Sample records for color coded project

  1. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018

  2. A coded structured light system based on primary color stripe projection and monochrome imaging.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  3. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  4. The research on multi-projection correction based on color coding grid array

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  5. Pediatric intensive care unit admission tool: a colorful approach.

    PubMed

    Biddle, Amy

    2007-12-01

    This article discusses the development, implementation, and utilization of our institution's Pediatric Intensive Care Unit (PICU) Color-Coded Admission Status Tool. Rather than the historical method of identifying a maximum number of staffed beds, a tool was developed to color code the PICU's admission status. Previous methods had been ineffective and led to confusion between the PICU leadership team and the administration. The tool includes the previously missing components of staffing and acuity, which are essential in determining admission capability. The PICU tool has three colored levels: green indicates open for admissions; yellow, admission alert resulting from available beds or because staffing is not equal to the projected patient numbers or required acuity; and red, admissions on hold because only one trauma or arrest bed is available or staffing is not equal to the projected acuity. Yellow and red designations require specific actions and the medical director's approval. The tool has been highly successful and significantly impacted nursing with the inclusion of the essential component of nurse staffing necessary in determining bed availability.

  6. Topographic Ceres Map With Crater Names

    NASA Image and Video Library

    2015-07-28

    This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606

  7. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  8. Vesta Topography Map

    NASA Image and Video Library

    2013-07-08

    This color-coded topography map from NASA Dawn mission shows the giant asteroid Vesta in an equirectangular projection at 32 pixels per degree, relative to an ellipsoid of 177 miles by 177 miles by 142 miles.

  9. An Eye-Tracking Study of How Color Coding Affects Multimedia Learning

    ERIC Educational Resources Information Center

    Ozcelik, Erol; Karakus, Turkan; Kursun, Engin; Cagiltay, Kursat

    2009-01-01

    Color coding has been proposed to promote more effective learning. However, insufficient evidence currently exists to show how color coding leads to better learning. The goal of this study was to investigate the underlying cause of the color coding effect by utilizing eye movement data. Fifty-two participants studied either a color-coded or…

  10. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  11. Color-coded depth information in volume-rendered magnetic resonance angiography

    NASA Astrophysics Data System (ADS)

    Smedby, Orjan; Edsborg, Karin; Henriksson, John

    2004-05-01

    Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography (CTA) data are usually presented using Maximum Intensity Projection (MIP) or Volume Rendering Technique (VRT), but these often fail to demonstrate a stenosis if the projection angle is not suitably chosen. In order to make vascular stenoses visible in projection images independent of the choice of viewing angle, a method is proposed to supplement these images with colors representing the local caliber of the vessel. After preprocessing the volume image with a median filter, segmentation is performed by thresholding, and a Euclidean distance transform is applied. The distance to the background from each voxel in the vessel is mapped to a color. These colors can either be rendered directly using MIP or be presented together with opacity information based on the original image using VRT. The method was tested in a synthetic dataset containing a cylindrical vessel with stenoses in varying angles. The results suggest that the visibility of stenoses is enhanced by the color information. In clinical feasibility experiments, the technique was applied to clinical MRA data. The results are encouraging and indicate that the technique can be used with clinical images.

  12. Color-coded topography and shaded relief map of the lunar near side and far side hemispheres

    USGS Publications Warehouse

    ,

    2003-01-01

    This publication is a set of three sheets of topographic maps that presents color-coded topographic data digitally merged with shaded relief data. Adopted figure: The figure for the Moon, used for the computation of the map projection, is a sphere with a radius of 1737.4 km. Because the Moon has no surface water, and hence no sea level, the datum (the 0 km contour) for elevations is defined as the radius of 1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) coordinates system, the z axis is the axis of the Moon's rotation, and the x axis is the mean Earth direction. The center of mass is the origin of the coordinate system. The equator lies in the x-y plane and the prime meridian lies in the x-z plane with east longitude values being positive. Projection: The projection is Lambert Azimuthal Equal Area Projection. The scale factor at the central latitude and central longitude point is 1:10,000,000. For the near side hemisphere the central latitude and central longitude point is at 0° and 0°. For the far side hemisphere the central latitude and central longitude point is at 0° and 180°.

  13. Effect of Color-Coded Notation on Music Achievement of Elementary Instrumental Students.

    ERIC Educational Resources Information Center

    Rogers, George L.

    1991-01-01

    Presents results of a study of color-coded notation to teach music reading to instrumental students. Finds no clear evidence that color-coded notation enhances achievement on performing by memory, sight-reading, or note naming. Suggests that some students depended on the color-coding and were unable to read uncolored notation well. (DK)

  14. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  15. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  16. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...

  17. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be... basic color for designating caution and for marking physical hazards such as: Striking against...

  18. Spectroscopic Survey of Circumstellar Disks in Orion

    NASA Astrophysics Data System (ADS)

    Contreras, Maria; Hernandez, Jesus; Olguin, Lorenzo; Briceno, Cesar

    2013-07-01

    As a second stage of a project focused on characterizing candidate stars bearing a circumstellar disk in Orion, we present a spectroscopic follow-up of a set of about 170 bright stars. The present set of stars was selected by their optical (UBVRI) and infrared behavior in different color-color and color-magnitude diagrams. Observations were carried out at the Observatorio Astronomico Nacional located at the Sierra San Pedro Martir in B.C., Mexico and at the Observatorio Guillermo Haro in Cananea, Sonora, Mexico. Low-resolution spectra were obtained for all candidates in the sample. Using the SPTCLASS code, we have obtained spectral types and equivalent widths of the Li I 6707 and Halpha lines for each one of the stars. This project is a cornerstone of a large scale survey aimed to obtain stellar parameters in a homogeneous way using spectroscopic data. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  19. Bringing Out Head Start Talents (BOHST). Talent Programming.

    ERIC Educational Resources Information Center

    Amundsen, Jane; And Others

    Designed for preschoolers identified as talented by the Bringing Out Head Start Talents (BOHST) project, the small-group lessons contained in this manual focus on nine areas of talent programming and are presented in color-coded sections: creative, intellectual, leadership, art, music, reading, math, science, and psychomotor talent development.…

  20. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  1. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  2. The Use of Color-Coded Genograms in Family Therapy.

    ERIC Educational Resources Information Center

    Lewis, Karen Gail

    1989-01-01

    Describes a variable color-coding system which has been added to the standard family genogram in which characteristics or issues associated with a particular presenting problem or for a particular family are arbitrarily assigned a color. Presents advantages of color-coding, followed by clinical examples. (Author/ABL)

  3. Color coding of control room displays: the psychocartography of visual layering effects.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  4. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  5. Introducing and Developing Map Skills with Persons Having Mild or Moderate Learning Difficulties.

    ERIC Educational Resources Information Center

    Renfrew, Tom

    1997-01-01

    A British project found that appropriate training in map skills enabled children and adults with mild mental retardation to complete a white color-coded orienteering course with minimal assistance but that persons with moderate mental retardation required more assistance and instruction time to complete course objectives. Describes approaches to…

  6. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  7. Color Coded Cards for Student Behavior Management in Higher Education Environments

    ERIC Educational Resources Information Center

    Alhalabi, Wadee; Alhalabi, Mobeen

    2017-01-01

    The Color Coded Cards system as a possibly effective class management tool is the focus of this research. The Color Coded Cards system involves each student being given a card with a specific color based on his or her behavior. The main objective of the research is to find out whether this system effectively improves students' behavior, thus…

  8. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.

