Sample records for color coded maps

  1. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  2. Color inference in visual communication: the meaning of colors in recycling.

    PubMed

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  3. Evaluation of a color-coded Landsat 5/6 ratio image for mapping lithologic differences in western South Dakota

    USGS Publications Warehouse

    Raines, Gary L.; Bretz, R.F.; Shurr, George W.

    1979-01-01

    From analysis of a color-coded Landsat 5/6 ratio, image, a map of the vegetation density distribution has been produced by Raines of 25,000 sq km of western South Dakota. This 5/6 ratio image is produced digitally calculating the ratios of the bands 5 and 6 of the Landsat data and then color coding these ratios in an image. Bretz and Shurr compared this vegetation density map with published and unpublished data primarily of the U.S. Geological Survey and the South Dakota Geological Survey; good correspondence is seen between this map and existing geologic maps, especially with the soils map. We believe that this Landsat ratio image can be used as a tool to refine existing maps of surficial geology and bedrock, where bedrock is exposed, and to improve mapping accuracy in areas of poor exposure common in South Dakota. In addition, this type of image could be a useful, additional tool in mapping areas that are unmapped.

  4. Compression of color-mapped images

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, A. C.; Sayood, Khalid

    1992-01-01

    In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.

  5. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  6. An interactive method for digitizing zone maps

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.; Thompson, E. J.

    1975-01-01

    A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given.

  7. REX3DV1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Elizabeth A.

    2002-03-28

    This code is a FORTRAN code for three-dimensional Monte Carol Potts Model (MCPM) Recrystallization and grain growth. A continuum grain structure is mapped onto a three-dimensional lattice. The mapping procedure is analogous to color bitmapping the grain structure; grains are clusters of pixels (sites) of the same color (spin). The total system energy is given by the Pott Hamiltonian and the kinetics of grain growth are determined through a Monte Carlo technique with a nonconserved order parameter (Glauber dynamics). The code can be compiled and run on UNIX/Linux platforms.

  8. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  9. Topographic Ceres Map With Crater Names

    NASA Image and Video Library

    2015-07-28

    This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606

  10. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    PubMed

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  11. Color visualization for fluid flow prediction

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Speray, D. E.

    1982-01-01

    High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.

  12. Management of natural resources through automatic cartographic inventory

    NASA Technical Reports Server (NTRS)

    Rey, P. A.; Gourinard, Y.; Cambou, F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Significant correspondence codes relating ERTS imagery to ground truth from vegetation and geology maps have been established. The use of color equidensity and color composite methods for selecting zones of equal densitometric value on ERTS imagery was perfected. Primary interest of temporal color composite is stressed. A chain of transfer operations from ERTS imagery to the automatic mapping of natural resources was developed.

  13. Preparation and Presentation of Digital Maps in Raster Format

    USGS Publications Warehouse

    Edwards, K.; Batson, R.M.

    1980-01-01

    A set of algorithms has been developed at USGS Flagstaff for displaying digital map data in raster format. The set includes: FILLIN, which assigns a specified attribute code to units of a map which have been outlined on a digitizer and converted to raster format; FILBND, which removes the outlines; ZIP, which adds patterns to the map units; and COLOR, which provides a simplified process for creating color separation plates for either photographic or lithographic reproduction. - Authors

  14. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors correspond to elevations above or below zero, in kilometers. Analysis that subtracts effects of the surface topography from the free-air gravity mapping, combined with an assumption that crust material has a uniform density, leads to the derived mapping of crustal thickness -- or subsurface "lumpiness" -- on the right. Highs in gravity indicate places where the denser mantle material beneath the crust is closer to the surface, and hence where the crust is thinner. The color-coding key for this map indicates how the colors on the map correspond to the thickness of the crust, in kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA20277

  15. Earthquakes in and near the northeastern United States, 1638-1998

    USGS Publications Warehouse

    Wheeler, R.L.; Trevor, N.K.; Tarr, A.C.; Crone, A.J.

    2000-01-01

    The data are those used to make a large-format, colored map of earthquakes in the northeastern United States and adjacent parts of Canada and the Atlantic Ocean (Wheeler, 2000; Wheeler and others, 2001; references in Data_Quality_Information, Lineage). The map shows the locations of 1,069 known earthquakes of magnitude 3.0 or larger, and is designed for a non-technical audience. Colored circles represent earthquake locations, colored and sized by magnitude. Short descriptions, colonial-era woodcuts, newspaper headlines, and photographs summarize the dates, times of day, damage, and other effects of notable earthquakes. The base map shows color-coded elevation, shaded to emphasize relief.

  16. Semiannual status report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The work performed in the previous six months can be divided into three main cases: (1) transmission of images over local area networks (LAN's); (2) coding of color mapped (pseudo-color) images; and (3) low rate video coding. A brief overview of the work done in the first two areas is presented. The third item is reported in somewhat more detail.

  17. Use of color on airport moving maps and cockpit displays of traffic information (CDTIs)

    DOT National Transportation Integrated Search

    2014-06-01

    Color can be an effective method for coding visual information, making it easier to find and identify symbols on a display (Christ, 1975). However, careful consideration should be given when applying color because excessive or inappropriate use of co...

  18. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  19. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  20. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  1. Vesta Topography Map

    NASA Image and Video Library

    2013-07-08

    This color-coded topography map from NASA Dawn mission shows the giant asteroid Vesta in an equirectangular projection at 32 pixels per degree, relative to an ellipsoid of 177 miles by 177 miles by 142 miles.

  2. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  3. Mapping the Color Space of Saccadic Selectivity in Visual Search

    ERIC Educational Resources Information Center

    Xu, Yun; Higgins, Emily C.; Xiao, Mei; Pomplun, Marc

    2007-01-01

    Color coding is used to guide attention in computer displays for such critical tasks as baggage screening or air traffic control. It has been shown that a display object attracts more attention if its color is more similar to the color for which one is searching. However, what does "similar" precisely mean? Can we predict the amount of attention…

  4. Study and simulation of low rate video coding schemes

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Kipp, G.

    1992-01-01

    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.

  5. Hydration Map, Based on Mastcam Spectra, for Knorr Rock Target

    NASA Image and Video Library

    2013-03-18

    On this image of the rock target Knorr, color coding maps the amount of mineral hydration indicated by a ratio of near-infrared reflectance intensities measured by the Mastcam on NASA Mars rover Curiosity.

  6. Hydration Map, Based on Mastcam Spectra, for broken rock Tintina

    NASA Image and Video Library

    2013-03-18

    On this image of the broken rock called Tintina, color coding maps the amount of mineral hydration indicated by a ratio of near-infrared reflectance intensities measured by the Mastcam on NASA Mars rover Curiosity.

  7. Color-Coded Clues to Composition Superimposed on Martian Seasonal-Flow Image

    NASA Image and Video Library

    2014-02-10

    This image from NASA Mar Reconnaissance Orbiter combines a photograph of seasonal dark flows on a Martian slope at Palikir Crater with a grid of colors based on data collected by a mineral-mapping spectrometer observing the same area.

  8. Displaying Geographically-Based Domestic Statistics

    NASA Technical Reports Server (NTRS)

    Quann, J.; Dalton, J.; Banks, M.; Helfer, D.; Szczur, M.; Winkert, G.; Billingsley, J.; Borgstede, R.; Chen, J.; Chen, L.; hide

    1982-01-01

    Decision Information Display System (DIDS) is rapid-response information-retrieval and color-graphics display system. DIDS transforms tables of geographically-based domestic statistics (such as population or unemployment by county, energy usage by county, or air-quality figures) into high-resolution, color-coded maps on television display screen.

  9. Mapping forest types in Worcester County, Maryland, using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Burtis, J., Jr.; Witt, R. G.

    1981-01-01

    The feasibility of mapping Level 2 forest cover types for a county-sized area on Maryland's Eastern Shore was demonstrated. A Level 1 land use/land cover classification was carried out for all of Worcester County as well. A June 1978 LANDSAT scene was utilized in a classification which employed two software packages on different computers (IDIMS on an HP 3000 and ASTEP-II on a Univac 1108). A twelve category classification scheme was devised for the study area. Resulting products include black and white line printer maps, final color coded classification maps, digitally enhanced color imagery and tabulated acreage statistics for all land use and land cover types.

  10. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean

    PubMed Central

    Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan

    2016-01-01

    Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272

  11. The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning

    ERIC Educational Resources Information Center

    Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton

    2013-01-01

    Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…

  12. Advanced imaging techniques in brain tumors

    PubMed Central

    2009-01-01

    Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287

  13. Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?

    PubMed

    Baltzer, P A; Dietzel, M; Vag, T; Beger, S; Freiberg, C; Herzog, A B; Gajda, M; Camara, O; Kaiser, W A

    2010-03-01

    Post-contrast enhancement characteristics (PEC) are a major criterion for differential diagnosis in MR mammography (MRM). Manual placement of regions of interest (ROIs) to obtain time/signal intensity curves (TSIC) is the standard approach to assess dynamic enhancement data. Computers can automatically calculate the TSIC in every lesion voxel and combine this data to form one color-coded parametric map (CCPM). Thus, the TSIC of the whole lesion can be assessed. This investigation was conducted to compare the diagnostic accuracy (DA) of CCPM with TSIC for the assessment of PEC. 329 consecutive patients with 469 histologically verified lesions were examined. MRM was performed according to a standard protocol (1.5 T, 0.1 mmol/kgbw Gd-DTPA). ROIs were drawn manually within any lesion to calculate the TSIC. CCPMs were created in all patients using dedicated software (CAD Sciences). Both methods were rated by 2 observers in consensus on an ordinal scale. Receiver operating characteristics (ROC) analysis was used to compare both methods. The area under the curve (AUC) was significantly (p=0.026) higher for CCPM (0.829) than TSIC (0.749). The sensitivity was 88.5% (CCPM) vs. 82.8% (TSIC), whereas equal specificity levels were found (CCPM: 63.7%, TSIC: 63.0%). The color-coded parametric maps (CCPMs) showed a significantly higher DA compared to TSIC, in particular the sensitivity could be increased. Therefore, the CCPM method is a feasible approach to assessing dynamic data in MRM and condenses several imaging series into one parametric map. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  15. Mapping lichen color-groups in western Arctic Alaska using seasonal Landsat composites

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Macander, M. J.; Swingley, C. S.

    2016-12-01

    Mapping lichens at a landscape scale has received increased recent interest due to fears that terricolous lichen mats, primary winter caribou forage, may be decreasing across the arctic and boreal zones. However, previous efforts have produced taxonomically coarse, total lichen cover maps or have covered relatively small spatial extents. Here we attempt to map lichens of differing colors as species proxies across northwestern Alaska to produce the finest taxonomic and spatial- grained lichen maps covering the largest spatial extent to date. Lichen community sampling in five western Alaskan National Parks and Preserves from 2007-2012 generated 328 FIA-style 34.7 m radius plots on which species-level macrolichen community structure and abundance was estimated. Species were coded by color and plot lichen cover was aggregated by plot as the sum of the cover of each species in a color group. Ten different lichen color groupings were used for modeling to deduce which colors were most detectable. Reflectance signatures of each plot were extracted from a series of Landsat composites (circa 2000-2010) partitioned into two-week intervals from June 1 to Sept. 15. Median reflectance values for each band in each pixel were selected based on filtering criteria to reduce likelihood of snow cover. Lichen color group cover was regressed against plot reflectance plus additional abiotic predictors in two different data mining algorithms. Brown and grey lichens had the best models explaining approximately 40% of lichen cover in those color groups. Both data mining techniques produced similarly good fitting models. Spatial patterns of lichen color-group cover show distinctly different ecological patterns of these color-group species proxies.

  16. Introducing and Developing Map Skills with Persons Having Mild or Moderate Learning Difficulties.

    ERIC Educational Resources Information Center

    Renfrew, Tom

    1997-01-01

    A British project found that appropriate training in map skills enabled children and adults with mild mental retardation to complete a white color-coded orienteering course with minimal assistance but that persons with moderate mental retardation required more assistance and instruction time to complete course objectives. Describes approaches to…

  17. Production of a water quality map of Saginaw Bay by computer processing of LANDSAT-2 data

    NASA Technical Reports Server (NTRS)

    Mckeon, J. B.; Rogers, R. H.; Smith, V. E.

    1977-01-01

    Surface truth and LANDSAT measurements collected July 31, 1975, for Saginaw Bay were used to demonstrate a technique for producing a color coded water quality map. On this map, color was used as a code to quantify five discrete ranges in the following water quality parameters: (1) temperature, (2) Secchi depth, (3) chloride, (4) conductivity, (5) total Kjeldahl nitrogen, (6) total phosphorous, (7)chlorophyll a, (8) total solids and (9) suspended solids. The LANDSAT and water quality relationship was established through the use of a set of linear regression equations where the water quality parameters are the dependent variables and LANDSAT measurements are the independent variables. Although the procedure is scene and surface truth dependent, it provides both a basis for extrapolating water quality parameters from point samples to unsampled areas and a synoptic view of water mass boundaries over the 3000 sq. km bay area made from one day's ship data that is superior, in many ways, to the traditional machine contoured maps made from three day's ship data.

  18. Where on Mars Does Carbon Dioxide Frost Form Often?

    NASA Image and Video Library

    2016-07-08

    This map shows the frequency of carbon dioxide frost's presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. Color coding is based on data from the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. A color-key bar below the map shows how colors correspond to frequencies. Yellow indicates high frequencies, identifying areas where carbon dioxide ice is present on the ground at night during most of the year. Blue identifies areas where it is rarely present; red is intermediate. Areas without color coding are regions where carbon dioxide frost is not detected at any time of year. The areas with highest frequency of overnight carbon dioxide frost correspond to regions with surfaces of loose dust, which do not retain heat well, compared to rockier areas. Those areas also have some of the highest mid-afternoon temperatures on the planet. The dust surface heats up and cools off rapidly. http://photojournal.jpl.nasa.gov/catalog/PIA20758

  19. Occator Topography

    NASA Image and Video Library

    2015-09-30

    This view, made using images taken by NASA Dawn spacecraft, is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. http://photojournal.jpl.nasa.gov/catalog/PIA19975

  20. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    PubMed

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.

    PubMed

    Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M

    2018-05-04

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  2. Resource-Constrained Spatial Hot Spot Identification

    DTIC Science & Technology

    2011-01-01

    into three categories ( Cameron and Leitner, 2005):2 Thematic Mapping. Concentrations of events are color-coded in discrete geo- graphic areas that...of Boston burglary events in 1999 and provided by Cameron and Leitner (2005). The first map reflects burglary rates per 100,000 residents by Census...Burglary Rates, 1999 RAND A8567-22 1 0 1 2 Miles Thematic mapping Kernel density interpolation Hierarchical clustering Source: Cameron and Leitner, 2005. For

  3. Wind Resource Assessment | Wind | NREL

    Science.gov Websites

    Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can

  4. Black Hills

    Atmospheric Science Data Center

    2014-05-15

    ... 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  5. [Venous Doppler color echography: importance and inconveniences].

    PubMed

    Laroche, J P; Dauzat, M; Muller, G; Janbon, C

    1993-01-01

    Color Doppler is a technique which performs a real-time opacification of the vascular system with blue indicating reverse flow and red indicating forward flow (directional color coding). In venous pathology, the use of color Doppler improves significantly the anatomical evaluation of the inferior vena cava, the iliac vein, the deep femoral vein, and the sural system. Color Doppler facilitates the study of deep venous thrombosis (providing useful information to differentiate ancient from most recent thrombus) and also the study of post-thrombotic conditions (assessment of reverse flow, repermeation phenomena). Finally, color Doppler produces a better insight for the study of varicose veins, especially with regard to mapping, identification of communicante veins, and study of the external saphenous vein.

  6. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma.

    PubMed

    Kim, Ko Eun; Jeoung, Jin Wook; Park, Ki Ho; Kim, Dong Myung; Kim, Seok Hwan

    2015-03-01

    To investigate the rate and associated factors of false-positive diagnostic classification of ganglion cell analysis (GCA) and retinal nerve fiber layer (RNFL) maps, and characteristic false-positive patterns on optical coherence tomography (OCT) deviation maps. Prospective, cross-sectional study. A total of 104 healthy eyes of 104 normal participants. All participants underwent peripapillary and macular spectral-domain (Cirrus-HD, Carl Zeiss Meditec Inc, Dublin, CA) OCT scans. False-positive diagnostic classification was defined as yellow or red color-coded areas for GCA and RNFL maps. Univariate and multivariate logistic regression analyses were used to determine associated factors. Eyes with abnormal OCT deviation maps were categorized on the basis of the shape and location of abnormal color-coded area. Differences in clinical characteristics among the subgroups were compared. (1) The rate and associated factors of false-positive OCT maps; (2) patterns of false-positive, color-coded areas on the GCA deviation map and associated clinical characteristics. Of the 104 healthy eyes, 42 (40.4%) and 32 (30.8%) showed abnormal diagnostic classifications on any of the GCA and RNFL maps, respectively. Multivariate analysis revealed that false-positive GCA diagnostic classification was associated with longer axial length and larger fovea-disc angle, whereas longer axial length and smaller disc area were associated with abnormal RNFL maps. Eyes with abnormal GCA deviation map were categorized as group A (donut-shaped round area around the inner annulus), group B (island-like isolated area), and group C (diffuse, circular area with an irregular inner margin in either). The axial length showed a significant increasing trend from group A to C (P=0.001), and likewise, the refractive error was more myopic in group C than in groups A (P=0.015) and B (P=0.014). Group C had thinner average ganglion cell-inner plexiform layer thickness compared with other groups (group A=B>C, P=0.004). Abnormal OCT diagnostic classification should be interpreted with caution, especially in eyes with long axial lengths, large fovea-disc angles, and small optic discs. Our findings suggest that the characteristic patterns of OCT deviation map can provide useful clues to distinguish glaucomatous changes from false-positive findings. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. Temperature Map, "Bonneville Crater" (1:35 p.m.)

    NASA Image and Video Library

    2004-05-17

    Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930

  8. The research on multi-projection correction based on color coding grid array

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  9. Sir John Pople, Gaussian Code, and Complex Chemical Reactions

    Science.gov Websites

    tool that describes the dance of molecules in chemical reactions ... . Dr. Pople was among the first to colors of light they will absorb or emit, and the pace of chemical reactions. The work culminated in a dropdown arrow Site Map A-Z Index Menu Synopsis Sir John Pople, Gaussian Code, and Complex Chemical

  10. Pixel Statistical Analysis of Diabetic vs. Non-diabetic Foot-Sole Spectral Terahertz Reflection Images

    NASA Astrophysics Data System (ADS)

    Hernandez-Cardoso, G. G.; Alfaro-Gomez, M.; Rojas-Landeros, S. C.; Salas-Gutierrez, I.; Castro-Camus, E.

    2018-03-01

    In this article, we present a series of hydration mapping images of the foot soles of diabetic and non-diabetic subjects measured by terahertz reflectance. In addition to the hydration images, we present a series of RYG-color-coded (red yellow green) images where pixels are assigned one of the three colors in order to easily identify areas in risk of ulceration. We also present the statistics of the number of pixels with each color as a potential quantitative indicator for diabetic foot-syndrome deterioration.

  11. Thickness Map of Buried Carbon-Dioxide Deposit

    NASA Image and Video Library

    2011-04-21

    NASA Mars Reconnaissance Orbiter color-codes thickness estimates in a newly found, buried deposit of frozen carbon dioxide, dry ice, near the south pole of Mars contains ~30 times more carbon dioxide than previously estimated to be frozen near the pole.

  12. Pictorial Formats. Volume 1. Format Development

    DTIC Science & Technology

    1982-02-01

    inside a threat envelope when the map scale prevents showing the normal cues. 3.1.4 Special Topographic Formats The primary tactical interest in...coverage is in white to prevent confuzing it with the threat’s envelopes. The border between, PMAXI and RMAX2 missile ranges is lined with yellow and... prevent confusion with red-coded emergency action items. 4.3 STORES DISPLAYS: COLOR RASTER Figures 55, 56, 57 and 58 illustrate the color raster

  13. Pluto Topography and Composition Map

    NASA Image and Video Library

    2017-09-28

    These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036

  14. Ceres Topographic Globe Animation

    NASA Image and Video Library

    2015-07-28

    This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605

  15. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  16. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  17. New 3D seismicity maps using chromo-stereoscopy with two alternative freewares

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.

    2011-12-01

    Seismicity maps play a key role in an introduction of geosciences studies or outreach programs. Various techniques are used in order to show earthquakes in a three dimensional field. To use "chromo-stereoscopy" is our simple and easier-making solution. The Chroma Depth 3D Glasses are employed for this purpose. The glasses consist of two transparent blazed grating films covered with a paper holder and cost a little (1 US$). Looking through these glasses, the colored chart turns into three dimensional perspective due to the mechanism that the color codes make a depth dimension with dispersion. We use two complementary freewares to make maps, the GMT (Generic Mapping Tools, Wessel and Smith.1988) and the POV-Ray (Persistence of Vision Pty. Ltd. 2004). The two softwares have their own advantages; the GMT is specialized for map making with simple scripts, while the POV-Ray produces realistic 3D rendering images with more complicated scripts. The earthquakes are plotted with the rainbow color codes depending on their depths in a black background as printed or PC images. Therefore, the red colored shallow earthquakes are float in front and blue colored ones sink deeper. This effect is so amazing that the students who first wear these glasses are strongly moved and fascinated with this simple mechanism. The data used here are from JMA seismicity catalogue and USGS (ANSS) catalogue. The POV-Ray version needs coastline data, so we got them from the Coastline Extractor (NGDC) web site. Also, the POR-Ray has no function to draw lines in three dimensions, so we had to make some trials for showing them in relief. The main target of our map is "the Wadati-Beniof zone", in which the sub-ducting oceanic plate surface is fringed by deeper earthquakes colored yellow, green to blue. The active volcanic regions such as the Hawaii islands or the active fault regions such as the San Andreas Fault are also effective targets of our method. However, since their shallow complicated seismic structures rather than the sub-ducting plate boundaries, the amazing effect is somewhat spoiled. Now, we try to render a transparent sphere model to improve it. The future task is to evaluate the three dimensional effect quantitatively. Present version of our maps has some back draws, but their simple and easier-making process is quite suitable for study in class rooms and outreach purpose, not only for geosciences study itself but also for optics study at the secondary levels. The maps described here are now available in our website (http://www.osaka-kyoiku.ac.jp/ yossi/).

  18. GRAIL Gravity Map of Orientale Basin

    NASA Image and Video Library

    2016-10-27

    This color-coded map shows the strength of surface gravity around Orientale basin on Earth's moon, derived from data obtained by NASA's GRAIL mission. The GRAIL mission produced a very high-resolution map of gravity over the surface of the entire moon. This plot is zoomed in on the part of that map that features Orientale basin, where the two GRAIL spacecraft flew extremely low near the end of their mission. Their close proximity to the basin made the probes' measurements particularly sensitive to the gravitational acceleration there (due to the inverse squared law). The color scale plots the gravitational acceleration in units of "gals," where 1 gal is one centimeter per second squared, or about 1/1000th of the gravitational acceleration at Earth's surface. (The unit was devised in honor of the astronomer Galileo). Labels on the x and y axes represent latitude and longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21050

  19. Consumer preferences for beef color and packaging did not affect eating satisfaction.

    PubMed

    Carpenter, C E; Cornforth, D P; Whittier, D

    2001-04-01

    We investigated whether consumer preferences for beef colors (red, purple, and brown) or for beef packaging systems (modified atmosphere, MAP; vacuum skin pack, VSP; or overwrap with polyvinyl chloride, PVC) influenced taste scores of beef steaks and patties. To test beef color effects, boneless beef top loin steaks (choice) and ground beef patties (20% fat) were packaged in different atmospheres to promote development of red, purple, and brown color. To test effects of package type, steaks and patties were pre-treated with carbon monoxide in MAP to promote development of red color, and some meat was repackaged using VSP or PVC overwrap. The differently colored and packaged meats were separately displayed for members of four consumer panels who evaluated appearance and indicated their likelihood to purchase similar meat. Next, the panelists tasted meat samples from what they had been told were the packaging treatments just observed. However, the meat samples actually served were from a single untreated steak or patty. Thus, any difference in taste scores should reflect expectations established during the visual evaluation. The same ballot and sample coding were used for both the visual and taste evaluations. Color and packaging influenced (P<0.001) appearance scores and likelihood to purchase. Appearance scores were rated red>purple >brown and PVC >VSP>MAP. Appearance scores and likelihood to purchase were correlated (r=0.9). However, color or packaging did not affect (P>0.5) taste scores. Thus, consumer preferences for beef color and packaging influenced likelihood to purchase, but did not bias eating satisfaction.

  20. Teacher-Directed and Student-Mediated Textbook Comprehension Strategies.

    ERIC Educational Resources Information Center

    Reynolds, Catharine J.; Salend, Spencer J.

    1990-01-01

    The article describes teacher-directed and student-mediated comprehension strategies to improve the text comprehension skills of mainstreamed students with mild disabilities. Techniques include advance organizers, study guides, color coding, oral reading, critical thinking maps, and self-questioning techniques. Guidelines are offered for assessing…

  1. Age discrimination among eruptives of Menengai Caldera, Kenya, using vegetation parameters from satellite imagery

    NASA Technical Reports Server (NTRS)

    Blodget, Herbert W.; Heirtzler, James R.

    1993-01-01

    Results are presented of an investigation to determine the degree to which digitally processed Landsat TM imagery can be used to discriminate among vegetated lava flows of different ages in the Menengai Caldera, Kenya. A selective series of five images, consisting of a color-coded Landsat 5 classification and four color composites, are compared with geologic maps. The most recent of more than 70 postcaldera flows within the caldera are trachytes, which are variably covered by shrubs and subsidiary grasses. Soil development evolves as a function of time, and as such supports a changing plant community. Progressively older flows exhibit the increasing dominance of grasses over bushes. The Landsat images correlated well with geologic maps, but the two mapped age classes could be further subdivided on the basis of different vegetation communities. It is concluded that field maps can be modified, and in some cases corrected by use of such imagery, and that digitally enhanced Landsat imagery can be a useful aid to field mapping in similar terrains.

  2. Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.

    PubMed

    Bannert, Michael M; Bartels, Andreas

    2018-04-11

    Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an imagery task, suggesting it forms a perceptual hub for color perception. Copyright © 2018 the authors 0270-6474/18/383657-12$15.00/0.

  3. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  4. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  5. Usage of Data-Encoded Web Maps with Client Side Color Rendering for Combined Data Access, Visualization and Modeling Purposes

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narashimha S.

    2013-01-01

    Current approaches to satellite observation data storage and distribution implement separate visualization and data access methodologies which often leads to the need in time consuming data ordering and coding for applications requiring both visual representation as well as data handling and modeling capabilities. We describe an approach we implemented for a data-encoded web map service based on storing numerical data within server map tiles and subsequent client side data manipulation and map color rendering. The approach relies on storing data using the lossless compression Portable Network Graphics (PNG) image data format which is natively supported by web-browsers allowing on-the-fly browser rendering and modification of the map tiles. The method is easy to implement using existing software libraries and has the advantage of easy client side map color modifications, as well as spatial subsetting with physical parameter range filtering. This method is demonstrated for the ASTER-GDEM elevation model and selected MODIS data products and represents an alternative to the currently used storage and data access methods. One additional benefit includes providing multiple levels of averaging due to the need in generating map tiles at varying resolutions for various map magnification levels. We suggest that such merged data and mapping approach may be a viable alternative to existing static storage and data access methods for a wide array of combined simulation, data access and visualization purposes.

