen.

  4. [6]-gingerol induces electrogenic sodium absorption in the rat colon via the capsaicin receptor TRPV1.

    PubMed

    Tsuchiya, Yo; Fujita, Rina; Saitou, Akae; Wajima, Nanako; Aizawa, Fuyuka; Iinuma, Akane

    2014-01-01

    [6]-Gingerol possesses a variety of beneficial pharmacological and therapeutic properties, including anti-carcinogenic, anti-inflammatory, and anti-emetic activities. Although [6]-gingerol is known to regulate the contraction of the intestine, its effect on intestinal ion transport is unclear. The aim of this study was to examine the role of [6]-gingerol in the regulation of electrogenic ion transport in the rat intestine by measuring the transmural potential difference (ΔPD). [6]-Gingerol induced significant positive ΔPD when administered to the serosal but not mucosal side of the colon, ileum, and jejunum; the highest effect was detected in the colon at a concentration of 10 μM. [6]-Gingerol-induced increase in ΔPD was suppressed by ouabain, an inhibitor of Na(+)/K(+)-ATPase, whereas no effect was observed in response to bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) co-transporter. In addition, ΔPD induction by [6]-gingerol was greatly diminished by capsazepine, an inhibitor of the capsaicin receptor TRPV1. These results suggest that [6]-gingerol induced the electrogenic absorption of sodium in the rat colon via TRPV1.

  5. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.

    PubMed

    Zeriouh, Wafa; Nani, Abdelhafid; Belarbi, Meriem; Dumont, Adélie; de Rosny, Charlotte; Aboura, Ikram; Ghanemi, Fatima Zahra; Murtaza, Babar; Patoli, Danish; Thomas, Charles; Apetoh, Lionel; Rébé, Cédric; Delmas, Dominique; Khan, Naim Akhtar; Ghiringhelli, François; Rialland, Mickael; Hichami, Aziz

    2017-01-01

    Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.

  6. In vitro Multi-Species Biofilms of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa and Their Host Interaction during In vivo Colonization of an Otitis Media Rat Model

    PubMed Central

    Yadav, Mukesh K.; Chae, Sung-Won; Go, Yoon Young; Im, Gi Jung; Song, Jae-Jun

    2017-01-01

    Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are known to cause biofilm-related infections. MRSA and PA have been frequently isolated from chronically infected wounds, cystic fibrosis, chronic suppurative otitis media (CSOM), and from indwelling medical devices, and these bacteria co-exist; however, their interaction with each-other or with the host is not well known. In this study, we investigated MRSA and PA multi-species biofilm communities in vitro and their interaction with the host during in vivo colonization using an OM rat-model. In-vitro biofilm formation and in-vivo colonization were studied using CV-microtiter plate assay and OM rat-model respectively. The biofilms were viewed under scanning electron microscope and bacteria were enumerated using cfu counts. The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1,797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA + PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation. These results indicate that poly-microbial colonization induces a host response that is different from that induced by single species infection. PMID:28459043

  7. Effect of entacapone on colon motility and ion transport in a rat model of Parkinson’s disease

    PubMed Central

    Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia

    2015-01-01

    AIM: To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson’s disease (PD) rats. METHODS: Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. RESULTS: COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl- channel blocker diphenylamine-2, 2’-dicarboxylic acid, basolateral application of Na+-K+-2Cl-co-transporter antagonist bumetanide, elimination of Cl- from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl- flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. CONCLUSION: COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl- secretion in the PD rat. PMID:25834315

  8. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility.

    PubMed

    Nassif, A; Longo, W E; Sexe, R; Stratton, M; Standeven, J; Vernava, A M; Kaminski, D L

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10(-8) M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E(2) and thromboxane B(2). Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.

  9. δ- and γ-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages.

    PubMed

    Chen, Jayson X; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T), and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T, and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 wk. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. δ- and γ-Tocopherols Inhibit PhIP/DSS-induced Colon Carcinogenesis by Protection against Early Cellular and DNA Damages

    PubMed Central

    Chen, Jayson X.; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S.

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T) and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 weeks. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. PMID:27175800

  11. α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells.

    PubMed

    Sun, Dongdong; Shen, Weixing; Zhang, Feng; Fan, Huisen; Xu, Changliang; Li, Liu; Tan, Jiani; Miao, Yunjie; Zhang, Haibin; Yang, Ye; Cheng, Haibo

    2018-05-01

    Colon cancer is the third most frequently diagnosed malignancy and has high morbidity worldwide. Epithelial-mesenchymal transition (EMT) has been increasingly implicated in colon cancer progression and metastasis. The present study was aimed to evaluate the potential antitumor activity of α-hederin, a monodesmosidic triterpenoid saponin isolated from Hedera helix, in human SW620 colon cancer cells stimulated with interleukin 6 (IL-6) for mimicking the tumor inflammatory microenvironment in vivo. Cell viability assay showed that IL-6 at 6.25 ng/ml significantly enhanced viability of SW620 cells, and thus this concentration was used to stimulate SW620 cells throughout this study. We observed that α-hederin concentration-dependently inhibited cell viability, migration and invasion in IL-6-treated SW620 cells. Moreover, α-hederin significantly restored IL-6-induced decrease in E-cadherin expression and abolished IL-6-induced increase in N-cadherin, vimentin, fibronectin, twist and snail at both mRNA and protein levels in SW620 cells. These data suggested that α-hederin suppressed IL-6-indcued EMT in colon cancer cells. Further molecular examinations showed that α-hederin inhibited phosphorylation of Janus Kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3(STAT3), and halted the nuclear translocation of phosphorylated STAT3 in IL-6-treated SW620 cells. In addition, JAK2/STAT3 signaling inhibitor AG490 not only produced similar inhibitory effects on EMT markers as α-hederin, but also synergistically enhanced α-hederin's inhibitory effects on EMT markers in IL-6-treated SW620 cells. Altogether, we demonstrated that α-hederin suppressed IL-6-induced EMT associated with disruption of JAK2/STAT3 signaling in colon cancer cells. Our data strongly suggested α-hederin as a promising candidate for intervention of colon cancer and metastasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent Mechanism

    PubMed Central

    Bassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Lu, Pinyi; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno W.; Mane, Shrinivasrao P.; Mohapatra, Saroj K.; Horne, William T.; Guri, Amir J.; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel

    2012-01-01

    Background There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue. PMID:23166823

  13. Staphylococcus aureus colonization related to severity of hand eczema.

    PubMed

    Mernelius, S; Carlsson, E; Henricson, J; Löfgren, S; Lindgren, P-E; Ehricht, R; Monecke, S; Matussek, A; Anderson, C D

    2016-08-01

    Knowledge on Staphylococcus aureus colonization rates and epidemiology in hand eczema is limited. The aim of this study was to clarify some of these issues. Samples were collected by the "glove juice" method from the hands of 59 patients with chronic hand eczema and 24 healthy individuals. Swab samples were taken from anterior nares and throat from 43 of the 59 patients and all healthy individuals. S. aureus were spa typed and analysed by DNA-microarray-based genotyping. The extent of the eczema was evaluated by the hand eczema extent score (HEES). The colonization rate was higher on the hands of hand eczema patients (69 %) compared to healthy individuals (21 %, p < 0.001). This was also seen for bacterial density (p = 0.002). Patients with severe hand eczema (HEES ≥ 13) had a significantly higher S. aureus density on their hands compared to those with milder eczema (HEES = 1 to 12, p = 0.004). There was no difference between patients and healthy individuals regarding colonization rates in anterior nares or throat. spa typing and DNA-microarray-based genotyping indicated certain types more prone to colonize eczematous skin. Simultaneous colonization, in one individual, with S. aureus of different types, was identified in 60-85 % of the study subjects. The colonization rate and density indicate a need for effective treatment of eczema and may have an impact on infection control in healthcare.

  14. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation

    PubMed Central

    Gareau, Mélanie G; Jury, Jennifer; MacQueen, Glenda; Sherman, Philip M; Perdue, Mary H

    2007-01-01

    Background We previously showed that neonatal maternal separation (MS) of rat pups causes immediate and long‐term changes in intestinal physiology. Aim To examine if administration of probiotics affects MS‐induced gut dysfunction. Methods MS pups were separated from the dam for 3 h/day from days 4 to 19; non‐separated (NS) pups served as controls. Twice per day during the separation period, 108 probiotic organisms (two strains of Lactobacillus species) were administered to MS and NS pups; vehicle‐treated pups received saline. Studies were conducted on day 20, when blood was collected for corticosterone measurement as an indication of hypothalamus–pituitary–adrenal (HPA) axis activity, and colonic function was studied in tissues mounted in Ussing chambers. Ion transport was indicated by baseline and stimulated short‐circuit current (Isc); macromolecular permeability was measured by flux of horseradish peroxidase (HRP) across colonic tissues; and bacterial adherence/penetration into the mucosa was quantified by culturing tissues in selective media. Colonic function and host defence were also evaluated at day 60. Results Isc and HRP flux were significantly higher in the colon of MS versus NS pups. There was increased adhesion/penetration of total bacteria in MS pups, but a significant reduction in Lactobacillus species. Probiotic administration ameliorated the MS‐induced gut functional abnormalities and bacterial adhesion/penetration at both day 20 and 60, and reduced the elevated corticosterone levels at day 20. Conclusions The results indicate that altered enteric flora are responsible for colonic pathophysiology. Probiotics improve gut dysfunction induced by MS, at least in part by normalisation of HPA axis activity. PMID:17339238

  15. Local oral immunization with synthetic peptides induces a dual mucosal IgG and salivary IgA antibody response and prevents colonization of Streptococcus mutans.

    PubMed Central

    Lehner, T; Haron, J; Bergmeier, L A; Mehlert, A; Beard, R; Dodd, M; Mielnik, B; Moore, S

    1989-01-01

    A small cell surface antigen of Streptococcus mutans was partially sequenced and the amino terminal peptides of 11, 15 and 20 amino acid residues and a dimer of the 15 and 20 residues peptides were synthesized. The synthetic peptides (SP) were used in topical oral immunization of the gingivomucosal epithelium of macaque monkeys. Sequential examination for antibodies over a period of up to 30 weeks revealed that six applications of the linear or cyclized SP11 and a random SP11 induced negligible or very low antibody levels. In contrast, the SP17 (SP15 with added cysteine at each terminus), SP21 (SP20 with one cysteine) and the dimer (SP35) induced significant anti-SP as well as anti-native streptococcal antibodies in the gingival fluid and in saliva. The functional significance of this immune response was examined by studying its effect on oral colonization of S. mutans following feeding of a carbohydrate-rich diet. Whereas control animals, sham-immunized with a random SP of 11 residues, showed increased colonization of the teeth by S. mutans, there was no colonization or a significant reduction in colonization of animals immunized with the cyclized SP17, linear SP21 or dimerized SP35. These experiments suggest that local immunization with SP derived from the sequences of a streptococcal cell surface antigen induce a dual local immune response of gingival IgG and salivary IgA antibodies against the SP and native SA. These antibodies may be involved in preventing colonization of S. mutans, which is the principal agent in the development of dental caries. PMID:2759661

  16. Sigmoid colon morphology in the population groups of Durban, South Africa, with special reference to sigmoid volvulus.