    PubMed

    Futami, K; Sano, H; Misaki, K; Nakada, M; Ueda, F; Hamada, J

    2014-07-01

    The hemodynamics of the inflow zone of cerebral aneurysms may be a key factor in coil compaction and recanalization after endovascular coil embolization. We performed 4D flow MR imaging in conjunction with 3D TOF MRA and compared their ability to identify the inflow zone of unruptured cerebral aneurysms. This series comprised 50 unruptured saccular cerebral aneurysms in 44 patients. Transluminal color-coded 3D MRA images were created by selecting the signal-intensity ranges on 3D TOF MRA images that corresponded with both the luminal margin and the putative inflow. 4D flow MR imaging demonstrated the inflow zone and yielded inflow velocity profiles for all 50 aneurysms. In 18 of 24 lateral-projection aneurysms (75%), the inflow zone was located distally on the aneurysmal neck. The maximum inflow velocity ranged from 285 to 922 mm/s. On 4D flow MR imaging and transluminal color-coded 3D MRA studies, the inflow zone of 32 aneurysms (64%) was at a similar location. In 91% of aneurysms whose neck section plane angle was <30° with respect to the imaging section direction on 3D TOF MRA, depiction of the inflow zone was similar on transluminal color-coded 3D MRA and 4D flow MR images. 4D flow MR imaging can demonstrate the inflow zone and provide inflow velocity profiles. In aneurysms whose angle of the neck-section plane is obtuse vis-a-vis the imaging section on 3D TOF MRA scans, transluminal color-coded 3D MRA may depict the inflow zone reliably. © 2014 by American Journal of Neuroradiology.

  9. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  10. Joint sparse coding based spatial pyramid matching for classification of color medical image.

    PubMed

    Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin

    2015-04-01

    Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. World Globes, Shaded Relief and Colored Height

    NASA Image and Video Library

    2003-08-21

    These images of the world were generated with data from the Shuttle Radar Topography Mission (SRTM). The SRTM Project has recently released a new global data set called SRTM30, where the original one arcsecond of latitude and longitude resolution (about 30 meters, or 98 feet, at the equator) was reduced to 30 arcseconds (about 928 meters, or 1496 feet.) These images were created from that data set and show the Earth as it would be viewed from a point in space centered over the Americas, Africa and the western Pacific. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. http://photojournal.jpl.nasa.gov/catalog/PIA03394

  12. False Color Terrain Model of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. A blind dual color images watermarking based on IWT and state coding

    NASA Astrophysics Data System (ADS)

    Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu

    2012-04-01

    In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.

  14. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  15. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  16. 29 CFR 1915.90 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...

  17. Color visualization for fluid flow prediction

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Speray, D. E.

    1982-01-01

    High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.

  18. Teaching Speech Organization and Outlining Using a Color-Coded Approach.

    ERIC Educational Resources Information Center

    Hearn, Ralene

    The organization/outlining unit in the basic Public Speaking course can be made more interesting by using a color-coded instructional method that captivates students, facilitates understanding, and provides the opportunity for interesting reinforcement activities. The two part lesson includes a mini-lecture with a color-coded outline and a two…

  19. Imitation Learning Errors Are Affected by Visual Cues in Both Performance and Observation Phases.

    PubMed

    Mizuguchi, Takashi; Sugimura, Ryoko; Shimada, Hideaki; Hasegawa, Takehiro

    2017-08-01

    Mechanisms of action imitation were examined. Previous studies have suggested that success or failure of imitation is determined at the point of observing an action. In other words, cognitive processing after observation is not related to the success of imitation; 20 university students participated in each of three experiments in which they observed a series of object manipulations consisting of four elements (hands, tools, object, and end points) and then imitated the manipulations. In Experiment 1, a specific intially observed element was color coded, and the specific manipulated object at the imitation stage was identically color coded; participants accurately imitated the color coded element. In Experiment 2, a specific element was color coded at the observation but not at the imitation stage, and there were no effects of color coding on imitation. In Experiment 3, participants were verbally instructed to attend to a specific element at the imitation stage, but the verbal instructions had no effect. Thus, the success of imitation may not be determined at the stage of observing an action and color coding can provide a clue for imitation at the imitation stage.

  20. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  1. Color-coding cancer and stromal cells with genetic reporters in a patient-derived orthotopic xenograft (PDOX) model of pancreatic cancer enhances fluorescence-guided surgery

    PubMed Central

    Yano, Shuya; Hiroshima, Yukihiko; Maawy, Ali; Kishimoto, Hiroyuki; Suetsugu, Atsushi; Miwa, Shinji; Toneri, Makoto; Yamamoto, Mako; Katz, Matthew H.G.; Fleming, Jason B.; Urata, Yasuo; Tazawa, Hiroshi; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2015-01-01

    Precise fluorescence-guided surgery (FGS) for pancreatic cancer has the potential to greatly improve the outcome in this recalcitrant disease. In order to achieve this goal, we have used genetic reporters to color code cancer and stroma cells in a patient-derived orthotopic xenograft (PDOX) model. The telomerase-dependent green fluorescent protein (GFP) containing adenovirus OBP401 was used to label the cancer cells of the pancreatic cancer PDOX. The PDOX was previously grown in a red fluorescent protein (RFP) transgenic mouse that stably labeled the PDOX stroma cells bright red. The color-coded PDOX model enabled FGS to completely resect the pancreatic tumors including stroma. Dual-colored FGS significantly prevented local recurrence, which bright-light surgery (BLS) or single color could not. FGS, with color-coded cancer and stroma cells has important potential for improving the outcome of recalcitrant cancer. PMID:26088297

  2. How Color Coding Formulaic Writing Enhances Organization: A Qualitative Approach for Measuring Student Affect

    ERIC Educational Resources Information Center

    Geigle, Bryce A.

    2014-01-01

    The aim of this thesis is to investigate and present the status of student synthesis with color coded formula writing for grade level six through twelve, and to make recommendations for educators to teach writing structure through a color coded formula system in order to increase classroom engagement and lower students' affect. The thesis first…

  3. Parametric color coding of digital subtraction angiography.

    PubMed

    Strother, C M; Bender, F; Deuerling-Zheng, Y; Royalty, K; Pulfer, K A; Baumgart, J; Zellerhoff, M; Aagaard-Kienitz, B; Niemann, D B; Lindstrom, M L

    2010-05-01

    Color has been shown to facilitate both visual search and recognition tasks. It was our purpose to examine the impact of a color-coding algorithm on the interpretation of 2D-DSA acquisitions by experienced and inexperienced observers. Twenty-six 2D-DSA acquisitions obtained as part of routine clinical care from subjects with a variety of cerebrovascular disease processes were selected from an internal data base so as to include a variety of disease states (aneurysms, AVMs, fistulas, stenosis, occlusions, dissections, and tumors). Three experienced and 3 less experienced observers were each shown the acquisitions on a prerelease version of a commercially available double-monitor workstation (XWP, Siemens Healthcare). Acquisitions were presented first as a subtracted image series and then as a single composite color-coded image of the entire acquisition. Observers were then asked a series of questions designed to assess the value of the color-coded images for the following purposes: 1) to enhance their ability to make a diagnosis, 2) to have confidence in their diagnosis, 3) to plan a treatment, and 4) to judge the effect of a treatment. The results were analyzed by using 1-sample Wilcoxon tests. Color-coded images enhanced the ease of evaluating treatment success in >40% of cases (P < .0001). They also had a statistically significant impact on treatment planning, making planning easier in >20% of the cases (P = .0069). In >20% of the examples, color-coding made diagnosis and treatment planning easier for all readers (P < .0001). Color-coding also increased the confidence of diagnosis compared with the use of DSA alone (P = .056). The impact of this was greater for the naïve readers than for the expert readers. At no additional cost in x-ray dose or contrast medium, color-coding of DSA enhanced the conspicuity of findings on DSA images. It was particularly useful in situations in which there was a complex flow pattern and in evaluation of pre- and posttreatment acquisitions. Its full potential remains to be defined.

  4. Colorful Revision: Color-Coded Comments Connected to Instruction

    ERIC Educational Resources Information Center

    Mack, Nancy

    2013-01-01

    Many teachers have had a favorable response to their experimentation with digital feedback on students' writing. Students much preferred a simpler system of highlighting and commenting in color. After experimentation the author found that this color-coded system was more effective for them and less time-consuming for her. Of course, any system…

  5. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  6. Color and Grey Scale in Sonar Displays

    NASA Technical Reports Server (NTRS)

    Kraiss, K. F.; Kuettelwesch, K. H.

    1984-01-01

    In spite of numerous publications 1 it is still rather unclear, whether color is of any help in sonar displays. The work presented here deals with a particular type of sonar data, i.e., LOFAR-grams (low frequency analysing and recording) where acoustic sensor data are continuously written as a time-frequency plot. The question to be answered quantitatively is, whether color coding does improve target detection when compared with a grey scale code. The data show significant differences in receiver-operating characteristics performance for the selected codes. In addition it turned out, that the background noise level affects the performance dramatically for some color codes, while others remain stable or even improve. Generally valid rules are presented on how to generate useful color scales for this particular application.