  6. Storm Water Management Model User’s Manual Version 5.1 - manual

    EPA Science Inventory

    SWMM 5 provides an integrated environment for editing study area input data, running hydrologic, hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded drainage area and conveyance system maps, time series graphs and ta...

  7. Lake water quality mapping from LANDSAT

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    The lakes in three LANDSAT scenes were mapped by the Bendix MDAS multispectral analysis system. Field checking the maps by three separate individuals revealed approximately 90-95% correct classification for the lake categories selected. Variations between observers was about 5%. From the MDAS color coded maps the lake with the worst algae problem was easily located. This lake was closely checked and a pollution source of 100 cows was found in the springs which fed this lake. The theory, lab work and field work which made it possible for this demonstration project to be a practical lake classification procedure are presented.

  8. Six Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The landing site chosen for NASA's Phoenix Mars Lander, at about 68 degrees north latitude, is much farther north than the sites where previous spacecraft have landed on Mars.

    Color coding on this map indicates relative elevations based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In longitude, the map extends from 70 degrees (north) to minus 70 degrees (south).

  9. Visual saliency in MPEG-4 AVC video stream

    NASA Astrophysics Data System (ADS)

    Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.

    2015-03-01

    Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.

  10. Nearshore Hydroacoustic Seafloor Mapping In The German Bight (North Sea): Hydroacoustic Interpretation With And Without Classification

    NASA Astrophysics Data System (ADS)

    Hass, H. C.; Mielck, F.; Papenmeier, S.

    2016-12-01

    Nearshore habitats are in constant dynamic change. They need regular assessment and appropriate monitoring of areas of special interest. To accomplish this, hydroacoustic seabed characterization tools are applied to allow for cost-effective and efficient mapping of the seafloor. In this context single beam echosounders (SBES) systems provide a comprehensive view by analyzing the hardness and roughness characteristics of the seafloor. Interpolation between transect lines becomes necessary when gapless maps are needed. This study presents a simple method to process and visualize data recorded with RoxAnn (Sonavision, Edinburgh, UK) and similar SBES. Both, hardness and roughness data are merged to one combined parameter that receives a color code (RGB) according to the acoustic properties of the seafloor. This color information is then interpolated to obtain an area-wide map that provides unclassified and thus unbiased seabed information. The RGB color data can subsequently be used for classification and modeling purposes. Four surveys are shown from a morphologically complex nearshore area west of the island of Helgoland (SE North Sea). The area has complex textural and dynamic characteristics reaching from outcropping bedrock via sandy to muddy areas with mostly gradual transitions. RoxAnn data allow to discriminate all seafloor types that were suggested by ground-truth information (seafloor samples, video). The area appears to be fluctuating within certain limits. Sediment import (sand and fluid mud) paths can be reconstructed. Manually, six RoxAnn zones (RZ) were identified and left without hard boundaries to better match the seafloor types of the study site. The k-means fuzzy cluster analysis employed yields best results with 3 classes. We show that interpretations on the basis of largely non-classified, color-coded and interpolated data provide the best gain of information in the highest possible resolution. Classification with hard boundaries is necessary for stakeholders but may cause reduction of information important to science. It becomes apparent that the type of classification addressing stakeholder issues is not always compatible with scientific objectives.

  11. 49 CFR 1152.12 - Filing and publication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... filed. (b) The color-coded system diagram map or narrative, any amendments, and accompanying line... through 3 lines or lines being revised, a notice containing: (i) A black-and-white copy of the system... black-and-white) or narrative; and (4) Notify interested persons of this availability through its...

  12. Incorporating 3-dimensional models in online articles.

    PubMed

    Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-05-01

    The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. A novel quantum steganography scheme for color images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Liu, Xiande

    In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.

  14. Color-coded topography and shaded relief map of the lunar near side and far side hemispheres

    USGS Publications Warehouse

    ,

    2003-01-01

    This publication is a set of three sheets of topographic maps that presents color-coded topographic data digitally merged with shaded relief data. Adopted figure: The figure for the Moon, used for the computation of the map projection, is a sphere with a radius of 1737.4 km. Because the Moon has no surface water, and hence no sea level, the datum (the 0 km contour) for elevations is defined as the radius of 1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) coordinates system, the z axis is the axis of the Moon's rotation, and the x axis is the mean Earth direction. The center of mass is the origin of the coordinate system. The equator lies in the x-y plane and the prime meridian lies in the x-z plane with east longitude values being positive. Projection: The projection is Lambert Azimuthal Equal Area Projection. The scale factor at the central latitude and central longitude point is 1:10,000,000. For the near side hemisphere the central latitude and central longitude point is at 0° and 0°. For the far side hemisphere the central latitude and central longitude point is at 0° and 180°.

  15. Rapid weather information dissemination in Florida

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.

    1984-01-01

    The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.

  16. Rocks Here Sequester Some of Mars Early Atmosphere

    NASA Image and Video Library

    2015-09-02

    This view combines information from two instruments on NASA's Mars Reconnaissance Orbiter to map color-coded composition over the shape of the ground in a small portion of the Nili Fossae plains region of Mars' northern hemisphere. This site is part of the largest known carbonate-rich deposit on Mars. In the color coding used for this map, green indicates a carbonate-rich composition, brown indicates olivine-rich sands, and purple indicates basaltic composition. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere by sequestering the carbon in the rocks. An analysis of the amount of carbon contained in Nili Fossae plains estimated the total at no more than twice the amount of carbon in the modern atmosphere of Mars, which is mostly carbon dioxide. That is much more than in all other known carbonate on Mars, but far short of enough to explain how Mars could have had a thick enough atmosphere to keep surface water from freezing during a period when rivers were cutting extensive valley networks on the Red Planet. Other possible explanations for the change from an era with rivers to dry modern Mars are being investigated. This image covers an area approximately 1.4 miles (2.3 kilometers) wide. A scale bar indicates 500 meters (1,640 feet). The full extent of the carbonate-containing deposit in the region is at least as large as Delaware and perhaps as large as Arizona. The color coding is from data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), in observation FRT0000C968 made on Sept. 19, 2008. The base map showing land shapes is from the High Resolution Imaging Science Experiment (HiRISE) camera. It is one product from HiRISE observation ESP_010351_2020, made July 20, 2013. http://photojournal.jpl.nasa.gov/catalog/PIA19817

  17. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  18. Color-coded automated signal intensity curves for detection and characterization of breast lesions: preliminary evaluation of a new software package for integrated magnetic resonance-based breast imaging.

    PubMed

    Pediconi, Federica; Catalano, Carlo; Venditti, Fiammetta; Ercolani, Mauro; Carotenuto, Luigi; Padula, Simona; Moriconi, Enrica; Roselli, Antonella; Giacomelli, Laura; Kirchin, Miles A; Passariello, Roberto

    2005-07-01

    The objective of this study was to evaluate the value of a color-coded automated signal intensity curve software package for contrast-enhanced magnetic resonance mammography (CE-MRM) in patients with suspected breast cancer. Thirty-six women with suspected breast cancer based on mammographic and sonographic examinations were preoperatively evaluated on CE-MRM. CE-MRM was performed on a 1.5-T magnet using a 2D Flash dynamic T1-weighted sequence. A dosage of 0.1 mmol/kg of Gd-BOPTA was administered at a flow rate of 2 mL/s followed by 10 mL of saline. Images were analyzed with the new software package and separately with a standard display method. Statistical comparison was performed of the confidence for lesion detection and characterization with the 2 methods and of the diagnostic accuracy for characterization compared with histopathologic findings. At pathology, 54 malignant lesions and 14 benign lesions were evaluated. All 68 (100%) lesions were detected with both methods and good correlation with histopathologic specimens was obtained. Confidence for both detection and characterization was significantly (P < or = 0.025) better with the color-coded method, although no difference (P > 0.05) between the methods was noted in terms of the sensitivity, specificity, and overall accuracy for lesion characterization. Excellent agreement between the 2 methods was noted for both the determination of lesion size (kappa = 0.77) and determination of SI/T curves (kappa = 0.85). The novel color-coded signal intensity curve software allows lesions to be visualized as false color maps that correspond to conventional signal intensity time curves. Detection and characterization of breast lesions with this method is quick and easily interpretable.

  19. Rooftop Solar Technical Potential for Low-to-Moderate Income Households in

    Science.gov Websites

    communities. A map of the United States, divided by county, is color-coded by the total solar technical of LMI households in the U.S. (approximately 43 percent), this analysis reveals two other important city governments, though to do so requires deployment on multi-family and renter-occupied buildings

  20. Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect

    USGS Publications Warehouse

    Wright, Bruce E.; Stewart, David B.

    1990-01-01

    The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.

  1. An Eye-Tracking Study of How Color Coding Affects Multimedia Learning

    ERIC Educational Resources Information Center

    Ozcelik, Erol; Karakus, Turkan; Kursun, Engin; Cagiltay, Kursat

    2009-01-01

    Color coding has been proposed to promote more effective learning. However, insufficient evidence currently exists to show how color coding leads to better learning. The goal of this study was to investigate the underlying cause of the color coding effect by utilizing eye movement data. Fifty-two participants studied either a color-coded or…

  2. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  3. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    PubMed

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  5. Halftoning Algorithms and Systems.

    DTIC Science & Technology

    1996-08-01

    TERMS 15. NUMBER IF PAGESi. Halftoning algorithms; error diffusions ; color printing; topographic maps 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...graylevels for each screen level. In the case of error diffusion algorithms, the calibration procedure using the new centering concept manifests itself as a...Novel Centering Concept for Overlapping Correction Paper / Transparency (Patent Applied 5/94)I * Applications To Error Diffusion * To Dithering (IS&T

  6. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  7. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.

  8. The psychological four-color mapping problem.

    PubMed

    Francis, Gregory; Bias, Keri; Shive, Joshua

    2010-06-01

    Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task of identifying the optimal colors for a map. We parameterized the model with a set of 7 colors using a visual search experiment in which human participants found a target region on a small map. We then used the model to predict search times for new maps and identified the color assignments that minimize or maximize average search time. The differences between these maps were predicted to be substantial. The model was then tested with a larger set of 31 colors on a map of English counties under conditions in which participants might memorize some aspects of the map. Empirical tests of the model showed that an optimally best colored version of this map is searched 15% faster than the correspondingly worst colored map. Thus, the color assignment seems to affect search times in a way predicted by the model, and this effect persists even when participants might use other sources of knowledge about target location. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. Image tools for UNIX

    NASA Technical Reports Server (NTRS)

    Banks, David C.

    1994-01-01

    This talk features two simple and useful tools for digital image processing in the UNIX environment. They are xv and pbmplus. The xv image viewer which runs under the X window system reads images in a number of different file formats and writes them out in different formats. The view area supports a pop-up control panel. The 'algorithms' menu lets you blur an image. The xv control panel also activates the color editor which displays the image's color map (if one exists). The xv image viewer is available through the internet. The pbmplus package is a set of tools designed to perform image processing from within a UNIX shell. The acronym 'pbm' stands for portable bit map. Like xv, the pbm plus tool can convert images from and to many different file formats. The source code and manual pages for pbmplus are also available through the internet. This software is in the public domain.

  10. Measurement of myocardial perfusion and infarction size using computer-aided diagnosis system for myocardial contrast echocardiography.

    PubMed

    Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei

    2015-09-01

    Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can accurately measure infarct size. On the basis of the results, we believe the CAD method can quickly and automatically measure myocardial perfusion and infarct size and will, it is hoped, be very helpful in clinical therapeutics. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  12. Quantum error correction in crossbar architectures

    NASA Astrophysics Data System (ADS)

    Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie

    2018-07-01

    A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.

  13. How Clean is your Local Air? Here's an app for that

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.

    2011-12-01

    Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.

  14. Investigation of land use of northern megalopolis using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Simpson, R. B.; Lindgren, D. T.; Ruml, D. J.; Goldstein, W.

    1974-01-01

    Primary objective was to produce a color-coded land use map and digital data base for the northern third of Megalopolis. Secondary objective was to investigate possible applications of ERTS products to land use planning. Many of the materials in this report already have received national, dissemination as a result of unexpected interest in land use surveys from ERTS. Of special historical interest is the first comprehensive urban-type land use map from space imagery, which covered the entire state of Rhode Island and was made from a single image taken on 28 July 1972.

  15. Effect of Color-Coded Notation on Music Achievement of Elementary Instrumental Students.

    ERIC Educational Resources Information Center

    Rogers, George L.

    1991-01-01

    Presents results of a study of color-coded notation to teach music reading to instrumental students. Finds no clear evidence that color-coded notation enhances achievement on performing by memory, sight-reading, or note naming. Suggests that some students depended on the color-coding and were unable to read uncolored notation well. (DK)

  16. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  17. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  18. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  19. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be... basic color for designating caution and for marking physical hazards such as: Striking against...

  20. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  1. Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group.

    PubMed

    Henning, Frederico; Renz, Adina Josepha; Fukamachi, Shoji; Meyer, Axel

    2010-05-01

    Natural populations of the Midas cichlid species in several different crater lakes in Nicaragua exhibit a conspicuous color polymorphism. Most individuals are dark and the remaining have a gold coloration. The color morphs mate assortatively and sympatric population differentiation has been shown based on neutral molecular data. We investigated the color polymorphism using segregation analysis and a candidate gene approach. The segregation patterns observed in a mapping cross between a gold and a dark individual were consistent with a single dominant gene as a cause of the gold phenotype. This suggests that a simple genetic architecture underlies some of the speciation events in the Midas cichlids. We compared the expression levels of several candidate color genes Mc1r, Ednrb1, Slc45a2, and Tfap1a between the color morphs. Mc1r was found to be up regulated in the gold morph. Given its widespread association in color evolution and role on melanin synthesis, the Mc1r locus was further investigated using sequences derived from a genomic library. Comparative analysis revealed conserved synteny in relation to the majority of teleosts and highlighted several previously unidentified conserved non-coding elements (CNEs) in the upstream and downstream regions in the vicinity of Mc1r. The identification of the CNEs regions allowed the comparison of sequences from gold and dark specimens of natural populations. No polymorphisms were found between in the population sample and Mc1r showed no linkage to the gold phenotype in the mapping cross, demonstrating that it is not causally related to the color polymorphism in the Midas cichlid.

  2. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  3. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-??m absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body. ?? 1983.

  4. Building perceptual color maps for visualizing interval data

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron

    2000-06-01

    In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).

  5. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  6. The Use of Color-Coded Genograms in Family Therapy.

    ERIC Educational Resources Information Center

    Lewis, Karen Gail

    1989-01-01

    Describes a variable color-coding system which has been added to the standard family genogram in which characteristics or issues associated with a particular presenting problem or for a particular family are arbitrarily assigned a color. Presents advantages of color-coding, followed by clinical examples. (Author/ABL)

  7. Accessible maps for the color vision deficient observers: past and present knowledge and future possibilities

    NASA Astrophysics Data System (ADS)

    Kvitle, Anne Kristin

    2018-05-01

    Color is part of the visual variables in map, serving an aesthetic part and as a guide of attention. Impaired color vision affects the ability to distinguish colors, which makes the task of decoding the map colors difficult. Map reading is reported as a challenging task for these observers, especially when the size of stimuli is small. The aim of this study is to review existing methods for map design for color vision deficient users. A systematic review of research literature and case studies of map design for CVD observers has been conducted in order to give an overview of current knowledge and future research challenges. In addition, relevant research on simulations of CVD and color image enhancement for these observers from other fields of industry is included. The study identified two main approaches: pre-processing by using accessible colors and post-processing by using enhancement methods. Some of the methods may be applied for maps, but requires tailoring of test images according to map types.

  8. Color coding of control room displays: the psychocartography of visual layering effects.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  9. Clustering of color map pixels: an interactive approach

    NASA Astrophysics Data System (ADS)

    Moon, Yiu Sang; Luk, Franklin T.; Yuen, K. N.; Yeung, Hoi Wo

    2003-12-01

    The demand for digital maps continues to arise as mobile electronic devices become more popular nowadays. Instead of creating the entire map from void, we may convert a scanned paper map into a digital one. Color clustering is the very first step of the conversion process. Currently, most of the existing clustering algorithms are fully automatic. They are fast and efficient but may not work well in map conversion because of the numerous ambiguous issues associated with printed maps. Here we introduce two interactive approaches for color clustering on the map: color clustering with pre-calculated index colors (PCIC) and color clustering with pre-calculated color ranges (PCCR). We also introduce a memory model that could enhance and integrate different image processing techniques for fine-tuning the clustering results. Problems and examples of the algorithms are discussed in the paper.

  10. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  11. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  12. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    NASA Astrophysics Data System (ADS)

    Rebelo, Marina de Sá; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise; Brandão, Simone Cristina Soares; Giorgi, Maria Clementina; Meneghetti, José Cláudio; Gutierrez, Marco Antonio

    2009-12-01

    A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.

  13. Bolivian satellite technology program on ERTS natural resources

    NASA Technical Reports Server (NTRS)

    Brockmann, H. C. (Principal Investigator); Bartoluccic C., L.; Hoffer, R. M.; Levandowski, D. W.; Ugarte, I.; Valenzuela, R. R.; Urena E., M.; Oros, R.

    1977-01-01

    The author has identified the following significant results. Application of digital classification for mapping land use permitted the separation of units at more specific levels in less time. A correct classification of data in the computer has a positive effect on the accuracy of the final products. Land use unit comparison with types of soils as represented by the colors of the coded map showed a class relation. Soil types in relation to land cover and land use demonstrated that vegetation was a positive factor in soils classification. Groupings of image resolution elements (pixels) permit studies of land use at different levels, thereby forming parameters for the classification of soils.

  14. Selective corneal optical aberration (SCOA) for customized ablation

    NASA Astrophysics Data System (ADS)

    Jean, Benedikt J.; Bende, Thomas

    2001-06-01

    Wavefront analysis still have some technical problems which may be solved within the next years. There are some limitations to use wavefront as a diagnostic tool for customized ablation alone. An ideal combination would be wavefront and topography. Meanwhile Selective Corneal Aberration is a method to visualize the optical quality of a measured corneal surface. It is based on a true measured 3D elevation information of a video topometer. Thus values can be interpreted either using Zernike polynomials or visualized as a so called color coded surface quality map. This map gives a quality factor (corneal aberration) for each measured point of the cornea.

  15. Pluto in Extended Color

    NASA Image and Video Library

    2015-09-24

    This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956

  16. Color reproduction system based on color appearance model and gamut mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  17. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Reginato, R. J.; Idso, S. B.; Lapado, R. L.

    1977-01-01

    Airborne and ground measurements were made on April 1 and 29, 1976, over a USDA test site consisting mostly of wheat in various stages of water stress, but also including alfalfa and bare soil. These measurements were made to evaluate the feasibility of measuring crop temperatures from aircraft so that a parameter termed stress degree day, SDD, could be computed. Ground studies have shown that SDD is a valuable indicator of a crop's water needs, and that it can be related to irrigation scheduling and yield. The aircraft measurement program required predawn and afternoon flights coincident with minimum and maximum crop temperatures. Airborne measurements were made with an infrared line scanner and with color IR photography. The scanner data were registered, subtracted, and color-coded to yield pseudo-colored temperature-difference images. Pseudo-colored images reading directly in daily SDD increments were also produced. These maps enable a user to assess plant water status and thus determine irrigation needs and crop yield potentials.

  18. Quantitative Assessment of Foot Blood Flow by Using Dynamic Volume Perfusion CT Technique: A Feasibility Study.

    PubMed

    Hur, Saebeom; Jae, Hwan Jun; Jang, Yeonggul; Min, Seung-Kee; Min, Sang-Il; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Hyo-Cheol; Chung, Jin Wook; Kim, Kwang Gi; Park, Eun-Ah; Lee, Whal

    2016-04-01

    To demonstrate the feasibility of foot blood flow measurement by using dynamic volume perfusion computed tomographic (CT) technique with the upslope method in an animal experiment and a human study. The human study was approved by the institutional review board, and written informed consent was obtained from all patients. The animal study was approved by the research animal care and use committee. A perfusion CT experiment was first performed by using rabbits. A color-coded perfusion map was reconstructed by using in-house perfusion analysis software based on the upslope method, and the measured blood flow on the map was compared with the reference standard microsphere method by using correlation analysis. A total of 17 perfusion CT sessions were then performed (a) once in five human patients and (b) twice (before and after endovascular revascularization) in six human patients. Perfusion maps of blood flow were reconstructed and analyzed. The Wilcoxon signed rank test was used to prove significant differences in blood flow before and after treatment. The animal experiment demonstrated a strong correlation (R(2) = 0.965) in blood flow between perfusion CT and the microsphere method. Perfusion maps were obtained successfully in 16 human clinical sessions (94%) with the use of 32 mL of contrast medium and an effective radiation dose of 0.31 mSv (k factor for the ankle, 0.0002). The plantar dermis showed the highest blood flow among all anatomic structures of the foot, including muscle, subcutaneous tissue, tendon, and bone. After a successful revascularization procedure, the blood flow of the plantar dermis increased by 153% (P = .031). The interpretations of the color-coded perfusion map correlated well with the clinical and angiographic findings. Perfusion CT could be used to measure foot blood flow in both animals and humans. It can be a useful modality for the diagnosis of peripheral arterial disease by providing quantitative information on foot perfusion status.

  19. The Psychological Four-Color Mapping Problem

    ERIC Educational Resources Information Center

    Francis, Gregory; Bias, Keri; Shive, Joshua

    2010-01-01

    Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task…

  20. Color Coded Cards for Student Behavior Management in Higher Education Environments

    ERIC Educational Resources Information Center

    Alhalabi, Wadee; Alhalabi, Mobeen

    2017-01-01

    The Color Coded Cards system as a possibly effective class management tool is the focus of this research. The Color Coded Cards system involves each student being given a card with a specific color based on his or her behavior. The main objective of the research is to find out whether this system effectively improves students' behavior, thus…

  1. UltraColor: a new gamut-mapping strategy

    NASA Astrophysics Data System (ADS)

    Spaulding, Kevin E.; Ellson, Richard N.; Sullivan, James R.

    1995-04-01

    Many color calibration and enhancement strategies exist for digital systems. Typically, these approaches are optimized to work well with one class of images, but may produce unsatisfactory results for other types of images. For example, a colorimetric strategy may work well when printing photographic scenes, but may give inferior results for business graphic images because of device color gamut limitations. On the other hand, a color enhancement strategy that works well for business graphics images may distort the color reproduction of skintones and other important photographic colors. This paper describes a method for specifying different color mapping strategies in various regions of color space, while providing a mechanism for smooth transitions between the different regions. The method involves a two step process: (1) constraints are applied so some subset of the points in the input color space explicitly specifying the color mapping function; (2) the color mapping for the remainder of the color values is then determined using an interpolation algorithm that preserves continuity and smoothness. The interpolation algorithm that was developed is based on a computer graphics morphing technique. This method was used to develop the UltraColor gamut mapping strategy, which combines a colorimetric mapping for colors with low saturation levels, with a color enhancement technique for colors with high saturation levels. The result is a single color transformation that produces superior quality for all classes of imagery. UltraColor has been incorporated in several models of Kodak printers including the Kodak ColorEase PS and the Kodak XLS 8600 PS thermal dye sublimation printers.

  2. How Scientists Differentiate Between Land Cover Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Before scientists can transform raw satellite image data into land cover maps, they must decide on what categories of land cover they would like to use. Categories are simply the types of landscape that the scientists are trying to map and can vary greatly from map to map. For flood maps, there may be only two categories-dry land and wet land-while a standard global land cover map may have seventeen categories including closed shrub lands, savannas, evergreen needle leaf forest, urban areas, and ice/snow. The only requirement for any land cover category is that it have a distinct spectral signature that a satellite can record. As can be seen through a prism, many different colors (wavelengths) make up the spectra of sunlight. When sunlight strikes objects, certain wavelengths are absorbed and others are reflected or emitted. The unique way in which a given type of land cover reflects and absorbs light is known as its spectral signature. Anyone who has flown over the midwestern United States has seen evidence of this phenomenon. From an airplane window, the ground appears as a patchwork of different colors formed by the fields of crops planted there. The varying pigments of the leaves, the amount of foliage per square foot, the age of the plants, and many other factors create this tapestry. Most imaging satellites are sensitive to specific wavelengths of light, including infrared wavelengths that cannot be seen with the naked eye. Passive satellite remote sensors-such as those flown on Landsat 5, Landsat 7, and Terra-have a number of light detectors (photoreceptors) on board that measure the energy reflected or emitted by the Earth. One light detector records only the blue part of the spectrum coming off the Earth. Another observes all the yellow-green light and still another picks up on all the near-infrared light. The detectors scan the Earth's surface as the satellite travels in a circular orbit very nearly from pole-to-pole. To differentiate between types of land cover and their attributes, researchers manipulate the colors recorded by the satellite to get the combination of wavelengths that best distinguishes the spectral signature of the land cover they wish to identify. After an area of forest or water or grass is identified, they can outline the category on an easy-to-analyze, color-coded map. To verify their results, the scientists will often travel to the regions of interest and compare the results of the map with test sites on the ground. next: The Basic Vegetation Map back: Mapping Earth's Diverse Landscapes

  3. Applications of LANDSAT data to the integrated economic development of Mindoro, Phillipines

    NASA Technical Reports Server (NTRS)

    Wagner, T. W.; Fernandez, J. C.

    1977-01-01

    LANDSAT data is seen as providing essential up-to-date resource information for the planning process. LANDSAT data of Mindoro Island in the Philippines was processed to provide thematic maps showing patterns of agriculture, forest cover, terrain, wetlands and water turbidity. A hybrid approach using both supervised and unsupervised classification techniques resulted in 30 different scene classes which were subsequently color-coded and mapped at a scale of 1:250,000. In addition, intensive image analysis is being carried out in evaluating the images. The images, maps, and aerial statistics are being used to provide data to seven technical departments in planning the economic development of Mindoro. Multispectral aircraft imagery was collected to compliment the application of LANDSAT data and validate the classification results.

  4. Joint sparse coding based spatial pyramid matching for classification of color medical image.

    PubMed

    Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin

    2015-04-01

    Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The GIS map coloring support decision-making system based on case-based reasoning and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Shuang; Xiang, Wenting; Tian, Yangge

    2009-10-01

    Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.

  6. Fine Mapping Identifies SmFAS Encoding an Anthocyanidin Synthase as a Putative Candidate Gene for Flower Purple Color in Solanum melongena L.