    PubMed

    Madiba, T E; Haffajee, M R

    2011-05-01

    Sigmoid volvulus demonstrates geographical, racial, and gender variation. This autopsy study was undertaken to establish morphological differences of the sigmoid colon and its mesocolon in which the length and other characteristics were assessed. A total of 590 cadavers were examined (403 African, 91 Indian, and 96 White). Length and height of the sigmoid colon and mesocolon were significantly longer in Africans, and mesocolon root was significantly narrower in Africans. Mesocolic ratio for Africans, Indians, and Whites was 1.1 ± 0.8, 1.8 ± 0.7, and 1.9 ± 1.0, respectively. Africans had a significantly high incidence of redundant sigmoid colon with the long-narrow type and suprapelvic position predominating (P = 0.003); the opposite applied to the classic type. There was no difference in sigmoid colon length, mesocolon height, and width between males and females in all population groups. Among Africans, the long-narrow type was more common in males, and the classic and long-broad types were more common in females. Splaying of teniae coli and thickening of the mesentery were more common in Africans. Tethering of the sigmoid colon to the posterior abdominal wall was less common in Africans compared with other population groups. In conclusion, the sigmoid colon was longer, and the sigmoid mesocolon root was narrower in Africans compared with the other population groups, and the sigmoid colon had a suprapelvic disposition among Africans. In Africans, the sigmoid colon was longer in males with a long-narrow shape. These differences may explain geographical and racial differences in sigmoid volvulus. Copyright © 2011 Wiley-Liss, Inc.

  17. Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant in Patients Undergoing Hemodialysis and HIV Infected in a Hospital in Bogotá, Colombia

    PubMed Central

    Hidalgo, Marylin; Carvajal, Lina P.; Rincón, Sandra; Faccini-Martínez, Álvaro A.; Tres Palacios, Alba A.; Mercado, Marcela; Palomá, Sandra L.; Rayo, Leidy X.; Acevedo, Jessica A.; Reyes, Jinnethe; Panesso, Diana; García-Padilla, Paola; Alvarez, Carlos; Arias, Cesar A.

    2015-01-01

    We aimed to determine the prevalence of MRSA colonization and examine the molecular characteristics of colonizing isolates in patients receiving hemodialysis and HIV-infected in a Colombian hospital. Patients on hemodialysis and HIV-infected were prospectively followed between July 2011 and June 2012 in Bogota, Colombia. Nasal and axillary swabs were obtained and cultured. Colonizing S. aureus isolates were identified by standard and molecular techniques. Molecular typing was performed by using pulse-field gel electrophoresis and evaluating the presence of lukF-PV/lukS-PV by PCR. A total of 29% (n = 82) of HIV-infected and 45.5% (n = 15) of patients on hemodialysis exhibited S. aureus colonization. MSSA/MRSA colonization was observed in 28% and 3.6% of the HIV patients, respectively and in 42.4% and 13.3% of the hemodialysis patients, respectively. Staphylococcal cassette chromosome mec typing showed that four MRSA isolates harbored the type IV cassette, and one type I. In the hemodialysis group, two MRSA isolates were classified as belonging to the USA300-LV genetic lineage. Conversely, in the HIV infected group, no colonizing isolates belonging to the USA300-Latin American Variant (UDA300-LV) lineage were identified. Colonizing isolates recovered from the HIV-infected group belonged to the prevalent hospital-associated clones circulating in Latin America (Chilean [n = 1] and Pediatric [n = 2]). The prevalence of MRSA colonization in the study groups was 3.6% (HIV) and 13.3% (hemodialysis). Surveillance programs should be implemented in this group of patients in order to understand the dynamics of colonization and infection in high-risk patients. PMID:26474075

  18. Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant in Patients Undergoing Hemodialysis and HIV Infected in a Hospital in Bogotá, Colombia.

    PubMed

    Hidalgo, Marylin; Carvajal, Lina P; Rincón, Sandra; Faccini-Martínez, Álvaro A; Tres Palacios, Alba A; Mercado, Marcela; Palomá, Sandra L; Rayo, Leidy X; Acevedo, Jessica A; Reyes, Jinnethe; Panesso, Diana; García-Padilla, Paola; Alvarez, Carlos; Arias, Cesar A

    2015-01-01

    We aimed to determine the prevalence of MRSA colonization and examine the molecular characteristics of colonizing isolates in patients receiving hemodialysis and HIV-infected in a Colombian hospital. Patients on hemodialysis and HIV-infected were prospectively followed between July 2011 and June 2012 in Bogota, Colombia. Nasal and axillary swabs were obtained and cultured. Colonizing S. aureus isolates were identified by standard and molecular techniques. Molecular typing was performed by using pulse-field gel electrophoresis and evaluating the presence of lukF-PV/lukS-PV by PCR. A total of 29% (n = 82) of HIV-infected and 45.5% (n = 15) of patients on hemodialysis exhibited S. aureus colonization. MSSA/MRSA colonization was observed in 28% and 3.6% of the HIV patients, respectively and in 42.4% and 13.3% of the hemodialysis patients, respectively. Staphylococcal cassette chromosome mec typing showed that four MRSA isolates harbored the type IV cassette, and one type I. In the hemodialysis group, two MRSA isolates were classified as belonging to the USA300-LV genetic lineage. Conversely, in the HIV infected group, no colonizing isolates belonging to the USA300-Latin American Variant (UDA300-LV) lineage were identified. Colonizing isolates recovered from the HIV-infected group belonged to the prevalent hospital-associated clones circulating in Latin America (Chilean [n = 1] and Pediatric [n = 2]). The prevalence of MRSA colonization in the study groups was 3.6% (HIV) and 13.3% (hemodialysis). Surveillance programs should be implemented in this group of patients in order to understand the dynamics of colonization and infection in high-risk patients.

  19. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling.

    PubMed

    Reichardt, François; Chassaing, Benoit; Nezami, Behtash Ghazi; Li, Ge; Tabatabavakili, Sahar; Mwangi, Simon; Uppal, Karan; Liang, Bill; Vijay-Kumar, Matam; Jones, Dean; Gewirtz, Andrew T; Srinivasan, Shanthi

    2017-03-01

    A high-fat diet (60% kcal from fat) is associated with motility disorders inducing constipation and loss of nitrergic myenteric neurons in the proximal colon. Gut microbiota dysbiosis, which occurs in response to HFD, contributes to endotoxaemia. High levels of lipopolysaccharide lead to apoptosis in cultured myenteric neurons that express Toll-like receptor 4 (TLR4). Consumption of a Western diet (WD) (35% kcal from fat) for 6 weeks leads to gut microbiota dysbiosis associated with altered bacterial metabolites and increased levels of plasma free fatty acids. These disorders precede the nitrergic myenteric cell loss observed in the proximal colon. Mice lacking TLR4 did not exhibit WD-induced myenteric cell loss and dysmotility. Lipopolysaccharide-induced in vitro enteric neurodegeneration requires the presence of palmitate and may be a result of enhanced NO production. The present study highlights the critical role of plasma saturated free fatty acids that are abundant in the WD with respect to driving enteric neuropathy and colonic dysmotility. The consumption of a high-fat diet (HFD) is associated with myenteric neurodegeneration, which in turn is associated with delayed colonic transit and constipation. We examined the hypothesis that an inherent increase in plasma free fatty acids (FFA) in the HFD together with an HFD-induced alteration in gut microbiota contributes to the pathophysiology of these disorders. C57BL/6 mice were fed a Western diet (WD) (35% kcal from fat enriched in palmitate) or a purified regular diet (16.9% kcal from fat) for 3, 6, 9 and 12 weeks. Gut microbiota dysbiosis was investigated by fecal lipopolysaccharide (LPS) measurement and metabolomics (linear trap quadrupole-Fourier transform mass spectrometer) analysis. Plasma FFA and LPS levels were assessed, in addition to colonic and ileal nitrergic myenteric neuron quantifications and motility. Compared to regular diet-fed control mice, WD-fed mice gained significantly more weight without blood glucose alteration. Dysbiosis was exhibited after 6 weeks of feeding, as reflected by increased fecal LPS and bacterial metabolites and concomitant higher plasma FFA. The numbers of nitrergic myenteric neurons were reduced in the proximal colon after 9 and 12 weeks of WD and this was also associated with delayed colonic transit. WD-fed Toll-like receptor 4 (TLR4) -/- mice did not exhibit myenteric cell loss or dysmotility. Finally, LPS (0.5-2 ng·ml -1 ) and palmitate (20 and 30 μm) acted synergistically to induce neuronal cell death in vitro, which was prevented by the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. In conclusion, WD-feeding results in increased levels of FFA and microbiota that, even in absence of hyperglycaemia or overt endotoxaemia, synergistically induce TLR4-mediated neurodegeneration and dysmotility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Sambar, an Indian Dish Prevents the Development of Dimethyl Hydrazine–Induced Colon Cancer: A Preclinical Study

    PubMed Central

    Prasad, Vutturu Ganga; Reddy, Neetinkumar; Francis, Albi; Nayak, Pawan G.; Kishore, Anoop; Nandakumar, Krishnadas; Rao, Mallikarjuna C.; Shenoy, Rekha

    2016-01-01

    Background: Colon cancer (CC) is the third commonly diagnosed cancer and the second leading cause of mortality in the US when compared to India where prevalence is less. Possible reason could be the vegetarian diet comprising spices used in curry powders. Researchers believe that 70% of the cases are associated with diet. Spices have inherited a rich tradition for their flavor and medicinal properties. Researchers have been oriented towards spices present in food items for their antitumorigenic properties. Objective: We investigated the effects of sambar as a preventive measure for 1,2-dimethyl hydrazine (DMH)-induced CC in Wistar albino rats. Materials and Methods: The animals were divided into three groups (n = 6) namely control, DMH, and sambar. At the end of the experimental period, the animals were killed using anesthesia and the colons and livers were examined. Results: All the treatment groups exhibited a significant change in the number of aberrant crypt foci (ACF). Sambar group showed a significant change in the colonic GSH when compared to both normal and DMH groups. A significant reduction in the liver GSH was noted in the sambar group. Only sambar group showed a significant change in the liver catalase levels when compared to DMH. There was a significant reduction in the colonic nitrite in the sambar-treated group; 2.94 ± 0.29 when compared to DMH control at 8.09 ± 1.32. On the contrary, a significant rise in the liver nitrite levels was observed in the sambar-treated rats. Conclusion: Sambar may prevent the risk of CC when consumed in dietary proportions. SUMMARY Consumption of sambar significantly reduced aberrant crypt foci in DMH-induced colon cancer modelSambar treatment prevented DMH-induced oxidative changes in the colonic tissue, indicating its antioxidant roleSambar comprises a variety of spices that exhibited both pro- and antioxidant properties in different tissues, leading to its overall beneficial effect in this model. Abbreviations used: ACF: aberrant crypt foci, CC: colon cancer, DMH: 1,2-dimethyl hydrazine, GSH: glutathione, IL-6: Interleukin-6, TNF-α: Tumor necrosis factor-alpha. PMID:27761072

  1. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice

    PubMed Central

    Wu, Alex G.; Jaja-Chimedza, Asha; Graf, Brittany L.; Waterman, Carrie; Verzi, Michael P.; Raskin, Ilya

    2017-01-01

    Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC. PMID:28922365

  2. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice.