  7. Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions.

    PubMed

    Kim, Bum Joon; Kim, Yong-Hwan; Kim, Yeon-Jung; Ahn, Sung Ho; Lee, Deok Hee; Kwon, Sun U; Kim, Sang Joon; Kim, Jong S; Kang, Dong-Wha

    2014-09-01

    Diffusion-weighted image fluid-attenuated inversion recovery (FLAIR) mismatch has been considered to represent ischemic lesion age. However, the inter-rater agreement of diffusion-weighted image FLAIR mismatch is low. We hypothesized that color-coded images would increase its inter-rater agreement. Patients with ischemic stroke <24 hours of a clear onset were retrospectively studied. FLAIR signal change was rated as negative, subtle, or obvious on conventional and color-coded FLAIR images based on visual inspection. Inter-rater agreement was evaluated using κ and percent agreement. The predictive value of diffusion-weighted image FLAIR mismatch for identification of patients <4.5 hours of symptom onset was evaluated. One hundred and thirteen patients were enrolled. The inter-rater agreement of FLAIR signal change improved from 69.9% (k=0.538) with conventional images to 85.8% (k=0.754) with color-coded images (P=0.004). Discrepantly rated patients on conventional, but not on color-coded images, had a higher prevalence of cardioembolic stroke (P=0.02) and cortical infarction (P=0.04). The positive predictive value for patients <4.5 hours of onset was 85.3% and 71.9% with conventional and 95.7% and 82.1% with color-coded images, by each rater. Color-coded FLAIR images increased the inter-rater agreement of diffusion-weighted image FLAIR recovery mismatch and may ultimately help identify unknown-onset stroke patients appropriate for thrombolysis. © 2014 American Heart Association, Inc.

  8. Color inference in visual communication: the meaning of colors in recycling.

    PubMed

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  9. Transversal Clifford gates on folded surface codes

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-12

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less

  10. Redundant Coding in Visual Search Displays: Effects of Shape and Colour.

    DTIC Science & Technology

    1997-02-01

    results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.

  11. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  12. American Samoa, Shaded Relief and Colored Height

    NASA Image and Video Library

    2009-10-01

    The topography of Tutuila, largest of the islands of American Samoa, is well shown in this color-coded perspective view generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM.) The total area of Tutuila is about 141.8 square kilometers (54.8 square miles), slightly larger than San Francisco. The large bay near the center in this view is Pago Pago Harbor, actually a submerged volcanic crater whose south wall collapsed millions of years ago. Adjacent to the harbor is Pago Pago, the capital of American Samoa, and to the left (west) of the harbor in this view is Matafao Peak, Tutuila’s highest point at 653 meters (2,142 feet). On September 29, 2009, a tsunami generated by a major undersea earthquake located about 200 kilometers (120 miles) southwest of Tutuila inundated the more heavily populated southern coast of the island with an ocean surge more than 3 meters (10 feet) deep, causing scores of casualties. Digital topographic data such as those produced by SRTM aid researchers and planners in predicting which coastal regions are at the most risk from such waves, as well as from the more common storm surges caused by tropical storms and even sea level rise. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shaded image was derived by computing topographic slope in the northeast-southwest direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The image was then projected using the elevation data to produce this perspective view, with the topography exaggerated by a factor of two. http://photojournal.jpl.nasa.gov/catalog/PIA11965

  13. A volcanic activity alert-level system for aviation: Review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne C.; Miller, Thomas

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  14. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  15. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  16. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  17. Quantum computing with Majorana fermion codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  18. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii... 29 Labor 5 2011-07-01 2011-07-01 false Safety color code for marking physical hazards. 1910.144 Section 1910.144 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH...

  19. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  20. Influence of Interpretation Aids on Attentional Capture, Visual Processing, and Understanding of Front-of-Package Nutrition Labels.

    PubMed

    Antúnez, Lucía; Giménez, Ana; Maiche, Alejandro; Ares, Gastón

    2015-01-01

    To study the influence of 2 interpretational aids of front-of-package (FOP) nutrition labels (color code and text descriptors) on attentional capture and consumers' understanding of nutritional information. A full factorial design was used to assess the influence of color code and text descriptors using visual search and eye tracking. Ten trained assessors participated in the visual search study and 54 consumers completed the eye-tracking study. In the visual search study, assessors were asked to indicate whether there was a label high in fat within sets of mayonnaise labels with different FOP labels. In the eye-tracking study, assessors answered a set of questions about the nutritional content of labels. The researchers used logistic regression to evaluate the influence of interpretational aids of FOP nutrition labels on the percentage of correct answers. Analyses of variance were used to evaluate the influence of the studied variables on attentional measures and participants' response times. Response times were significantly higher for monochromatic FOP labels compared with color-coded ones (3,225 vs 964 ms; P < .001), which suggests that color codes increase attentional capture. The highest number and duration of fixations and visits were recorded on labels that did not include color codes or text descriptors (P < .05). The lowest percentage of incorrect answers was observed when the nutrient level was indicated using color code and text descriptors (P < .05). The combination of color codes and text descriptors seems to be the most effective alternative to increase attentional capture and understanding of nutritional information. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  1. Normative Database and Color-code Agreement of Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell-inner Plexiform Layer Thickness in a Vietnamese Population.

    PubMed

    Perez, Claudio I; Chansangpetch, Sunee; Thai, Andy; Nguyen, Anh-Hien; Nguyen, Anwell; Mora, Marta; Nguyen, Ngoc; Lin, Shan C

    2018-06-05

    Evaluate the distribution and the color probability codes of the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thickness in a healthy Vietnamese population and compare them with the original color-codes provided by the Cirrus spectral domain OCT. Cross-sectional study. We recruited non-glaucomatous Vietnamese subjects and constructed a normative database for peripapillary RNFL and macular GCIPL thickness. The probability color-codes for each decade of age were calculated. We evaluated the agreement with Kappa coefficient (κ) between OCT color probability codes with Cirrus built-in original normative database and the Vietnamese normative database. 149 eyes of 149 subjects were included. The mean age of enrollees was 60.77 (±11.09) years, with a mean spherical equivalent of +0.65 (±1.58) D and mean axial length of 23.4 (±0.87) mm. Average RNFL thickness was 97.86 (±9.19) microns and average macular GCIPL was 82.49 (±6.09) microns. Agreement between original and adjusted normative database for RNFL was fair for average and inferior quadrant (κ=0.25 and 0.2, respectively); and good for other quadrants (range: κ=0.63-0.73). For macular GCIPL κ agreement ranged between 0.39 and 0.69. After adjusting with the normative Vietnamese database, the percent of yellow and red color-codes increased significantly for peripapillary RNFL thickness. Vietnamese population has a thicker RNFL in comparison with Cirrus normative database. This leads to a poor color-code agreement in average and inferior quadrant between the original and adjusted database. These findings should encourage to create a peripapillary RNFL normative database for each ethnicity.

  2. A distributed code for color in natural scenes derived from center-surround filtered cone signals

    PubMed Central

    Kellner, Christian J.; Wachtler, Thomas

    2013-01-01

    In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289

  3. 7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Color coded plastic tie wraps shall be placed loosely around each binder group of cables before splicing... conform to the same color designations as the binder ribbons. Twisted wire pigtails shall not be used to identify binder groups due to potential transmission degradation. (ii) The standard insulation color code...

  4. Anticounterfeiting Quick Response Code with Emission Color of Invisible Metal-Organic Frameworks as Encoding Information.

    PubMed

    Wang, Yong-Mei; Tian, Xue-Tao; Zhang, Hui; Yang, Zhong-Rui; Yin, Xue-Bo

    2018-06-21

    Counterfeiting is a global epidemic that is compelling the development of new anticounterfeiting strategy. Herein, we report a novel multiple anticounterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under daylight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anticounterfeiting. The proposed QR codes pattern holds great potential for advanced anticounterfeiting.