    PubMed Central

    Chen, Mengqiang; Xu, Mengyun; Xiao, Yao; Cui, Dandan; Qin, Yongqiang; Wu, Jiaqi; Wang, Wenyi; Wang, Guoping

    2018-01-01

    Anthocyanins are the main pigments in flowers and fruits. These pigments are responsible for the red, red-purple, violet, and purple color in plants, and act as insect and animal attractants. In this study, phenotypic analysis of the purple flower color in eggplant indicated that the flower color is controlled by a single dominant gene, FAS. Using an F2 mapping population derived from a cross between purple-flowered ‘Blacknite’ and white-flowered ‘Small Round’, Flower Anthocyanidin Synthase (FAS) was fine mapped to an approximately 165.6-kb region between InDel marker Indel8-11 and Cleaved Amplified Polymorphic Sequences (CAPS) marker Efc8-32 on Chromosome 8. On the basis of bioinformatic analysis, 29 genes were subsequently located in the FAS target region, among which were two potential Anthocyanidin Synthase (ANS) gene candidates. Allelic sequence comparison results showed that one ANS gene (Sme2.5_01638.1_g00003.1) was conserved in promoter and coding sequences without any nucleotide change between parents, whereas four single-nucleotide polymorphisms were detected in another ANS gene (Sme2.5_01638.1_g00005.1). Crucially, a single base pair deletion at site 438 resulted in premature termination of FAS, leading to the loss of anthocyanin accumulation. In addition, FAS displayed strong expression in purple flowers compared with white flowers and other tissues. Collectively, our results indicate that Sme2.5_01638.1_g00005.1 is a good candidate gene for FAS, which controls anthocyanidin synthase in eggplant flowers. The present study provides information for further potential facilitate genetic engineering for improvement of anthocyanin levels in plants. PMID:29522465

  7. Radiant thinking and the use of the mind map in nurse practitioner education.

    PubMed

    Spencer, Julie R; Anderson, Kelley M; Ellis, Kathryn K

    2013-05-01

    The concept of radiant thinking, which led to the concept of mind mapping, promotes all aspects of the brain working in synergy, with thought beginning from a central point. The mind map, which is a graphical technique to improve creative thinking and knowledge attainment, utilizes colors, images, codes, and dimensions to amplify and enhance key ideas. This technique augments the visualization of relationships and links between concepts, which aids in information acquisition, data retention, and overall comprehension. Faculty can promote students' use of the technique for brainstorming, organizing ideas, taking notes, learning collaboratively, presenting, and studying. These applications can be used in problem-based learning, developing plans of care, health promotion activities, synthesizing disease processes, and forming differential diagnoses. Mind mapping is a creative way for students to engage in a unique method of learning that can expand memory recall and help create a new environment for processing information. Copyright 2013, SLACK Incorporated.

  8. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  9. Phoenix's New Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The center of the red circle on this map shows where NASA's Phoenix Mars Lander eased down to the surface of Mars, at approximately 68 degrees north latitude, 234 degrees east longitude. Before Phoenix landed, engineers had predicted it would land within the blue ellipse.

    Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis.

    The map shows a color-coded interpretation of geomorphic units categories based on the surface textures and contours. The geomorphic mapping is overlaid on a shaded relief map based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    PubMed

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  11. Oscillatory EEG signatures of postponed somatosensory decisions.

    PubMed

    Ludwig, Simon; Herding, Jan; Blankenburg, Felix

    2018-05-02

    In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command. We recorded EEG data in two separate experiments, both employing the vibrotactile frequency comparison task with delayed decision reports. In the first experiment, delayed choices were associated with a fixed motor mapping, whereas in the second experiment, choices were mapped onto a color code concealing a specific motor response until the end of the delay phase. In between stimulus presentations, as well as after the second stimulus, prefrontal beta band power indexed stimulus information held in working memory. Beta band power also encoded choices during the response delay, notably, in different cortical areas depending on the provided response mapping. In particular, when decisions were associated with a specific motor mapping, choices were represented in premotor cortices, whereas the color mapping resulted in a choice-selective modulation of beta band power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., the decision consequence) determines where in the cortical sensorimotor hierarchy an according decision signal is processed. © 2018 Wiley Periodicals, Inc.

  12. A blind dual color images watermarking based on IWT and state coding

    NASA Astrophysics Data System (ADS)

    Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu

    2012-04-01

    In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.

  13. Gamut mapping in a high-dynamic-range color space

    NASA Astrophysics Data System (ADS)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  14. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  15. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  16. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  17. Do Doppler color flow algorithms for mapping disturbed flow make sense?

    PubMed

    Gardin, J M; Lobodzinski, S M

    1990-01-01

    It has been suggested that a major advantage of Doppler color flow mapping is its ability to visualize areas of disturbed ("turbulent") flow, for example, in valvular stenosis or regurgitation and in shunts. To investigate how various color flow mapping instruments display disturbed flow information, color image processing was used to evaluate the most common velocity-variance color encoding algorithms of seven commercially available ultrasound machines. In six of seven machines, green was reportedly added by the variance display algorithms to map areas of disturbed flow. The amount of green intensity added to each pixel along the red and blue portions of the velocity reference color bar was calculated for each machine. In this study, velocities displayed on the reference color bar ranged from +/- 46 to +/- 64 cm/sec, depending on the Nyquist limit. Of note, changing the Nyquist limits depicted on the color reference bars did not change the distribution of the intensities of red, blue, or green within the contour of the reference map, but merely assigned different velocities to the pixels. Most color flow mapping algorithms in our study added increasing intensities of green to increasing positive (red) or negative (blue) velocities along their color reference bars. Most of these machines also added increasing green to red and blue color intensities horizontally across their reference bars as a marker of increased variance (spectral broadening). However, at any given velocity, marked variations were noted between different color flow mapping instruments in the amount of green added to their color velocity reference bars.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. An evaluation of acquired data as a tool for management of wildlife habitat in Alaska

    NASA Technical Reports Server (NTRS)

    Vantries, B. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Density sliced and digitized imagery of the Kuskokwin/Yukon Delta were analyzed. Color coded images of the isodensity displays were compared with existing vegetation maps of the ERTS-1 frames for the Yukon/Kuskokwin area. A high degree of positive correlation was found to exist between the ERTS-1 image and the conventionally prepared maps. Hydrologic phenomena were also analyzed. Digitization on South Dakota State Remote Sensing Center's SADE system provide some discrimination among several large lakes in the subject area. However, interpretation must await ground observations and depth measurements. An attempt will be made to classify large water bodies by depth classes.

  19. Choosing colors for map display icons using models of visual search.

    PubMed

    Shive, Joshua; Francis, Gregory

    2013-04-01

    We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.

  20. Landscape of Former Lakes and Streams on Northern Mars

    NASA Image and Video Library

    2016-09-15

    Valleys younger than better-known ancient valley networks on Mars are evident on the landscape in the northern Arabia Terra region of Mars, particularly in the area mapped here with color-coded topographical information overlaid onto a photo mosaic. The area includes a basin informally named "Heart Lake" at upper left (northwest). Data from the Mars Orbiter Laser Altimeter (MOLA) on NASA's Mars Global Surveyor orbiter are coded here as white and purple for lower elevations, yellow for higher elevation. The elevation information is combined with a mosaic of images from the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter, covering an area about 120 miles (about 190 kilometers) wide. The mapped area is centered near 35.91 degrees north latitude, 1 degree east longitude on Mars. These lakes and streams held water several hundred million years after better-known ancient lake environments on Mars, according to 2016 findings. http://photojournal.jpl.nasa.gov/catalog/PIA20838

  1. User perception and interpretation of tornado probabilistic hazard information: Comparison of four graphical designs.

    PubMed

    Miran, Seyed M; Ling, Chen; James, Joseph J; Gerard, Alan; Rothfusz, Lans

    2017-11-01

    Effective design for presenting severe weather information is important to reduce devastating consequences of severe weather. The Probabilistic Hazard Information (PHI) system for severe weather is being developed by NOAA National Severe Storms Laboratory (NSSL) to communicate probabilistic hazardous weather information. This study investigates the effects of four PHI graphical designs for tornado threat, namely, "four-color"," red-scale", "grayscale" and "contour", on users' perception, interpretation, and reaction to threat information. PHI is presented on either a map background or a radar background. Analysis showed that the accuracy was significantly higher and response time faster when PHI was displayed on map background as compared to radar background due to better contrast. When displayed on a radar background, "grayscale" design resulted in a higher accuracy of responses. Possibly due to familiarity, participants reported four-color design as their favorite design, which also resulted in the fastest recognition of probability levels on both backgrounds. Our study shows the importance of using intuitive color-coding and sufficient contrast in conveying probabilistic threat information via graphical design. We also found that users follows a rational perceiving-judging-feeling-and acting approach in processing probabilistic hazard information for tornado. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Teaching Speech Organization and Outlining Using a Color-Coded Approach.

    ERIC Educational Resources Information Center

    Hearn, Ralene

    The organization/outlining unit in the basic Public Speaking course can be made more interesting by using a color-coded instructional method that captivates students, facilitates understanding, and provides the opportunity for interesting reinforcement activities. The two part lesson includes a mini-lecture with a color-coded outline and a two…

  3. Imitation Learning Errors Are Affected by Visual Cues in Both Performance and Observation Phases.

    PubMed

    Mizuguchi, Takashi; Sugimura, Ryoko; Shimada, Hideaki; Hasegawa, Takehiro

    2017-08-01

    Mechanisms of action imitation were examined. Previous studies have suggested that success or failure of imitation is determined at the point of observing an action. In other words, cognitive processing after observation is not related to the success of imitation; 20 university students participated in each of three experiments in which they observed a series of object manipulations consisting of four elements (hands, tools, object, and end points) and then imitated the manipulations. In Experiment 1, a specific intially observed element was color coded, and the specific manipulated object at the imitation stage was identically color coded; participants accurately imitated the color coded element. In Experiment 2, a specific element was color coded at the observation but not at the imitation stage, and there were no effects of color coding on imitation. In Experiment 3, participants were verbally instructed to attend to a specific element at the imitation stage, but the verbal instructions had no effect. Thus, the success of imitation may not be determined at the stage of observing an action and color coding can provide a clue for imitation at the imitation stage.

  4. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  5. Color Map of Ceres Elliptical Projection

    NASA Image and Video Library

    2016-03-22

    This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.

  6. Satellite freeze forecast system: Executive summary

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.

  7. CARETS: A prototype regional environmental information system. Volume 5: Interpretation, compilation and field verification procedures in the CARETS project

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Deforth, P. W.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III

    1975-01-01

    The author has identified the following significant results. Level 2 land use mapping from high altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. To enhance the value of the land use sheets, a series of overlays was compiled, showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing level 1 land use maps from LANDSAT imagery, at a scale of 1:250,000 drafting film was directly overlaid on LANDSAT color composite transparencies. Numerous areas of change were identified, but extensive areas of false changes were also noted.

  8. Multilingual Maps of the Terrestrial Planets and their Moons: the East and Central European Edition

    NASA Astrophysics Data System (ADS)

    Hargitai, H.; Berczi, Sz.

    A series of Multilingual planetary maps has been published by the Cosmic Materials Space Research Group of the Eötvös Loránd University (Budapest, Hungary) with consultations by Russian and German colleagues. The maps are a result of a cooperation of MIIGAiK (which offered the base maps), ELTE, the Copernicus Observatory and Planetarium in Brno, the Zagreb Astronomical Observatory, the Jagellonian University Observatory, the Tectonics and Geological Cartography Section of the Faculty of Geology at Warsaw University and the University of Architecture, Civil Engeneering and Geodesy in Sofia. The series has been initiated by the International Cartographic Association (ICA), Commission on Planetary Cartography (Shingareva et al. 2006). The now complete series has been published from 2001 to 2006: Mars (2001), Venus (2003), Moon (2003), Mercury (2004) and Phobos and Deimos (2006). (Hargitai et al 2001-2006) These maps are more than outreach posters but less than maps for scientific purposes. These give a good overview of the topography and geology of the planets in a global to regional scale. They contain multilingual information concerning planetary science results and specific characteristics of the planetary body relief, placed on the lower margins of the front sides of the maps and the whole back side (geography, geology, stratigraphy, history of discovery and full index of names). These texts appear in Czech, Bulgarian, Hungarian, Croatian, Polish and English. In some cases it was the first time that a particular term (and its definition) was translated into one of these Central European languages. After compiling the first four maps it can be concluded that such work can effectively draw the attention of earth scientists to the specific features - and the mere existence - of other planetary bodies by simply discussing the translation of their terminology. Apart from circulating the maps in classrooms, this might be the most important scientific result of this edition. A new, improved edition of the Venus Map was made in Polish and Hungarian for 1 use in the recent Venus transit events. In this map, the visual appearance has been modified: the original pencil drawing was mixed with actual radar image patches and vector symbols. The new edition uses symbols for features which would otherwise be too small for the representation at the given scale. For the improvement of the overall "3D" appearance, a limb darkening shading method was used. For the impact craters radar images were used instead of the drawing, which represents their actual ejecta characteristics more realistically. Lava channels are shown by yellow lines that follow the meanderings of the channels. The same method was used for fossae. Some lava flows that appear in the radar images are also shown. The elevated terrae got a darker brownish hue, while lower planitiae (plains) are shown in a light orange resulting in a "warm/hot" appereance. The locations of some of the smaller geologic hot spots" ("ticks", farra etc.) are also shown. We have added several new names to the nomenclature appearing on the map and used different font faces for the different features, taking terrestrial physical geographic maps as samples. Wherever possible, the names appear parallel to the latitude grid. The legend got more space and contains not only basic (morphologic) features defined with Latin terms by IAU, but also other features or landscape types which are only described and discussed in planetary science publications. In the legend, not only official" IAU definitions are included, but also the morphologic description and geologic interpretation. After finishing the series we have started to update the maps and made a survey amongst students about the usability of the maps. As a result, we found that non- professionals expect maps to use Earth map standards and conventions, for example they looked for mountain peak heights and familiar symbols. We have re-designed the maps and added more details. We also look for a new color-code, since the natural terrestrial map colors scheme can not be used here: colors like blue or green can be misinterpreted easily. The colors on a terrestrial topographic map use a color system that reflects general vegetation cover (green) and the hydrologic system (blue). Part of this color system, however, can also be found in nature: in yellowing leaves (green-yellow-brown). On Mars or the Moon we try to find a color system that reflect the general colors of these planets but also allows discretion of the colors that reflect height or/and terrain type. The maps are available via internet for free pdf download at http://planetologia.elte.hu. References: Hargitai H. I., Rükl A., Gabzdyl P., Roša D., Kundera T., Marjanac T., Ozimkowsky W., Peneva E., Bandrova T., Oreshina L. S., Baeva L. Y, Krasnopevtseva B. V, Shingareva K. B. (2001-2006) Maps of Mars, Venus, Mercury, Moon, Phobos and Deimos, Central European Edition. Budapest 2 Shingareva K. B., J. Zimbelman, M. Buchroithner, H. I. Hargitai (2006): The Realization of ICA Commission Projects on Planetary Cartography Cartographica Volume 40, issue 4. 3

  9. Color-coded depth information in volume-rendered magnetic resonance angiography

    NASA Astrophysics Data System (ADS)

    Smedby, Orjan; Edsborg, Karin; Henriksson, John

    2004-05-01

    Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography (CTA) data are usually presented using Maximum Intensity Projection (MIP) or Volume Rendering Technique (VRT), but these often fail to demonstrate a stenosis if the projection angle is not suitably chosen. In order to make vascular stenoses visible in projection images independent of the choice of viewing angle, a method is proposed to supplement these images with colors representing the local caliber of the vessel. After preprocessing the volume image with a median filter, segmentation is performed by thresholding, and a Euclidean distance transform is applied. The distance to the background from each voxel in the vessel is mapped to a color. These colors can either be rendered directly using MIP or be presented together with opacity information based on the original image using VRT. The method was tested in a synthetic dataset containing a cylindrical vessel with stenoses in varying angles. The results suggest that the visibility of stenoses is enhanced by the color information. In clinical feasibility experiments, the technique was applied to clinical MRA data. The results are encouraging and indicate that the technique can be used with clinical images.

  10. Single-shot real-time three dimensional measurement based on hue-height mapping

    NASA Astrophysics Data System (ADS)

    Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng

    2018-06-01

    A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.

  11. Evaluation of color mapping algorithms in different color spaces

    NASA Astrophysics Data System (ADS)

    Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj

    2016-09-01

    The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.

  12. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  13. Multiple Instruments Used for Mars Carbon Estimate

    NASA Image and Video Library

    2015-09-02

    Researchers estimating the amount of carbon held in the ground at the largest known carbonate-containing deposit on Mars utilized data from three different NASA Mars orbiters. Each image in this pair covers the same area about 36 miles (58 kilometers) wide in the Nili Fossae plains region of Mars' northern hemisphere. The tally of carbon content in the rocks of this region is a key piece in solving a puzzle of how the Martian atmosphere has changed over time. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere. The image on the left presents data from the Thermal Emission Imaging System (THEMIS) instrument on NASA's Mars Odyssey orbiter. The color coding indicates thermal inertia -- the property of how quickly a surface material heats up or cools off. Sand, for example (blue hues), cools off quicker after sundown than bedrock (red hues) does. The color coding in the image on the right presents data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on NASA's Mars Reconnaissance Orbiter. From the brightness at many different wavelengths, CRISM data can indicate what minerals are present on the surface. In the color coding used here, green hues are consistent with carbonate-bearing materials, while brown or yellow hues are olivine-bearing sands and locations with purple hues are basaltic in composition. The gray scale base map is a mosaic of daytime THEMIS infrared images. Annotations point to areas with different surface compositions. The scale bar indicates 20 kilometers (12.4 miles). http://photojournal.jpl.nasa.gov/catalog/PIA19816

  14. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  15. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  16. Analysis of the Tanana River Basin using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.; Carson-Henry, C.

    1981-01-01

    Digital image classification techniques were used to classify land cover/resource information in the Tanana River Basin of Alaska. Portions of four scenes of LANDSAT digital data were analyzed using computer systems at Ames Research Center in an unsupervised approach to derive cluster statistics. The spectral classes were identified using the IDIMS display and color infrared photography. Classification errors were corrected using stratification procedures. The classification scheme resulted in the following eleven categories; sedimented/shallow water, clear/deep water, coniferous forest, mixed forest, deciduous forest, shrub and grass, bog, alpine tundra, barrens, snow and ice, and cultural features. Color coded maps and acreage summaries of the major land cover categories were generated for selected USGS quadrangles (1:250,000) which lie within the drainage basin. The project was completed within six months.

  17. Structure of the midcontinent basement. Topography, gravity, seismic, and remote sensing

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Strebeck, J. W.; Arvidson, R. E.; Scholz, K.; Davies, G. F.

    1981-01-01

    Some 600,000 discrete Bouguer gravity estimates of the continental United States were spatially filtered to produce a continuous tone image. The filtered data were also digitally painted in color coded form onto a shaded relief map. The resultant image is a colored shaded relief map where the hue and saturation of a given image element is controlled by the value of the Bouguer anomaly. Major structural features (e.g., midcontinent gravity high) are readily discernible in these data, as are a number of subtle and previously unrecognized features. A linear gravity low that is approximately 120 to 150 km wide extends from southeastern Nebraska, at a break in the midcontinent gravity high, through the Ozark Plateau, and across the Mississippi embayment. The low is also aligned with the Lewis and Clark lineament (Montana to Washington), forming a linear feature of approximately 2800 km in length. In southeastern Missouri the gravity low has an amplitude of 30 milligals, a value that is too high to be explained by simple valley fill by sedimentary rocks.

  18. Color-coding cancer and stromal cells with genetic reporters in a patient-derived orthotopic xenograft (PDOX) model of pancreatic cancer enhances fluorescence-guided surgery

    PubMed Central

    Yano, Shuya; Hiroshima, Yukihiko; Maawy, Ali; Kishimoto, Hiroyuki; Suetsugu, Atsushi; Miwa, Shinji; Toneri, Makoto; Yamamoto, Mako; Katz, Matthew H.G.; Fleming, Jason B.; Urata, Yasuo; Tazawa, Hiroshi; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2015-01-01

    Precise fluorescence-guided surgery (FGS) for pancreatic cancer has the potential to greatly improve the outcome in this recalcitrant disease. In order to achieve this goal, we have used genetic reporters to color code cancer and stroma cells in a patient-derived orthotopic xenograft (PDOX) model. The telomerase-dependent green fluorescent protein (GFP) containing adenovirus OBP401 was used to label the cancer cells of the pancreatic cancer PDOX. The PDOX was previously grown in a red fluorescent protein (RFP) transgenic mouse that stably labeled the PDOX stroma cells bright red. The color-coded PDOX model enabled FGS to completely resect the pancreatic tumors including stroma. Dual-colored FGS significantly prevented local recurrence, which bright-light surgery (BLS) or single color could not. FGS, with color-coded cancer and stroma cells has important potential for improving the outcome of recalcitrant cancer. PMID:26088297

  19. How Color Coding Formulaic Writing Enhances Organization: A Qualitative Approach for Measuring Student Affect

    ERIC Educational Resources Information Center

    Geigle, Bryce A.

    2014-01-01

    The aim of this thesis is to investigate and present the status of student synthesis with color coded formula writing for grade level six through twelve, and to make recommendations for educators to teach writing structure through a color coded formula system in order to increase classroom engagement and lower students' affect. The thesis first…

  20. Estimated Radiation on Mars, Hits per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.

    The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.

    Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Natural-Color-Image Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Natural-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Natural-Color-Image Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Natural-Color-Image Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Natural-Color-Image Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Natural-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Natural-Color-Image Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Natural-Color-Image Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Natural-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Natural-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Natural-Color-Image Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Natural-Color-Image Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Natural-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Natural-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Natural-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Natural-Color-Image Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Ertfah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Natural-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Natural-Color-Image Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Natural-Color-Image Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Natural-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Natural-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Natural-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Natural-Color-Image Map of Quadrangles 3064, 3066, 2964, and 2966, Laki-Bander (611), Jahangir-Naweran (612), Sreh-Chena (707), Shah-Esmail (617), Reg-Alaqadari (618), and Samandkhan-Karez (713) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Natural-Color-Image Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Natural-Color-Image Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Natural-Color-Image Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Natural-Color-Image Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Natural-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Natural-Color-Image Map of Quadrangles 3560 and 3562, Sir Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Natural-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Natural-Color-Image Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  14. Parametric color coding of digital subtraction angiography.

    PubMed

    Strother, C M; Bender, F; Deuerling-Zheng, Y; Royalty, K; Pulfer, K A; Baumgart, J; Zellerhoff, M; Aagaard-Kienitz, B; Niemann, D B; Lindstrom, M L

    2010-05-01

    Color has been shown to facilitate both visual search and recognition tasks. It was our purpose to examine the impact of a color-coding algorithm on the interpretation of 2D-DSA acquisitions by experienced and inexperienced observers. Twenty-six 2D-DSA acquisitions obtained as part of routine clinical care from subjects with a variety of cerebrovascular disease processes were selected from an internal data base so as to include a variety of disease states (aneurysms, AVMs, fistulas, stenosis, occlusions, dissections, and tumors). Three experienced and 3 less experienced observers were each shown the acquisitions on a prerelease version of a commercially available double-monitor workstation (XWP, Siemens Healthcare). Acquisitions were presented first as a subtracted image series and then as a single composite color-coded image of the entire acquisition. Observers were then asked a series of questions designed to assess the value of the color-coded images for the following purposes: 1) to enhance their ability to make a diagnosis, 2) to have confidence in their diagnosis, 3) to plan a treatment, and 4) to judge the effect of a treatment. The results were analyzed by using 1-sample Wilcoxon tests. Color-coded images enhanced the ease of evaluating treatment success in >40% of cases (P < .0001). They also had a statistically significant impact on treatment planning, making planning easier in >20% of the cases (P = .0069). In >20% of the examples, color-coding made diagnosis and treatment planning easier for all readers (P < .0001). Color-coding also increased the confidence of diagnosis compared with the use of DSA alone (P = .056). The impact of this was greater for the naïve readers than for the expert readers. At no additional cost in x-ray dose or contrast medium, color-coding of DSA enhanced the conspicuity of findings on DSA images. It was particularly useful in situations in which there was a complex flow pattern and in evaluation of pre- and posttreatment acquisitions. Its full potential remains to be defined.

  15. Colorful Revision: Color-Coded Comments Connected to Instruction

    ERIC Educational Resources Information Center

    Mack, Nancy

    2013-01-01

    Many teachers have had a favorable response to their experimentation with digital feedback on students' writing. Students much preferred a simpler system of highlighting and commenting in color. After experimentation the author found that this color-coded system was more effective for them and less time-consuming for her. Of course, any system…

  16. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  17. Color and Grey Scale in Sonar Displays

    NASA Technical Reports Server (NTRS)

    Kraiss, K. F.; Kuettelwesch, K. H.

    1984-01-01

    In spite of numerous publications 1 it is still rather unclear, whether color is of any help in sonar displays. The work presented here deals with a particular type of sonar data, i.e., LOFAR-grams (low frequency analysing and recording) where acoustic sensor data are continuously written as a time-frequency plot. The question to be answered quantitatively is, whether color coding does improve target detection when compared with a grey scale code. The data show significant differences in receiver-operating characteristics performance for the selected codes. In addition it turned out, that the background noise level affects the performance dramatically for some color codes, while others remain stable or even improve. Generally valid rules are presented on how to generate useful color scales for this particular application.

  18. Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions.

    PubMed

    Kim, Bum Joon; Kim, Yong-Hwan; Kim, Yeon-Jung; Ahn, Sung Ho; Lee, Deok Hee; Kwon, Sun U; Kim, Sang Joon; Kim, Jong S; Kang, Dong-Wha

    2014-09-01

    Diffusion-weighted image fluid-attenuated inversion recovery (FLAIR) mismatch has been considered to represent ischemic lesion age. However, the inter-rater agreement of diffusion-weighted image FLAIR mismatch is low. We hypothesized that color-coded images would increase its inter-rater agreement. Patients with ischemic stroke <24 hours of a clear onset were retrospectively studied. FLAIR signal change was rated as negative, subtle, or obvious on conventional and color-coded FLAIR images based on visual inspection. Inter-rater agreement was evaluated using κ and percent agreement. The predictive value of diffusion-weighted image FLAIR mismatch for identification of patients <4.5 hours of symptom onset was evaluated. One hundred and thirteen patients were enrolled. The inter-rater agreement of FLAIR signal change improved from 69.9% (k=0.538) with conventional images to 85.8% (k=0.754) with color-coded images (P=0.004). Discrepantly rated patients on conventional, but not on color-coded images, had a higher prevalence of cardioembolic stroke (P=0.02) and cortical infarction (P=0.04). The positive predictive value for patients <4.5 hours of onset was 85.3% and 71.9% with conventional and 95.7% and 82.1% with color-coded images, by each rater. Color-coded FLAIR images increased the inter-rater agreement of diffusion-weighted image FLAIR recovery mismatch and may ultimately help identify unknown-onset stroke patients appropriate for thrombolysis. © 2014 American Heart Association, Inc.