    PubMed

    Kim, Youjin; Wu, Alex G; Jaja-Chimedza, Asha; Graf, Brittany L; Waterman, Carrie; Verzi, Michael P; Raskin, Ilya

    2017-01-01

    Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC.

  3. Benzenediamine analog FC-99 inhibits TLR2 and TLR4 signaling in peritoneal macrophage in vitro.

    PubMed

    Yang, Liu; Dou, Huan; Song, Yuxian; Hou, Yayi

    2016-01-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder, characterized by abnormally increased expression of Toll-like receptors TLR2 and TLR4 in the colon and increased pro-inflammatory cytokine production by macrophages. In the present study, we explored the effect of FC-99, a novel benzenediamine analog, on dextran sulfate sodium (DSS)-induced mouse colitis and investigated its potential mechanism. The results revealed that FC-99 improved the colon morphology and the clinical parameters in DSS-induced mouse colitis. FC-99 inhibited the increase of DSS-induced T helper cells (Th) 1 and Th17 and enhanced the number of regulatory T cells (Treg) in mesenteric lymph nodes (MLN), but had no effect on Th2 cells. FC-99 also suppressed the DSS-induced secretion of interleukin (IL)-1β, IL-6, and the tumor necrosis factor (TNF)-α in the colon and hindered the infiltration of macrophages into colon lamina propria. Flow cytometric analysis also confirmed that FC-99 reduced CD11b(+)F4/80(+) colon macrophages, and down-regulated TNF-α level in situ. Moreover, FC-99 inhibited concentration-dependently the expression of TNF-α and IL-6 in vitro from mouse peritoneal macrophages, which were induced by TLR ligands: PamCSK4 and peptidoglycan (PGN, TLR2 ligand) as well as LPS (TLR4 ligand). Of note, FC-99 also suppressed the activation of TLR2 and TLR4 signaling pathways and the downstream nuclear factor-κB (NF-κB) in the DSS-induced mouse colitis. FC-99 improved the condition of DSS-induced mouse colitis by inhibiting the activation of TLR2 and TLR4 signaling pathways in macrophage. These results suggest that FC-99 may be developed as a new therapeutic drug for IBD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape.

    PubMed

    Chatterjee, Subhadeep; Newman, Karyn L; Lindow, Steven E

    2008-10-01

    Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.

  5. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  6. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK.

    PubMed

    Kang, Nam Joo; Lee, Ki Won; Kim, Bo Hyun; Bode, Ann M; Lee, Hyo-Jeong; Heo, Yong-Seok; Boardman, Lisa; Limburg, Paul; Lee, Hyong Joo; Dong, Zigang

    2011-06-01

    Epidemiological studies suggest that coffee consumption reduces the risk of cancers, including colon cancer, but the molecular mechanisms and target(s) underlying the chemopreventive effects of coffee and its active ingredient(s) remain unknown. Based on serving size or daily units, coffee contains larger amounts of phenolic phytochemicals than tea or red wine. Coffee or chlorogenic acid inhibited CT-26 colon cancer cell-induced lung metastasis by blocking phosphorylation of ERKs. Coffee or caffeic acid (CaA) strongly suppressed mitogen-activated MEK1 and TOPK activities and bound directly to either MEK1 or TOPK in an ATP-noncompetitive manner. Coffee or CaA, but not caffeine, inhibited ERKs phosphorylation, AP-1 and NF-κB transactivation and subsequently inhibited TPA-, EGF- and H-Ras-induced neoplastic transformation of JB6 P+ cells. Coffee consumption was also associated with a significant attenuation of ERKs phosphorylation in colon cancer patients. These results suggest that coffee and CaA target MEK1 and TOPK to suppress colon cancer metastasis and neoplastic cell transformation.

  7. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  8. Induction of Colon Cancer in Mice with 1,2-Dimethylhydrazine.

    PubMed

    Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2015-09-01

    In this protocol, colon cancer is induced in mice through a series of injections with 1,2-dimethylhydrazine. Mice will develop primarily colon tumors starting at about 3 mo after the first injection. Tumors in the lung, uterus, and small intestine may also be seen, as well as lymphomas. © 2015 Cold Spring Harbor Laboratory Press.

  9. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    PubMed

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

  10. Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer activity in vitro and in vivo.

    PubMed

    Wang, Lijun; Zhu, Yun-Rong; Wang, Shaowei; Zhao, Song

    2016-09-01

    Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 are frequently dysregulated in human colon cancers. In the present study, we evaluated the potential anti-colon cancer cell activity by a novel mTORC1/2 dual inhibitor WYE-354. We showed that WYE-354 was anti-survival and anti-proliferative when adding to primary (patient-derived) and established (HCT-116, HT-29, Caco-2, LoVo, and DLD-1 lines) colon cancer cells. In addition, WYE-354 treatment activated caspase-dependent apoptosis in the colon cancer cells. Mechanistically, WYE-354 blocked mTORC1 and mTORC2 activation. Meanwhile, it also induced autophagy activation in the colon cancer cells. Autophagy inhibitors (bafilomycin A1 and 3-methyladenine), or shRNA-mediated knockdown of autophagy elements (Beclin-1 and ATG-5), remarkably sensitized WYE-354-mediated anti-colon cancer cell activity in vitro. Further studies showed that WYE-354 administration inhibited HT-29 xenograft growth in severe combined immunodeficient (SCID) mice. Importantly, its activity in vivo was further potentiated with co-administration of the autophagy inhibitor 3-MA. Phosphorylations of Akt (Ser-473) and S6 were also decreased in WYE-354-treated HT-29 xenografts. Together, these pre-clinical results demonstrate the potent anti-colon cancer cell activity by WYE-354, and its activity may be further augmented with autophagy inhibition.

  11. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    PubMed

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  12. Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor.

    PubMed

    Medani, M; Collins, D; Mohan, H M; Walsh, E; Winter, D C; Baird, A W

    2015-02-01

    Prostaglandin D2 is released by mast cells and is important in allergies. Its role in gastrointestinal function is not clearly defined. This study aimed to determine the effect of exogenous PGD2 on ion transport in ex vivo normal human colonic mucosa. Mucosal sheets were mounted in Ussing chambers and voltage clamped to zero electric potential. Ion transport was quantified as changes in short-circuit current. In separate experiments epithelial monolayers or colonic crypts, isolated by calcium chelation, were treated with PGD2 and cAMP levels determined by ELISA or calcium levels were determined by fluorimetry. PGD2 caused a sustained, concentration-dependent rise in short-circuit current by increasing chloride secretion (EC50=376nM). This effect of PGD2 is mediated by the DP1 receptor, as the selective DP1 receptor antagonist BW A686C inhibited PGD2-induced but not PGE2-induced rise in short-circuit current. PGD2 also increased intracellular cAMP in isolated colonic crypts with no measurable influence on cytosolic calcium. PGD2 induces chloride secretion in isolated human colonic mucosa in a concentration-dependent manner with concomitant elevation of cytoplasmic cAMP in epithelial cells. The involvement of DP2 receptor subtypes has not previously been considered in regulation of ion transport in human intestine. Since inflammatory stimuli may induce production of eicosanoids, selective regulation of these pathways may be pivotal in determining therapeutic strategies and in understanding disease. Copyright © 2014. Published by Elsevier Inc.

  13. Exosomal microRNA Signatures in the Diagnosis and Prognosis of Ovarian Cancer

    DTIC Science & Technology

    2013-04-01

    types, including CLL ,41 breast cancer,42 glioblastoma,43 thyroid papillary carcinoma,44 hepatocellular carcinoma,45 ovarian cancer,46 colon...vesicles derived from cancer stem cells were shown to contain pro-angiogenic RNAs able to induce a pre-metastatic niche in the lungs, whereas those...cancer stem cells contained miR29a, miR650, and miR151, all associated with tumor invasion and metastases, along with miR19b, miR29c, and miR151

  14. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    PubMed Central

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  15. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice.

    PubMed

    Tsoi, Ho; Chu, Eagle S H; Zhang, Xiang; Sheng, Jianqiu; Nakatsu, Geicho; Ng, Siew C; Chan, Anthony W H; Chan, Francis K L; Sung, Joseph J Y; Yu, Jun

    2017-05-01

    Stool samples from patients with colorectal cancer (CRC) have a higher abundance of Peptostreptococcus anaerobius than stool from individuals without CRC, based on metagenome sequencing. We investigated whether P anaerobius contributes to colon tumor formation in mice and its possible mechanisms of carcinogenesis. We performed quantitative polymerase chain reaction analyses to measure P anaerobius in 112 stool samples and 255 colon biopsies from patients with CRC or advanced adenoma and from healthy individuals (controls) undergoing colonoscopy examination at hospitals in Hong Kong and Beijing. C57BL/6 mice were given broad-spectrum antibiotics, followed by a single dose of azoxymethane, to induce colon tumor formation. Three days later, mice were given P anaerobius or Esherichia coli MG1655 (control bacteria), via gavage, for 6 weeks. Some mice were also given the nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin. Intestine tissues were collected and analyzed histologically. The colon epithelial cell line NCM460 and colon cancer cell lines HT-29 and Caco-2 were exposed to P anaerobius or control bacteria; cells were analyzed by immunoblot, proliferation, and bacterial attachment analyses and compared in gene expression profiling studies. Gene expression was knocked down in these cell lines with small interfering RNAs. P anaerobius was significantly enriched in stool samples from patients with CRC and in biopsies from patients with colorectal adenoma or CRC compared with controls. Mice depleted of bacteria and exposed to azoxymethane and P anaerobius had a higher incidence of intestinal dysplasia (63%) compared with mice not given the bacteria (8.3%; P < .01). P anaerobius mainly colonized the colon compared with the rest of the intestine. Colon cells exposed to P anaerobius had significantly higher levels of proliferation than control cells. We found genes that regulate cholesterol biosynthesis, Toll-like receptor (TLR) signaling, and AMP-activated protein kinase signaling to be significantly up-regulated in cells exposed to P anaerobius. Total cholesterol levels were significantly increased in colon cell lines exposed to P anaerobius via activation of sterol regulatory element-binding protein 2. P anaerobius interacted with TLR2 and TLR4 to increase intracellular levels of reactive oxidative species, which promoted cholesterol synthesis and cell proliferation. Depletion of reactive oxidative species by knockdown of TLR2 or TLR4, or incubation of cells with an antioxidant, prevented P anaerobius from inducing cholesterol biosynthesis and proliferation. Levels of P anaerobius are increased in human colon tumor tissues and adenomas compared with non-tumor tissues; this bacteria increases colon dysplasia in a mouse model of CRC. P anaerobius interacts with TLR2 and TLR4 on colon cells to increase levels of reactive oxidative species, which promotes cholesterol synthesis and cell proliferation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Gowelli, Hanan M., E-mail: dr_Hanan_el_gowali@hotmail.com; Saad, Evan I.; Abdel-Galil, Abdel-Galil A.