  5. Color-coded duplex sonography for diagnosis of testicular torsion.

    PubMed

    Zoeller, G; Ringert, R H

    1991-11-01

    By color-coded duplex sonography moving structures are visualized as red or blue colors within a normal gray-scale B-mode ultrasound image. Thus, blood flow even within small vessels can be visualized clearly. Color-coded duplex sonographic examination was performed in 11 patients who presented with scrotal pain. This method proved to be reliable to differentiate between testicular torsion and testicular inflammation. By clearly demonstrating a lack of intratesticular blood flow in testicular torsion, while avoiding flow in scrotal skin vessels being misinterpreted as intratesticular blood flow, this method significantly decreases the number of patients in whom surgical evaluation is necessary to exclude testicular torsion.

  6. Effects of target and distractor saturations on the cognitive performance of an integrated display interface

    NASA Astrophysics Data System (ADS)

    Xue, Chengqi; Li, Jing; Wang, Haiyan; Niu, Yafeng

    2015-01-01

    Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and complex structures in the interface. Although an increasing number of studies are seriously focusing on the problem of achieving efficient color coding, few are able to determine the effects of target and distractor saturations on cognitive performance. To study the performances of target colors among distractors, a systematic experiment is conducted to assess the influence of high and low saturated targets on cognitive performance, and the affecting extent of different saturated distractors of homogeneous colors on targets. According to the analysis of the reaction time through the non-parametric statistical method, a calculation method of the cognitive performance of each color is proposed. Based on the calculation of the color differences and the accumulation of the reaction times, it is shown that with the different saturated distractors of homogeneous colors, the high saturated yellow targets perform better than the low saturated ones, and the green and blue targets have moderate performances. When searching for a singleton target placed on a black background, the color difference between the target and the distractor should be more than 20Δ E*ab units in the yellow saturation coding, whereas the color difference should be more than 40Δ E*ab units in the blue and green saturation coding. In addition, as regards saturation coding, the influence of the color difference between the target and the background on cognitive performance is greater than that of the color difference between the target and the distractor. Seemingly, the hue attribute determines whether the saturation difference between the target and the distractor affects the cognitive performance. Based on the experimental results, the simulation design of the instrument dials in a flight situation awareness interface is completed and tested. Simulation results show the feasibility of the method of choosing the target and distractor colors, and the proposed research provides the instruction for the color saturation design of the interface.

  7. Sinai Peninsula, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Sinai Peninsula, located between Africa and Asia, is a result of those two continents pulling apart from each other. Earth's crust is cracking, stretching, and lowering along the two northern branches of the Red Sea, namely the Gulf of Suez, seen here on the west (left), and the Gulf of Aqaba, seen to the east (right). This color-coded shaded relief image shows the triangular nature of the peninsula, with the coast of the Mediterranean Sea forming the northern side of the triangle. The Suez Canal can be seen as the narrow vertical blue line in the upper left connecting the Red Sea to the Mediterranean.

    The peninsula is divided into three distinct parts; the northern region consisting chiefly of sandstone, plains and hills, the central area dominated by the Tih Plateau, and the mountainous southern region where towering peaks abound. Much of the Sinai is deeply dissected by river valleys, or wadis, that eroded during an earlier geologic period and break the surface of the plateau into a series of detached massifs with a few scattered oases.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 30 degrees north latitude, 34 degrees east longitude Orientation: North toward the top, Mercator projection Size: 289 by 445 kilometers (180 by 277 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  8. Reds, Greens, Yellows Ease the Spelling Blues.

    ERIC Educational Resources Information Center

    Irwin, Virginia

    1971-01-01

    This document reports on a color-coding innovation designed to improve the spelling ability of high school seniors. This color-coded system is based on two assumptions: that color will appeal to the students and that there are three principal reasons for misspelling. Two groups were chosen for the experiments. A basic list of spelling demons was…

  9. Use of Color-Coded Food Photographs for Meal Planning by Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Gines, Deon J.; And Others

    1990-01-01

    Ten adults with mild mental retardation used color-coded food photographs and meal code cards to plan nutritionally balanced meals. Subjects spent an average of nine minutes to plan three meals. Errors, which were primarily omissions, occurred mostly in food groups requiring four servings daily. (JDD)

  10. Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays

    ERIC Educational Resources Information Center

    Yamani, Yusuke; McCarley, Jason S.

    2010-01-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…

  11. 78 FR 59265 - FD&C Yellow No. 5; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532). B. How.... 5 is a FDA permanently listed color additive used in food, drugs and cosmetics, including drugs and cosmetics for the eye area. FDA's color additive evaluation included the consideration of an extensive set...

  12. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  13. CALIPSO: an interactive image analysis software package for desktop PACS workstations

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Huang, H. K.

    1990-07-01

    The purpose of this project is to develop a low cost workstation for quantitative analysis of multimodality images using a Macintosh II personal computer. In the current configuration the Macintosh operates as a stand alone workstation where images are imported either from a central PACS server through a standard Ethernet network or recorded through video digitizer board. The CALIPSO software developed contains a large variety ofbasic image display and manipulation tools. We focused our effort however on the design and implementation ofquantitative analysis methods that can be applied to images from different imaging modalities. Analysis modules currently implemented include geometric and densitometric volumes and ejection fraction calculation from radionuclide and cine-angiograms Fourier analysis ofcardiac wall motion vascular stenosis measurement color coded parametric display of regional flow distribution from dynamic coronary angiograms automatic analysis ofmyocardial distribution ofradiolabelled tracers from tomoscintigraphic images. Several of these analysis tools were selected because they use similar color coded andparametric display methods to communicate quantitative data extracted from the images. 1. Rationale and objectives of the project Developments of Picture Archiving and Communication Systems (PACS) in clinical environment allow physicians and radiologists to assess radiographic images directly through imaging workstations (''). This convenient access to the images is often limited by the number of workstations available due in part to their high cost. There is also an increasing need for quantitative analysis ofthe images. During thepast decade

  14. New Skeletal-Space-Filling Models

    ERIC Educational Resources Information Center

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  15. How to identify up to 30 colors without training: color concept retrieval by free color naming

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Swartling, Tiina

    1994-05-01

    Used as a redundant code, color is shown to be advantageous in visual search tasks. It enhances attention, detection, and recall of information. Neuropsychological and neurophysiological findings have shown color and spatial perception to be interrelated functions. Studies on eye movements show that colored symbols are easier to detect and that eye fixations are more correctly directed to color-coded symbols. Usually between 5 and 15 colors have been found useful in classification tasks, but this umber can be increased to between 20 to 30 by careful selection of colors, and by a subject's practice with the identification task and familiarity with the particular colors. Recent neurophysiological findings concerning the language-concept connection in color suggest that color concept retrieval would be enhanced by free color naming or by the use of natural associations between color concepts and color words. To test this hypothesis, we had subjects give their own free associations to a set of 35 colors presented on a display. They were able to identify as many as 30 colors without training.

  16. A color-coded vision scheme for robotics

    NASA Technical Reports Server (NTRS)

    Johnson, Kelley Tina

    1991-01-01

    Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.

  17. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  18. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  19. Major Breeding Plumage Color Differences of Male Ruffs (Philomachus pugnax) Are Not Associated With Coding Sequence Variation in the MC1R Gene

    PubMed Central

    Küpper, Clemens; Burke, Terry; Lank, David B.

    2015-01-01

    Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species. PMID:25534935

  20. The photo-colorimetric space as a medium for the representation of spatial data

    NASA Technical Reports Server (NTRS)

    Kraiss, K. Friedrich; Widdel, Heino

    1989-01-01

    Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.

  1. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  2. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    PubMed

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  3. Theoretical research on color indirect effects

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Liao, Changjun; Liu, Songhao

    1995-05-01

    Color indirect effects (CIE) means the physiological and psychological effects of color resulting from color vision. In this paper, we study CIE from the viewpoints of the integrated western and Chinese traditional medicine and the time quantum theory established by C. Y. Liu et al., respectively, and then put forward the color-automatic-nervous-subsystem model that could color excites parasympathetic subsystem and hot color excites sympathetic subsystem. Our theory is in agreement with modern color vision theory, and moreover, it leads to the resolution of the conflict between the color code theory and the time code theory oncolor vision. For the latitude phenomena on athlete stars number and the average lifespan, we also discuss the possibility of UV vision. The applications of our theory lead to our succeeding in explaining a number of physiological and psychological effects of color, in explaining the effects of age on color vision, and in explaining the Chinese chromophototherapy. We also discuss its application to neuroimmunology. This research provides the foundation of the clinical applications of chromophototherapy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  5. Extended Colour--Some Methods and Applications.