  19. Color Reproduction System Based on Color Appearance Model and Gamut Mapping

    DTIC Science & Technology

    2000-07-01

    and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human

  20. Curiosity Finds Hydrogen-Rich Area of Mars Subsurface

    NASA Image and Video Library

    2015-08-19

    Curiosity's Russian-made instrument for checking hydration levels in the ground beneath the rover detected an unusually high amount at a site near "Marias Pass," prompting repeated passes over the area to map the hydrogen amounts. The instrument is named Dynamic Albedo of Neutrons, or DAN. It detects hydrogen by the effect of hydrogen atoms on neutrons entering the ground either from cosmic rays and Curiosity's power source (DAN's passive mode) or from the instrument's neutron pulse generator (DAN's active mode). DAN recognizes which neutrons have bounced off hydrogen from their rerduced energy level. This map, covering an area about 130 feet (40 meters) across, shows results from DAN's multiple traverses over the area, with color coding for levels of hydrogen detected. The red coding indicates amounts of hydrogen three to four times as high as the amounts detected anywhere previously along Curiosity's traverse of about 6.9 miles (11.1 kilometers) since landing in August 2012. The inset map at lower right shows the full traverse through Sol 1051 (July 21, 2015), with names assigned to rectangles within Gale Crater for geological mapping purposes. The vertical bar at left indicates the color coding according to counts per second in DAN's passive mode. The hydrogen detected by DAN is interpreted as water molecules or hydroxyl ions bound within minerals or water absorbed onto minerals in the rocks and soil, to a depth of about 3 feet (1 meter) beneath the rover. The amount of hydrogen is often expressed as "water equivalent hydrogen" based on two hydrogen atoms per molecule of water. In the same area where DAN detected an unusually high amount of hydration, Curiosity's Chemistry and Camera (ChemCam) instrument detected an unusually high amount of silica in several rock targets. The DAN and ChemCam findings led to the rover's science team choosing a rock target called "Buckskin" for collection of a drilled sample to be analyzed by the rover's internal laboratory instruments. Russia's Space Research Institute developed DAN in close cooperation with the N.L. Dukhov All-Russia Research Institute of Automatics, Moscow, and the Joint Institute for Nuclear Research, Dubna. The neutron generator development was supervised by the late technical designer German A. Smirnov of the All-Russia Institute of Automatics. Moscow. http://photojournal.jpl.nasa.gov/catalog/PIA19809

  1. A Fast linking approach for CMYK to CMYK conversion preserving black separation in ICC color management system

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2003-12-01

    In the linking step of the standard ICC color management workflow for CMYK to CMYK conversion, a CMM takes an AToBn tag (n = 0, 1, or 2) from a source ICC profile to convert a color from the source color space to PCS (profile connection space), and then takes a BToAn tag from the destination ICC profile to convert the color from PCS to the destination color space. This approach may give satisfactory result perceptually or colorimetrically. However, it does not preserve the K channel for CMYK to CMYK conversion, which is often required in graphic art"s market. The problem is that the structure of a BtoAn tag is designed to convert colors from PCS to a device color space ignoring the K values from the source color space. Different approaches have been developed to control K in CMYK to CMYK printing, yet none of them well fits into the "Profile - PCS - Profile" model in the ICC color management system. A traditional approach is to transform the source CMYK to the destination CMYK by 1-D TRC curves and GCR/UCR tables. This method is so simple that it cannot accurately transform colors perceptually or colorimetrically. Another method is to build a 4-D CMYK to CMYK closed-loop lookup table (LUT) (or a deviceLink ICC profile) for the color transformation. However, this approach does not fit into opened color management workflows for it ties the source and the destination color spaces in the color characterization step. A specialized CMM may preserve K for a limit number of colors by mapping those CMYK colors to some carefully chosen PCS colors in both the AToBi tag and the BToAi tag. A more complete solution is to move to smart linking in which gamut mapping is performed in the real-time linking at a CMM. This method seems to solve all problems existed in the CMYK to CMYK conversion. However, it introduces new problems: 1) gamut mapping at real-time linking is often unacceptable slow; 2) gamut mapping may not be optimized or may be unreliable; 3) manual adjustment for building high quality maps does not fit to the smart CMM workflow. A new approach is described in this paper to solve these problems. Instead of using a BtoAn tag from the destination profile for color transformation, a new tag is created to map colors in PCS (L*a*b* or XYZ) with different K values to different CMY values. A set of 3-D LUTs for different K values are created for the conversion from PCS to CMY, and 1-D LUTs are created for the conversion from luminance to K and to guide a CMM to perform the interpolation from KPCS (K plus PCS) to CMYK. The gamut mapping is performed in the step to create the profile, thus avoiding realtime gamut mapping in a CMM. With this approach, the black channel is preserved; the "Profile - PCS - Profile" approach is still valid; and the gamut mapping is not performed during linking in a CMM. Therefore, gamut mapping can be manually adjusted for high quality color mapping, the linking is almost as easy and fast as the standard linking, and the black channel is preserved.

  2. Transversal Clifford gates on folded surface codes

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-12

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less

  3. Redundant Coding in Visual Search Displays: Effects of Shape and Colour.

    DTIC Science & Technology

    1997-02-01

    results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.

  4. The Other Red Planet Animation

    NASA Image and Video Library

    2015-07-03

    What color is Pluto? The answer, revealed in the first maps made from New Horizons data, turns out to be shades of reddish brown. The mission's first map of Pluto is in approximate true color -- that is, the color you would see if you were riding on New Horizons. At left, a map of Pluto's northern hemisphere composed using high-resolution black-and-white images from New Horizons LORRI instrument. At right is a map of Pluto's colors created using data from the Ralph instrument. In the center is the combined map, produced by merging the LORRI and Ralph data. http://photojournal.jpl.nasa.gov/catalog/PIA19697

  5. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  6. Wildlife management by habitat units: A preliminary plan of action

    NASA Technical Reports Server (NTRS)

    Frentress, C. D.; Frye, R. G.

    1975-01-01

    Procedures for yielding vegetation type maps were developed using LANDSAT data and a computer assisted classification analysis (LARSYS) to assist in managing populations of wildlife species by defined area units. Ground cover in Travis County, Texas was classified on two occasions using a modified version of the unsupervised approach to classification. The first classification produced a total of 17 classes. Examination revealed that further grouping was justified. A second analysis produced 10 classes which were displayed on printouts which were later color-coded. The final classification was 82 percent accurate. While the classification map appeared to satisfactorily depict the existing vegetation, two classes were determined to contain significant error. The major sources of error could have been eliminated by stratifying cluster sites more closely among previously mapped soil associations that are identified with particular plant associations and by precisely defining class nomenclature using established criteria early in the analysis.

  7. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  8. Self-Organizing-Map Program for Analyzing Multivariate Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.

    2005-01-01

    SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.

  9. Polarization-color mapping strategies: catching up with color theory

    NASA Astrophysics Data System (ADS)

    Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2017-09-01

    Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.

  10. South San Francisco Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2007-01-01

    View eastward. Elevations in mapped area color coded: purple (approx 15 m below sea level) to red-orange (approx 90 m above sea level). South San Francisco Bay is very shallow, with a mean water depth of 2.7 m (8.9 ft). Trapezoidal depression near San Mateo Bridge is where sediment has been extracted for use in cement production and as bay fill. Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Distance across bottom of image approx 11 km (7 mi); vertical exaggeration 1.5X.

  11. A volcanic activity alert-level system for aviation: Review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne C.; Miller, Thomas

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  12. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  13. Digital classification of Landsat data for vegetation and land-cover mapping in the Blackfoot River watershed, southeastern Idaho

    USGS Publications Warehouse

    Pettinger, L.R.

    1982-01-01

    This paper documents the procedures, results, and final products of a digital analysis of Landsat data used to produce a vegetation and landcover map of the Blackfoot River watershed in southeastern Idaho. Resource classes were identified at two levels of detail: generalized Level I classes (for example, forest land and wetland) and detailed Levels II and III classes (for example, conifer forest, aspen, wet meadow, and riparian hardwoods). Training set statistics were derived using a modified clustering approach. Environmental stratification that separated uplands from lowlands improved discrimination between resource classes having similar spectral signatures. Digital classification was performed using a maximum likelihood algorithm. Classification accuracy was determined on a single-pixel basis from a random sample of 25-pixel blocks. These blocks were transferred to small-scale color-infrared aerial photographs, and the image area corresponding to each pixel was interpreted. Classification accuracy, expressed as percent agreement of digital classification and photo-interpretation results, was 83.0:t 2.1 percent (0.95 probability level) for generalized (Level I) classes and 52.2:t 2.8 percent (0.95 probability level) for detailed (Levels II and III) classes. After the classified images were geometrically corrected, two types of maps were produced of Level I and Levels II and III resource classes: color-coded maps at a 1:250,000 scale, and flatbed-plotter overlays at a 1:24,000 scale. The overlays are more useful because of their larger scale, familiar format to users, and compatibility with other types of topographic and thematic maps of the same scale.

  14. Development of a novel 2D color map for interactive segmentation of histological images.

    PubMed

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D

    2012-05-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  15. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  16. Proteomic analysis to investigate color changes of chilled beef longissimus steaks held under carbon monoxide and high oxygen packaging.

    PubMed

    Yang, Xiaoyin; Wu, Shuang; Hopkins, David L; Liang, Rongrong; Zhu, Lixian; Zhang, Yimin; Luo, Xin

    2018-08-01

    This study investigated the proteome basis for color stability variations in beef steaks packaged under two modified atmosphere packaging (MAP) methods: HiOx-MAP (80% O 2 /20% CO 2 ) and CO-MAP (0.4% CO/30% CO 2 /69.6% N 2 ) during 15 days of storage. The color stability, pH, and sarcoplasmic proteome analysis of steaks were evaluated on days 0, 5, 10 and 15 of storage. Proteomic results revealed that the differential expression of the sarcoplasmic proteome during storage contributed to the variations in meat color stability between the two MAP methods. Compared with HiOx-MAP steaks, some glycolytic and energy metabolic enzymes important in NADH regeneration and antioxidant processes, antioxidant peroxiredoxins (thioredoxin-dependent peroxide reductase, peroxiredoxin-2, peroxiredoxin-6) and protein DJ-1 were more abundant in CO-MAP steaks. The over-expression of these proteins could induce CO-MAP steaks to maintain high levels of metmyoglobin reducing activity and oxygen consumption rate, resulting in CO-MAP steaks exhibiting better color stability than HiOx-MAP steaks during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Mapping montane vegetation in Southern California from color infrared imagery

    NASA Technical Reports Server (NTRS)

    Minnich, R. A.; Bowden, L. W.; Pease, R. W.

    1969-01-01

    Mapping a large area in California like the San Bernardino Mountains, demonstrated that color infrared photography is suitable for detailed mapping and offers potential for quantitative mapping. The level of information presented is comparable or superior to the most detailed mapping by ground survey.

  18. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  19. Detection of microRNAs in color space.

    PubMed

    Marco, Antonio; Griffiths-Jones, Sam

    2012-02-01

    Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs. Here we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs. A bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/ antonio.marco@manchester.ac.uk Supplementary data are available at Bioinformatics online.

  20. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  1. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles.

    PubMed

    Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin

    2014-06-01

    The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.

  3. Quantum computing with Majorana fermion codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  4. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii... 29 Labor 5 2011-07-01 2011-07-01 false Safety color code for marking physical hazards. 1910.144 Section 1910.144 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH...

  5. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  6. Near-Infrared Coloring via a Contrast-Preserving Mapping Model.

    PubMed

    Chang-Hwan Son; Xiao-Ping Zhang

    2017-11-01

    Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.

  7. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  8. Influence of Interpretation Aids on Attentional Capture, Visual Processing, and Understanding of Front-of-Package Nutrition Labels.

    PubMed

    Antúnez, Lucía; Giménez, Ana; Maiche, Alejandro; Ares, Gastón

    2015-01-01

    To study the influence of 2 interpretational aids of front-of-package (FOP) nutrition labels (color code and text descriptors) on attentional capture and consumers' understanding of nutritional information. A full factorial design was used to assess the influence of color code and text descriptors using visual search and eye tracking. Ten trained assessors participated in the visual search study and 54 consumers completed the eye-tracking study. In the visual search study, assessors were asked to indicate whether there was a label high in fat within sets of mayonnaise labels with different FOP labels. In the eye-tracking study, assessors answered a set of questions about the nutritional content of labels. The researchers used logistic regression to evaluate the influence of interpretational aids of FOP nutrition labels on the percentage of correct answers. Analyses of variance were used to evaluate the influence of the studied variables on attentional measures and participants' response times. Response times were significantly higher for monochromatic FOP labels compared with color-coded ones (3,225 vs 964 ms; P < .001), which suggests that color codes increase attentional capture. The highest number and duration of fixations and visits were recorded on labels that did not include color codes or text descriptors (P < .05). The lowest percentage of incorrect answers was observed when the nutrient level was indicated using color code and text descriptors (P < .05). The combination of color codes and text descriptors seems to be the most effective alternative to increase attentional capture and understanding of nutritional information. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  9. Normative Database and Color-code Agreement of Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-inner Plexiform Layer Thickness in a Vietnamese Population.

    PubMed

    Perez, Claudio I; Chansangpetch, Sunee; Thai, Andy; Nguyen, Anh-Hien; Nguyen, Anwell; Mora, Marta; Nguyen, Ngoc; Lin, Shan C

    2018-06-05

    Evaluate the distribution and the color probability codes of the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thickness in a healthy Vietnamese population and compare them with the original color-codes provided by the Cirrus spectral domain OCT. Cross-sectional study. We recruited non-glaucomatous Vietnamese subjects and constructed a normative database for peripapillary RNFL and macular GCIPL thickness. The probability color-codes for each decade of age were calculated. We evaluated the agreement with Kappa coefficient (κ) between OCT color probability codes with Cirrus built-in original normative database and the Vietnamese normative database. 149 eyes of 149 subjects were included. The mean age of enrollees was 60.77 (±11.09) years, with a mean spherical equivalent of +0.65 (±1.58) D and mean axial length of 23.4 (±0.87) mm. Average RNFL thickness was 97.86 (±9.19) microns and average macular GCIPL was 82.49 (±6.09) microns. Agreement between original and adjusted normative database for RNFL was fair for average and inferior quadrant (κ=0.25 and 0.2, respectively); and good for other quadrants (range: κ=0.63-0.73). For macular GCIPL κ agreement ranged between 0.39 and 0.69. After adjusting with the normative Vietnamese database, the percent of yellow and red color-codes increased significantly for peripapillary RNFL thickness. Vietnamese population has a thicker RNFL in comparison with Cirrus normative database. This leads to a poor color-code agreement in average and inferior quadrant between the original and adjusted database. These findings should encourage to create a peripapillary RNFL normative database for each ethnicity.

  10. A distributed code for color in natural scenes derived from center-surround filtered cone signals

    PubMed Central

    Kellner, Christian J.; Wachtler, Thomas

    2013-01-01

    In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289

  11. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    PubMed

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

  12. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    PubMed Central

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576

  13. MASSCLEANCOLORS-MASS-DEPENDENT INTEGRATED COLORS FOR STELLAR CLUSTERS DERIVED FROM 30 MILLION MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan; Hanson, M. M.

    2010-04-10

    We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M {sub cluster} {>=} 10{sup 6} M {sub sun}. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictionsmore » and is less red, in the first 10{sup 7} to 10{sup 8} years in UBV colors, and for all ages in (V - K). Second, the 1{sigma} dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.« less

  14. The infrared video image pseudocolor processing system

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2003-11-01

    The infrared video image pseudo-color processing system, emphasizing on the algorithm and its implementation for measured object"s 2D temperature distribution using pseudo-color technology, is introduced in the paper. The data of measured object"s thermal image is the objective presentation of its surface temperature distribution, but the color has a close relationship with people"s subjective cognition. The so-called pseudo-color technology cross the bridge between subjectivity and objectivity, and represents the measured object"s temperature distribution in reason and at first hand. The algorithm of pseudo-color is based on the distance of IHS space. Thereby the definition of pseudo-color visual resolution is put forward. Both the software (which realize the map from the sample data to the color space) and the hardware (which carry out the conversion from the color space to palette by HDL) co-operate. Therefore the two levels map which is logic map and physical map respectively is presented. The system has been used abroad in failure diagnose of electric power devices, fire protection for lifesaving and even SARS detection in CHINA lately.

  15. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  16. Fresh meat packaging: consumer acceptance of modified atmosphere packaging including carbon monoxide.

    PubMed

    Grebitus, Carola; Jensen, Helen H; Roosen, Jutta; Sebranek, Joseph G

    2013-01-01

    Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the "cherry red" color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.

  17. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Desjardins, M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  18. 7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Color coded plastic tie wraps shall be placed loosely around each binder group of cables before splicing... conform to the same color designations as the binder ribbons. Twisted wire pigtails shall not be used to identify binder groups due to potential transmission degradation. (ii) The standard insulation color code...

  19. Anticounterfeiting Quick Response Code with Emission Color of Invisible Metal-Organic Frameworks as Encoding Information.

    PubMed

    Wang, Yong-Mei; Tian, Xue-Tao; Zhang, Hui; Yang, Zhong-Rui; Yin, Xue-Bo

    2018-06-21

    Counterfeiting is a global epidemic that is compelling the development of new anticounterfeiting strategy. Herein, we report a novel multiple anticounterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under daylight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anticounterfeiting. The proposed QR codes pattern holds great potential for advanced anticounterfeiting.

  20. Color-coded duplex sonography for diagnosis of testicular torsion.

    PubMed

    Zoeller, G; Ringert, R H

    1991-11-01

    By color-coded duplex sonography moving structures are visualized as red or blue colors within a normal gray-scale B-mode ultrasound image. Thus, blood flow even within small vessels can be visualized clearly. Color-coded duplex sonographic examination was performed in 11 patients who presented with scrotal pain. This method proved to be reliable to differentiate between testicular torsion and testicular inflammation. By clearly demonstrating a lack of intratesticular blood flow in testicular torsion, while avoiding flow in scrotal skin vessels being misinterpreted as intratesticular blood flow, this method significantly decreases the number of patients in whom surgical evaluation is necessary to exclude testicular torsion.

  1. False-Color-Image Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. False-Color-Image Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Ertfah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. False-Color-Image Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. False-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. False-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. False-Color-Image Map of Quadrangles 3560 and 3562, Sir Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. False-Color-Image Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. False-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. False-Color-Image Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. False-Color-Image Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. False-Color-Image Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. False-Color-Image Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. False-Color-Image Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. False-Color-Image Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Effects of target and distractor saturations on the cognitive performance of an integrated display interface

    NASA Astrophysics Data System (ADS)

    Xue, Chengqi; Li, Jing; Wang, Haiyan; Niu, Yafeng

    2015-01-01

    Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and complex structures in the interface. Although an increasing number of studies are seriously focusing on the problem of achieving efficient color coding, few are able to determine the effects of target and distractor saturations on cognitive performance. To study the performances of target colors among distractors, a systematic experiment is conducted to assess the influence of high and low saturated targets on cognitive performance, and the affecting extent of different saturated distractors of homogeneous colors on targets. According to the analysis of the reaction time through the non-parametric statistical method, a calculation method of the cognitive performance of each color is proposed. Based on the calculation of the color differences and the accumulation of the reaction times, it is shown that with the different saturated distractors of homogeneous colors, the high saturated yellow targets perform better than the low saturated ones, and the green and blue targets have moderate performances. When searching for a singleton target placed on a black background, the color difference between the target and the distractor should be more than 20Δ E*ab units in the yellow saturation coding, whereas the color difference should be more than 40Δ E*ab units in the blue and green saturation coding. In addition, as regards saturation coding, the influence of the color difference between the target and the background on cognitive performance is greater than that of the color difference between the target and the distractor. Seemingly, the hue attribute determines whether the saturation difference between the target and the distractor affects the cognitive performance. Based on the experimental results, the simulation design of the instrument dials in a flight situation awareness interface is completed and tested. Simulation results show the feasibility of the method of choosing the target and distractor colors, and the proposed research provides the instruction for the color saturation design of the interface.

  13. Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses.

    PubMed

    Kim, Hana; Youk, Ji Hyun; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju

    2013-08-01

    To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses 101 patients aged 21-77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1-4), color homogeneity (Ehomo) and six-point color score of maximum elasticity (Ecol). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. A visual color pattern, Ehomo, Ecol and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P<0.001). For 50% opacity, AUCs of visual color pattern, Ecol, Ehomo and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and Ecol showed significantly higher AUC than Ehomo. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, Ehomo, but no significant difference was found in Ecol. Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Development and testing of a contamination potential mapping system for a portion of the General Separations Area, Savannah River Site, South Carolina

    USGS Publications Warehouse

    Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.

    1998-01-01

    A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.

  15. Color naming: color scientists do it between Munsell sheets of color

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Moroney, Nathan M.

    2010-01-01

    With the advent of high dynamic range imaging and wide gamut color spaces, gamut mapping algorithms have to nudge image colors much more drastically to constrain them within a rendering device's gamut. Classical colorimetry is concerned with color matching and the developed color difference metrics are for small distances. For larger distances, categorization becomes a more useful concept. In the gamut mapping case, lexical distance induced by color names is a more useful metric, which translates to the condition that a nudged color may not cross a name boundary. The new problem is to find these color name boundaries. We compare the experimental procedures used for color naming by linguists, ethnologists, and color scientists and propose a methodology that leads to robust repeatable experiments.

  16. Pluto Color Map

    NASA Image and Video Library

    2017-01-20

    This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707

  17. Reds, Greens, Yellows Ease the Spelling Blues.

    ERIC Educational Resources Information Center

    Irwin, Virginia

    1971-01-01

    This document reports on a color-coding innovation designed to improve the spelling ability of high school seniors. This color-coded system is based on two assumptions: that color will appeal to the students and that there are three principal reasons for misspelling. Two groups were chosen for the experiments. A basic list of spelling demons was…

  18. Use of Color-Coded Food Photographs for Meal Planning by Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Gines, Deon J.; And Others

    1990-01-01

    Ten adults with mild mental retardation used color-coded food photographs and meal code cards to plan nutritionally balanced meals. Subjects spent an average of nine minutes to plan three meals. Errors, which were primarily omissions, occurred mostly in food groups requiring four servings daily. (JDD)

  19. Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays

    ERIC Educational Resources Information Center

    Yamani, Yusuke; McCarley, Jason S.

    2010-01-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…

  20. 78 FR 59265 - FD&C Yellow No. 5; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532). B. How.... 5 is a FDA permanently listed color additive used in food, drugs and cosmetics, including drugs and cosmetics for the eye area. FDA's color additive evaluation included the consideration of an extensive set...

  1. M-DAS: System for multispectral data analysis. [in Saginaw Bay, Michigan

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.

    1975-01-01

    M-DAS is a ground data processing system designed for analysis of multispectral data. M-DAS operates on multispectral data from LANDSAT, S-192, M2S and other sources in CCT form. Interactive training by operator-investigators using a variable cursor on a color display was used to derive optimum processing coefficients and data on cluster separability. An advanced multivariate normal-maximum likelihood processing algorithm was used to produce output in various formats: color-coded film images, geometrically corrected map overlays, moving displays of scene sections, coverage tabulations and categorized CCTs. The analysis procedure for M-DAS involves three phases: (1) screening and training, (2) analysis of training data to compute performance predictions and processing coefficients, and (3) processing of multichannel input data into categorized results. Typical M-DAS applications involve iteration between each of these phases. A series of photographs of the M-DAS display are used to illustrate M-DAS operation.

  2. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018

  3. A coded structured light system based on primary color stripe projection and monochrome imaging.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  4. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  5. Choroidal OCT

    NASA Astrophysics Data System (ADS)

    Esmaeelpour, Marieh; Drexler, Wolfgang

    Novel imaging devices, imaging strategies and automated image analysis with optical coherence tomography have improved our understanding of the choroid in health and pathology. Non-invasive in-vivo high resolution choroidal imaging has had its highest impact in the investigation of macular diseases such as diabetes macular edema and age-related macular degeneration. Choroidal thickness may provide a clinically feasible measure of disease stage and treatment success. It will even support disease diagnosis and phenotyping as is demonstrated in this chapter. Utilizing color coded thickness mapping of the choroid and its Sattler's and Haller's layer may further strengthen the sensitivity of the investigation findings.

  6. Tri-county pilot study. [Texas

    NASA Technical Reports Server (NTRS)

    Reeves, C. A. (Principal Investigator); Austin, T. W.; Kerber, A. G.

    1976-01-01

    The author has identified the following significant results. An area inventory was performed for three southeast Texas counties (Montgomery, Walker, and San Jacinto) totaling 0.65 million hectares. The inventory was performed using a two level hierarchy. Level 1 was divided into forestland, rangeland, and other land. Forestland was separated into Level 2 categories: pine, hardwood, and mixed; rangeland was not separated further. Results consisted of area statistics for each county and for the entire study site for pine, hardwood, mixed, rangeland, and other land. Color coded county classification maps were produced for the May data set, and procedures were developed and tested.

  7. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa).

    PubMed

    Ma, Xiaozhi; Sun, Xiaoqiu; Li, Chunmei; Huan, Rui; Sun, Changhui; Wang, Yang; Xiao, Fuliang; Wang, Qian; Chen, Purui; Ma, Furong; Zhang, Kuan; Wang, Pingrong; Deng, Xiaojian

    2017-02-01

    Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production. Copyright © 2016. Published by Elsevier Masson SAS.

  8. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  9. Utilizing Multibeam Bathymetry and Geographic Information Systems (GIS) to Expand Our Mapping Ability of Potential Rockfish Benthic Habitats in the San Juan Islands, Washington

    NASA Astrophysics Data System (ADS)

    Kelly-Slatten, K.

    2013-12-01

    In order to construct an accurate cartographic representation of the potential rockfish habitat zone in the San Juan Archipelago, Washington, bathymetric data is needed to form layers within Geographic Information Systems (GIS) that include, but are not limited to, slope, hillshade, and aspect. Backscatter data is also important in order to demonstrate the induration of the marine floor, which in turn may tell the researcher what type of sediment and substrate makes up that part of the benthic region. Once these layers are added to the GIS map, another layer (referred to as Potential Benthic Habitats) is created and inserted. This layer uses the same induration data but groups them into polygons, which are then color-coded and displayed on the map. With all the layers now pictured, it is clear that the intertidal zones are not complete. Aerial photographs are then added to fill in the gaps according to the GPS coordinates associated with the middle section of each picture. When all pictures and layers have been included, the GIS map is a somewhat three-dimensional, color-coordinated, aerial photograph enhanced depiction of Skipjack, Waldron, Orcas, and Sucia Islands. The bathymetric and backscatter data are plugged into Excel to graphically illustrate specific numbers that represent the various potential habitats. The given data support the idea that potential rockfish habitat (Sedimentary Bedrock and Fractured Bedrock) must be closely monitored and maintained in attempt to preserve and conserve the three either threatened or endangered rockfish species within the Puget Sound locale.

  10. Automatic Perceptual Color Map Generation for Realistic Volume Visualization

    PubMed Central

    Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor

    2008-01-01

    Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609

  11. Interactive Map | USDA Plant Hardiness Zone Map

    Science.gov Websites

    Choose Basemap: Terrain Road Map Satellite Image Turn on Basemap Roads and Labels Zone Color Transparency menu to switch between Terrain, Road Map, and Satellite Image. Turn on Basemap Roads and Labels Click option is available only for Terrain and Satellite Image basemap choices. Zone Color Transparency The

  12. Maps of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  13. Color encryption scheme based on adapted quantum logistic map

    NASA Astrophysics Data System (ADS)

    Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.

    2014-04-01

    This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.