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5 mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associatedmore » with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. - Highlights: • Lipoic acid is more effective than cyclosporine in protection against colitis. • Lipoic acid elevates colon antioxidant defensive mechanism and reduces inflammation. • Co-administration of lipoic acid and cyclosporine aggravates colon damage. • NO/COX-2/miR-210 elevations mediate cyclosporine–lipoic acid interaction.« less

  17. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  18. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells

    PubMed Central

    Lugini, Luana; Valtieri, Mauro; Federici, Cristina; Cecchetti, Serena; Meschini, Stefania; Condello, Maria; Signore, Michele; Fais, Stefano

    2016-01-01

    Background Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. Results CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Materials and Methods Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. Conclusions CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer. PMID:27418137

  19. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells.

    PubMed

    Lugini, Luana; Valtieri, Mauro; Federici, Cristina; Cecchetti, Serena; Meschini, Stefania; Condello, Maria; Signore, Michele; Fais, Stefano

    2016-08-02

    Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.

  20. Prevalence of and risk factors for community-acquired methicillin-resistant and methicillin-sensitive staphylococcus aureus colonization in children seen in a practice-based research network.

    PubMed

    Fritz, Stephanie A; Garbutt, Jane; Elward, Alexis; Shannon, William; Storch, Gregory A

    2008-06-01

    We sought to define the prevalence of and risk factors for methicillin-resistant Staphylococcus aureus nasal colonization in the St Louis pediatric population. Children from birth to 18 years of age presenting for sick and well visits were recruited from pediatric practices affiliated with a practice-based research network. Nasal swabs were obtained, and a questionnaire was administered. We enrolled 1300 participants from 11 practices. The prevalence of methicillin-resistant S aureus nasal colonization varied according to practice, from 0% to 9% (mean: 2.6%). The estimated population prevalence of methicillin-resistant S aureus nasal colonization for the 2 main counties of the St Louis metropolitan area was 2.4%. Of the 32 methicillin-resistant S aureus isolates, 9 (28%) were health care-associated types and 21 (66%) were community-acquired types. A significantly greater number of children with community-acquired methicillin-resistant S aureus were black and were enrolled in Medicaid, in comparison with children colonized with health care-associated methicillin-resistant S aureus. Children with both types of methicillin-resistant S aureus colonization had increased contact with health care, compared with children without colonization. Methicillin-sensitive S aureus nasal colonization ranged from 9% to 31% among practices (mean: 24%). The estimated population prevalence of methicillin-sensitive S aureus was 24.6%. Risk factors associated with methicillin-sensitive S aureus colonization included pet ownership, fingernail biting, and sports participation. Methicillin-resistant S aureus colonization is widespread among children in our community and includes strains associated with health care-associated and community-acquired infections.

  1. Clostridium difficile: Investigating Transmission Patterns between Infected and Colonized Patients using whole Genome Sequencing.

    PubMed

    Kong, L Y; Eyre, D W; Corbeil, J; Raymond, F; Walker, A S; Wilcox, M H; Crook, D W; Michaud, S; Toye, B; Frost, E; Dendukuri, N; Schiller, I; Bourgault, A M; Dascal, A; Oughton, M; Longtin, Y; Poirier, L; Brassard, P; Turgeon, N; Gilca, R; Loo, V G

    2018-05-28

    Whole genome sequencing (WGS) studies can enhance our understanding of the role of patients with asymptomatic Clostridium difficile colonization in transmission. Isolates obtained from patients with Clostridium difficile infection (CDI) and colonization identified in a study conducted during 2006 - 2007 at six Canadian hospitals underwent typing by pulsed-field gel electrophoresis, multilocus sequence typing, and WGS. Isolates from incident CDI cases not in the initial study were also sequenced where possible. Ward movement and typing data were combined to identify plausible donors for each CDI case, as defined by shared time and space within predefined limits. Proportions of plausible donors for CDI cases that were colonized, infected, or both were examined. Five hundred and fifty-four isolates were sequenced successfully, 353 from colonized and 201 from CDI cases. The NAP1/027/ST1 strain was the most common strain, found in 124 (62%) of infected and 92 (26%) of colonized patients. A donor with a plausible ward link was found for 81 CDI cases (40%) using WGS with a threshold of ≤2 single nucleotide variants to determine relatedness. Sixty-five (32%) CDI cases could be linked to both infected and colonized donors. Exclusive linkages to infected and colonized donors were found for 28 (14%) and 12 (6%) CDI cases, respectively. Colonized patients contribute to transmission, but CDI cases are more likely linked to other infected patients than colonized patients in this cohort with high rates of NAP1/027/ST1 strain, highlighting the importance of local prevalence of virulent strains in determining transmission dynamics.

  2. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells.

    PubMed

    Visalli, Giuseppa; Ferlazzo, Nadia; Cirmi, Santa; Campiglia, Pietro; Gangemi, Sebastiano; Di Pietro, Angela; Calapai, Gioacchino; Navarra, Michele

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality in the industrialized world, second to lung cancer. A lot of evidences highlight that a diet rich in fruits and vegetables may reduce the risk of some types of cancer including CRC. In this study we demonstrate that Citrus bergamia juice extracts (BJe) reduces CRC cell growth by multiple mechanisms. Low BJe concentrations inhibit MAPKs pathway and alter apoptosis-related proteins, that in turn induce cell cycle arrest and apoptosis in HT-29 cells. Instead, high concentrations of BJe induce oxidative stress causing DNA damage. Our study highlights the role of BJe as modulator of cell apoptosis in CRC cells and strengthens our previous hypothesis that the flavonoid fraction of bergamot juice may play a role as anti-cancer drug.

  3. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway.

    PubMed

    Zhao, Yue; Sun, Yang; Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-09-22

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.

  4. Anti-Colitic Effects of Kanjangs (Fermented Soy Sauce and Sesame Sauce) in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee

    2014-01-01

    Abstract This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces. PMID:25188463

  5. Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice.

    PubMed

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee; Park, Kun-Young

    2014-09-01

    This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces.

  6. Protective effect of decursin and decursinol angelate-rich Angelica gigas Nakai extract on dextran sulfate sodium-induced murine ulcerative colitis.

    PubMed

    Oh, Sa-Rang; Ok, Seon; Jung, Tae-Sung; Jeon, Sang-Ok; Park, Ji-Min; Jung, Ji-Wook; Ryu, Deok-Seon

    2017-09-01

    To investigate the anti-inflammatory effects of decursin and decursinol angelate-rich Angelica gigas Nakai (AGNE) on dextran sulfate sodium (DSS)-induced murine ulcerative colitis (UC). The therapeutic effect of an AGNE was analyzed in a mouse model of UC induced by DSS. Disease activity index values were measured by clinical signs such as a weight loss, stool consistency, rectal bleeding and colon length. A histological analysis was performed using hematoxylin and eosin staining. Key inflammatory cytokines and mediators including IL-6, TNF-α, PGE 2 , COX-2 and HIF-1α were assayed by enzyme-linked immunosorbent assay or western blotting. Treatment with the AGNE at 10, 20, and 40 mg/kg alleviated weight loss, decreased disease activity index scores, and reduced colon shortening in mice with DSS-induced UC. AGNE inhibited the production of IL-6 and TNF-α in serum and colon tissue. Moreover, AGNE suppressed the increased expression of COX-2 and HIF-1α and the increased production of PGE 2 in colon tissue were observed in mice with DSS-induced UC. Additionally, histological damage was also alleviated by AGNE treatment. The findings of this study verified that AGNE significantly improves clinical symptoms and reduces the activity of various inflammatory mediators. These results indicate the AGNE has the therapeutic potential in mice with DSS-induced UC. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  7. The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats.

    PubMed

    Tardieu, D; Jaeg, J P; Deloly, A; Corpet, D E; Cadet, J; Petit, C R

    2000-05-01

    As we have shown previously [Tardieu,D., Jaeg,J.P., Cadet,J., Embvani,E., Corpet,D.E. and Petit,C. (1998) Cancer Lett, 134, 1-5], a 48-h treatment of 6% dextran sodium sulphate (DSS) in drinking water led to a reproducible 2-fold increase of the mutagenic oxidative lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in colonic mucosa DNA of rats in vivo. The aim of this study was to test the effect of nimesulide, a preferential COX-2 inhibitor, on the DSS-induced 8-oxodGuo increase. We show that nimesulide when administered orally, simultaneously with DSS at 5 mg/kg/day, not only totally prevents 8-oxodGuo formation but also suppresses the 5-fold increase of superoxide induced by DSS in the colonic mucosa. This was measured by in vivo formazan blue precipitation (P < 0.01 in the Wilcoxon test). Moreover, nimesulide enhances apoptosis by approximately 30% as compared with the already high level induced by DSS treatment (P < 0.01). It is suggested that the significant increase in mutagenic oxidative DNA damage, produced by mild acute colonic inflammation, could be important in the initiation of colon cancer in both animals and man. These effects may explain at least partly the well-documented protective action towards colon cancer by preferential COX-2 inhibitors, either xenobiotics such as nimesulide or natural nutrients.

  8. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect.