    ERIC Educational Resources Information Center

    Dean, P. J.; Murkett, A. J.

    1985-01-01

    Describes how color graphics are built up on microcomputer displays and how a range of colors can be produced. Discusses the logic of color formation, noting that adding/subtracting color can be conveniently demonstrated. Color generating techniques in physics (resistor color coding and continuous spectrum production) are given with program…

  6. Ceres Topographic Globe Animation

    NASA Image and Video Library

    2015-07-28

    This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605

  7. Analysis of the Tanana River Basin using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.; Carson-Henry, C.

    1981-01-01

    Digital image classification techniques were used to classify land cover/resource information in the Tanana River Basin of Alaska. Portions of four scenes of LANDSAT digital data were analyzed using computer systems at Ames Research Center in an unsupervised approach to derive cluster statistics. The spectral classes were identified using the IDIMS display and color infrared photography. Classification errors were corrected using stratification procedures. The classification scheme resulted in the following eleven categories; sedimented/shallow water, clear/deep water, coniferous forest, mixed forest, deciduous forest, shrub and grass, bog, alpine tundra, barrens, snow and ice, and cultural features. Color coded maps and acreage summaries of the major land cover categories were generated for selected USGS quadrangles (1:250,000) which lie within the drainage basin. The project was completed within six months.

  8. Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.

    PubMed

    Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang

    2015-10-01

    The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.

  9. Assessment of Optical Coherence Tomography Color Probability Codes in Myopic Glaucoma Eyes After Applying a Myopic Normative Database.

    PubMed

    Seol, Bo Ram; Kim, Dong Myung; Park, Ki Ho; Jeoung, Jin Wook

    2017-11-01

    To evaluate the optical coherence tomography (OCT) color probability codes based on a myopic normative database and to investigate whether the implementation of the myopic normative database can improve the OCT diagnostic ability in myopic glaucoma. Comparative validity study. In this study, 305 eyes (154 myopic healthy eyes and 151 myopic glaucoma eyes) were included. A myopic normative database was obtained based on myopic healthy eyes. We evaluated the agreement between OCT color probability codes after applying the built-in and myopic normative databases, respectively. Another 120 eyes (60 myopic healthy eyes and 60 myopic glaucoma eyes) were included and the diagnostic performance of OCT color codes using a myopic normative database was investigated. The mean weighted kappa (Kw) coefficients for quadrant retinal nerve fiber layer (RNFL) thickness, clock-hour RNFL thickness, and ganglion cell-inner plexiform layer (GCIPL) thickness were 0.636, 0.627, and 0.564, respectively. The myopic normative database showed a higher specificity than did the built-in normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P < .001, P < .001, and P < .001, respectively). The receiver operating characteristic curve values increased when using the myopic normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P = .011, P = .004, P < .001, respectively). The diagnostic ability of OCT color codes for detection of myopic glaucoma significantly improved after application of the myopic normative database. The implementation of a myopic normative database is needed to allow more precise interpretation of OCT color probability codes when used in myopic eyes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Color-Coded Prefilled Medication Syringes Decrease Time to Delivery and Dosing Error in Simulated Emergency Department Pediatric Resuscitations.

    PubMed

    Moreira, Maria E; Hernandez, Caleb; Stevens, Allen D; Jones, Seth; Sande, Margaret; Blumen, Jason R; Hopkins, Emily; Bakes, Katherine; Haukoos, Jason S

    2015-08-01

    The Institute of Medicine has called on the US health care system to identify and reduce medical errors. Unfortunately, medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients when dosing requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national health care priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared with conventional medication administration, in simulated pediatric emergency department (ED) resuscitation scenarios. We performed a prospective, block-randomized, crossover study in which 10 emergency physician and nurse teams managed 2 simulated pediatric arrest scenarios in situ, using either prefilled, color-coded syringes (intervention) or conventional drug administration methods (control). The ED resuscitation room and the intravenous medication port were video recorded during the simulations. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the conventional and color-coded delivery groups was 47 seconds (95% confidence interval [CI] 40 to 53 seconds) and 19 seconds (95% CI 18 to 20 seconds), respectively (difference=27 seconds; 95% CI 21 to 33 seconds). With the conventional method, 118 doses were administered, with 20 critical dosing errors (17%); with the color-coded method, 123 doses were administered, with 0 critical dosing errors (difference=17%; 95% CI 4% to 30%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by emergency physician and nurse teams during simulated pediatric ED resuscitations. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  11. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  12. The effect of a redundant color code on an overlearned identification task

    NASA Technical Reports Server (NTRS)

    Obrien, Kevin

    1992-01-01

    The possibility of finding redundancy gains with overlearned tasks was examined using a paradigm varying familiarity with the stimulus set. Redundant coding in a multidimensional stimulus was demonstrated to result in increased identification accuracy and decreased latency of identification when compared to stimuli varying on only one dimension. The advantages attributable to redundant coding are referred to as redundancy gain and were found for a variety of stimulus dimension combinations, including the use of hue or color as one of the dimensions. Factors that have affected redundancy gain include the discriminability of the levels of one stimulus dimension and the level of stimulus-to-response association. The results demonstrated that response time is in part a function of familiarity, but no effect of redundant color coding was demonstrated. Implications of research on coding in identification tasks for display design are discussed.

  13. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. Electronic supplementary information (ESI) available: Calculating details of UCNP content per 3D QR code and decoding process of the 3D QR code. See DOI: 10.1039/c6nr01353h

  14. Stacked STN LCDs for true-color projection systems

    NASA Astrophysics Data System (ADS)

    Gulick, Paul E.; Conner, Arlie R.

    1991-08-01

    The demand for a true color LCD projection panel for use with standard overhead projectors has been around ever since the first monochrome OHP projection panel was introduced in 1986. The monochrome panels evolved along with the LCD technology from the first blue- and-yellow mode units to black-and-white with levels of gray, and to yellow-and-magenta panels with limited intermediate color shades known as pseudo-color. Finally, a novel solution has been implemented using a stack of custom designed STN panels, making possible true color LCD projection panels that are reasonably priced, available in high volume and quite acceptable in overall image quality. This stacked technology relies on the inherent birefringence colors of each layer to switch between white (passing all wavelengths) and a subtractive color primary (passing all wavelengths but red, green, or blue) so the full spectrum can be projected. Standard gray-scale techniques expand the displayable color palette to almost 5,000 colors and beyond. The same technology can also be applied to various self-contained projection architectures.

  15. Effects of Gender Color-Coding on Toddlers' Gender-Typical Toy Play.

    PubMed

    Wong, Wang I; Hines, Melissa

    2015-07-01

    Gender color-coding of children's toys may make certain toys more appealing or less appealing to a given gender. We observed toddlers playing with two gender-typical toys (a train, a doll), once in gender-typical colors and once in gender-atypical colors. Assessments occurred twice, at 20-40 months of age and at 26-47 months of age. A Sex × Time × Toy × Color ANOVA showed expected interactions between Sex and Toy and Sex and Color. Boys played more with the train than girls did and girls played more with the doll and with pink toys than boys did. The Sex × Toy × Color interaction was not significant, but, at both time points, boys and girls combined played more with the gender-atypical toy when its color was typical for their sex than when it was not. This effect appeared to be caused largely by boys' preference for, or avoidance of, the doll and by the use of pink. Also, at both time points, gender differences in toy preferences were larger in the gender-typical than in the gender-atypical color condition. At Time 2, these gender differences were present only in the gender-typical color condition. Overall, the results suggest that, once acquired, gender-typical color preferences begin to influence toy preferences, especially those for gender-atypical toys and particularly in boys. They thus could enlarge differences between boys' and girls' toy preferences. Because boys' and girls' toys elicit different activities, removing the gender color-coding of toys could encourage more equal learning opportunities.

  16. Grid point extraction and coding for structured light system

    NASA Astrophysics Data System (ADS)

    Song, Zhan; Chung, Ronald

    2011-09-01

    A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.