  14. New Skeletal-Space-Filling Models

    ERIC Educational Resources Information Center

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  15. Maps of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  16. Maps of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  17. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  18. How to identify up to 30 colors without training: color concept retrieval by free color naming

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Swartling, Tiina

    1994-05-01

    Used as a redundant code, color is shown to be advantageous in visual search tasks. It enhances attention, detection, and recall of information. Neuropsychological and neurophysiological findings have shown color and spatial perception to be interrelated functions. Studies on eye movements show that colored symbols are easier to detect and that eye fixations are more correctly directed to color-coded symbols. Usually between 5 and 15 colors have been found useful in classification tasks, but this umber can be increased to between 20 to 30 by careful selection of colors, and by a subject's practice with the identification task and familiarity with the particular colors. Recent neurophysiological findings concerning the language-concept connection in color suggest that color concept retrieval would be enhanced by free color naming or by the use of natural associations between color concepts and color words. To test this hypothesis, we had subjects give their own free associations to a set of 35 colors presented on a display. They were able to identify as many as 30 colors without training.

  19. Color maps of Arp 146

    NASA Technical Reports Server (NTRS)

    Schultz, A. B.; Spight, L. D.; Colegrove, P. T.; Disanti, M. A.; Fink, U.

    1990-01-01

    Four color maps of Arp 146 are given. The structure and color of the ring galaxy and its companion show evidence of a bridge of material between the companion and the remnant nucleus of the original galaxy now forming the ring. Broad band spatial coverage clearly defines regions of starburst occurrence.

  20. A color-coded vision scheme for robotics

    NASA Technical Reports Server (NTRS)

    Johnson, Kelley Tina

    1991-01-01

    Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.

  1. Interpretation, compilation and field verification procedures in the CARETS project

    USGS Publications Warehouse

    Alexander, Robert H.; De Forth, Peter W.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The production of the CARETS map data base involved the development of a series of procedures for interpreting, compiling, and verifying data obtained from remote sensor sources. Level II land use mapping from high-altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. CARETS researchers also produced a series of 1970 to 1972 land use change overlays, using the 1970 land use maps and 1972 high-altitude aircraft photography. To enhance the value of the land use sheets, researchers compiled series of overlays showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing Level I land use maps from Landsat imagery, at a scale of 1:250,000, interpreters overlaid drafting film directly on Landsat color composite transparencies and interpreted on the film. They found that such interpretation involves pattern and spectral signature recognition. In studies using Landsat imagery, interpreters identified numerous areas of change but also identified extensive areas of "false change," where Landsat spectral signatures but not land use had changed.

  2. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  3. Effects of extended aging and modified atmospheric packaging on beef top loin steak color.

    PubMed

    English, A R; Mafi, G G; VanOverbeke, D L; Ramanathan, R

    2016-04-01

    The objective of this study was to evaluate the effects of extended aging and modified atmospheric packaging on beef LM color. Using a randomized complete block design, each beef longissimus lumborum muscle ( = 10; USDA Choice, 3 d postmortem) was equally divided into 3 sections and randomly assigned to 1 of 3 aging periods (21, 42, or 62 d at 2°C). After respective aging, each loin section was cut into four 2.5-cm-thick steaks and randomly assigned to 1 of 3 packaging types (PVC, HiOx-MAP [80% oxygen and 20% carbon dioxide], or CO-MAP [0.4% carbon monoxide, 69.6% nitrogen, and 30% carbon dioxide]). The steaks were displayed under continuous fluorescent lighting for 6 d, and surface color was determined daily using a HunterLab Miniscan XE Plus spectrophotometer and a visual panel. The fourth steak was used to characterize oxygen consumption (OC), lipid oxidation, and metmyoglobin reducing activity (MRA) on 21, 42, and 62 d (before display). On d 6 display, MRA, OC, and lipid oxidation also were measured. An increase in aging time decreased ( < 0.0001) muscle pH. Loin sections aged for 42 and 62 d had a lower ( < 0.0002) pH compared with loin sections aged for 21 d. An aging period × packaging × display time interaction ( < 0.0001) resulted for a* values (redness), chroma, and visual color (muscle color and surface discoloration). As aging time increased, HiOx-MAP had the most discoloration ( < 0.0001) compared with other packaging types on d 6. At all aging periods, steaks packaged in CO-MAP had greater ( < 0.0001) MRA on d 6 than PVC and HiOx-MAP, whereas steaks packaged in HiOx-MAP had the least MRA ( < 0.0001). There were no differences ( = 0.34) in thiobarbituric acid reactive substances values between steaks aged for 21 and 42 d when steaks were packaged in CO-MAP and displayed for 6 d. However, steaks packaged in HiOx-MAP and displayed 6 d had greater ( < 0.0001) lipid oxidation than CO-MAP. Steaks packaged in HiOx-MAP had a lower ( < 0.0001) OC compared with PVC and CO-MAP when aged for 42 and 62 d. There were no differences ( = 0.49) in OC between steaks packaged in PVC and HiOx-MAP when aged for 21 d and displayed 6 d. The results indicate that extended aging is detrimental to color stability when packaged in PVC and HiOx-MAP. However, steaks in CO-MAP had stable red color during display. Decreased color stability in PVC and HiOx-MAP could be associated, in part, with decreased MRA and OC.

  4. AIRS Maps from Space Processing Software

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.; Licata, Stephen J.

    2012-01-01

    This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.

  5. Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja.

    PubMed

    Duarte-Delgado, Diana; Juyó, Deissy; Gebhardt, Christiane; Sarmiento, Felipe; Mosquera-Vásquez, Teresa

    2017-03-09

    Potato frying color is an agronomic trait influenced by the sugar content of tubers. The candidate gene approach was employed to elucidate the molecular basis of this trait in Solanum tuberosum Group Phureja, which is mainly diploid and represents an important genetic resource for potato breeding. The objective of this research was to identify novel genetic variants related with frying quality in loci with key functions in carbohydrate metabolism, with the purpose of discovering genetic variability useful in breeding programs. Therefore, an association analysis was implemented with 109 SNP markers identified in ten candidate genes. The analyses revealed four associations in the locus InvGE coding for an apoplastic invertase and one association in the locus SssI coding for a soluble starch synthase. The SNPs SssI-C 45711901 T and InvGE-C 2475454 T were associated with sucrose content and frying color, respectively, and were not found previously in tetraploid genotypes. The rare haplotype InvGE-A 2475187 C 2475295 A 2475344 was associated with higher fructose contents. Our study allowed a more detailed analysis of the sequence variation of exon 3 from InvGE, which was not possible in previous studies because of the high frequency of insertion-deletion polymorphisms in tetraploid potatoes. The association mapping strategy using a candidate gene approach in Group Phureja allowed the identification of novel SNP markers in InvGE and SssI associated with frying color and the tuber sugar content measured by High Performance Liquid Chromatography (HPLC). These novel associations might be useful in potato breeding programs for improving quality traits and to increase crop genetic variability. The results suggest that some genes involved in the natural variation of tuber sugar content and frying color are conserved in both Phureja and tetraploid germplasm. Nevertheless, the associated variants in both types of germplasm were present in different regions of these genes. This study contributes to the understanding of the genetic architecture of tuber sugar contents and frying color at harvest in Group Phureja.

  6. Colored Height and Shaded Relief, Central America

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panama, Costa Rica, Nicaragua, El Salvador, Honduras, Guatemala, Belize, southern Mexico and parts of Cuba and Jamaica are all seen in this image from NASA's Shuttle Radar Topography Mission. The dominant feature of the northern part of Central America is the Sierra Madre Range, spreading east from Mexico between the narrow Pacific coastal plain and the limestone lowland of the Yucatan Peninsula. Parallel hill ranges sweep across Honduras and extend south, past the Caribbean Mosquito Coast to lakes Managua and Nicaragua. The Cordillera Central rises to the south, gradually descending to Lake Gatun and the Isthmus of Panama. A highly active volcanic belt runs along the Pacific seaboard from Mexico to Costa Rica.

    High-quality satellite imagery of Central America has, until now, been difficult to obtain due to persistent cloud cover in this region of the world. The ability of SRTM to penetrate clouds and make three-dimensional measurements has allowed the generation of the first complete high-resolution topographic map of the entire region. This map was used to generate the image.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    For an annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 9 mB jpeg)

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (200-foot)-long mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 1720 by 1670 kilometers (1068 by 1036 miles) Location: 14.5 degrees North latitude, 85.0 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  7. Climate Prediction Center - Seasonal Color Maps

    Science.gov Websites

    HOME > Outlook Maps > Monthly to Seasonal Outlooks > Seasonal Outlooks > Color Monthly & ; Seasonal Outlooks Monthly & Seasonal Climate Outlooks Banner Issued: 17 May 2018 [EXPERIMENTAL TWO

  8. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  9. Major Breeding Plumage Color Differences of Male Ruffs (Philomachus pugnax) Are Not Associated With Coding Sequence Variation in the MC1R Gene

    PubMed Central

    Küpper, Clemens; Burke, Terry; Lank, David B.

    2015-01-01

    Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species. PMID:25534935

  10. Evaluation of satellite remote sensing and automatic data techniques for characterization of wetlands and marshlands

    NASA Technical Reports Server (NTRS)

    Cartmill, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Using the 12S Digicol color additive viewer and eight color classification map has been produced of a portion of the study area. Channel 3 of the MSS produced the best map. Enlargements of the MSS data have been accomplished by using the Data Analysis Station. The attached film recorder has three color guns which are capable of placing 2400 square elements across a 9 inch film. It has been found that by repeating ERTS element 9 times and each scan line 13 times that a map of a scale approximately 1:62,000 can be produced as a color negative film strip. This can be contact printed to produce a color map of the scale. As yet this procedure does not correct for image skew caused by rotation which is believed to be the major source of distortion and blockiness in the image. However, the final product which has not undergone any photographic enlargement is superior to photographically enlarged maps of the same scale.

  11. The photo-colorimetric space as a medium for the representation of spatial data

    NASA Technical Reports Server (NTRS)

    Kraiss, K. Friedrich; Widdel, Heino

    1989-01-01

    Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.

  12. Maps of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  13. Developing a smartphone software package for predicting atmospheric pollutant concentrations at mobile locations.

    PubMed

    Larkin, Andrew; Williams, David E; Kile, Molly L; Baird, William M

    2015-06-01

    There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM 2.5 ), coarse particulate matter (PM 10 ), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards.

  14. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.

  15. Maps of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  16. Maps of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  17. Maps of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  18. Theoretical research on color indirect effects

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Liao, Changjun; Liu, Songhao

    1995-05-01

    Color indirect effects (CIE) means the physiological and psychological effects of color resulting from color vision. In this paper, we study CIE from the viewpoints of the integrated western and Chinese traditional medicine and the time quantum theory established by C. Y. Liu et al., respectively, and then put forward the color-automatic-nervous-subsystem model that could color excites parasympathetic subsystem and hot color excites sympathetic subsystem. Our theory is in agreement with modern color vision theory, and moreover, it leads to the resolution of the conflict between the color code theory and the time code theory oncolor vision. For the latitude phenomena on athlete stars number and the average lifespan, we also discuss the possibility of UV vision. The applications of our theory lead to our succeeding in explaining a number of physiological and psychological effects of color, in explaining the effects of age on color vision, and in explaining the Chinese chromophototherapy. We also discuss its application to neuroimmunology. This research provides the foundation of the clinical applications of chromophototherapy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  20. PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. II. RESOLVING CHANGES ON PLUTO'S SURFACE AND A MAP FOR CHARON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buie, Marc W.; Young, Eliot F.; Young, Leslie A.

    We present new imaging of the surface of Pluto and Charon obtained during 2002-2003 with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) instrument. Using these data, we construct two-color albedo maps for the surfaces of both Pluto and Charon. Similar mapping techniques are used to re-process HST/Faint Object Camera (FOC) images taken in 1994. The FOC data provide information in the ultraviolet and blue wavelengths that show a marked trend of UV-bright material toward the sunlit pole. The ACS data are taken at two optical wavelengths and show widespread albedo and color variegation on the surface ofmore » Pluto and hint at a latitudinal albedo trend on Charon. The ACS data also provide evidence for a decreasing albedo for Pluto at blue (435 nm) wavelengths, while the green (555 nm) data are consistent with a static surface over the one-year period of data collection. We use the two maps to synthesize a true visual color map of Pluto's surface and investigate trends in color. The mid- to high-latitude region on the sunlit pole is, on average, more neutral in color and generally higher albedo than the rest of the surface. Brighter surfaces also tend to be more neutral in color and show minimal color variations. The darker regions show considerable color diversity arguing that there must be a range of compositional units in the dark regions. Color variations are weak when sorted by longitude. These data are also used to constrain astrometric corrections that enable more accurate orbit fitting, both for the heliocentric orbit of the barycenter and the orbit of Pluto and Charon about their barycenter.« less

  1. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images

    PubMed Central

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit

    2015-01-01

    Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571

  2. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    PubMed

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit

    2015-01-01

    Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  3. Extended Colour--Some Methods and Applications.

    ERIC Educational Resources Information Center

    Dean, P. J.; Murkett, A. J.

    1985-01-01

    Describes how color graphics are built up on microcomputer displays and how a range of colors can be produced. Discusses the logic of color formation, noting that adding/subtracting color can be conveniently demonstrated. Color generating techniques in physics (resistor color coding and continuous spectrum production) are given with program…

  4. Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.

    PubMed

    Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang

    2015-10-01

    The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.

  5. Assessment of Optical Coherence Tomography Color Probability Codes in Myopic Glaucoma Eyes After Applying a Myopic Normative Database.

    PubMed

    Seol, Bo Ram; Kim, Dong Myung; Park, Ki Ho; Jeoung, Jin Wook

    2017-11-01

    To evaluate the optical coherence tomography (OCT) color probability codes based on a myopic normative database and to investigate whether the implementation of the myopic normative database can improve the OCT diagnostic ability in myopic glaucoma. Comparative validity study. In this study, 305 eyes (154 myopic healthy eyes and 151 myopic glaucoma eyes) were included. A myopic normative database was obtained based on myopic healthy eyes. We evaluated the agreement between OCT color probability codes after applying the built-in and myopic normative databases, respectively. Another 120 eyes (60 myopic healthy eyes and 60 myopic glaucoma eyes) were included and the diagnostic performance of OCT color codes using a myopic normative database was investigated. The mean weighted kappa (Kw) coefficients for quadrant retinal nerve fiber layer (RNFL) thickness, clock-hour RNFL thickness, and ganglion cell-inner plexiform layer (GCIPL) thickness were 0.636, 0.627, and 0.564, respectively. The myopic normative database showed a higher specificity than did the built-in normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P < .001, P < .001, and P < .001, respectively). The receiver operating characteristic curve values increased when using the myopic normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P = .011, P = .004, P < .001, respectively). The diagnostic ability of OCT color codes for detection of myopic glaucoma significantly improved after application of the myopic normative database. The implementation of a myopic normative database is needed to allow more precise interpretation of OCT color probability codes when used in myopic eyes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Color-Coded Prefilled Medication Syringes Decrease Time to Delivery and Dosing Error in Simulated Emergency Department Pediatric Resuscitations.

    PubMed

    Moreira, Maria E; Hernandez, Caleb; Stevens, Allen D; Jones, Seth; Sande, Margaret; Blumen, Jason R; Hopkins, Emily; Bakes, Katherine; Haukoos, Jason S

    2015-08-01

    The Institute of Medicine has called on the US health care system to identify and reduce medical errors. Unfortunately, medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients when dosing requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national health care priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared with conventional medication administration, in simulated pediatric emergency department (ED) resuscitation scenarios. We performed a prospective, block-randomized, crossover study in which 10 emergency physician and nurse teams managed 2 simulated pediatric arrest scenarios in situ, using either prefilled, color-coded syringes (intervention) or conventional drug administration methods (control). The ED resuscitation room and the intravenous medication port were video recorded during the simulations. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the conventional and color-coded delivery groups was 47 seconds (95% confidence interval [CI] 40 to 53 seconds) and 19 seconds (95% CI 18 to 20 seconds), respectively (difference=27 seconds; 95% CI 21 to 33 seconds). With the conventional method, 118 doses were administered, with 20 critical dosing errors (17%); with the color-coded method, 123 doses were administered, with 0 critical dosing errors (difference=17%; 95% CI 4% to 30%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by emergency physician and nurse teams during simulated pediatric ED resuscitations. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  7. A quantitative comparison of transesophageal and epicardial color Doppler echocardiography in the intraoperative assessment of mitral regurgitation.

    PubMed

    Kleinman, J P; Czer, L S; DeRobertis, M; Chaux, A; Maurer, G

    1989-11-15

    Epicardial and transesophageal color Doppler echocardiography are both widely used for the intraoperative assessment of mitral regurgitation (MR); however, it has not been established whether grading of regurgitation is comparable when evaluated by these 2 techniques. MR jet size was quantitatively compared in 29 hemodynamically and temporally matched open-chest epicardial and transesophageal color Doppler echocardiography studies from 22 patients (18 with native and 4 with porcine mitral valves) scheduled to undergo mitral valve repair or replacement. Jet area, jet length and left atrial area were analyzed. Comparison of jet area measurements as assessed by epicardial and transesophageal color flow mapping revealed an excellent correlation between the techniques (r = 0.95, p less than 0.001). Epicardial and transesophageal jet length measurements were also similar (r = 0.77, p less than 0.001). Left atrial area could not be measured in 18 transesophageal studies (62%) due to foreshortening, and in 5 epicardial studies (17%) due to poor image resolution. Acoustic interference with left atrial and color flow mapping signals was noted in all patients with mitral valve prostheses when imaged by epicardial echocardiography, but this did not occur with transesophageal imaging. Thus, in patients undergoing valve repair or replacement, transesophageal and epicardial color flow mapping provide similar quantitative assessment of MR jet size. Jet area to left atrial area ratios have limited applicability in transesophageal color flow mapping, due to foreshortening of the left atrial borders in transesophageal views. Transesophageal color flow mapping may be especially useful in assessing dysfunctional mitral prostheses due to the lack of left atrial acoustic interference.

  8. The Color of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Olkin, Catherine; Spencer, John R.; Grundy, William M.; Parker, Alex; Beyer, Ross A.; Reuter, Dennis; Schenk, Paul M.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Binzel, Richard P.; Buie, Marc W.; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa; Howett, Carly; Jennings, Donald E.; Singer, Kelsi N.; Linscott, Ivan; Lunsford, Allen; Protopapa, Silvia; Schmitt, Bernard; Weigle, Eddie; and the New Horizons Science Team

    2017-10-01

    The New Horizons flyby provided the first high-resolution color maps of Pluto. These maps show the color variegation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of east Tombaugh Regio and the yellow hue on Pluto's north pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulu Regio and the other extends to the yellow hue in the northern latitudes. The red color is consistent with a non-ice component on the surface and is consistent with tholins.

  9. The Color of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Olkin, C.; Spencer, J. R.; Grundy, W. M.; Parker, A. H.; Beyer, R. A.; Reuter, D.; Schenk, P.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.

    2017-12-01

    The New Horizons flyby provided the first high-resolution color maps of Pluto. These maps show the color variegation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of east Tombaugh Regio and the yellow hue on Pluto's north pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulu Regio and the other extends to the yellow hue in the northern latitudes. The red color is consistent with a non-ice component on the surface and is consistent with tholins.

  10. Gray Bananas and a Red Letter A - From Synesthetic Sensation to Memory Colors.

    PubMed

    Weiss, Franziska; Greenlee, Mark W; Volberg, Gregor

    2018-01-01

    Grapheme-color synesthesia is a condition in which objectively achromatic graphemes induce concurrent color experiences. While it was long thought that the colors emerge during perception, there is growing support for the view that colors are integral to synesthetes' cognitive representations of graphemes. In this work, we review evidence for two opposing theories positing either a perceptual or cognitive origin of concurrent colors: the cross-activation theory and the conceptual-mediation model. The review covers results on inducer and concurrent color processing as well as findings concerning the brain structure and grapheme-color mappings in synesthetes and trained mappings in nonsynesthetes. The results support different aspects of both theories. Finally, we discuss how research on memory colors could provide a new perspective in the debate about the level of processing at which the synesthetic colors occur.

  11. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Des, Jardins M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  12. The effect of a redundant color code on an overlearned identification task

    NASA Technical Reports Server (NTRS)

    Obrien, Kevin

    1992-01-01

    The possibility of finding redundancy gains with overlearned tasks was examined using a paradigm varying familiarity with the stimulus set. Redundant coding in a multidimensional stimulus was demonstrated to result in increased identification accuracy and decreased latency of identification when compared to stimuli varying on only one dimension. The advantages attributable to redundant coding are referred to as redundancy gain and were found for a variety of stimulus dimension combinations, including the use of hue or color as one of the dimensions. Factors that have affected redundancy gain include the discriminability of the levels of one stimulus dimension and the level of stimulus-to-response association. The results demonstrated that response time is in part a function of familiarity, but no effect of redundant color coding was demonstrated. Implications of research on coding in identification tasks for display design are discussed.

  13. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  14. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A reconstituted, simulated color-infrared print, enlarged to a scale of 1:250,000, was used to make a vegetation map of a 3,110 sq km area just west of Fairbanks, Alaska. Information was traced from the print which comprised the southeastern part of ERTS-1 scene 1033-21011. A 1:1,000,000 scale color-infrared transparency of this scene, obtained from NASA, was used along side the print as an aid in recognizing colors, color intensities and blends, and mosaics of different colors. Color units on the transparency and print were identified according to vegetation types using NASA air photos, U.S. Forest Service air photos, and experience of the investigator. Five more or less pure colors were identified and associated with vegetation types. These colors were designated according to their appearances on the print: (1) orange for forest vegetation dominated by broad-leaved trees: (2) gray for forest vegetation dominated by needle-leaved trees; (3) violet for scrub vegetation; (4) light violet denoting herbaceous tundra vegetation; and (5) dull violet for muskeg vegetation. This study has shown, through close examinations of the NASA transparency, that much more detailed vegetation landscape, or ecosystem maps could be produced, if only spectral signatures could be consistently and reliably recognized and transferred to a map of suitable scale.

  15. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. Electronic supplementary information (ESI) available: Calculating details of UCNP content per 3D QR code and decoding process of the 3D QR code. See DOI: 10.1039/c6nr01353h

  16. Maps of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    ,

    2007-01-01

    By selecting one of the four series options shown below, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively, the user will be taken to that map.

  17. An evaluation of satellite data for estimating the area of small forestland in the southern lower peninsula of Michigan. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karteris, M. A. (Principal Investigator)

    1980-01-01

    A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.

  18. Effects of Gender Color-Coding on Toddlers' Gender-Typical Toy Play.

    PubMed

    Wong, Wang I; Hines, Melissa

    2015-07-01

    Gender color-coding of children's toys may make certain toys more appealing or less appealing to a given gender. We observed toddlers playing with two gender-typical toys (a train, a doll), once in gender-typical colors and once in gender-atypical colors. Assessments occurred twice, at 20-40 months of age and at 26-47 months of age. A Sex × Time × Toy × Color ANOVA showed expected interactions between Sex and Toy and Sex and Color. Boys played more with the train than girls did and girls played more with the doll and with pink toys than boys did. The Sex × Toy × Color interaction was not significant, but, at both time points, boys and girls combined played more with the gender-atypical toy when its color was typical for their sex than when it was not. This effect appeared to be caused largely by boys' preference for, or avoidance of, the doll and by the use of pink. Also, at both time points, gender differences in toy preferences were larger in the gender-typical than in the gender-atypical color condition. At Time 2, these gender differences were present only in the gender-typical color condition. Overall, the results suggest that, once acquired, gender-typical color preferences begin to influence toy preferences, especially those for gender-atypical toys and particularly in boys. They thus could enlarge differences between boys' and girls' toy preferences. Because boys' and girls' toys elicit different activities, removing the gender color-coding of toys could encourage more equal learning opportunities.

  19. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  20. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  1. Gray Bananas and a Red Letter A — From Synesthetic Sensation to Memory Colors

    PubMed Central

    Weiss, Franziska; Volberg, Gregor

    2018-01-01

    Grapheme–color synesthesia is a condition in which objectively achromatic graphemes induce concurrent color experiences. While it was long thought that the colors emerge during perception, there is growing support for the view that colors are integral to synesthetes’ cognitive representations of graphemes. In this work, we review evidence for two opposing theories positing either a perceptual or cognitive origin of concurrent colors: the cross-activation theory and the conceptual-mediation model. The review covers results on inducer and concurrent color processing as well as findings concerning the brain structure and grapheme–color mappings in synesthetes and trained mappings in nonsynesthetes. The results support different aspects of both theories. Finally, we discuss how research on memory colors could provide a new perspective in the debate about the level of processing at which the synesthetic colors occur. PMID:29899968

  2. Geologic map of the Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of M.S. Smirnov and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological-structural map of Hajigak iron-ore deposit, scale 1:10,000, which was compiled by M.S. Smirnov and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and a related report.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  3. Digital version of "Open-File Report 92-179: Geologic map of the Cow Cove Quadrangle, San Bernardino County, California"

    USGS Publications Warehouse

    Wilshire, Howard G.; Bedford, David R.; Coleman, Teresa

    2002-01-01

    3. Plottable map representations of the database at 1:24,000 scale in PostScript and Adobe PDF formats. The plottable files consist of a color geologic map derived from the spatial database, composited with a topographic base map in the form of the USGS Digital Raster Graphic for the map area. Color symbology from each of these datasets is maintained, which can cause plot file sizes to be large.

  4. Keep It Simple. Teaching Tips for Special Olympic Athletes.

    ERIC Educational Resources Information Center

    Johnston, Judith E.; And Others

    1996-01-01

    Physical educators can help Special Olympics athletes learn cross-lateral delivery techniques for bowling or throwing softballs by color coding the throwing arm and opposing foot. The article explains color coding, presenting teaching tips for both sports. A series of workshops on modifying exercise principles for individuals with physical…

  5. Use of color-coded sleeve shutters accelerates oscillograph channel selection

    NASA Technical Reports Server (NTRS)

    Bouchlas, T.; Bowden, F. W.

    1967-01-01

    Sleeve-type shutters mechanically adjust individual galvanometer light beams onto or away from selected channels on oscillograph papers. In complex test setups, the sleeve-type shutters are color coded to separately identify each oscillograph channel. This technique could be used on any equipment using tubular galvanometer light sources.

  6. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    ERIC Educational Resources Information Center

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  7. On vegetation mapping in Alaska using LANDSAT imagery with primary concerns for method and purpose in satellite image-based vegetation and land-use mapping and the visual interpretation of imagery in photographic format

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A simulated color infrared LANDSAT image covering the western Seward Peninsula was used for identifying and mapping vegetation by direct visual examination. The 1:1,083,400 scale print used was prepared by a color additive process using positive transparencies from MSS bands 4, 5, and 7. Seven color classes were recognized. A vegetation map of 3200 sq km area just west of Fairbanks, Alaska was made. Five colors were recognized on the image and identified to vegetation types roughly equivalent to formations in the UNESCO classification: orange - broadleaf deciduous forest; gray - needleleaf evergreen forest; light violet - subarctic alpine tundra vegetation; violet - broadleaf deciduous shrub thicket; and dull violet - bog vegetation.