    PubMed

    Aldini, Rita; Budriesi, Roberta; Roda, Giulia; Micucci, Matteo; Ioan, Pierfranco; D'Errico-Grigioni, Antonia; Sartini, Alessandro; Guidetti, Elena; Marocchi, Margherita; Cevenini, Monica; Rosini, Francesca; Montagnani, Marco; Chiarini, Alberto; Mazzella, Giuseppe

    2012-01-01

    Curcuma has long been used as an anti-inflammatory agent in inflammatory bowel disease. Since gastrointestinal motility is impaired in inflammatory states, the aim of this work was to evaluate if Curcuma Longa had any effect on intestinal motility. The biological activity of Curcuma extract was evaluated against Carbachol induced contraction in isolated mice intestine. Acute and chronic colitis were induced in Balb/c mice by Dextran Sulphate Sodium administration (5% and 2.5% respectively) and either Curcuma extract (200 mg/kg/day) or placebo was thereafter administered for 7 and 21 days respectively. Spontaneous contractions and the response to Carbachol and Atropine of ileum and colon were studied after colitis induction and Curcuma administration. Curcuma extract reduced the spontaneous contractions in the ileum and colon; the maximal response to Carbachol was inhibited in a non-competitive and reversible manner. Similar results were obtained in ileum and colon from Curcuma fed mice. DSS administration decreased the motility, mainly in the colon and Curcuma almost restored both the spontaneous contractions and the response to Carbachol after 14 days assumption, compared to standard diet, but a prolonged assumption of Curcuma decreased the spontaneous and Carbachol-induced contractions. Curcuma extract has a direct and indirect myorelaxant effect on mouse ileum and colon, independent of the anti-inflammatory effect. The indirect effect is reversible and non-competitive with the cholinergic agent. These results suggest the use of curcuma extract as a spasmolytic agent.

  9. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.

    PubMed

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof

    2015-08-11

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.

  10. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway

    PubMed Central

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF-α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1β) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation. PMID:29507526

  11. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

    PubMed Central

    Nassif, A.; Sexe, R.; Stratton, M.; Standeven, J.; Vernava, A. M.; Kaminski, D. L.

    1995-01-01

    We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation. PMID:18475679

  12. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  13. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.

  15. Dolastatin 15, a mollusk linear peptide, and Celecoxib, a selective cyclooxygenase-2 inhibitor, prevent preneoplastic colonic lesions and induce apoptosis through inhibition of the regulatory transcription factor NF-κB and an inflammatory protein, iNOS.

    PubMed

    Piplani, Honit; Vaish, Vivek; Sanyal, Sankar Nath

    2012-11-01

    The marine ecosystem is a unique and enormously rich source of natural products with potential chemopreventive applications in cancer. In the present study, we explored the chemopreventive role and the molecular mechanism of Dolastatin, a linear peptide from an Indian Ocean mollusk, and Celecoxib, a well-established cyclooxygenase-2 (COX-2) inhibitor in an individual as well as in a combination regimen in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colon carcinogenesis in a rat model. After a 6-week treatment with DMH, morphological analysis revealed a marked occurrence of preneoplastic features in the colonic mucosa, whereas histologically well-characterized dysplasia and hyperplasia were observed in DMH-treated animals. Simultaneous administration of Celecoxib and Dolastatin reduced these features significantly. DMH treatment affected the number of apoptotic cells in colonic enterocytes, which reverted to the normal level with the use of Celecoxib and Dolastatin. Inflammation remains the dominant molecular mechanism in the development of multiple plaque lesions, the carcinogenic lesions in a DMH-induced process that may be mediated by COX-2. Western blot and immunofluorescence analysis revealed a higher expression of COX-2 and nuclear factor-κB, the transcription factors responsible for proinflammatory proteins such as TNFα, and also the inducible nitric oxide synthase in the DMH group, which was further recovered significantly with the use of Celecoxib and Dolastatin. In-silico molecular docking analysis of Dolastatin as a ligand with various regulatory proteins suggests that although the peptide failed to dock to COX-2, it successfully did so with inducible nitric oxide synthase, thereby indicating the potential of this inflammatory protein as a molecular anticancer target in colon carcinogenesis.

  16. Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.

    PubMed

    Hasler, A H; Washabau, R J

    1997-01-01

    We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.

  17. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells.

    PubMed

    He, Guodong; Feng, Chen; Vinothkumar, Rajamanickam; Chen, Weiqian; Dai, Xuanxuan; Chen, Xi; Ye, Qingqing; Qiu, Chenyu; Zhou, Huiping; Wang, Yi; Liang, Guang; Xie, Yubo; Wu, Wei

    2016-12-01

    Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H 2 O 2 and pretreatment with an ROS scavenger, NAC. The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.

  18. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    PubMed

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia.

    PubMed

    Collins, James W; Chervaux, Christian; Raymond, Benoit; Derrien, Muriel; Brazeilles, Rémi; Kosta, Artemis; Chambaud, Isabelle; Crepin, Valerie F; Frankel, Gad

    2014-10-01

    We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  1. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    PubMed

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  2. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  3. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  4. miR-27a induced by colon cancer cells in HLECs promotes lymphangiogenesis by targeting SMAD4

    PubMed Central

    Zhang, Chen-Peng; Xiao, Qian; Lin, Xiao-Lin

    2017-01-01

    Aim Metastasis of tumor cells occurs through lymphatic vessels, blood vessels and transcoelomic spreading. Growing evidence from in vivo and in vitro studies has indicated that tumor lymphangiogenesis facilitates metastasis. However, the regulation of lymphangiogenesis in colon cancer remains unclear. The aims of this study were to identify key miRNAs in colon cancer lymphangiogenesis and to investigate its target and mechanism. Methods miRNA microarray analysis was conducted to identify miRNAs in human lymphatic endothelial cells (HLECs) that were regulated by co-cultured human colon cancer cells. Gain- and loss-of-function studies were performed to determine the function of miR-27a, a top hint, on lymphangiogenesis and migration in HLECs. Furthermore, bioinformatics prediction and experimental validation were performed to identify miR-27a target genes in lymphangiogenesis. Results We found that expression of miR-27a in HLECs was induced by co-culturing with colon cancer cells. Over-expression of miR-27a in HLECs enhanced lymphatic tube formation and migration, whereas inhibition of miR-27a reduced lymphatic tube formation and migration. Luciferase reporter assays showed that miR-27a directly targeted SMAD4, a pivotal component of the TGF-β pathway. In addition, gain-of-function and loss-of-function experiments showed that SMAD4 negatively regulated the length of lymphatic vessels formed by HLECs and migration. Conclusions Our data indicated that colon cancer cell induced the expression of miR-27a in HLECs, which promoted lymphangiogenesis by targeting SMAD4. Our finding implicated miR-27a as a potential target for new anticancer therapies in colon cancer. PMID:29065177

  5. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    PubMed Central

    2010-01-01

    Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis. PMID:20525330

  6. Analysis of colonization factor antigen I, an adhesin of enterotoxigenic Escherichia coli O78:H11: fimbrial morphology and location of the receptor-binding site.

    PubMed Central

    Bühler, T; Hoschützky, H; Jann, K

    1991-01-01

    Colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli was dissociated into one type of subunit (15 kDa). The dissociation was achieved either by heating CFA/I in sodium dodecyl sulfate at 100 degrees C or by heating it for 20 min in water. Heating in water to 100 degrees C yielded only in the 15-kDa subunit, but heating to 85 degree C yielded small amounts of oligomers in addition. The monomeric subunits obtained after heating in water are stable, as demonstrated by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis without heating prior to the electrophoretic run. These subunits inhibited CFA/I-induced hemagglutination, indicating that they had maintained their receptor-binding properties. When the hybridoma technique was used, two types of monoclonal anti-CFA/I antibodies were obtained. Antibodies obtained by immunization with the purified subunits were more reactive with subunits than with fimbriae, as shown by enzyme-linked immunosorbent assay. These antibodies strongly inhibited CFA/I-induced hemagglutination. When examined by immunoelectron microscopy, these antibodies seemed to label the fimbrial tips. A similar labeling pattern was obtained with gold particles modified with the receptor ganglioside GM2. Antibodies obtained by immunization with fimbriae reacted in enzyme-linked immunosorbent assays equally well with fimbriae and subunits. They inhibited CFA/I-induced hemagglutination only slightly. Immunoelectron microscopy revealed that these antibodies labeled the fimbriae densely and regularly over their entire lengths. In a coagglutination experiment with Staphylococcus aureus and monoclonal antibodies, the subunits retained their receptor-binding properties. From these results, we conclude that CFA/I fimbriae consist entirely of one type of adhesive subunit, of which only the one at the tip is accessible to the receptor. Images PMID:1682253

  7. Effect of Serotype on Pneumococcal Competition in a Mouse Colonization Model.

    PubMed

    Trzciński, Krzysztof; Li, Yuan; Weinberger, Daniel M; Thompson, Claudette M; Cordy, Derrick; Bessolo, Andrew; Malley, Richard; Lipsitch, Marc

    2015-09-15

    Competitive interactions between Streptococcus pneumoniae strains during host colonization could influence the serotype distribution in nasopharyngeal carriage and pneumococcal disease. We evaluated the competitive fitness of strains of serotypes 6B, 14, 19A, 19F, 23F, and 35B in a mouse model of multiserotype carriage. Isogenic variants were constructed using clinical strains as the capsule gene donors. Animals were intranasally inoculated with a mixture of up to six pneumococcal strains of different serotypes, with separate experiments involving either clinical isolates or isogenic capsule-switch variants of clinical strain TIGR4. Upper-respiratory-tract samples were repeatedly collected from animals in order to monitor changes in the serotype ratios using quantitative PCR. A reproducible hierarchy of capsular types developed in the airways of mice inoculated with multiple strains. Serotype ranks in this hierarchy were similar among pneumococcal strains of different genetic backgrounds in different strains of mice and were not altered when tested under a range of host conditions. This rank correlated with the measure of the metabolic cost of capsule synthesis and in vitro measure of pneumococcal cell surface charge, both parameters considered to be predictors of serotype-specific fitness in carriage. This study demonstrates the presence of a robust competitive hierarchy of pneumococcal serotypes in vivo that is driven mainly, but not exclusively, by the capsule itself. Streptococcus pneumoniae (pneumococcus) is the leading cause of death due to respiratory bacterial infections but also a commensal frequently carried in upper airways. Available vaccines induce immune responses against polysaccharides coating pneumococcal cells, but with over 90 different capsular types (serotypes) identified, they can only target strains of the selected few serotypes most prevalent in disease. Vaccines not only protect vaccinated individuals against disease but also protect by reducing carriage of vaccine-targeted strains to induce herd effects across whole populations. Unfortunately, reduction in the circulation of vaccine-type strains is offset by increase in carriage and disease from nonvaccine strains, indicating the importance of competitive interactions between pneumococci in shaping the population structure of this pathogen. Here, we showed that the competitive ability of pneumococcal strains to colonize the host strongly depends on the type of capsular polysaccharide expressed by pneumococci and only to a lesser degree on strain or host genetic backgrounds or on variation in host immune responses. Copyright © 2015 Trzciński et al.