  17. Development of the RGB LEDs color mixing mechanism for stability the color temperature at different projection distances.

    PubMed

    Hung, Chih-Ching

    2015-01-01

    In lighting application, the color mixing of the RGB LEDs can provide more color selection in correlated color temperature and color rendering. Therefore, the purpose of this study is to propose a RGB color mixing mechanism by applying the mechanism design. Three sets of lamp-type RGB LEDs are individually installed on three four-bar linkages. A crank is used to drive three groups of RGB LEDs lamp-type to project lights onto a single plane in order to mix the lights. And, simulations of the illuminance and associated color temperatures are conducted by changing the distance to the projection plane, under the assumption that the stability of the color temperature of the projected light does not change according to the projecting height. Thus, the effect of change in the color temperature on color determination by the humans' eyes was avoided. The success of the proposed method will allow medical personnel to choose suitable wavelengths and color temperatures according to the particular requirements of their medical-examination environments.

  18. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  19. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  20. Keep It Simple. Teaching Tips for Special Olympic Athletes.

    ERIC Educational Resources Information Center

    Johnston, Judith E.; And Others

    1996-01-01

    Physical educators can help Special Olympics athletes learn cross-lateral delivery techniques for bowling or throwing softballs by color coding the throwing arm and opposing foot. The article explains color coding, presenting teaching tips for both sports. A series of workshops on modifying exercise principles for individuals with physical…

  1. Use of color-coded sleeve shutters accelerates oscillograph channel selection

    NASA Technical Reports Server (NTRS)

    Bouchlas, T.; Bowden, F. W.

    1967-01-01

    Sleeve-type shutters mechanically adjust individual galvanometer light beams onto or away from selected channels on oscillograph papers. In complex test setups, the sleeve-type shutters are color coded to separately identify each oscillograph channel. This technique could be used on any equipment using tubular galvanometer light sources.

  2. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    ERIC Educational Resources Information Center

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  3. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  4. Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect

    USGS Publications Warehouse

    Wright, Bruce E.; Stewart, David B.

    1990-01-01

    The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.

  5. Color-Blindness Study: Color Discrimination on the TICCIT System.

    ERIC Educational Resources Information Center

    Asay, Calvin S.; Schneider, Edward W.

    The question studied whether the specific seven TICCIT system colors used within color coding schemes can be a source of confusion, or not seen at all, by the color-blind segment of target populations. Subjects were 11 color-blind and three normally sighted students at Brigham Young University. After a preliminary training exercise to acquaint the…

  6. Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.

    PubMed

    Bannert, Michael M; Bartels, Andreas

    2018-04-11

    Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an imagery task, suggesting it forms a perceptual hub for color perception. Copyright © 2018 the authors 0270-6474/18/383657-12$15.00/0.

  7. Exogean: a framework for annotating protein-coding genes in eukaryotic genomic DNA

    PubMed Central

    Djebali, Sarah; Delaplace, Franck; Crollius, Hugues Roest

    2006-01-01

    Background Accurate and automatic gene identification in eukaryotic genomic DNA is more than ever of crucial importance to efficiently exploit the large volume of assembled genome sequences available to the community. Automatic methods have always been considered less reliable than human expertise. This is illustrated in the EGASP project, where reference annotations against which all automatic methods are measured are generated by human annotators and experimentally verified. We hypothesized that replicating the accuracy of human annotators in an automatic method could be achieved by formalizing the rules and decisions that they use, in a mathematical formalism. Results We have developed Exogean, a flexible framework based on directed acyclic colored multigraphs (DACMs) that can represent biological objects (for example, mRNA, ESTs, protein alignments, exons) and relationships between them. Graphs are analyzed to process the information according to rules that replicate those used by human annotators. Simple individual starting objects given as input to Exogean are thus combined and synthesized into complex objects such as protein coding transcripts. Conclusion We show here, in the context of the EGASP project, that Exogean is currently the method that best reproduces protein coding gene annotations from human experts, in terms of identifying at least one exact coding sequence per gene. We discuss current limitations of the method and several avenues for improvement. PMID:16925841

  8. Color Comprehension and Color Categories among Blind Students: A Multi-Sensory Approach in Implementing Concrete Language to Include All Students in Advanced Writing Classes

    ERIC Educational Resources Information Center

    Antarasena, Salinee

    2009-01-01

    This study investigates teaching methods regarding color comprehension and color categorization among blind students, as compared to their non-blind peers and whether they understand and represent the same color comprehension and color categories. Then after digit codes for color comprehension teaching and assistive technology for the blind had…

  9. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  10. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  11. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  12. Compression of color-mapped images

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, A. C.; Sayood, Khalid

    1992-01-01

    In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.

  13. Accessible and informative sectioned images, color-coded images, and surface models of the ear.

    PubMed

    Park, Hyo Seok; Chung, Min Suk; Shin, Dong Sun; Jung, Yong Wook; Park, Jin Seo

    2013-08-01

    In our previous research, we created state-of-the-art sectioned images, color-coded images, and surface models of the human ear. Our ear data would be more beneficial and informative if they were more easily accessible. Therefore, the purpose of this study was to distribute the browsing software and the PDF file in which ear images are to be readily obtainable and freely explored. Another goal was to inform other researchers of our methods for establishing the browsing software and the PDF file. To achieve this, sectioned images and color-coded images of ear were prepared (voxel size 0.1 mm). In the color-coded images, structures related to hearing, equilibrium, and structures originated from the first and second pharyngeal arches were segmented supplementarily. The sectioned and color-coded images of right ear were added to the browsing software, which displayed the images serially along with structure names. The surface models were reconstructed to be combined into the PDF file where they could be freely manipulated. Using the browsing software and PDF file, sectional and three-dimensional shapes of ear structures could be comprehended in detail. Furthermore, using the PDF file, clinical knowledge could be identified through virtual otoscopy. Therefore, the presented educational tools will be helpful to medical students and otologists by improving their knowledge of ear anatomy. The browsing software and PDF file can be downloaded without charge and registration at our homepage (http://anatomy.dongguk.ac.kr/ear/). Copyright © 2013 Wiley Periodicals, Inc.

  14. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision.

    PubMed

    Vladusich, Tony

    2007-03-01

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory may help to resolve an ongoing debate concerning the functional properties of cortical receptive fields involved in color coding.

  15. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications. PMID:23319862

  16. Hybrid 3D visualization of the chest and virtual endoscopy of the tracheobronchial system: possibilities and limitations of clinical application.

    PubMed

    Seemann, M D; Claussen, C D

    2001-06-01

    A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.

  17. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models.

    PubMed

    Addetia, Karima; Mor-Avi, Victor; Weinert, Lynn; Salgo, Ivan S; Lang, Roberto M

    2014-01-01

    Differentiating between mitral valve (MV) prolapse (MVP) and MV billowing (MVB) on two-dimensional echocardiography is challenging. The aim of this study was to test the hypothesis that color-coded models of maximal leaflet displacement from the annular plane into the atrium derived from three-dimensional transesophageal echocardiography would allow discrimination between these lesions. Three-dimensional transesophageal echocardiographic imaging of the MV was performed in 50 patients with (n = 38) and without (n = 12) degenerative MV disease. Definitive diagnosis of MVP versus MVB was made using inspection of dynamic three-dimensional renderings and multiple two-dimensional cut planes extracted from three-dimensional data sets. This was used as a reference standard to test an alternative approach, wherein the color-coded parametric models were inspected for integrity of the coaptation line and location of the maximally displaced portion of the leaflet. Diagnostic interpretations of these models by two independent readers were compared with the reference standard. In all cases of MVP, the color-coded models depicted loss of integrity of the coaptation line and maximal leaflet displacement extending to the coaptation line. MVB was depicted by preserved leaflet apposition with maximal displacement away from the coaptation line. Interpretation of the 50 color-coded models by novice readers took 5 to 10 min and resulted in good agreement with the reference technique (κ = 0.81 and κ = 0.73 for the two readers). Three-dimensional color-coded models provide a static display of MV leaflet displacement, allowing differentiation between MVP and MVB, without the need to inspect multiple planes and while taking into account the saddle shape of the mitral annulus. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  18. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    PubMed

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  19. Perceptions of drug color among drug sellers and consumers in rural southwestern Nigeria.