  8. Geologic map of the Khanneshin carbonatite complex, Helmand Province, Afghanistan, modified from the 1976 original map compilation of V.G. Cheremytsin

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Schulz, Klaus J.; Renaud, Karine M.; Stettner, Will R.; Masonic, Linda M.; Packard, Patricia H.

    2011-01-01

    This map is a modified version of the Geological map of the Khanneshin carbonatite complex, scale 1:10,000, which was compiled by V.G. Cheremytsin in 1976. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original map and also visited the field area in September 2009, August 2010, and February 2011. This modified map, which includes cross sections, illustrates the geologic structure of the Khanneshin carbonatite complex. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of that map and a related report, and based on observations made during our field visits. (Refer to the References section in the Map PDF for complete citations of the original map and related report.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  9. PDB-Explorer: a web-based interactive map of the protein data bank in shape space.

    PubMed

    Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis

    2015-10-23

    The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB. ᅟ

  10. Rainwater harvesting state regulations and technical resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, Susan A.

    Pacific Northwest National Laboratory (PNNL) conducted in-depth research of state-level rainwater harvesting regulations for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify locations conducive to rainwater harvesting projects. Currently, rainwater harvesting is not regulated by the federal government but rather it is up to individual states to regulate the collection and use of rainwater. There is no centralized information on state-level regulations on rainwater harvesting maintained by a federal agency or outside organization. To fill this information gap, PNNL performed detailed internet searches for each state, which included state agencies, universities, Cooperative Extension Offices, city governments,more » and related organizations. The state-by-state information on rainwater harvesting regulations was compiled and assembled into an interactive map that is color coded by state regulations. The map provides a visual representation of the general types of rainwater harvesting policies across the country as well as general information on the state programs if applicable. The map allows the user to quickly discern where rainwater harvesting is supported and regulated by the state. This map will be available on the FEMP website by September 2015.« less

  11. Color-Blindness Study: Color Discrimination on the TICCIT System.

    ERIC Educational Resources Information Center

    Asay, Calvin S.; Schneider, Edward W.

    The question studied whether the specific seven TICCIT system colors used within color coding schemes can be a source of confusion, or not seen at all, by the color-blind segment of target populations. Subjects were 11 color-blind and three normally sighted students at Brigham Young University. After a preliminary training exercise to acquaint the…

  12. An open source Java web application to build self-contained Web GIS sites

    NASA Astrophysics Data System (ADS)

    Zavala Romero, O.; Ahmed, A.; Chassignet, E.; Zavala-Hidalgo, J.

    2014-12-01

    This work describes OWGIS, an open source Java web application that creates Web GIS sites by automatically writing HTML and JavaScript code. OWGIS is configured by XML files that define which layers (geographic datasets) will be displayed on the websites. This project uses several Open Geospatial Consortium standards to request data from typical map servers, such as GeoServer, and is also able to request data from ncWMS servers. The latter allows for the displaying of 4D data stored using the NetCDF file format (widely used for storing environmental model datasets). Some of the features available on the sites built with OWGIS are: multiple languages, animations, vertical profiles and vertical transects, color palettes, color ranges, and the ability to download data. OWGIS main users are scientists, such as oceanographers or climate scientists, who store their data in NetCDF files and want to analyze, visualize, share, or compare their data using a website.

  13. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.

    2010-12-01

    Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing our results to existing studies on the distribution of Fe oxides in Australian soils.

  14. Landing Area Narrowed for 2016 InSight Mission to Mars

    NASA Image and Video Library

    2013-09-04

    The process of selecting a site for NASA's next landing on Mars, planned for September 2016, has narrowed to four semifinalist sites located close together in the Elysium Planitia region of Mars. The mission known by the acronym InSight will study the Red Planet's interior, rather than surface features, to advance understanding of the processes that formed and shaped the rocky planets of the inner solar system, including Earth. The location of the cluster of semifinalist landing sites for InSight is indicated on this near-global topographic map of Mars, which also indicates landing sites of current and past NASA missions to the surface of Mars. The mission's full name is Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport. The location of Elysium Planitia close to the Martian equator meets an engineering requirement for the stationary InSight lander to receive adequate solar irradiation year-round on its photovoltaic array. The location also meets an engineering constraint for low elevation, optimizing the amount of atmosphere the spacecraft can use for deceleration during its descent to the surface. The number of candidate landing sites for InSight was trimmed from 22 down to four in August 2013. This down-selection facilitates focusing the efforts to further evaluate the four sites. Cameras on NASA's Mars Reconnaissance Orbiter will be used to gather more information about them before the final selection. The topographic map uses data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor spacecraft. The color coding on this map indicates elevation relative to a reference datum, since Mars has no "sea level." The lowest elevations are presented as dark blue; the highest as white. The difference between green and orange in the color coding is about 2.5 miles (4 kilometers) vertically. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17357

  15. Color Comprehension and Color Categories among Blind Students: A Multi-Sensory Approach in Implementing Concrete Language to Include All Students in Advanced Writing Classes

    ERIC Educational Resources Information Center

    Antarasena, Salinee

    2009-01-01

    This study investigates teaching methods regarding color comprehension and color categorization among blind students, as compared to their non-blind peers and whether they understand and represent the same color comprehension and color categories. Then after digit codes for color comprehension teaching and assistive technology for the blind had…

  16. Shelf-Life Extension of Chill-Stored Beef Longissimus Steaks Packaged under Modified Atmospheres with 50% O2 and 40% CO2.

    PubMed

    Yang, Xiaoyin; Niu, Lebao; Zhu, Lixian; Liang, Rongrong; Zhang, Yimin; Luo, Xin

    2016-07-01

    This study was conducted to compare the shelf-life of beef steaks stored in different packaging conditions: overwrapped (OW) packaging and 2 modified atmosphere packaging systems (MAP): 80% O2 MAP (80% O2 /20% CO2 ) and 50% O2 MAP (50% O2 /40% CO2 /10% N2 ). Steaks were stored at 2 °C for 20 d. Headspace gas composition, microbial counts, color stability, pH, purge loss, and lipid oxidation were monitored. Among the packaging types, 50% O2 MAP was superior to OW packaging and 80% O2 MAP in delaying bacterial growth and extending shelf-life to 20 d. 50% O2 MAP also gave steaks an acceptable color during storage. No significant differences were observed in color stability of steaks packaged in both 50% O2 MAP and 80% O2 MAP. This study reveals 50% O2 MAP is a realistic alternative to preserve beef steaks efficiently. © 2016 Institute of Food Technologists®

  17. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  18. Bottom-up attention capture with distractor and target singletons defined in the same (color) dimension is not a matter of feature uncertainty.

    PubMed

    Weichselbaum, Hanna; Ansorge, Ulrich

    2018-05-18

    In visual search, attention capture by an irrelevant color-singleton distractor in another feature dimension than the target is dependent on whether or not the distractor changes its feature: Capture is present if the irrelevant color distractor can take on different features across trials, but absent if the distractor takes on only one feature throughout all trials. This influence could be due to down-weighting of the entire color map. Here we tested whether a similar effect could also be brought about by down-weighting of specific color channels within the same maps. We investigated whether a similar dependence of capture on color certainty might hold true if the distractor were defined in the same (color) dimension as the target. At odds with this possibility, in the first and third blocks-in which feature uncertainty was absent-an irrelevant distractor of a certain color captured attention. In addition, in a second block, varying the distractor color created feature uncertainty, but this did not increase capture. Repeating the exact same procedure with the same participants after one week confirmed the stability of the results. The present study showed that a color distractor presented in the same (color) dimension as the target captures attention independent of feature uncertainty. Thus, the down-weighting of single irrelevant color channels within the same feature map used for target search is not a matter of feature uncertainty.

  19. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  20. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images). PMID:26729148

  1. New adaptive color quantization method based on self-organizing maps.

    PubMed

    Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai

    2005-01-01

    Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.

  2. Using perceptual rules in interactive visualization

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Treinish, Lloyd A.

    1994-05-01

    In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.

  3. An object-based visual attention model for robotic applications.

    PubMed

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  4. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  5. Geologic map of the western Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of V.V. Reshetniak and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geologic-prospecting plan of western area of Hajigak iron-ore deposit, scale 1:2,000, which was compiled by V.V. Reshetniak and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and related reports.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the western Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and includes modifications based on our examination of that document. We constructed the cross sections from data derived from the original map. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  6. Serial turbo trellis coded modulation using a serially concatenated coder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)

    2010-01-01

    Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.

  7. Color on emergency mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Qi, Qingwen; Zhang, An

    2007-06-01

    There are so many emergency issues in our daily life. Such as typhoons, tsunamis, earthquake, fires, floods, epidemics, etc. These emergencies made people lose their lives and their belongings. Every day, every hour, even every minute people probably face the emergency, so how to handle it and how to decrease its hurt are the matters people care most. If we can map it exactly before or after the emergencies; it will be helpful to the emergency researchers and people who live in the emergency place. So , through the emergency map, before emergency is occurring we can predict the situation, such as when and where the emergency will be happen; where people can refuge, etc. After disaster, we can also easily assess the lost, discuss the cause and make the lost less. The primary effect of mapping is offering information to the people who care about the emergency and the researcher who want to study it. Mapping allows the viewers to get a spatial sense of hazard. It can also provide the clues to study the relationship of the phenomenon in emergency. Color, as the basic element of the map, it can simplify and clarify the phenomenon. Color can also affects the general perceptibility of the map, and elicits subjective reactions to the map. It is to say, structure, readability, and the reader's psychological reactions can be affected by the use of color.

  8. Accessible and informative sectioned images, color-coded images, and surface models of the ear.

    PubMed

    Park, Hyo Seok; Chung, Min Suk; Shin, Dong Sun; Jung, Yong Wook; Park, Jin Seo

    2013-08-01

    In our previous research, we created state-of-the-art sectioned images, color-coded images, and surface models of the human ear. Our ear data would be more beneficial and informative if they were more easily accessible. Therefore, the purpose of this study was to distribute the browsing software and the PDF file in which ear images are to be readily obtainable and freely explored. Another goal was to inform other researchers of our methods for establishing the browsing software and the PDF file. To achieve this, sectioned images and color-coded images of ear were prepared (voxel size 0.1 mm). In the color-coded images, structures related to hearing, equilibrium, and structures originated from the first and second pharyngeal arches were segmented supplementarily. The sectioned and color-coded images of right ear were added to the browsing software, which displayed the images serially along with structure names. The surface models were reconstructed to be combined into the PDF file where they could be freely manipulated. Using the browsing software and PDF file, sectional and three-dimensional shapes of ear structures could be comprehended in detail. Furthermore, using the PDF file, clinical knowledge could be identified through virtual otoscopy. Therefore, the presented educational tools will be helpful to medical students and otologists by improving their knowledge of ear anatomy. The browsing software and PDF file can be downloaded without charge and registration at our homepage (http://anatomy.dongguk.ac.kr/ear/). Copyright © 2013 Wiley Periodicals, Inc.

  9. Color stability of ground beef packaged in a low carbon monoxide atmosphere or vacuum.

    PubMed

    Jeong, Jong Youn; Claus, James R

    2011-01-01

    Ground beef was either packaged in an atmosphere of 0.4% CO, 30% CO₂, and 69.6% N₂ (CO-MAP) or vacuum. After storage (48 h, 2-3°C), packages of CO-MAP and vacuum were opened and overwrapped with polyvinyl chloride. Other CO-MAP and vacuum packages were left intact. Packages were initially displayed for 7 days (2-3°C). Intact packages were further displayed up to 35 days before being opened and displayed (1 or 3 days). Intact CO-MAP packaged ground beef was always more red than intact vacuum-packaged ground beef. Color was relatively stable for both types of intact packages over 35 days of display. Upon opening CO-MAP packaged ground beef, the red color decreased slower than in ground beef from vacuum packages. Published by Elsevier Ltd.

  10. Cockpit displays of traffic information: Airline pilots opinions about content, symbology, and format

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Wempe, T. E.

    1979-01-01

    A number of candidate computer-generated cockpit displays of traffic information (CDTI) displays and display options were simulated statically and were shown to 23 airline pilots who were asked to respond to more than 250 questions about them. The pilots indicated that the amount and complexity of navigation information displayed should increase with altitude and map scale. Terrain information should appear automatically if a pilot's own aircraft descends below the minimum safe altitude and should include only those obstruction within 2,000 ft or less. Few pilots that weather information should be displayed on a CDTI, but if it was, it should be at pilot request only. A chevron-shaped symbol, located so that the majority of the map area was ahead was preferred. The position, altitude, ground speed, ground track, weight class, and flightpath history of other aircraft should be presented graphically by coding the shape of the symbol for other aircraft or presented digitally in data tags displayed at pilot request. All pilots thought that color coding was necessary to recognize different categories of information quickly and accurately. The majority of pilots felt that a CDTI would provide useful information even though its presence might increase their workload somewhat particularly during its introductory stages.

  11. Genomic anatomy of the Tyrp1 (brown) deletion complex

    PubMed Central

    Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.

    2006-01-01

    Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357

  12. Accuracy, resolution, and cost comparisons between small format and mapping cameras for environmental mapping

    NASA Technical Reports Server (NTRS)

    Clegg, R. H.; Scherz, J. P.

    1975-01-01

    Successful aerial photography depends on aerial cameras providing acceptable photographs within cost restrictions of the job. For topographic mapping where ultimate accuracy is required only large format mapping cameras will suffice. For mapping environmental patterns of vegetation, soils, or water pollution, 9-inch cameras often exceed accuracy and cost requirements, and small formats may be better. In choosing the best camera for environmental mapping, relative capabilities and costs must be understood. This study compares resolution, photo interpretation potential, metric accuracy, and cost of 9-inch, 70mm, and 35mm cameras for obtaining simultaneous color and color infrared photography for environmental mapping purposes.

  13. Effect of packaging atmospheres on storage quality characteristics of heavily marbled beef longissimus steaks.

    PubMed

    Yang, Xiaoyin; Zhang, Yimin; Zhu, Lixian; Han, Mingshan; Gao, Shujuan; Luo, Xin

    2016-07-01

    The objective of this study was to investigate the effects of modified atmosphere packaging (MAP) systems on shelf-life and quality of beef steaks with high marbling. Four packaging types were used including 80% O2 MAP (80% O2+20% CO2), 50% O2 MAP (50% O2+30% CO2+20% N2), carbon monoxide MAP (0.4% CO+30% CO2+69.6% N2) and vacuum packaging (VP). Steaks were displayed under simulated retail conditions at 4°C for 12days. Purge loss, pH, color stability, oxidative stability and microbial counts were monitored. Aerobically packaged steaks exhibited a bright-red color at the first 4days. However, discoloration and oxidation became major factors limiting their shelf-life to 8days. Compared with aerobic packaging, anaerobic packaging extended shelf-life of heavily marbled beef steaks, due to better color stability, together with lower oxidation and microbial populations. Among all packaging methods, CO-MAP had the best preservation for steaks, with more red color than other packaging types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision.

    PubMed

    Vladusich, Tony

    2007-03-01

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory may help to resolve an ongoing debate concerning the functional properties of cortical receptive fields involved in color coding.

  15. Addressing Inter-set Write-Variation for Improving Lifetime of Non-Volatile Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S

    We propose a technique which minimizes inter-set write variation in NVM caches for improving its lifetime. Our technique uses cache coloring scheme to add a software-controlled mapping layer between groups of physical pages (called memory regions) and cache sets. Periodically, the number of writes to different colors of the cache is computed and based on this result, the mapping of a few colors is changed to channel the write traffic to least utilized cache colors. This change helps to achieve wear-leveling.

  16. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  17. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications. PMID:23319862

  18. Hybrid 3D visualization of the chest and virtual endoscopy of the tracheobronchial system: possibilities and limitations of clinical application.

    PubMed

    Seemann, M D; Claussen, C D

    2001-06-01

    A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.

  19. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models.

    PubMed

    Addetia, Karima; Mor-Avi, Victor; Weinert, Lynn; Salgo, Ivan S; Lang, Roberto M

    2014-01-01

    Differentiating between mitral valve (MV) prolapse (MVP) and MV billowing (MVB) on two-dimensional echocardiography is challenging. The aim of this study was to test the hypothesis that color-coded models of maximal leaflet displacement from the annular plane into the atrium derived from three-dimensional transesophageal echocardiography would allow discrimination between these lesions. Three-dimensional transesophageal echocardiographic imaging of the MV was performed in 50 patients with (n = 38) and without (n = 12) degenerative MV disease. Definitive diagnosis of MVP versus MVB was made using inspection of dynamic three-dimensional renderings and multiple two-dimensional cut planes extracted from three-dimensional data sets. This was used as a reference standard to test an alternative approach, wherein the color-coded parametric models were inspected for integrity of the coaptation line and location of the maximally displaced portion of the leaflet. Diagnostic interpretations of these models by two independent readers were compared with the reference standard. In all cases of MVP, the color-coded models depicted loss of integrity of the coaptation line and maximal leaflet displacement extending to the coaptation line. MVB was depicted by preserved leaflet apposition with maximal displacement away from the coaptation line. Interpretation of the 50 color-coded models by novice readers took 5 to 10 min and resulted in good agreement with the reference technique (κ = 0.81 and κ = 0.73 for the two readers). Three-dimensional color-coded models provide a static display of MV leaflet displacement, allowing differentiation between MVP and MVB, without the need to inspect multiple planes and while taking into account the saddle shape of the mitral annulus. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  20. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    PubMed

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  1. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  2. Developing a smartphone software package for predicting atmospheric pollutant concentrations at mobile locations

    PubMed Central

    Larkin, Andrew; Williams, David E.; Kile, Molly L.; Baird, William M.

    2014-01-01

    Background There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards. PMID:26146409

  3. New Methodology for an Expert-Designed Map From International Classification of Diseases (ICD) to Abbreviated Injury Scale (AIS) 3+ Severity Injury.

    PubMed

    Zonfrillo, Mark R; Weaver, Ashley A; Gillich, Patrick J; Price, Janet P; Stitzel, Joel D

    2015-01-01

    There has been a longstanding desire for a map to convert International Classification of Diseases (ICD) injury codes to Abbreviated Injury Scale (AIS) codes to reflect the severity of those diagnoses. The Association for the Advancement of Automotive Medicine (AAAM) was tasked by European Union representatives to create a categorical map classifying diagnoses codes as serious injury (Abbreviated Injury Scale [AIS] 3+), minor/moderate injury (AIS 1/2), or indeterminate. This study's objective was to map injury-related ICD-9-CM (clinical modification) and ICD-10-CM codes to these severity categories. Approximately 19,000 ICD codes were mapped, including injuries from the following categories: amputations, blood vessel injury, burns, crushing injury, dislocations/sprains/strains, foreign body, fractures, internal organ, nerve/spinal cord injury, intracranial, laceration, open wounds, and superficial injury/contusion. Two parallel activities were completed to create the maps: (1) An in-person expert panel and (2) an electronic survey. The panel consisted of expert users of AIS and ICD from North America, the United Kingdom, and Australia. The panel met in person for 5 days, with follow-up virtual meetings to create and revise the maps. Additional qualitative data were documented to resolve potential discrepancies in mapping. The electronic survey was completed by 95 injury coding professionals from North America, Spain, Australia, and New Zealand over 12 weeks. ICD-to-AIS maps were created for: ICD-9-CM and ICD-10-CM. Both maps indicated whether the corresponding AIS 2005/Update 2008 severity score for each ICD code was AIS 3+, 1/2, or indeterminable. Though some ICD codes could be mapped to multiple AIS codes, the maximum severity of all potentially mapped injuries determined the final severity categorization. The in-person panel consisted of 13 experts, with 11 Certified AIS specialists (CAISS) with a median of 8 years and an average of 15 years of coding experience. Consensus was reached for AIS severity categorization for all injury-related ICD codes. There were 95 survey respondents, with a median of 8 years of injury coding experience. Approximately 15 survey responses were collected per ICD code. Results from the 2 activities were compared, and any discrepancies were resolved using additional qualitative and quantitative data from the in-person panel and survey results, respectively. Robust maps of ICD-9-CM and ICD-10-CM injury codes to AIS severity categories (3+ versus <3) were successfully created from an in-person panel discussion and electronic survey. These maps provide a link between the common ICD diagnostic lexicons and the AIS severity coding system and are of value to injury researchers, public health scientists, and epidemiologists using large databases without available AIS coding.

  4. Perceptions of drug color among drug sellers and consumers in rural southwestern Nigeria.

    PubMed

    Brieger, William R; Salami, Kabiru K; Oshiname, Frederick O

    2007-09-01

    Color is commonly used for branding and coding consumer products including medications. People associate certain colors in tablets and capsules with the effect of the drug and the illness for which it is meant. Color coding was introduced in age-specific prepacked antimalarial drugs for preschool aged children in Nigeria by the National Malaria Control Committee. Yellow was designated for the younger ages and blue for the older. The National Malaria Control Committee did not perform market research to learn how their color codes would be perceived by consumers. The study aimed at determining perceptions of both consumers and sellers of medicines at the community level to learn about color likes and dislikes that might influence acceptance of new color-coded child prepacks of antimalarial drugs. Qualitative methods were used to determine perceptions of drug colors. A series of focus group interviews were conducted with male and female community members, and in-depth interviews were held with medicine sellers in the Igbo-Ora community in southwestern Nigeria. Respondents clearly associated medicines with their effects and purpose, for example white drugs for pain relief, red for building blood, blue to aid sleep, and yellow for malaria treatment. Medicine vendors had a low opinion of white colored medicines, but community members were ultimately more concerned about efficacy. The perceived association between yellow and malaria, because of local symptom perceptions of eyes turning yellowish during malaria, yielded a favorable response when consumers were shown the yellow prepacks. The response to blue was noncommittal but consumers indicated that if they were properly educated on the efficacy and function of the new drugs they would likely buy them. Community members will accept yellow as an antimalarial drug but health education will be needed for promoting the idea of blue for malaria and the notion of age-specific packets. Therefore, the strong medicine vendor-training component that accompanied roll out of these prepacks in the pilot states needs to be replicated nationally.

  5. Visualization and Analysis of Microtubule Dynamics Using Dual Color-Coded Display of Plus-End Labels

    PubMed Central

    Garrison, Amy K.; Xia, Caihong; Wang, Zheng; Ma, Le

    2012-01-01

    Investigating spatial and temporal control of microtubule dynamics in live cells is critical to understanding cell morphogenesis in development and disease. Tracking fluorescently labeled plus-end-tracking proteins over time has become a widely used method to study microtubule assembly. Here, we report a complementary approach that uses only two images of these labels to visualize and analyze microtubule dynamics at any given time. Using a simple color-coding scheme, labeled plus-ends from two sequential images are pseudocolored with different colors and then merged to display color-coded ends. Based on object recognition algorithms, these colored ends can be identified and segregated into dynamic groups corresponding to four events, including growth, rescue, catastrophe, and pause. Further analysis yields not only their spatial distribution throughout the cell but also provides measurements such as growth rate and direction for each labeled end. We have validated the method by comparing our results with ground-truth data derived from manual analysis as well as with data obtained using the tracking method. In addition, we have confirmed color-coded representation of different dynamic events by analyzing their history and fate. Finally, we have demonstrated the use of the method to investigate microtubule assembly in cells and provided guidance in selecting optimal image acquisition conditions. Thus, this simple computer vision method offers a unique and quantitative approach to study spatial regulation of microtubule dynamics in cells. PMID:23226282

  6. Computational prediction of hemolysis in a centrifugal ventricular assist device.

    PubMed

    Pinotti, M; Rosa, E S

    1995-03-01

    This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.

  7. Spatio-thermal depth correction of RGB-D sensors based on Gaussian processes in real-time

    NASA Astrophysics Data System (ADS)

    Heindl, Christoph; Pönitz, Thomas; Stübl, Gernot; Pichler, Andreas; Scharinger, Josef

    2018-04-01

    Commodity RGB-D sensors capture color images along with dense pixel-wise depth information in real-time. Typical RGB-D sensors are provided with a factory calibration and exhibit erratic depth readings due to coarse calibration values, ageing and thermal influence effects. This limits their applicability in computer vision and robotics. We propose a novel method to accurately calibrate depth considering spatial and thermal influences jointly. Our work is based on Gaussian Process Regression in a four dimensional Cartesian and thermal domain. We propose to leverage modern GPUs for dense depth map correction in real-time. For reproducibility we make our dataset and source code publicly available.

  8. Geologic map of the Shaida deposit and Misgaran prospect, Herat Province, Afghanistan, modified from the 1973 original map compilation of V.I. Tarasenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2014-01-01

    This map is a modified version of Geological map and map of useful minerals, Shaida area, scale 1:50,000, which was compiled by V.I. Tarasenko, N.I. Borozenets, and others in 1973. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in August 2010.This modified map illustrates the geological structure of the Shaida copper-lead-zinc deposit and Misgaran copper-lead-zinc prospect in western Afghanistan and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents and on observations made during our field visit. Elevations on the cross sections are derived from the original Soviet topography and might not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map.The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  9. Ada Integrated Environment III Computer Program Development Specification. Volume III. Ada Optimizing Compiler.

    DTIC Science & Technology

    1981-12-01

    file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler

  10. Interpreting linear support vector machine models with heat map molecule coloring

    PubMed Central

    2011-01-01

    Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031

  11. Determination of the mass function of extra-galactic GMCs via NIR color maps. Testing the method in a disk-like geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2007-06-01

    The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.

  12. Natural-Color Image Mosaics of Afghanistan: Digital Databases and Maps

    USGS Publications Warehouse

    Davis, Philip A.; Hare, Trent M.

    2007-01-01

    Explanation: The 50 tiled images in this dataset are natural-color renditions of the calibrated six-band Landsat mosaics created from Landsat Enhanced Thematic Mapper Plus (ETM+) data. Natural-color images depict the surface as seen by the human eye. The calibration of the Landsat ETM+ maps produced by Davis (2006) are relative reflectance and need to be grounded with ground-reflectance data, but the difficulties in performing fieldwork in Afghanistan precluded ground-reflectance surveys. For natural color calibration, which involves only the blue, green, and red color bands of Landsat, we could use ground photographs, Munsell color readings of ground surfaces, or another image base that accurately depicts the surface color. Each map quadrangle is 1? of latitude by? of longitude. The numbers assigned to each map quadrangle refer to the latitude and longitude coordinates of the lower left corner of the quadrangle. For example, quadrangle Q2960 has its lower left corner at lat 29? N., long 60? E. Each quadrangle overlaps adjacent quadrangles by 100 pixels (2.85 km). Only the 14.25-m-spacial-resolution UTM and 28.5-m-spacial-resolution WGS84 geographic geotiff datasets are available in this report to decrease the amount of space needed. The images are (three-band, eight-bit) geotiffs with embedded georeferencing. As such, most software will not require the associated world files. An index of all available images in geographic is displayed here: Index_Geo_DD.pdf. The country of Afghanistan spans three UTM zones: (41-43). Maps are stored as geoTIFFs in their respective UTM zone projection. Indexes of all available topographic map sheets in their respective UTM zone are displayed here: Index_UTM_Z41.pdf, Index_UTM_Z42.pdf, Index_UTM_Z43.pdf. You will need Adobe Reader to view the PDF files. Download a copy of the latest version of Adobe Reader for free.