  8. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon

    PubMed Central

    Neunlist, Michel; Dobreva, Gisela; Schemann, Michael

    1999-01-01

    Using retrograde tracing with 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) in combination with electrophysiological and immunohistochemical techniques we determined the properties of the putative intrinsic primary afferent myenteric neurones with mucosal projections in the guinea-pig proximal colon. Eighty-four out of eighty-five DiI-labelled myenteric neurones were AH neurones with a late after-hyperpolarization. Thirty-three per cent of them exhibited atropine- and tetrodotoxin-resistant spontaneously occurring hyperpolarizing potentials (SHPs) during which the membrane resistance and excitability decreased. DiI-labelled AH neurones had multipolar Dogiel type II morphology, primarily of the dendritic type. Sixty-one per cent of the neurones were immunoreactive for choline acetyltransferase (ChAT) and calbindin (Calb) and 23% were ChAT positive but Calb negative. DiI-labelled neurones did not receive fast excitatory postsynaptic potentials but 94% (34/36) received slow excitatory postsynaptic potentials (sEPSPs). The neurokinin-3 (NK-3) agonist (MePhe7)-NKB but not the NK-1 agonist [(SAR9,Met(O2)11]-SP mimicked this response. The NK-3 receptor antagonist SR 142801 (1 μm) significantly decreased the amplitude and duration of the sEPSPs; the NK-1 receptor antagonist CP-99,994 (1 μm) was ineffective. Atropine (0.5 μm) increased the duration but not the amplitude of the sEPSPs. Microejection of 100 mM sodium butyrate onto the neurones induced in 90% of the DiI-labelled neurones a transient depolarization associated with an increased excitability. In neurones with SHPs sodium butyrate evoked, additionally, a late onset hyperpolarization. Perfusion of 0.1-10 mM sodium butyrate induced a dose-dependent increase in neuronal excitability. Sodium butyrate was ineffective when applied directly onto the mucosa. Mucosally projecting myenteric neurones of the colon are multipolar AH neurones with NK-3-mediated slow EPSPs and somal butyrate sensitivity. PMID:10332100

  9. The protective role of Lychnophora ericoides Mart. (Brazilian arnica) in 1,2-dimethylhydrazine-induced experimental colon carcinogenesis.

    PubMed

    Fernandes, Cleverson Rodrigues; Turatti, Aline; Gouvea, Dayana Rubio; Gobbo-Neto, Leonardo; Diniz, Andrea; Ribeiro-Silva, Alfredo; Lopes, Norberto Peporine; Garcia, Sérgio Britto

    2011-01-01

    Aberrant crypt foci (ACF) and colon rectal mucosal epithelial cell proliferation have been shown to be increased in patients with colon cancer and have been largely used for early detection of factors that influence colorectal carcinogenesis in rats. Fifty male Wistar rats were randomly divided into 5 groups. The groups G1 to G4 were given 4 injections of the carcinogen 1,2-dimethylhydrazine (DMH). The G2 group received Lychnophora ericoides (LE) extracts for 6 wk. The groups G3 and G4 received LE for 4 wk and 2 wk, respectively, at the postinitiation and initiation phases of colonic carcinogenesis. The group G5 was the control. Forty-two days after the first injections of DMH for the neoplasic induction, we observed a statistically significant decrease in the number of aberrant crypt foci (ACF) and an attenuation of the increase in cell proliferation induced by DMH in all the LE-treated groups. Thus, we concluded that Lychnophora ericoides extracts were effective against the development of cancer. These data suggest that LE has a protective influence on the process of colon carcinogenesis, suppressing both the initiation and the promotion of colonic carcinogenesis.

  10. NoxO1 Controls Proliferation of Colon Epithelial Cells.

    PubMed

    Moll, Franziska; Walter, Maria; Rezende, Flávia; Helfinger, Valeska; Vasconez, Estefania; De Oliveira, Tiago; Greten, Florian R; Olesch, Catherine; Weigert, Andreas; Radeke, Heinfried H; Schröder, Katrin

    2018-01-01

    Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. NoxO1 affects colon epithelium homeostasis and prevents inflammation.

  11. Azoxymethane protects intestinal stem cells and reduces crypt epithelial mitosis through a COX-1-dependent mechanism.

    PubMed

    Riehl, Terrence E; George, Robert J; Sturmoski, Mark A; May, Randal; Dieckgraefe, Brian; Anant, Shrikant; Houchen, Courtney W

    2006-12-01

    Azoxymethane (AOM) is a potent DNA-damaging agent and carcinogen that induces intestinal and colonic tumors in rodents. Evaluation of the stem cell population by colony formation assay reveals that, within 8 h after treatment, AOM (10 mg/kg) elicited a prosurvival response. In wild-type (WT) mice, AOM treatment induced a 2.5-fold increase in intestinal crypt stem cell survival. AOM treatment increased stem cell survival in cyclooxygenase (COX)-2(-/-) but not COX-1(-/-) mice, confirming a role of COX-1 in the AOM-induced increase in stem cell survival. COX-1 mRNA and protein expression as well as COX-1-derived PGE(2) synthesis were increased 8 h after AOM treatment. Immunohistochemical staining of COX-1 demonstrated expression of the enzyme in the crypt epithelial cells, especially in the columnar epithelial cells between the Paneth cells adjacent to the stem cell zone. WT mice receiving AOM exhibited increased intestinal apoptosis and a simultaneous reduction in crypt mitotic figures within 8 h of injection. There were no significant differences in baseline or AOM-induced intestinal epithelial apoptosis between WT and COX-1(-/-) mice, but there was a complete reversal of the AOM-mediated reduction in mitosis in COX-1(-/-) mice. This suggests that COX-1-derived PGE(2) may play a key role in the early phase of intestinal tumorigenesis in response to DNA damage and suggests that COX-1 may be a potential therapeutic target in this model of colon cancer.

  12. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.

    PubMed

    Makadia, Payal A; Najjar, Sarah A; Saloman, Jami L; Adelman, Peter; Feng, Bin; Margiotta, Joseph F; Albers, Kathryn M; Davis, Brian M

    2018-06-20

    Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses. SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be controlled in part by release of substances from lining epithelial cells. In support of this mechanism we determined that blue-light stimulation of channelrhodopsin-expressing colon epithelial cells could evoke action potential firing in sensory neurons and produce changes in measures of behavioral sensitivity. Thus, activity of colon epithelial cells alone, without added mechanical or chemical stimuli, is sufficient to activate pain-sensing neurons. Copyright © 2018 the authors 0270-6474/18/385788-11$15.00/0.

  13. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    PubMed

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  14. Bowman-Birk inhibitor-like protein is secreted by sprouted pea seeds in response to induced colonization by enteropathogenic Escherichia coli.

    PubMed

    Anuradha, Ravi; Raveendran, Muthuraj; Babu, Subramanian

    2013-11-01

    The interaction between the clinical isolate of enteropathogenic Escherichia coli (EPEC) SBANU8 and pea sprouts was compared with avirulent K 12. E. coli. This was carried out by repeated co-incubation with pea sprouts for 5 days, and the protein profile of the culture supernatant was analyzed by single and two-dimensional electrophoresis. Mass spectrometry analysis led to the identification of two serine protease inhibitors including a Bowman-Birk-type protein secreted by pea sprouts in response to clinical isolate. Expression of the E. coli intimin gene involved in animal host colonization and virulence was studied by reverse transcription polymerase chain reaction. Expression of this gene was high in SBANU8 when co-incubated with pea sprouts. The present study gives baseline data on the molecular level interactions of EPEC and pea sprouts, which are needed to design the outbreak control strategies.

  15. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less

  16. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers.

    PubMed

    Camilleri, Michael; Bharucha, Adil E; Ueno, Ryuji; Burton, Duane; Thomforde, George M; Baxter, Kari; McKinzie, Sanna; Zinsmeister, Alan R

    2006-05-01

    Chloride channels modulate gastrointestinal neuromuscular functions in vitro. Lubiprostone, a selective type 2 chloride channel (ClC-2) activator, induces intestinal secretion and has been shown to relieve constipation in clinical trials; however, the effects of lubiprostone on gastric function and whole gut transit in humans are unclear. Our aim was to compare the effects of the selective ClC-2 activator lubiprostone on maximum tolerated volume (MTV) of a meal, postprandial symptoms, gastric volumes, and gastrointestinal and colonic transit in humans. We performed a randomized, parallel-group, double-blind, placebo-controlled study evaluating the effects of lubiprostone (24 microg bid) in 30 healthy volunteers. Validated methods were used: scintigraphic gastrointestinal and colonic transit, SPECT to measure gastric volumes, and the nutrient drink ("satiation") test to measure MTV and postprandial symptoms. Lubiprostone accelerated small bowel and colonic transit, increased fasting gastric volume, and retarded gastric emptying. MTV values were reduced compared with placebo; however, the MTV was within the normal range for healthy adults in 13 of 14 participants, and there was no significant change compared with baseline measurements. Lubiprostone had no significant effect on postprandial gastric volume or aggregate symptoms but did decrease fullness 30 min after the fully satiating meal. Thus the ClC-2 activator lubiprostone accelerates small intestinal and colonic transit, which confers potential in the treatment of constipation.

  17. Evaluation of anti-tumorigenic activity of BP3B against colon cancer with patient-derived tumor xenograft model.

    PubMed

    Kim, Hye-Youn; Kim, Jinhee; Ha Thi, Huyen Trang; Bang, Ok-Sun; Lee, Won-Suk; Hong, Suntaek

    2016-11-18

    KIOM-CRC#BP3B (BP3B) is a novel herbal prescription that is composed of three plant extracts. Our preliminary study identified that BP3B exhibited potent anti-proliferative activity against various types of cancer cell lines in vitro. Because the in vivo anti-tumor effect of BP3B is not evaluated before clinical trial, we want to test it using patient's samples. To confirm the in vivo anti-cancer effect of BP3B, we used genetically characterized patient-derived colon tumor xenograft (PDTX) mouse model. Anti-cancer activity was evaluated with apoptosis, proliferation, angiogenesis and histological analysis. Oral administration of BP3B significantly inhibited the tumor growth in two PDTX models. Furthermore, TUNEL assay showed that BP3B induced apoptosis of tumor tissues, which was associated with degradation of PARP and Caspase 8 and activation of Caspase 3. We also observed that BP3B inhibited cancer cell proliferation by down-regulation of Cyclin D1 and induction of p27 proteins. Inhibition of angiogenesis in BP3B-treated group was observed with immunofluorescence staining using CD31 and Tie-2 antibodies. These findings indicated that BP3B has a strong growth-inhibitory activity against colon cancer in in vivo model and will be a good therapeutic candidate for treatment of refractory colon cancer.

  18. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage.