    PubMed

    Brieger, William R; Salami, Kabiru K; Oshiname, Frederick O

    2007-09-01

    Color is commonly used for branding and coding consumer products including medications. People associate certain colors in tablets and capsules with the effect of the drug and the illness for which it is meant. Color coding was introduced in age-specific prepacked antimalarial drugs for preschool aged children in Nigeria by the National Malaria Control Committee. Yellow was designated for the younger ages and blue for the older. The National Malaria Control Committee did not perform market research to learn how their color codes would be perceived by consumers. The study aimed at determining perceptions of both consumers and sellers of medicines at the community level to learn about color likes and dislikes that might influence acceptance of new color-coded child prepacks of antimalarial drugs. Qualitative methods were used to determine perceptions of drug colors. A series of focus group interviews were conducted with male and female community members, and in-depth interviews were held with medicine sellers in the Igbo-Ora community in southwestern Nigeria. Respondents clearly associated medicines with their effects and purpose, for example white drugs for pain relief, red for building blood, blue to aid sleep, and yellow for malaria treatment. Medicine vendors had a low opinion of white colored medicines, but community members were ultimately more concerned about efficacy. The perceived association between yellow and malaria, because of local symptom perceptions of eyes turning yellowish during malaria, yielded a favorable response when consumers were shown the yellow prepacks. The response to blue was noncommittal but consumers indicated that if they were properly educated on the efficacy and function of the new drugs they would likely buy them. Community members will accept yellow as an antimalarial drug but health education will be needed for promoting the idea of blue for malaria and the notion of age-specific packets. Therefore, the strong medicine vendor-training component that accompanied roll out of these prepacks in the pilot states needs to be replicated nationally.

  20. Visualization and Analysis of Microtubule Dynamics Using Dual Color-Coded Display of Plus-End Labels

    PubMed Central

    Garrison, Amy K.; Xia, Caihong; Wang, Zheng; Ma, Le

    2012-01-01

    Investigating spatial and temporal control of microtubule dynamics in live cells is critical to understanding cell morphogenesis in development and disease. Tracking fluorescently labeled plus-end-tracking proteins over time has become a widely used method to study microtubule assembly. Here, we report a complementary approach that uses only two images of these labels to visualize and analyze microtubule dynamics at any given time. Using a simple color-coding scheme, labeled plus-ends from two sequential images are pseudocolored with different colors and then merged to display color-coded ends. Based on object recognition algorithms, these colored ends can be identified and segregated into dynamic groups corresponding to four events, including growth, rescue, catastrophe, and pause. Further analysis yields not only their spatial distribution throughout the cell but also provides measurements such as growth rate and direction for each labeled end. We have validated the method by comparing our results with ground-truth data derived from manual analysis as well as with data obtained using the tracking method. In addition, we have confirmed color-coded representation of different dynamic events by analyzing their history and fate. Finally, we have demonstrated the use of the method to investigate microtubule assembly in cells and provided guidance in selecting optimal image acquisition conditions. Thus, this simple computer vision method offers a unique and quantitative approach to study spatial regulation of microtubule dynamics in cells. PMID:23226282

  1. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  2. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  3. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  4. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  5. 7 CFR 28.525 - Symbols and code numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designations in inches. (a) Symbols and Code numbers used for Color Grades of American Upland Cotton. Color... 41 Low Middling LM 51 Strict Good Ordinary SGO 61 Good Ordinary GO 71 Good Middling Light Spotted GM Lt SP 12 Strict Middling Light Spotted SM Lt Sp 22 Middling Light Spotted Mid Lt Sp 32 Strict Low...

  6. Learning about Probability from Text and Tables: Do Color Coding and Labeling through an Interactive-User Interface Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Morsanyi, Kinga; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    Learning from visual representations is enhanced when learners appropriately integrate corresponding visual and verbal information. This study examined the effects of two methods of promoting integration, color coding and labeling, on learning about probabilistic reasoning from a table and text. Undergraduate students (N = 98) were randomly…

  7. Semiannual status report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The work performed in the previous six months can be divided into three main cases: (1) transmission of images over local area networks (LAN's); (2) coding of color mapped (pseudo-color) images; and (3) low rate video coding. A brief overview of the work done in the first two areas is presented. The third item is reported in somewhat more detail.

  8. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2015-01-01

    Compressive spectral imaging (CSI) captures multispectral imagery using fewer measurements than those required by traditional Shannon-Nyquist theory-based sensing procedures. CSI systems acquire coded and dispersed random projections of the scene rather than direct measurements of the voxels. To date, the coding procedure in CSI has been realized through the use of block-unblock coded apertures (CAs), commonly implemented as chrome-on-quartz photomasks. These apertures block or permit us to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. This paper extends the framework of CSI by replacing the traditional block-unblock photomasks by patterned optical filter arrays, referred to as colored coded apertures (CCAs). These, in turn, allow the source to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed CCAs are synthesized through linear combinations of low-pass, high-pass, and bandpass filters, paired with binary pattern ensembles realized by a digital micromirror device. The optical forward model of the proposed CSI architecture is presented along with a proof-of-concept implementation, which achieves noticeable improvements in the quality of the reconstruction.

  9. Practical color vision tests for air traffic control applicants: en route center and terminal facilities.

    PubMed

    Mertens, H W; Milburn, N J; Collins, W E

    2000-12-01

    Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.

  10. Color-coded prefilled medication syringes decrease time to delivery and dosing errors in simulated prehospital pediatric resuscitations: A randomized crossover trial☆, ☆

    PubMed Central

    Stevens, Allen D.; Hernandez, Caleb; Jones, Seth; Moreira, Maria E.; Blumen, Jason R.; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S.

    2016-01-01

    Background Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. Methods We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded-syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Results Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28–39) seconds and 42 (95% CI: 36–51) seconds, respectively (difference = 9 [95% CI: 4–14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference = 39%, 95% CI: 13–61%). Conclusions A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. PMID:26247145

  11. Color-coded prefilled medication syringes decrease time to delivery and dosing errors in simulated prehospital pediatric resuscitations: A randomized crossover trial.

    PubMed

    Stevens, Allen D; Hernandez, Caleb; Jones, Seth; Moreira, Maria E; Blumen, Jason R; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S

    2015-11-01

    Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28-39) seconds and 42 (95% CI: 36-51) seconds, respectively (difference=9 [95% CI: 4-14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference=39%, 95% CI: 13-61%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A Full-Color, High-Resolution Laser Projector for a Flight Simulator Visual Display

    DTIC Science & Technology

    1993-08-01

    current projection technology. Laser projection promises an increased color gamut , higher luminance, zero persistence, and increased line rate. The...1 7 List of Figures Fig. I Color Gamut of Laser Projection Display...primary wavelengths plot on the boundary of the ICI (CIE) chromaticity diagram; a characteristic that allows a very large gamut of colors. Unlike

  13. Color Code: Using Hair Color to Make a Clear Connection between Genotype and Phenotype

    ERIC Educational Resources Information Center

    Bonner, J. Jose

    2011-01-01

    Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…

  14. Effect of task demands on dual coding of pictorial stimuli.

    PubMed

    Babbitt, B C

    1982-01-01

    Recent studies have suggested that verbal labeling of a picture does not occur automatically. Although several experiments using paired-associate tasks produced little evidence indicating the use of a verbal code with picture stimuli, the tasks were probably not sensitive to whether the codes were activated initially. It is possible that verbal labels were activated at input, but not used later in performing the tasks. The present experiment used a color-naming interference task in order to assess, with a more sensitive measure, the amount of verbal coding occurring in response to word or picture input. Subjects named the color of ink in which words were printed following either word or picture input. If verbal labeling of the input occurs, then latency of color naming should increase when the input item and color-naming word are related. The results provided substantial evidence of such verbal activation when the input items were words. However, the presence of verbal activation with picture input was a function of task demands. Activation occurred when a recall memory test was used, but not when a recognition memory test was used. The results support the conclusion that name information (labels) need not be activated during presentation of visual stimuli.