  13. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  14. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  15. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  16. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  17. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  18. Learning about Probability from Text and Tables: Do Color Coding and Labeling through an Interactive-User Interface Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Morsanyi, Kinga; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    Learning from visual representations is enhanced when learners appropriately integrate corresponding visual and verbal information. This study examined the effects of two methods of promoting integration, color coding and labeling, on learning about probabilistic reasoning from a table and text. Undergraduate students (N = 98) were randomly…

  19. Development and validation of a complementary map to enhance the existing 1998 to 2008 Abbreviated Injury Scale map

    PubMed Central

    2011-01-01

    Introduction Many trauma registries have used the Abbreviated Injury Scale 1990 Revision Update 98 (AIS98) to classify injuries. In the current AIS version (Abbreviated Injury Scale 2005 Update 2008 - AIS08), injury classification and specificity differ substantially from AIS98, and the mapping tools provided in the AIS08 dictionary are incomplete. As a result, data from different AIS versions cannot currently be compared. The aim of this study was to develop an additional AIS98 to AIS08 mapping tool to complement the current AIS dictionary map, and then to evaluate the completed map (produced by combining these two maps) using double-coded data. The value of additional information provided by free text descriptions accompanying assigned codes was also assessed. Methods Using a modified Delphi process, a panel of expert AIS coders established plausible AIS08 equivalents for the 153 AIS98 codes which currently have no AIS08 map. A series of major trauma patients whose injuries had been double-coded in AIS98 and AIS08 was used to assess the maps; both of the AIS datasets had already been mapped to another AIS version using the AIS dictionary maps. Following application of the completed (enhanced) map with or without free text evaluation, up to six AIS codes were available for each injury. Datasets were assessed for agreement in injury severity measures, and the relative performances of the maps in accurately describing the trauma population were evaluated. Results The double-coded injuries sustained by 109 patients were used to assess the maps. For data conversion from AIS98, both the enhanced map and the enhanced map with free text description resulted in higher levels of accuracy and agreement with directly coded AIS08 data than the currently available dictionary map. Paired comparisons demonstrated significant differences between direct coding and the dictionary maps, but not with either of the enhanced maps. Conclusions The newly-developed AIS98 to AIS08 complementary map enabled transformation of the trauma population description given by AIS98 into an AIS08 estimate which was statistically indistinguishable from directly coded AIS08 data. It is recommended that the enhanced map should be adopted for dataset conversion, using free text descriptions if available. PMID:21548991

  20. Development and validation of a complementary map to enhance the existing 1998 to 2008 Abbreviated Injury Scale map.

    PubMed

    Palmer, Cameron S; Franklyn, Melanie; Read-Allsopp, Christine; McLellan, Susan; Niggemeyer, Louise E

    2011-05-08

    Many trauma registries have used the Abbreviated Injury Scale 1990 Revision Update 98 (AIS98) to classify injuries. In the current AIS version (Abbreviated Injury Scale 2005 Update 2008 - AIS08), injury classification and specificity differ substantially from AIS98, and the mapping tools provided in the AIS08 dictionary are incomplete. As a result, data from different AIS versions cannot currently be compared. The aim of this study was to develop an additional AIS98 to AIS08 mapping tool to complement the current AIS dictionary map, and then to evaluate the completed map (produced by combining these two maps) using double-coded data. The value of additional information provided by free text descriptions accompanying assigned codes was also assessed. Using a modified Delphi process, a panel of expert AIS coders established plausible AIS08 equivalents for the 153 AIS98 codes which currently have no AIS08 map. A series of major trauma patients whose injuries had been double-coded in AIS98 and AIS08 was used to assess the maps; both of the AIS datasets had already been mapped to another AIS version using the AIS dictionary maps. Following application of the completed (enhanced) map with or without free text evaluation, up to six AIS codes were available for each injury. Datasets were assessed for agreement in injury severity measures, and the relative performances of the maps in accurately describing the trauma population were evaluated. The double-coded injuries sustained by 109 patients were used to assess the maps. For data conversion from AIS98, both the enhanced map and the enhanced map with free text description resulted in higher levels of accuracy and agreement with directly coded AIS08 data than the currently available dictionary map. Paired comparisons demonstrated significant differences between direct coding and the dictionary maps, but not with either of the enhanced maps. The newly-developed AIS98 to AIS08 complementary map enabled transformation of the trauma population description given by AIS98 into an AIS08 estimate which was statistically indistinguishable from directly coded AIS08 data. It is recommended that the enhanced map should be adopted for dataset conversion, using free text descriptions if available.

  1. Semi-automatic mapping for identifying complex geobodies in seismic images

    NASA Astrophysics Data System (ADS)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  2. Effect of temperature on the visualization by digital color mapping of latent fingerprint deposits on metal.

    PubMed

    Peel, Alicia; Bond, John W

    2014-03-01

    Visualization of fingerprint deposits by digital color mapping of light reflected from the surface of heated brass, copper, aluminum, and tin has been investigated using Adobe® Photoshop®. Metals were heated to a range of temperatures (T) between 50°C and 500°C in 50°C intervals with enhancement being optimal when the metals are heated to 250°C, 350°C, 50°C, and 300°C, respectively, and the hue values adjusted to 247°, 245°, 5°, and 34°, respectively. Fingerprint visualization after color mapping was not degraded by subsequent washing of the metals and color mapping did not compromise the visibility of the fingerprint for all values of T. The optimum value of T for fingerprint visibility is significantly dependent of the standard reduction potential of the metal with Kendall’s Tau (τ) = 0.953 (p < 0.001). For brass, this correlation is obtained when considering the standard reduction potential of zinc rather than copper.

  3. A preliminary analysis of the Mariner 10 color ratio map of Mercury

    NASA Technical Reports Server (NTRS)

    Rava, Barry; Hapke, Bruce

    1987-01-01

    A preliminary geological analysis of the Mariner 10 orange/UV color ratio map of Mercury is given, assuming a basaltic crust. Certain errors in the map are pointed out. The relationship between color and terrain are distinctly non-lunar. Rays and ejecta are bluer than average on Mercury, whereas they are redder on the Moon. This fact, along with the lack of the ferrous band in Mercury's spectral reflectance and smaller albedo contrasts, implies that the crust is low in Fe and Ti. There is no correlation between color boundaries and the smooth plains on Mercury, in contrast with the strong correlation between color and maria-highlands contacts on the Moon. The smooth plains are not Mercurian analogs of lunar maria, and a lunar-type of second wave melting did not occur. Ambiguous correlations between color and topography indicate that older, redder materials underlie younger, bluer rocks in many places on the planet, implying that the last stages of volcanism involved low-Fe lavas covering higher-Fe rocks. There is some evidence of late Fe-rich pyroclastic activity.

  4. Darkfield reflection visible microspectroscopy equipped with a color mapping system of a brown altered granite.

    PubMed

    Onga, Chie; Nakashima, Satoru

    2014-01-01

    Visible darkfield reflectance spectroscopy equipped with a color mapping system has been developed and applied to a brown-colored Rokko granite sample. Sample reflectance spectra converted to Kubelka-Munk (KM) spectra show similar features to goethite and lepidocrocite. Raman microspectroscopy on the granite sample surface confirms the presence of these minerals. Here, L*a*b* color values (second Commission Internationale d'Eclairage [CIELab] 1976 color space) were determined from the sample reflection spectra. Grey, yellow, and brown zones of the granite show different L*, a*, and b* values. In the a*-b* diagram, a* and b* values in the grey and brown zones are on the lepidocrocite/ferrihydrite trends, but their values in the brown zone are larger than those in the grey zone. The yellow zone shows data points close to the goethite trend. Iron (hydr)oxide-rich areas can be visualized by means of large a* and b* values in the L*, a*, and b* maps. Although the present method has some problems and limitations, the visible darkfield reflectance spectroscopy can be a useful method for colored-material characterization.

  5. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data

    NASA Astrophysics Data System (ADS)

    Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz

    2018-02-01

    One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.

  6. Natural Resources Inventory and Land Evaluation in Switzerland

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A system was developed to operationally map and measure the areal extent of various land use categories for updating existing and producing new and actual thematic maps showing the latest state of rural and urban landscapes and its changes. The processing system includes: (1) preprocessing steps for radiometric and geometric corrections; (2) classification of the data by a multivariate procedure, using a stepwise linear discriminant analysis based on carefully selected training cells; and (3) output in form of color maps by printing black and white theme overlays of a selected scale with photomation system and its coloring and combination into a color composite.

  7. Mapping Abbreviated Injury Scale data from 1990 to 1998 versions: a stepping-stone in the contemporary evaluation of trauma.

    PubMed

    Palmer, Cameron S; Lang, Jacelle; Russell, Glen; Dallow, Natalie; Harvey, Kathy; Gabbe, Belinda; Cameron, Peter

    2013-11-01

    Many trauma registries have used the 1990 revision of the Abbreviated Injury Scale (AIS; AIS90) to code injuries sustained by trauma patients. Due to changes made to the AIS codeset since its release, AIS90-coded data lacks currency in the assessment of injury severity. The ability to map between the 1998 revision of AIS (AIS98) and the current (2008) AIS version (AIS08) already exists. The development of a map for transforming AIS90-coded data into AIS98 would therefore enable contemporary injury severity estimates to be derived from AIS90-coded data. Differences between the AIS90 and AIS98 codesets were identified, and AIS98 maps were generated for AIS90 codes which changed or were not present in AIS98. The effectiveness of this map in describing the severity of trauma using AIS90 and AIS98 was evaluated using a large state registry dataset, which coded injury data using AIS90 over several years. Changes in Injury Severity Scores (ISS) calculated using AIS90 and mapped AIS98 codesets were assessed using three distinct methods. Forty-nine codes (out of 1312) from the AIS90 codeset changed or were not present in AIS98. Twenty-four codes required the assignment of maps to AIS98 equivalents. AIS90-coded data from 78,075 trauma cases were used to evaluate the map. Agreement in calculated ISS between coded AIS90 data and mapped AIS98 data was very high (kappa=0.971). The ISS changed in 1902 cases (2.4%), and the mean difference in ISS across all cases was 0.006 points. The number of cases classified as major trauma using AIS98 decreased by 0.8% compared with AIS90. A total of 3102 cases (4.0%) sustained at least one AIS90 injury which required mapping to AIS98. This study identified the differences between the AIS90 and AIS98 codesets, and generated maps for the conversion process. In practice, the differences between AIS90- and AIS98-coded data were very small. As a result, AIS90-coded data can be mapped to the current AIS version (AIS08) via AIS98, with little apparent impact on the functional accuracy of the mapped dataset produced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  9. Practical color vision tests for air traffic control applicants: en route center and terminal facilities.

    PubMed

    Mertens, H W; Milburn, N J; Collins, W E

    2000-12-01

    Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.

  10. Development of an expert based ICD-9-CM and ICD-10-CM map to AIS 2005 update 2008.

    PubMed

    Loftis, Kathryn L; Price, Janet P; Gillich, Patrick J; Cookman, Kathy J; Brammer, Amy L; St Germain, Trish; Barnes, Jo; Graymire, Vickie; Nayduch, Donna A; Read-Allsopp, Christine; Baus, Katherine; Stanley, Patsye A; Brennan, Maureen

    2016-09-01

    This article describes how maps were developed from the clinical modifications of the 9th and 10th revisions of the International Classification of Diseases (ICD) to the Abbreviated Injury Scale 2005 Update 2008 (AIS08). The development of the mapping methodology is described, with discussion of the major assumptions used in the process to map ICD codes to AIS severities. There were many intricacies to developing the maps, because the 2 coding systems, ICD and AIS, were developed for different purposes and contain unique classification structures to meet these purposes. Experts in ICD and AIS analyzed the rules and coding guidelines of both injury coding schemes to develop rules for mapping ICD injury codes to the AIS08. This involved subject-matter expertise, detailed knowledge of anatomy, and an in-depth understanding of injury terms and definitions as applied in both taxonomies. The official ICD-9-CM and ICD-10-CM versions (injury sections) were mapped to the AIS08 codes and severities, following the rules outlined in each coding manual. The panel of experts was composed of coders certified in ICD and/or AIS from around the world. In the process of developing the map from ICD to AIS, the experts created rules to address issues with the differences in coding guidelines between the 2 schemas and assure a consistent approach to all codes. Over 19,000 ICD codes were analyzed and maps were generated for each code to AIS08 chapters, AIS08 severities, and Injury Severity Score (ISS) body regions. After completion of the maps, 14,101 (74%) of the eligible 19,012 injury-related ICD-9-CM and ICD-10-CM codes were assigned valid AIS08 severity scores between 1 and 6. The remaining 4,911 codes were assigned an AIS08 of 9 (unknown) or were determined to be nonmappable because the ICD description lacked sufficient qualifying information for determining severity according to AIS rules. There were also 15,214 (80%) ICD codes mapped to AIS08 chapter and ISS body region, which allow for ISS calculations for patient data sets. This mapping between ICD and AIS provides a comprehensive, expert-designed solution for analysts to bridge the data gap between the injury descriptions provided in hospital codes (ICD-9-CM, ICD-10-CM) and injury severity codes (AIS08). By applying consistent rules from both the ICD and AIS taxonomies, the expert panel created these definitive maps, which are the only ones endorsed by the Association for the Advancement of Automotive Medicine (AAAM). Initial validation upheld the quality of these maps for the estimation of AIS severity, but future work should include verification of these maps for MAIS and ISS estimations with large data sets. These ICD-AIS maps will support data analysis from databases with injury information classified in these 2 different systems and open new doors for the investigation of injury from traumatic events using large injury data sets.

  11. Hints at Ceres Composition from Color

    NASA Image and Video Library

    2015-09-30

    This map-projected view of Ceres was created from images taken by NASA's Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015. Images taken using infrared (920 nanometers), red (750 nanometers) and blue (440 nanometers) spectral filters were combined to create this false-color view. Redder colors indicate places on Ceres' surface that reflect light strongly in the infrared, while bluish colors indicate enhanced reflectivity at short (bluer) wavelengths; green indicates places where albedo, or overall brightness, is strongly enhanced. Scientists use this technique in order to highlight subtle color differences across Ceres, which would appear fairly uniform in natural color. This can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features. http://photojournal.jpl.nasa.gov/catalog/PIA19977

  12. Consumer preferences, internal color and reduction of shigatoxigenic Escherichia coli in cooked hamburgers.

    PubMed

    Røssvoll, Elin; Sørheim, Oddvin; Heir, Even; Møretrø, Trond; Olsen, Nina Veflen; Langsrud, Solveig

    2014-02-01

    The aim of this study was to relate consumer preferences and preparation of hamburgers to color change, internal temperature and reduction of shigatoxigenic Escherichia coli (STEC) serogroups O157 and the "Big Six" (O26, O45, O103, O111, O121, O145) under two ground beef packaging scenarios: 75% O2 MAP and vacuum. 75% O2 MAP hamburgers cooked to 60 °C core temperature appeared done and showed less internal red color (lower a*) than corresponding vacuum hamburgers. Similar STEC reduction (<4 log10) was found for both hamburgers at core temperatures ≤ 66 °C. In a representative survey (N=1046) most consumers reported to judge hamburger doneness by the color and many preferred undercooked hamburgers. Premature browning of 75% O2 MAP hamburgers represents a risk of foodborne illness, when considering consumers' food handling practices. The risk is even greater if such ground beef is prepared by consumers who prefer undercooked hamburgers and judge doneness by color. © 2013.

  13. An Upgrade of the Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Rufer, Shann J.

    2015-01-01

    The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) code is used at NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used to design thermal protection systems to mitigate the risks due to the aeroheating loads on hypersonic vehicles, such as re-entry vehicles during descent and landing procedures. This code was originally written in the PV-WAVE programming language to analyze phosphor thermography data from the two-color, relativeintensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the code was migrated to MATLAB syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to batch process all of the data from a wind tunnel run, to map the two-dimensional heating distribution to a three-dimensional computer-aided design model of the vehicle to be viewed in Tecplot, and to extract data from a segmented line that follows an interesting feature in the data. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy code to validate the program. The differences between the two codes were on the order of 10-5 to 10-7. IHEAT 4.0 replaces the PV-WAVE version as the production code for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.

  14. Color-coded prefilled medication syringes decrease time to delivery and dosing errors in simulated prehospital pediatric resuscitations: A randomized crossover trial☆, ☆

    PubMed Central

    Stevens, Allen D.; Hernandez, Caleb; Jones, Seth; Moreira, Maria E.; Blumen, Jason R.; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S.

    2016-01-01

    Background Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. Methods We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded-syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Results Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28–39) seconds and 42 (95% CI: 36–51) seconds, respectively (difference = 9 [95% CI: 4–14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference = 39%, 95% CI: 13–61%). Conclusions A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. PMID:26247145

  15. Color-coded prefilled medication syringes decrease time to delivery and dosing errors in simulated prehospital pediatric resuscitations: A randomized crossover trial.

    PubMed

    Stevens, Allen D; Hernandez, Caleb; Jones, Seth; Moreira, Maria E; Blumen, Jason R; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S

    2015-11-01

    Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28-39) seconds and 42 (95% CI: 36-51) seconds, respectively (difference=9 [95% CI: 4-14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference=39%, 95% CI: 13-61%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A new vegetation map of the western Seward Peninsula, Alaska, based on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H.; Belon, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A reconstituted, simulated color-infrared ERTS-1 image covering the western Seward Peninsula was prepared and it is used for identifying and mapping vegetation types by direct visual examination. The image, NASA ERTS E-1009-22095, was obtained approximately at 1110 hours, 165 degrees WMT on August 1, 1972. Seven major colors are identified. Four of these are matched with units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal coastal wet tundra; gray - alpine barrens. The three colors having no map equivalents are tentatively interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. A vegetation map, drawn by tracing on an acetate overlay of the image is presented. Significantly more information is depicted than on existing maps with regards to vegetation types and their areal distribution. Furthermore the preparation of the new map from ERTS-1 imagery required little time relative to conventional methods and extent of areal coverage.

  17. Color Code: Using Hair Color to Make a Clear Connection between Genotype and Phenotype

    ERIC Educational Resources Information Center

    Bonner, J. Jose

    2011-01-01

    Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…

  18. Effect of task demands on dual coding of pictorial stimuli.

    PubMed

    Babbitt, B C

    1982-01-01

    Recent studies have suggested that verbal labeling of a picture does not occur automatically. Although several experiments using paired-associate tasks produced little evidence indicating the use of a verbal code with picture stimuli, the tasks were probably not sensitive to whether the codes were activated initially. It is possible that verbal labels were activated at input, but not used later in performing the tasks. The present experiment used a color-naming interference task in order to assess, with a more sensitive measure, the amount of verbal coding occurring in response to word or picture input. Subjects named the color of ink in which words were printed following either word or picture input. If verbal labeling of the input occurs, then latency of color naming should increase when the input item and color-naming word are related. The results provided substantial evidence of such verbal activation when the input items were words. However, the presence of verbal activation with picture input was a function of task demands. Activation occurred when a recall memory test was used, but not when a recognition memory test was used. The results support the conclusion that name information (labels) need not be activated during presentation of visual stimuli.

  19. Geologic map of the MTM 85080 Quadrangle, Chasma Boreale Region of Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.

    2003-01-01

    The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes polar layered deposits and polar ice, as well as some outcrops of older, underlying terrain. This quadrangle was mapped using Viking Orbiter images in order to study the relations among erosional and depositional processes on the north polar layered deposits and to compare them with the results of previous 1:500,000-scale mapping of the south polar layered deposits. Published geologic maps of the north polar region of Mars are based on images acquired by Mariner 9 and the Viking Orbiters. The extent of the layered deposits and other units varies among previous maps, in particular within Chasma Boreale. The present map agrees most closely with the map by Dial and Dohm (1994): the mantle material is exposed farther north than mapped by Tanaka and Scott (1987). The polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-dust mantle and dark material-were mapped in the south polar region by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. Viking Orbiter rev 726, 768, and 771 color mosaics (taken during the northern summer of 1978) were constructed and used to identify similar color/albedo units in the north polar region, including the dark, saltating material that appears to have sources within the layered deposits. However, no dark material has been recognized in this map area. No significant difference in color exists between the layered deposits and the mantle material mapped by Dial and Dohm (1994), indicating that they are either composed of the same materials or are both covered by eolian debris. Therefore, in this map area the color mosaics are most useful for identifying areas of partial frost cover. Because the resolution of the color mosaics is not sufficient to map the color/albedo units in detail at 1:500,000-scale, contacts between them were recognized and mapped using higher resolution black-and-white Viking Orbiter images. The Viking Orbiter 2 images used to construct the map base were taken during the northern summer of 1976 (mostly Ls=133?-135?), with resolutions typically around 60 m/pixel. As noted on the published base, errors of up to 5 km exist in the placement of images in the base map; such errors are evident upon comparison of sheet 1 (summer) and sheet 2 (spring). Therefore, a new photomosaic base was created during map production and the linework was edited to match the new base. No craters have been found in the north polar layered deposits or polar ice cap. The observed lack of craters larger than 300 m implies that the surfaces of these units are no more than 100,000 years old or that they have been resurfaced at a rate of at least 2.3 mm/yr. The recent cratering flux on Mars is poorly constrained, so inferred resurfacing rates and ages of surface units are uncertain by at least a factor of 2.

  20. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods

    PubMed Central

    Hogervorst, Maarten A.; Pinkus, Alan R.

    2016-01-01

    The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance. PMID:28036328

  1. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    PubMed

    Toet, Alexander; Hogervorst, Maarten A; Pinkus, Alan R

    2016-01-01

    The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm), near-infrared (NIR, 0.7-1.0μm) and long-wave infrared (LWIR, 8-14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance.

  2. Cross-media color reproduction using the frequency-based spatial gamut mapping algorithm based on human color vision

    NASA Astrophysics Data System (ADS)

    Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun

    2018-04-01

    Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.

  3. Effect of color coding and subtraction on the accuracy of contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Pasquet, A.; Greenberg, N.; Brunken, R.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    BACKGROUND: Contrast echocardiography may be used to assess myocardial perfusion. However, gray scale assessment of myocardial contrast echocardiography (MCE) is difficult because of variations in regional backscatter intensity, difficulties in distinguishing varying shades of gray, and artifacts or attenuation. We sought to determine whether the assessment of rest myocardial perfusion by MCE could be improved with subtraction and color coding. METHODS AND RESULTS: MCE was performed in 31 patients with previous myocardial infarction with a 2nd generation agent (NC100100, Nycomed AS), using harmonic triggered or continuous imaging and gain settings were kept constant throughout the study. Digitized images were post processed by subtraction of baseline from contrast data and colorized to reflect the intensity of myocardial contrast. Gray scale MCE alone, MCE images combined with baseline and subtracted colorized images were scored independently using a 16 segment model. The presence and severity of myocardial contrast abnormalities were compared with perfusion defined by rest MIBI-SPECT. Segments that were not visualized by continuous (17%) or triggered imaging (14%) after color processing were excluded from further analysis. The specificity of gray scale MCE alone (56%) or MCE combined with baseline 2D (47%) was significantly enhanced by subtraction and color coding (76%, p<0.001) of triggered images. The accuracy of the gray scale approaches (respectively 52% and 47%) was increased to 70% (p<0.001). Similarly, for continuous images, the specificity of gray scale MCE with and without baseline comparison was 23% and 42% respectively, compared with 60% after post processing (p<0.001). The accuracy of colorized images (59%) was also significantly greater than gray scale MCE (43% and 29%, p<0.001). The sensitivity of MCE for both acquisitions was not altered by subtraction. CONCLUSION: Post-processing with subtraction and color coding significantly improves the accuracy and specificity of MCE for detection of perfusion defects.

  4. Validation of a modified table to map the 1998 Abbreviated Injury Scale to the 2008 scale and the use of adjusted severities.

    PubMed

    Tohira, Hideo; Jacobs, Ian; Mountain, David; Gibson, Nick; Yeo, Allen; Ueno, Masato; Watanabe, Hiroaki

    2011-12-01

    The Abbreviated Injury Scale 2008 (AIS 2008) is the most recent injury coding system. A mapping table from a previous AIS 98 to AIS 2008 is available. However, AIS 98 codes that are unmappable to AIS 2008 codes exist in this table. Furthermore, some AIS 98 codes can be mapped to multiple candidate AIS 2008 codes with different severities. We aimed to modify the original table to adjust the severities and to validate these changes. We modified the original table by adding links from unmappable AIS 98 codes to AIS 2008 codes. We applied the original table and our modified table to AIS 98 codes for major trauma patients. We also assigned candidate codes with different severities the weighted averages of their severities as an adjusted severity. The proportion of cases whose injury severity scores (ISSs) were computable were compared. We also compared the agreement of the ISS and New ISS (NISS) between manually determined AIS 2008 codes (MAN) and mapped codes by using our table (MAP) with unadjusted or adjusted severities. All and 72.3% of cases had their ISSs computed by our modified table and the original table, respectively. The agreement between MAN and MAP with respect to the ISS and NISS was substantial (intraclass correlation coefficient = 0.939 for ISS and 0.943 for NISS). Using adjusted severities, the agreements of the ISS and NISS improved to 0.953 (p = 0.11) and 0.963 (p = 0.007), respectively. Our modified mapping table seems to allow more ISSs to be computed than the original table. Severity scores exhibited substantial agreement between MAN and MAP. The use of adjusted severities improved these agreements further.

  5. Sentinel lymph node mapping in minimally invasive surgery: Role of imaging with color-segmented fluorescence (CSF).

    PubMed

    Lopez Labrousse, Maite I; Frumovitz, Michael; Guadalupe Patrono, M; Ramirez, Pedro T

    2017-09-01

    Sentinel lymph node mapping, alone or in combination with pelvic lymphadenectomy, is considered a standard approach in staging of patients with cervical or endometrial cancer [1-3]. The goal of this video is to demonstrate the use of indocyanine green (ICG) and color-segmented fluorescence when performing lymphatic mapping in patients with gynecologic malignancies. Injection of ICG is performed in two cervical sites using 1mL (0.5mL superficial and deep, respectively) at the 3 and 9 o'clock position. Sentinel lymph nodes are identified intraoperatively using the Pinpoint near-infrared imaging system (Novadaq, Ontario, CA). Color-segmented fluorescence is used to image different levels of ICG uptake demonstrating higher levels of perfusion. A color key on the side of the monitor shows the colors that coordinate with different levels of ICG uptake. Color-segmented fluorescence may help surgeons identify true sentinel nodes from fatty tissue that, although absorbing fluorescent dye, does not contain true nodal tissue. It is not intended to differentiate the primary sentinel node from secondary sentinel nodes. The key ranges from low levels of ICG uptake (gray) to the highest rate of ICG uptake (red). Bilateral sentinel lymph nodes are identified along the external iliac vessels using both standard and color-segmented fluorescence. No evidence of disease was noted after ultra-staging was performed in each of the sentinel nodes. Use of ICG in sentinel lymph node mapping allows for high bilateral detection rates. Color-segmented fluorescence may increase accuracy of sentinel lymph node identification over standard fluorescent imaging. The following are the supplementary data related to this article. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. New false color mapping for image fusion

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Walraven, Jan

    1996-03-01

    A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).

  7. Profiling charge complementarity and selectivity for binding at the protein surface.

    PubMed

    Sulea, Traian; Purisima, Enrico O

    2003-05-01

    A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.