    PubMed

    Shen, Peng; Zhang, Zecai; He, Yue; Gu, Cong; Zhu, Kunpeng; Li, Shan; Li, Yanxin; Lu, Xiaojie; Liu, Jiuxi; Zhang, Naisheng; Cao, Yongguo

    2018-03-01

    Magnolol, the main and active ingredient of the Magnolia officinalis, has been widely used in traditional prescription to the human disorders. Magnolol has been proved to have several pharmacological properties including anti-bacterial, anti-oxidant and anti-inflammatory activities. However, the effects of magnolol on ulcerative colitis (UC) have not been reported. The aim of this study was to investigate the protective effects and mechanisms of magnolol on dextran sulphate sodium (DSS)-induced colitis in mice. The results showed that magnolol significantly alleviated DSS-induced body weight loss, disease activities index (DAI), colon length shortening and colonic pathological damage. In addition, magnolol restrained the expression of TNF-α, IL-1β and IL-12 via the regulation of nuclear factor-κB (NF-κB) and Peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways. Magnolol also enhanced the expression of ZO-1 and occludin in DSS-induced mice colonic tissues. These results showed that magnolol played protective effects on DSS-induced colitis and may be an alternative therapeutic reagent for colitis treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jian, E-mail: lujian@ujs.edu.cn; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013; Zhou, Zhongping

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell linemore » is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.« less

  20. Dietary calcium and cholecalciferol modulate cyclin D1 expression, apoptosis, and tumorigenesis in intestine of adenomatous polyposis coli1638N/+ mice.

    PubMed

    Yang, Kan; Lamprecht, Sergio A; Shinozaki, Hiroharu; Fan, Kunhua; Yang, Wancai; Newmark, Harold L; Kopelovich, Levy; Edelmann, Winfried; Jin, Bo; Gravaghi, Claudia; Augenlicht, Leonard; Kucherlapati, Raju; Lipkin, Martin

    2008-09-01

    Both epidemiological and experimental findings have indicated that components of Western diets influence colonic tumorigenesis. Among dietary constituents, calcium and cholecalciferol have emerged as promising chemopreventive agents. We have demonstrated that a Western-style diet (WD) with low levels of calcium and cholecalciferol and high levels of (n-6) PUFA, increased the incidence of neoplasia in mouse intestine compared with a standard AIN-76A diet; models included wild-type mice and mice with targeted mutations. In the present study, adenomatous polyposis coli (Apc)(1638N/+) mice carrying a heterozygous Apc mutation were fed either an AIN-76A diet, a WD, or a WD supplemented with calcium and cholecalciferol (WD/Ca/VitD3). Diets were fed for 24 wk and effects on cellular and molecular events were assessed by performing immunohistochemistry in colonic epithelium along the crypt-to-surface continuum. Feeding WD to Apc(1638N/+) mice not only enhanced cyclin D1 expression in colonic epithelium compared with AIN-76A treatment as previously reported but also significantly increased the expression of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) concomitantly with a decrease in the proapoptotic Bcl2-associated X protein and the number of apoptotic epithelial cells. WD treatment enhanced mutant Apc-driven small intestinal carcinogenesis and also resulted in the formation of a small number of colonic adenomas (0.16 +/- 0.09; P < 0.05). By contrast, the WD/Ca/VitD3 diet reversed WD-induced growth, promoting changes in colonic epithelium. Importantly, Apc(1638N/+) mice fed the WD/Ca/VitD3 diet did not develop colonic tumors, further indicating that dietary calcium and cholecalciferol have a key role in the chemoprevention of colorectal neoplasia in this mouse model of human colon cancer.

  1. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade.

    PubMed

    El-Gowelli, Hanan M; Saad, Evan I; Abdel-Galil, Abdel-Galil A; Ibrahim, Einas R

    2015-11-01

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulfate in young pigs.

    PubMed

    Lackeyram, D; Young, D; Kim, C J; Yang, C; Archbold, T L; Mine, Y; Fan, M Z

    2017-03-31

    Intestinal inflammation induced with dextran sodium sulfate (DSS) is used to study acute or chronic ulcerative colitis in animal models. Decreased gut tissue anti-inflammatory cytokine IL-10 concentration and mRNA abundance are associated with the development of chronic bowel inflammation. Twelve piglets of 3 days old were fitted with an intragastric catheter and randomly allocated into control and DSS groups by administrating either sterile saline or 1.25 g of DSS/kg body weight (BW) in saline per day, respectively, for 10 days. Growth rate and food conversion efficiency were reduced (p<0.05) in the DSS piglets compared with the control group. Quantitative histopathological grading of inflammation in the jejunum and colon collectively showed that the DSS treatment resulted in 12 fold greater (p<0.05) inflammation severity scoring in the colon than in the jejunum, indicative of chronic ulcerative colitis in the colon. Upper gut permeability endpoint was 27.4 fold higher (p<0.05) in the DSS group compared with the control group. The DSS group had higher concentrations and mRNA abundances (p<0.05) of TNF-alpha and IL-6 in the jejunal and colonic tissues compared with the control group. Colonic concentration and mRNA abundance of IL-10 were reduced (p<0.05), however, jejunal IL-10 mRNA abundance was increased (p<0.05) in the DSS group compared with the control group. In conclusion, administration of DSS at 1.25 g/kg BW for 10 days respectively induced acute inflammation in the jejunum and chronic inflammation and ulcerative colitis in the colon with substantially decreased colonic concentration and mRNA abundance of IL-10 in the young pigs, mimicking the IL-10 expression pattern in humans Associated with chronic bowel inflammation.

  3. Evaluation of different fluids for detection of Clostridium perfringens type D epsilon toxin in sheep with experimental enterotoxemia.

    PubMed

    Layana, Jorge E; Fernandez Miyakawa, Mariano E; Uzal, Francisco A

    2006-08-01

    Enterotoxemia caused by Clostridium perfringens type D is a highly lethal disease of sheep, goats and other ruminants. The diagnosis of this condition is usually confirmed by detection of epsilon toxin, a major exotoxin produced by C. perfringens types B and D, in the intestinal content of affected animals. It has been suggested that other body fluids can also be used for detection of epsilon toxin. This study was performed to evaluate the usefulness of intestinal content versus other body fluids in detecting epsilon toxin in cases of sheep enterotoxemia. Samples of duodenal, ileal and colon contents, pericardial and abdominal fluids, aqueous humor and urine from 15 sheep with experimentally induced enterotoxemia, were analysed for epsilon toxin using a capture ELISA. Epsilon toxin was detected in 92% of the samples of ileal content, 64% of the samples of duodenal content, 57% of the samples of colon content and in 7% of the samples of pericardial fluid and aqueous humor. No epsilon toxin was found in samples of abdominal fluid or urine from the animals with enterotoxemia or in any samples from six clinically healthy sheep used as negative controls. The results of this study indicate that with the diagnostic capture ELISA used, intestinal content (preferably ileum) should be used for C. perfringens type D epsilon toxin detection in suspected cases of sheep enterotoxemia.

  4. [Vaginal colonization of group B Streptococcus: a study in 267 cases of factory women].

    PubMed

    Zhu, Y Z; Yang, Y H; Zhang, X L

    1996-02-01

    An epidemiologic study on vaginal colonization of group B streptococcus (GBS) from non-pregnancy women was carried out. Two hundred sixty seven female workers were studied. The carrier rate of GBS in vaginal specimens was 10.86%. Women aged 45 years old and above had more cases with genital tract GBS colonization. Women with vaginal colonization had more history of miscarriage and using IUD. We did not find the positive correlations between vaginal colonization and oral contraceptive, ovarian cyst, hysteromyoma in our study group. Women with gynecologic inflammation had more cases with vaginal GBS colonization. There is a significant increase for women with vaginitis and cervicitis. Serotyping study showed that types III and II were the most frequent GBS types isolated from the carriers. Antibiotic sensitivity test showed that more than half GBS strains were resistant to oxcillin and amikacin.

  5. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor

    PubMed Central

    O'Connell Motherway, Mary; Zomer, Aldert; Leahy, Sinead C.; Reunanen, Justus; Bottacini, Francesca; Claesson, Marcus J.; O'Brien, Frances; Flynn, Kiera; Casey, Patrick G.; Moreno Munoz, Jose Antonio; Kearney, Breda; Houston, Aileen M.; O'Mahony, Caitlin; Higgins, Des G.; Shanahan, Fergus; Palva, Airi; de Vos, Willem M.; Fitzgerald, Gerald F.; Ventura, Marco; O'Toole, Paul W.; van Sinderen, Douwe

    2011-01-01

    Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated “tad2003.” Mutational analysis demonstrated that the tad2003 gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria. PMID:21690406

  6. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor.

    PubMed

    O'Connell Motherway, Mary; Zomer, Aldert; Leahy, Sinead C; Reunanen, Justus; Bottacini, Francesca; Claesson, Marcus J; O'Brien, Frances; Flynn, Kiera; Casey, Patrick G; Munoz, Jose Antonio Moreno; Kearney, Breda; Houston, Aileen M; O'Mahony, Caitlin; Higgins, Des G; Shanahan, Fergus; Palva, Airi; de Vos, Willem M; Fitzgerald, Gerald F; Ventura, Marco; O'Toole, Paul W; van Sinderen, Douwe

    2011-07-05

    Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated "tad(2003)." Mutational analysis demonstrated that the tad(2003) gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.

  7. Murine immunization with CS21 pili or LngA major subunit of enterotoxigenic Escherichia coli (ETEC) elicits systemic and mucosal immune responses and inhibits ETEC gut colonization.

    PubMed

    Zhang, Chengxian; Iqbal, Junaid; Gómez-Duarte, Oscar G

    2017-04-01

    CS21 pili of enterotoxigenic Escherichia coli (ETEC) is one of the most prevalent ETEC colonization factors. CS21 major subunit, LngA, mediates ETEC adherence to intestinal cells, and contributes to ETEC pathogenesis in a neonatal mouse infection model. The objectives of this work were to evaluate LngA major subunit purified protein and CS21 purified pili on immunogenicity and protection against ETEC colonization of mice intestine. Recombinant LngA purified protein or purified CS21 pili from E9034A ETEC strain were evaluated for immunogenicity after immunization of C57BL/6 mice. Specific anti-LngA antibodies were detected from mice serum, feces, and intestine fluid samples by ELISA assays. Protection against gut colonization was evaluated on immunized mice orally challenged with wild type E9034A ETEC strain and by subsequent quantification of bacterial colony forming units (CFU) recovered from feces. Recombinant LngA protein and CS21 pili induced specific humoral and mucosal anti-LngA antibodies in the mouse model. CS21 combined with CT delivered intranasally as well as LngA combined with incomplete Freund adjuvant delivered intraperitoneally inhibited ETEC gut colonization in a mouse model. In conclusion, both LngA purified protein and CS21 pili from ETEC are highly immunogenic and may inhibit ETEC intestinal shedding. Our data on immunogenicity and immunoprotection indicates that CS21 is a suitable vaccine candidate for a future multivalent vaccine against ETEC diarrhea. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    PubMed

    Lee, K H; Ruby, E G

    1994-04-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.

  9. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    PubMed Central

    Lee, K H; Ruby, E G

    1994-01-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization. PMID:8144466

  10. GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation*

    PubMed Central

    Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835

  11. Demographic analysis of tree colonization in a 20-year-old right-of-way.

    PubMed

    Mercier, C; Brison, J; Bouchard, A

    2001-12-01

    Past tree colonization dynamics of a powerline-right-of-way (ROW) corridor in the Haut-Saint-Laurent region of Quebec was studied based on the present age distribution of its tree populations. This colonization study spans 20 years, from 1977 (ROW clearance) to 1996. The sampled quadrats were classified into six vegetation types. Tree colonization dynamics were interpreted in each type, and three distinct patterns were identified. (1) Communities adapted to acidic conditions were heavily colonized by Acer rubrum, at least for the last 12 years. (2) Communities adapted to mesic or to hydric conditions were more intensely colonized in the period 1985-1987 than in the following 9 years; this past success in tree colonization may have been caused by herbicide treatments, which could have facilitated tree establishment by damaging the herbaceous and shrub vegetation. (3) Cattail, vine-raspberry, and reed-dominated communities contained few tree individuals, with almost all trees establishing between 1979 and 1990; those three vegetation types appear as the most resistant to tree invasion in the ROW studied. This study supports the need for an integrated approach in ROW vegetation management, in which the selection of vegetation treatment methods would depend on the tree colonization dynamics in each vegetation type. Minimizing disturbances inflicted on ROW herbaceous and shrub covers should be the central strategy because disturbances jeopardize natural resistance to future tree invasion, except in communities adapted to acidic conditions where the existing vegetation does not prevent invasion by A. rubrum. Many trees are surviving the successive cutting operations by producing new sprouts each time, particularly in communities adapted to mesic and hydric conditions. In these cases, mechanical cutting should be replaced by a one-time stump-killing operation, to avoid repeated and unsuccessful treatments of the same individuals over time.

  12. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

    PubMed

    Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi

    2009-06-01

    The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.

  13. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9.

    PubMed

    Tong, Weihua; Wang, Quan; Sun, Donghui; Suo, Jian

    2016-11-01

    Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.

  14. The Effect of Ozone on Colonic Epithelial Cells.

    PubMed

    Himuro, Hidetomo

    2018-05-21

    Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.

  15. Goat whey ameliorates intestinal inflammation on acetic acid-induced colitis in rats.

    PubMed

    Araújo, Daline Fernandes de Souza; Guerra, Gerlane Coelho Bernardo; Júnior, Raimundo Fernandes de Araújo; Antunes de Araújo, Aurigena; Antonino de Assis, Paloma Oliveira; Nunes de Medeiros, Ariosvaldo; Formiga de Sousa, Yasmim Regis; Pintado, Maria Manuela Estevez; Gálvez, Julio; Queiroga, Rita de Cássia Ramos do Egypto

    2016-12-01

    Complementary or alternative medicine is of great interest for the treatment of inflammatory bowel disease, with the aim of ameliorating the side effects of the drugs commonly used or improving their efficacy. In this study, we evaluated the ability of goat whey to prevent intestinal inflammation in the experimental model of acetic acid-induced rats and compared it to sulfasalazine. Pretreatment with goat whey (1, 2, and 4g/kg) and sulfasalazine (250mg/kg) on colitic rats improved colonic inflammatory markers, including myeloperoxidase activity, leukotriene B 4 levels, as well as the production of proinflammatory cytokines IL-1β and tumor necrosis factor-α. Furthermore, the administration of goat whey significantly reduced the colonic oxidative stress by reducing malondialdehyde levels and increased total glutathione content, a potent antioxidant peptide. The histological evaluation of the colonic specimens from colitic rats confirmed these beneficial effects, as goat whey preserved the colonic tissue, especially in those rats treated with the highest dose of goat whey or with sulfasalazine. The immunohistochemistry analysis of the colonic tissue evaluation also revealed a reduction in the expression of cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-9, together with an increased expression of suppressor of cytokine signaling-1. These results suggest that goat whey exerted a preventive effect against the intestinal damage induced by acetic acid, showing a similar efficacy to that shown by sulfasalazine, therefore making it a potential treatment for human inflammatory bowel disease. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis.

    PubMed

    Abdel-Daim, Mohamed M; Farouk, Sameh M; Madkour, Fedekar F; Azab, Samar S

    2015-04-01

    Spirulina platensis (SP) is used as a source of protein and vitamin supplement in humans without any significant side-effects. Dunaliella salina (DS) is also regarded as one of the richest natural producers of carotenoid, thus used as a source of antioxidants to protect cells from oxidative damage. The aim of the present study is to compare the ameliorative effect of Spirulina and Dunaliella in experimental colitis. Spirulina and Dunaliella were investigated at the same dose of 500 mg/kg body weight for their modulatory effect against acetic-acid induced ulcerative colitis (UC) in rats. The colonic lesion was analyzed by examining macroscopic damage, bloody diarrhea scores, colon weight/length and change in body weight of tested rats. Colon lipid peroxidation and oxidative stress markers were examined by evaluating malondialdehyde (MDA), protein carbonyl (PCO), catalase (CAT), reduced glutathione (GSH) and superoxide dismutase (SOD). Colon inflammatory markers; myeloperoxidase (MPO) and prostaglandin (PGE2) as well as proinflammatory cytokines; tumor necrosis factor (TNF-α) and interleukins (IL-1β, IL-6) were also studied. The colonic mucosal injury, biochemical and histopathologic results suggest that both SP and DS exhibit significant modulatory effect on acetic acid-induced colitis in rats, which may be due to a significant increase of antioxidant enzymes activity and significant inhibition of lipid peroxidation and inflammation markers. Results showed that in comparison to Sulfasalazine, SP exhibited better therapeutic and safety profile than DS against acetic acid-induced UC. This study suggests potential benefits of SP and DS in an experimental model of colitis.

  17. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer.

    PubMed

    Kim, Dalyong; Kim, Sun Young; Lee, Ji Sung; Hong, Yong Sang; Kim, Jeong Eun; Kim, Kyu-Pyo; Kim, Jihun; Jang, Se Jin; Yoon, Young-Kwang; Kim, Tae Won

    2017-11-23

    In metastatic colorectal cancer, the location of the primary tumor has been suggested to have biological significance. In this study, we investigated whether primary tumor location affects cetuximab efficacy in patients with RAS wild-type metastatic colorectal cancer. Genotyping by the SequenomMassARRAY technology platform (OncoMap) targeting KRAS, NRAS, PIK3CA, and BRAF was performed in tumors from 307 patients who had been given cetuximab as salvage treatment. Tumors with mutated RAS (KRAS or NRAS; n = 127) and those with multiple primary location (n = 10) were excluded. Right colon cancer was defined as a tumor located in the proximal part to splenic flexure. A total of 170 patients were included in the study (right versus left, 23 and 147, respectively). Patients with right colon cancer showed more mutated BRAF (39.1% vs. 5.4%), mutated PIK3CA (13% vs. 1.4%), poorly differentiated tumor (17.4% vs. 3.4%), and peritoneal involvement (26.1% vs. 8.8%) than those with left colon and rectal cancer. Right colon cancer showed poorer progression-free survival (2.0 vs.5.0 months, P = 0.002) and overall survival (4.1 months and 13.0 months, P < 0.001) than the left colon and rectal cancer. By multivariable analysis, BRAF mutation, right colon primary, poorly differentiated histology, and peritoneal involvement were associated with risk of death. In RAS wild-type colon cancer treated with cetuximab as salvage treatment, right colon primary was associated with poorer survival outcomes than left colon and rectal cancer.

  18. Further investigation into the mechanism of tachykinin NK(2) receptor-triggered serotonin release from guinea-pig proximal colon.

    PubMed

    Kojima, Shu-Ichi; Ikeda, Masashi; Kamikawa, Yuichiro

    2009-05-01

    The effects of the monoamine oxidase A (MAO-A) inhibitor clorgyline, the L-type calcium-channel blocker nicardipine, the syntaxin inhibitor botulinum toxin type C, and the potent thiol-oxidant phenylarsine oxide (PAO) on the selective tachykinin NK(2)-receptor agonist [beta-Ala(8)]-neurokinin A(4-10) [betaAla-NKA-(4-10)]-evoked 5-hydroxytryptamine (5-HT) outflow from colonic enterochromaffin (EC) cells was investigated in vitro using isolated guinea-pig proximal colon. The betaAla-NKA-(4-10)-evoked outflow of 5-HT from clorgyline-treated colonic strips was markedly higher than that from clorgyline-untreated colonic strips. The betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips was sensitive to nicardipine or botulinum toxin type C. Moreover, PAO concentration-dependently suppressed the betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips. The suppressant action of PAO was reversed by the reducing agent dithiothrietol, but was not blocked by the protein tyrosine kinase inhibitor genistein. These results suggest that the tachykinin NK(2) receptor-triggered 5-HT release from guinea-pig colonic EC cells is mediated by syntaxin-related exocytosis mechanisms and that colonic mucosa MAO-A activity has the important function of modulating the tachykinin NK(2) receptor-triggered 5-HT release. It also appears that PAO-mediated sulfhydryl oxidation plays a role in modulating the tachykinin NK(2) receptor-triggered 5-HT release through a mechanism independent of inhibition of protein tyrosine phosphatase activity.

  19. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.

    PubMed

    Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling

    2015-04-29

    For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.

  20. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12

    PubMed Central

    Duquet, Arnaud; Melotti, Alice; Mishra, Sonakshi; Malerba, Monica; Seth, Chandan; Conod, Arwen; Ruiz i Altaba, Ariel

    2014-01-01

    The progression of tumors to the metastatic state involves the loss of metastatic suppressor functions. Finding these, however, is difficult as in vitro assays do not fully predict metastatic behavior, and the majority of studies have used cloned cell lines, which do not reflect primary tumor heterogeneity. Here, we have designed a novel genome-wide screen to identify metastatic suppressors using primary human tumor cells in mice, which allows saturation screens. Using this unbiased approach, we have tested the hypothesis that endogenous colon cancer metastatic suppressors affect WNT-TCF signaling. Our screen has identified two novel metastatic suppressors: TMED3 and SOX12, the knockdown of which increases metastatic growth after direct seeding. Moreover, both modify the type of self-renewing spheroids, but only knockdown of TMED3 also induces spheroid cell spreading and lung metastases from a subcutaneous xenograft. Importantly, whereas TMED3 and SOX12 belong to different families involved in protein secretion and transcriptional regulation, both promote endogenous WNT-TCF activity. Treatments for advanced or metastatic colon cancer may thus not benefit from WNT blockers, and these may promote a worse outcome. PMID:24920608

Top