  8. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  9. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  10. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  11. Real-time range acquisition by adaptive structured light.

    PubMed

    Koninckx, Thomas P; Van Gool, Luc

    2006-03-01

    The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.

  12. Fault-tolerance in Two-dimensional Topological Systems

    NASA Astrophysics Data System (ADS)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical CNOT gates can be performed by code deformation in a single block instead of between pairs of blocks, the threshold for fault-tolerant quantum memory for these codes is also the threshold for fault-tolerant quantum computation with them. Since the advent of a threshold theorem for quantum computers much has been improved upon. Thresholds have increased, architectures have become more local, and gate sets have been simplified. The overhead for magic-state distillation has been studied, but not nearly to the extent of the aforementioned topics. A method for greatly reducing this overhead, known as reusable magic states, is studied here. While examples of reusable magic states exist for Clifford gates, I give strong reasons to believe they do not exist for non-Clifford gates.

  13. Photographic techniques for enhancing ERTS MSS data for geologic information

    NASA Technical Reports Server (NTRS)

    Yost, E.; Geluso, W.; Anderson, R.

    1974-01-01

    Satellite multispectral black-and-white photographic negatives of Luna County, New Mexico, obtained by ERTS on 15 August and 2 September 1973, were precisely reprocessed into positive images and analyzed in an additive color viewer. In addition, an isoluminous (uniform brightness) color rendition of the image was constructed. The isoluminous technique emphasizes subtle differences between multispectral bands by greatly enhancing the color of the superimposed composite of all bands and eliminating the effects of brightness caused by sloping terrain. Basaltic lava flows were more accurately displayed in the precision processed multispectral additive color ERTS renditions than on existing state geological maps. Malpais lava flows and small basaltic occurrences not appearing on existing geological maps were identified in ERTS multispectral color images.

  14. Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images.

    PubMed

    Vahadane, Abhishek; Peng, Tingying; Sethi, Amit; Albarqouni, Shadi; Wang, Lichao; Baust, Maximilian; Steiger, Katja; Schlitter, Anna Melissa; Esposito, Irene; Navab, Nassir

    2016-08-01

    Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.

  15. Identification of irrigated crop types from ERTS-1 density contour maps and color infrared aerial photography. [Wyoming

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Evans, M. A.

    1974-01-01

    The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.

  16. Topographic map of the Parana Valles region of Mars MTM 500k -25/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –25/347E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 25° S., longitude 347.5° E. in planetocentric coordinate system (this corresponds to –25/012; latitude 25° S., longitude 12.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  17. Topographic Map of the Northwest Loire Valles Region of Mars MTM 500k -15/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –15/337E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 15° S., longitude 337.5° E. in planetocentric coordinate system (this corresponds to –15/022; latitude 15° S., longitude 22.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0–km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  18. General soil map Lower Pantano wash area, Pima County, Arizona

    NASA Technical Reports Server (NTRS)

    Richardson, M. L.

    1972-01-01

    High altitude color photography was used to determine soil type variation over large areas at a contact print scale of 1:125,000. It was found that color variation and land form could be used as a basis for assigning seven soil mapping units to the area as depicted on stereoscopic pairs of the color photography. A unit is assigned by soil scientists on the basis of similarity of soil features in the area to predetermined physical and chemical characteristics of the same soil type.

  19. Guidelines for the Use of Color in ATC Displays

    DOT National Transportation Integrated Search

    1999-06-01

    Color is probably the most effective, compelling, and attractive method available for coding visual information on a display. However, caution must be used in the application of color to displays for air traffic control (ATC), because it is easy to d...

  20. The Global Color of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Olkin, Catherine B.; Spencer, John R.; Grundy, William M.; Parker, Alex H.; Beyer, Ross A.; Schenk, Paul M.; Howett, Carly J. A.; Stern, S. Alan; Reuter, Dennis C.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Binzel, Richard P.; Buie, Marc W.; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Jennings, Donald E.; Singer, Kelsi N.; Linscott, Ivan E.; Lunsford, Allen W.; Protopapa, Silvia; Schmitt, Bernard; Weigle, Eddie; the New Horizons Science Team

    2017-12-01

    The New Horizons flyby provided the first high-resolution color maps of Pluto. We present here, for the first time, an analysis of the color of the entire sunlit surface of Pluto and the first quantitative analysis of color and elevation on the encounter hemisphere. These maps show the color variation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of East Tombaugh Regio, and the yellow hue on Pluto’s North Pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral-color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulhu Regio and the other extends to the yellow hue in the northern latitudes. There is a latitudinal dependence of the predominant color mixing line with the most red terrain located near the equator, less red distributed at mid-latitudes and more neutral terrain at the North Pole. This is consistent with the seasonal cycle controlling the distribution of colors on Pluto. Additionally, the red color is consistent with tholins. The yellow terrain (in the false color images) located at the northern latitudes occurs at higher elevations.

  1. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  2. Automatic transfer function design for medical visualization using visibility distributions and projective color mapping.

    PubMed

    Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng

    2013-01-01

    Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Surficial geologic maps along the riparian zone of the Animas River and its headwater tributaries, Silverton to Durango, Colorado, with upper Animas River watershed gradient profiles

    USGS Publications Warehouse

    Blair, R.W.; Yager, D.B.; Church, S.E.

    2002-01-01

    This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.

  4. WaterWatch - Maps, graphs, and tables of current, recent, and past streamflow conditions

    USGS Publications Warehouse

    Jian, Xiaodong; Wolock, David; Lins, Harry F.

    2008-01-01

    WaterWatch (http://water.usgs.gov/waterwatch/) is a U.S. Geological Survey (USGS) World Wide Web site that dis­plays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.

  5. Adaptive typography for dynamic mapping environments

    NASA Astrophysics Data System (ADS)

    Bardon, Didier

    1991-08-01

    When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.

  6. Candidate-penetrative-fracture mapping of the Grand Canyon area, Arizona, from spatial correlation of deep geophysical features and surficial lineaments

    USGS Publications Warehouse

    Gettings, Mark E.; Bultman, Mark W.

    2005-01-01

    Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in some places. Many derivative products can be produced from the database, such as fracture-density-estimate maps, and maps with the number of correlations color-coded to estimate the possible quality of correlation. The database contained in this report is designed to be used in a geographic information system and image-processing systems, and most data layers are in georeferenced tagged image format (Geotiff) or ARC grids. The report includes 163 map plates and various metadata, supporting, and statistical diagram files.

  7. Slow Mapping: Color Word Learning as a Gradual Inductive Process

    ERIC Educational Resources Information Center

    Wagner, Katie; Dobkins, Karen; Barner, David

    2013-01-01

    Most current accounts of color word acquisition propose that the delay between children's first production of color words and adult-like understanding is due to problems abstracting color as a domain of meaning. Here we present evidence against this hypothesis, and show that, from the time children produce color words in a labeling task they use…

  8. Color-coded perfusion analysis of CEUS for pre-interventional diagnosis of microvascularisation in cases of vascular malformations.

    PubMed

    Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M

    2014-01-01

    Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.

  9. The Use of Color as a Third Dimension on Maps

    NASA Astrophysics Data System (ADS)

    Cid, X.; Lopez, R.; Lazarus, S.

    2007-12-01

    As experts, we are trained to understand color schemes used in visualizations in our respective scientific fields. As experts we also forget how complicated graphics can be when viewed for the first time. Previous studies have shown that three-dimensional diagrams can produce a cognitive overload when rendered on a two-dimensional surface, so the same might apply to graphics that use color as a third dimension. This study was conducted to investigate the use of color as a third dimension. We looked at the use of color as a scale height on a basic topographic map, as well as the use of color as temperature. Fifty-four undergraduates from two different physics courses and REU programs during the spring and summer semesters in 2007 were given surveys regarding the use of color. Of these 54 students, eight students were chosen to participate in interviews designed to investigate, in more detail, the responses provided by the students in the hopes to discover where confusions occur. It was found that students have an embedded color scheme for temperatures of red representing hot and blue representing cold as a product of societal influences, which was expected, but there was no embedded color scheme when color was applied to height. We found that students did not have a preference when viewing a topographic map with different color schemes, but did prefer the color scheme of the figure that they viewed first. We observed that the students did have an embedded notion of what the topographic figure was representing, and tried to fit the color scheme shown to match their idea. During the interviews we also found that even the slightest deviations from a specific color scheme gives rise to confusion. These results, therefore, show the importance of detail consistency when using visualizations in a lecture where the population is composed of novices.

  10. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  11. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  12. Dust color temperature distribution of two FIR cavities at IRIS and AKARI maps

    NASA Astrophysics Data System (ADS)

    Jha, A. K.; Aryal, B.

    2018-04-01

    By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at 60 μ m and 100 μ m IRIS maps. By checking these with AKARI maps (90 μ m and 140 μ m), two new cavity-like structures (sizes ˜ 2.7 pc × 0.8 pc and ˜ 1.8 pc × 1 pc) located at R.A. (J2000)=14h41m23s and Dec. (J2000)=-64°04^' }17^' }' }} and R.A. (J2000)=05h05m35s and Dec. (J2000)=- 69°35^' } 25^' }' }} were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be 3.2± 0.9 K and 4.1± 1.2 K, respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.

  13. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  14. What's color got to do with it? The influence of color on visual attention in different categories.

    PubMed

    Frey, Hans-Peter; Honey, Christian; König, Peter

    2008-10-23

    Certain locations attract human gaze in natural visual scenes. Are there measurable features, which distinguish these locations from others? While there has been extensive research on luminance-defined features, only few studies have examined the influence of color on overt attention. In this study, we addressed this question by presenting color-calibrated stimuli and analyzing color features that are known to be relevant for the responses of LGN neurons. We recorded eye movements of 15 human subjects freely viewing colored and grayscale images of seven different categories. All images were also analyzed by the saliency map model (L. Itti, C. Koch, & E. Niebur, 1998). We find that human fixation locations differ between colored and grayscale versions of the same image much more than predicted by the saliency map. Examining the influence of various color features on overt attention, we find two extreme categories: while in rainforest images all color features are salient, none is salient in fractals. In all other categories, color features are selectively salient. This shows that the influence of color on overt attention depends on the type of image. Also, it is crucial to analyze neurophysiologically relevant color features for quantifying the influence of color on attention.

  15. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  16. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience.

    PubMed

    Gaeta, Michele; Messina, Sonia; Mileto, Achille; Vita, Gian Luca; Ascenti, Giorgio; Vinci, Sergio; Bottari, Antonio; Vita, Giuseppe; Settineri, Nicola; Bruschetta, Daniele; Racchiusa, Sergio; Minutoli, Fabio

    2012-08-01

    To examine the usefulness of dual-echo dual-flip angle spoiled gradient recalled (SPGR) magnetic resonance imaging (MRI) technique in quantifying muscle fat fraction (MFF) of pelvic and thighs muscles as a marker of disease severity in boys with Duchenne muscular dystrophy (DMD), by correlating MFF calculation with clinical assessments. We also tried to identify characteristic patterns of disease distribution. Twenty consecutive boys (mean age, 8.6 years ± 2.3 [standard deviation, SD]; age range, 5-15 years; median age, 9 years;) with DMD were evaluated using a dual-echo dual-flip angle SPGR MRI technique, calculating muscle fat fraction (MFF) of eight muscles in the pelvic girdle and thigh (gluteus maximus, adductor magnus, rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus, and gracilis). Color-coded parametric maps of MFF were also obtained. A neurologist who was blinded to the MRI findings performed the clinical assessments (patient age, Medical Research Council score, timed Gower score, time to run 10 m). The relationships between mean MFF and clinical assessments were investigated using Spearman's rho coefficient. Positive and negative correlations were evaluated and considered significant if the P value was < 0.05. The highest mean MFF was found in the gluteus maximus (mean, 46.3 % ± 24.5 SD), whereas the lowest was found in the gracilis muscle (mean, 2.7 % ± 4.7 SD). Mean MFF of the gluteus maximus was significantly higher than that of the other muscles (P < 0.01), except for the adductor magnus and biceps muscles. A significant positive correlation was found between the mean MFF of all muscles and the patients age (20 patients; P < 0.005), Medical Research Council score (19 patients; P < 0.001), timed Gower score (17 patients; P < 0.03), and time to run 10 m (20 patients; P < 0.001). A positive correlation was also found between the mean MFF of the gluteus maximus muscle and the timed Gower score. Color-coded maps provided an efficient visual assessment of muscle fat content and its heterogeneous distribution. Muscle fat fraction calculation and mapping using the dual-echo dual-flip angle SPGR MRI technique are useful markers of disease severity and permit patterns of disease distribution to be identified in patients with DMD.

  17. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    PubMed

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Adding Composition Data About Mars Gullies

    NASA Image and Video Library

    2016-07-29

    The highly incised Martian gullies seen in the top image resemble gullies on Earth that are carved by liquid water. However, when the gullies are observed with the addition of mineralogical information (bottom), no evidence for alteration by water appears. The pictured area spans about 2 miles (3 kilometers) on the eastern rim of Hale Crater. The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took the visible-light image. Color-coded compositional information added in the lower version comes from the same orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Color coding in light blue corresponds to surface composition of unaltered mafic material, of volcanic origin. Mafic material from the crater rim is carved and transported downslope along the gully channels. No hydrated minerals are observed within the gullies, in the data from CRISM, indicating limited interaction or no interaction of the mafic material with liquid water. These findings and related observations at about 100 other gully sites on Mars suggest that a mechanism not requiring liquid water may be responsible for carving these gullies on Mars. (Gullies on Mars are a different type of feature than seasonal dark streaks called recurring slope lineae or RSL; water in the form of hydrated salt has been identified at RSL sites.) The HiRISE image is a portion of HiRISE observation PSP_002932_1445. The lower image is from the same HiRISE observation, with a CRISM mineral map overlaid. http://photojournal.jpl.nasa.gov/catalog/PIA20763

  19. The National Map - Orthoimagery

    USGS Publications Warehouse

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  20. Creation and Delivery of New Superpixelized DIRBE Map Products

    NASA Technical Reports Server (NTRS)

    Weiland, J.

    1998-01-01

    Phase 1 called for the following tasks: (1) completion of code to generate intermediate files containing the individual DIRBE observations which would be used to make the superpixelized maps; (2) completion of code necessary to generate the maps themselves; and (3) quality control on test-case maps in the form of point-source extraction and photometry. Items 1 and 2 are well in hand and the tested code is nearly complete. A few test maps have been generated for the tests mentioned in item 3. Map generation is not in production mode yet.

  1. Showing Some Chemistry

    NASA Image and Video Library

    2015-04-16

    During NASA MESSENGER four-year orbital mission, the spacecraft X-Ray Spectrometer XRS instrument mapped out the chemical composition of Mercury and discovered striking regions of chemical diversity. These maps of magnesium/silicon (left) and aluminium/silicon (right) use red colors to indicate high values and blue colors for low values. In the maps shown here, the Caloris basin can be identified as a region with low Mg/Si and high Ca/Si on the upper left of each map. An extensive region with high Mg/Si is also clearly visible in the maps but is not correlated with any visible impact basin. Instrument: X-Ray Spectrometer (XRS) and Mercury Dual Imaging System (MDIS) Left Image: Map of Mg/Si Right Image: Map of Al/Si http://photojournal.jpl.nasa.gov/catalog/PIA19417

  2. An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process

    NASA Astrophysics Data System (ADS)

    Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre

    2015-02-01

    This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.

  3. Internal preference mapping of milk-fruit beverages: Influence of color and appearance on its acceptability.

    PubMed

    Fernández-Vázquez, Rocío; Stinco, Carla M; Hernanz Vila, Dolores; Heredia, Francisco J; Chaya, Carolina; Vicario, Isabel M

    2018-01-01

    The individual preferences of 100 consumers between 20 and 30 years old for the color of 16 milk-fruit juice beverages (MFJB) were investigated by preference mapping technique. Consumers were asked to evaluate, just by looking at the samples, how much they liked them (from "Extremely dislike" to "Extremely like"). The color of the samples was analyzed by two different instrumental techniques. Results obtained from the instrumental color measurement showed the wide diversity in hues of the beverages available in the market, and correlations between techniques proved that both of them were appropriate to analyze color. Results showed that participants preferred samples with orangish appearance instead of those with a whiter look. Anyway, punctuations given by the consumers suggest that generally, color of these products is not highly evaluated by consumers, as the best mean punctuation was 6.6.

  4. Higher-Order Thinking and Metacognition in the First-Year Core-Education Classroom: A Case Study in the Use of Color-Coded Drafts

    ERIC Educational Resources Information Center

    Murray, Jeffrey W.

    2014-01-01

    This article seeks to provide some modest insights into the pedagogy of higher-order thinking and metacognition and to share the use of color-coded drafts as a best practice in service of both higher-order thinking and metacognition. This article will begin with a brief theoretical exploration of thinking and of thinking about thinking--the latter…

  5. Action Research of a Color-Coded, Onset-Rime Decoding Intervention: Examining the Effects with First Grade Students Identified as at Risk

    ERIC Educational Resources Information Center

    Wall, Candace A.; Rafferty, Lisa A.; Camizzi, Mariya A.; Max, Caroline A.; Van Blargan, David M.

    2016-01-01

    Many students who struggle to obtain the alphabetic principle are at risk for being identified as having a reading disability and would benefit from additional explicit phonics instruction as a remedial measure. In this action research case study, the research team conducted two experiments to investigate the effects of a color-coded, onset-rime,…

  6. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    PubMed

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. A Study of the Effect of Color in Memory Retention When Used in Presentation Software.

    ERIC Educational Resources Information Center

    McConnohie, Bruce Vernon

    A study of the effects of color as used in presentation software on short-range (immediately following treatment) and long-range (one hour following treatment) memory retention was conducted. Previous studies have concentrated on color as cueing or coding mechanisms primarily in print media and have not explored the effect of individual colors as…

  8. Investigation of varying gray scale levels for remote manipulation

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Stuart, Mark A.; Sampaio, Carlos E.

    1991-01-01

    A study was conducted to investigate the effects of variant monitor gray scale levels and workplace illumination levels on operators' ability to discriminate between different colors on a monochrome monitor. It was determined that 8-gray scale viewing resulted in significantly worse discrimination performance compared to 16- and 32-gray scale viewing and that there was only a negligible difference found between 16 and 32 shades of gray. Therefore, it is recommended that monitors used while performing remote manipulation tasks have 16 or above shades of gray since this evaluation has found levels lower than this to be unacceptable for color discrimination task. There was no significant performance difference found between a high and a low workplace illumination condition. Further analysis was conducted to determine which specific combinations of colors can be used in conjunction with each other to ensure errorfree color coding/brightness discrimination performance while viewing a monochrome monitor. It was found that 92 three-color combination and 9 four-color combinations could be used with 100 percent accuracy. The results can help to determine which gray scale levels should be provided on monochrome monitors as well as which colors to use to ensure the maximal performance of remotely-viewed color discrimination/coding tasks.

  9. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    ERIC Educational Resources Information Center

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  10. MMAB Sea Ice Analysis Page

    Science.gov Websites

    . Consequently we produce two sorts of field. One is suitable for use by models, the global field. And the other color bar gif of the Alaska Region map Previous Alaska Region Maps NCEP MMAB Interactive Sea Ice Image Generation Animation Alaska Region Sea of Okhotsk and Sea of Japan - current figure concentration color bar

  11. Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida

    NASA Technical Reports Server (NTRS)

    Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.

    1977-01-01

    In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.

  12. Clues to Ceres' Internal Structure

    NASA Image and Video Library

    2017-10-26

    This frame from an animation shows Ceres as seen by NASA's Dawn spacecraft from its high-altitude mapping orbit at 913 miles (1,470 kilometers) above the surface. The colorful map overlaid at right shows variations in Ceres' gravity field measured by Dawn, and gives scientists hints about the dwarf planet's internal structure. Red colors indicate more positive values, corresponding to a stronger gravitational pull than expected, compared to scientists' pre-Dawn model of Ceres' internal structure; blue colors indicate more negative values, corresponding to a weaker gravitational pull. The animation was created by projecting a map of Ceres onto a rotating sphere. The image scale is about 450 feet (140 meters) per pixel. The animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22083

  13. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Leveraging the NLM map from SNOMED CT to ICD-10-CM to facilitate adoption of ICD-10-CM.

    PubMed

    Cartagena, F Phil; Schaeffer, Molly; Rifai, Dorothy; Doroshenko, Victoria; Goldberg, Howard S

    2015-05-01

    Develop and test web services to retrieve and identify the most precise ICD-10-CM code(s) for a given clinical encounter. Facilitate creation of user interfaces that 1) provide an initial shortlist of candidate codes, ideally visible on a single screen; and 2) enable code refinement. To satisfy our high-level use cases, the analysis and design process involved reviewing available maps and crosswalks, designing the rule adjudication framework, determining necessary metadata, retrieving related codes, and iteratively improving the code refinement algorithm. The Partners ICD-10-CM Search and Mapping Services (PI-10 Services) are SOAP web services written using Microsoft's.NET 4.0 Framework, Windows Communications Framework, and SQL Server 2012. The services cover 96% of the Partners problem list subset of SNOMED CT codes that map to ICD-10-CM codes and can return up to 76% of the 69,823 billable ICD-10-CM codes prior to creation of custom mapping rules. We consider ways to increase 1) the coverage ratio of the Partners problem list subset of SNOMED CT codes and 2) the upper bound of returnable ICD-10-CM codes by creating custom mapping rules. Future work will investigate the utility of the transitive closure of SNOMED CT codes and other methods to assist in custom rule creation and, ultimately, to provide more complete coverage of ICD-10-CM codes. ICD-10-CM will be easier for clinicians to manage if applications display short lists of candidate codes from which clinicians can subsequently select a code for further refinement. The PI-10 Services support ICD-10 migration by implementing this paradigm and enabling users to consistently and accurately find the best ICD-10-CM code(s) without translation from ICD-9-CM. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less

  13. The colors of the alphabet: naturally-biased associations between shape and color.

    PubMed

    Spector, Ferrinne; Maurer, Daphne

    2011-04-01

    Many letters of the alphabet are consistently mapped to specific colors in English-speaking adults, both in the general population and in individuals with grapheme-color synaesthesia who perceive letters in color. Here, across six experiments, we tested the ubiquity of the color/letter associations with typically developing toddlers, literate children, and adults. We found that pre-literate children associate O with white and X with black and discovered that they also associate I and ameboid nonsense shapes with white; Z and jagged nonsense shapes with black; and C with yellow; but do not make a number of other associations (B blue; Y yellow; A red; G green) seen in literate children and adults. The toddlers' mappings were based on the shape and not the sound of the letter. The results suggest that sensory cortical organization initially binds specific colors to some specific shapes and that learning to read can induce additional associations, likely through the influence of higher order networks as letters take on meaning.

  14. Potential digitization/compression techniques for Shuttle video

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Batson, B. H.

    1978-01-01

    The Space Shuttle initially will be using a field-sequential color television system but it is possible that an NTSC color TV system may be used for future missions. In addition to downlink color TV transmission via analog FM links, the Shuttle will use a high resolution slow-scan monochrome system for uplink transmission of text and graphics information. This paper discusses the characteristics of the Shuttle video systems, and evaluates digitization and/or bandwidth compression techniques for the various links. The more attractive techniques for the downlink video are based on a two-dimensional DPCM encoder that utilizes temporal and spectral as well as the spatial correlation of the color TV imagery. An appropriate technique for distortion-free coding of the uplink system utilizes two-dimensional HCK codes.

  15. Transition to international classification of disease version 10, clinical modification: the impact on internal medicine and internal medicine subspecialties.

    PubMed

    Caskey, Rachel N; Abutahoun, Angelos; Polick, Anne; Barnes, Michelle; Srivastava, Pavan; Boyd, Andrew D

    2018-05-04

    The US health care system uses diagnostic codes for billing and reimbursement as well as quality assessment and measuring clinical outcomes. The US transitioned to the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) on October, 2015. Little is known about the impact of ICD-10-CM on internal medicine and medicine subspecialists. We used a state-wide data set from Illinois Medicaid specified for Internal Medicine providers and subspecialists. A total of 3191 ICD-9-CM codes were used for 51,078 patient encounters, for a total cost of US $26,022,022 for all internal medicine. We categorized all of the ICD-9-CM codes based on the complexity of mapping to ICD-10-CM as codes with complex mapping could result in billing or administrative errors during the transition. Codes found to have complex mapping and frequently used codes (n = 295) were analyzed for clinical accuracy of mapping to ICD-10-CM. Each subspecialty was analyzed for complexity of codes used and proportion of reimbursement associated with complex codes. Twenty-five percent of internal medicine codes have convoluted mapping to ICD-10-CM, which represent 22% of Illinois Medicaid patients, and 30% of reimbursements. Rheumatology and Endocrinology had the greatest proportion of visits and reimbursement associated with complex codes. We found 14.5% of ICD-9-CM codes used by internists, when mapped to ICD-10-CM, resulted in potential clinical inaccuracies. We identified that 43% of diagnostic codes evaluated and used by internists and that account for 14% of internal medicine reimbursements are associated with codes which could result in administrative errors.

  16. Object knowledge changes visual appearance: semantic effects on color afterimages.

    PubMed

    Lupyan, Gary

    2015-10-01

    According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    NASA Astrophysics Data System (ADS)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  18. Depth-to-Ice Map of a Southern Mars Site Near Melea Planum

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Color coding in this map of a far-southern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies.

    The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow.

    The depth to the top of the icy layer estimated from these observations suggests that in some areas, but not others, water is being exchanged by diffusion between atmospheric water vapor and subsurface water ice. Differences in what type of material lies above the ice appear to affect the depth to the ice. The area in this image with the greatest seasonal change in surface temperature corresponds to an area of sand dunes.

    This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67 degrees south latitude, 36.5 degrees east longitude, near a plain named Melea Planum. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice.

    The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information. It did so once on Dec. 27, 2005, during late summer in Mars' southern hemisphere, and again on Jan. 22, 2006, the first day of autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of less than 1 centimeter (0.4 inch) to more than 19 centimeters (more than 7.5 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches).

    The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in infrared wavelengths by the same camera, providing information about shapes in the landscape. The 20-kilometer scale bar is 12.4 miles long.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Depth-to-Ice Map of an Arctic Site on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Color coding in this map of a far-northern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies.

    The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow.

    The depth to the top of the icy layer estimated from these observations, as little as 5 centimeters (2 inches), matches modeling of where it would be if Mars has an active cycle of water being exchanged by diffusion between atmospheric water vapor and subsurface water ice.

    This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67.5 degrees north latitude, 132 degrees east longitude, in the Martian arctic plains called Vastitas Borealis. It was formerly a candidate landing site for NASA's Phoenix Mars Lander mission. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice.

    The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information, once on March 13, 2005, during summer in Mars' northern hemisphere, and again on April 8, 2005, during autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of 5 centimeters (2 inches) to more than 18 centimeters (more than 7 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches).

    The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in visible-light wavelengths by the same camera, providing information about shapes in the landscape. The 10-kilometer scale bar is 6.2 miles long.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.28 Section 660.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... Reagents may be color coded with the specified color which shall be a visual match to a specific color...

Top