  15. Effect of color coding and subtraction on the accuracy of contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Pasquet, A.; Greenberg, N.; Brunken, R.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    BACKGROUND: Contrast echocardiography may be used to assess myocardial perfusion. However, gray scale assessment of myocardial contrast echocardiography (MCE) is difficult because of variations in regional backscatter intensity, difficulties in distinguishing varying shades of gray, and artifacts or attenuation. We sought to determine whether the assessment of rest myocardial perfusion by MCE could be improved with subtraction and color coding. METHODS AND RESULTS: MCE was performed in 31 patients with previous myocardial infarction with a 2nd generation agent (NC100100, Nycomed AS), using harmonic triggered or continuous imaging and gain settings were kept constant throughout the study. Digitized images were post processed by subtraction of baseline from contrast data and colorized to reflect the intensity of myocardial contrast. Gray scale MCE alone, MCE images combined with baseline and subtracted colorized images were scored independently using a 16 segment model. The presence and severity of myocardial contrast abnormalities were compared with perfusion defined by rest MIBI-SPECT. Segments that were not visualized by continuous (17%) or triggered imaging (14%) after color processing were excluded from further analysis. The specificity of gray scale MCE alone (56%) or MCE combined with baseline 2D (47%) was significantly enhanced by subtraction and color coding (76%, p<0.001) of triggered images. The accuracy of the gray scale approaches (respectively 52% and 47%) was increased to 70% (p<0.001). Similarly, for continuous images, the specificity of gray scale MCE with and without baseline comparison was 23% and 42% respectively, compared with 60% after post processing (p<0.001). The accuracy of colorized images (59%) was also significantly greater than gray scale MCE (43% and 29%, p<0.001). The sensitivity of MCE for both acquisitions was not altered by subtraction. CONCLUSION: Post-processing with subtraction and color coding significantly improves the accuracy and specificity of MCE for detection of perfusion defects.

  16. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them therefore harder to predict.

  17. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2004-10-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjøvik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them therefore harder to predict.

  18. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  19. REX3DV1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Elizabeth A.

    2002-03-28

    This code is a FORTRAN code for three-dimensional Monte Carol Potts Model (MCPM) Recrystallization and grain growth. A continuum grain structure is mapped onto a three-dimensional lattice. The mapping procedure is analogous to color bitmapping the grain structure; grains are clusters of pixels (sites) of the same color (spin). The total system energy is given by the Pott Hamiltonian and the kinetics of grain growth are determined through a Monte Carlo technique with a nonconserved order parameter (Glauber dynamics). The code can be compiled and run on UNIX/Linux platforms.

  20. Fault-tolerance in Two-dimensional Topological Systems

    NASA Astrophysics Data System (ADS)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical CNOT gates can be performed by code deformation in a single block instead of between pairs of blocks, the threshold for fault-tolerant quantum memory for these codes is also the threshold for fault-tolerant quantum computation with them. Since the advent of a threshold theorem for quantum computers much has been improved upon. Thresholds have increased, architectures have become more local, and gate sets have been simplified. The overhead for magic-state distillation has been studied, but not nearly to the extent of the aforementioned topics. A method for greatly reducing this overhead, known as reusable magic states, is studied here. While examples of reusable magic states exist for Clifford gates, I give strong reasons to believe they do not exist for non-Clifford gates.

  1. Guidelines for the Use of Color in ATC Displays

    DOT National Transportation Integrated Search

    1999-06-01

    Color is probably the most effective, compelling, and attractive method available for coding visual information on a display. However, caution must be used in the application of color to displays for air traffic control (ATC), because it is easy to d...

  2. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  3. Lake water quality mapping from LANDSAT

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    The lakes in three LANDSAT scenes were mapped by the Bendix MDAS multispectral analysis system. Field checking the maps by three separate individuals revealed approximately 90-95% correct classification for the lake categories selected. Variations between observers was about 5%. From the MDAS color coded maps the lake with the worst algae problem was easily located. This lake was closely checked and a pollution source of 100 cows was found in the springs which fed this lake. The theory, lab work and field work which made it possible for this demonstration project to be a practical lake classification procedure are presented.

  4. Ireland, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 53.5 degrees North latitude, 8 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  5. Color-coded perfusion analysis of CEUS for pre-interventional diagnosis of microvascularisation in cases of vascular malformations.

    PubMed

    Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M

    2014-01-01

    Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.

  6. Use of color on airport moving maps and cockpit displays of traffic information (CDTIs)

    DOT National Transportation Integrated Search

    2014-06-01

    Color can be an effective method for coding visual information, making it easier to find and identify symbols on a display (Christ, 1975). However, careful consideration should be given when applying color because excessive or inappropriate use of co...

  7. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  8. Gulf Coast, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The topography of the Gulf Coast states is well shown in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the top (see Figure 1) is a standard view showing southern Louisiana, Mississippi, Alabama and the panhandle of Florida. Green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    For the view on the bottom (see Figure 2), elevations below 10 meters (33 feet) above sea level have been colored light blue. These low coastal elevations are especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 31 degrees north latitude, 88 degrees west longitude Orientation: North toward the top, Mercator projection Size: 702 by 433 kilometers (435 by 268 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  9. Southern Florida, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The very low topography of southern Florida is evident in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the left is a standard view, with the green colors indicating low elevations, rising through yellow and tan, to white at the highest elevations. In this exaggerated view even those highest elevations are only about 60 meters (197 feet) above sea level.

    For the view on the right, elevations below 5 meters (16 feet) above sea level have been colored dark blue, and lighter blue indicates elevations below 10 meters (33 feet). This is a dramatic demonstration of how Florida's low topography, especially along the coastline, make it especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 27 degrees north latitude, 81 degrees west longitude Orientation: North toward the top, Mercator projection Size: 397 by 445 kilometers (246 by 276 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  10. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    PubMed

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  12. [A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].

    PubMed

    Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe

    2015-04-01

    The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.

  13. An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process

    NASA Astrophysics Data System (ADS)

    Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre

    2015-02-01

    This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.

  14. Higher-Order Thinking and Metacognition in the First-Year Core-Education Classroom: A Case Study in the Use of Color-Coded Drafts

    ERIC Educational Resources Information Center

    Murray, Jeffrey W.

    2014-01-01

    This article seeks to provide some modest insights into the pedagogy of higher-order thinking and metacognition and to share the use of color-coded drafts as a best practice in service of both higher-order thinking and metacognition. This article will begin with a brief theoretical exploration of thinking and of thinking about thinking--the latter…

  15. Action Research of a Color-Coded, Onset-Rime Decoding Intervention: Examining the Effects with First Grade Students Identified as at Risk

    ERIC Educational Resources Information Center

    Wall, Candace A.; Rafferty, Lisa A.; Camizzi, Mariya A.; Max, Caroline A.; Van Blargan, David M.

    2016-01-01

    Many students who struggle to obtain the alphabetic principle are at risk for being identified as having a reading disability and would benefit from additional explicit phonics instruction as a remedial measure. In this action research case study, the research team conducted two experiments to investigate the effects of a color-coded, onset-rime,…

  16. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    PubMed

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Sri Lanka, Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM).

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania.

    The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of the hill country to the Jaffna peninsula.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 8.0 degrees North latitude, 80.7 degrees East longitude Orientation: North toward the top, Mercator projection Size: 275.6 by 482.4 kilometers (165.4 by 299.0 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  18. A Study of the Effect of Color in Memory Retention When Used in Presentation Software.

    ERIC Educational Resources Information Center

    McConnohie, Bruce Vernon

    A study of the effects of color as used in presentation software on short-range (immediately following treatment) and long-range (one hour following treatment) memory retention was conducted. Previous studies have concentrated on color as cueing or coding mechanisms primarily in print media and have not explored the effect of individual colors as…

  19. Mapping the Color Space of Saccadic Selectivity in Visual Search

    ERIC Educational Resources Information Center

    Xu, Yun; Higgins, Emily C.; Xiao, Mei; Pomplun, Marc

    2007-01-01

    Color coding is used to guide attention in computer displays for such critical tasks as baggage screening or air traffic control. It has been shown that a display object attracts more attention if its color is more similar to the color for which one is searching. However, what does "similar" precisely mean? Can we predict the amount of attention…

  20. Investigation of varying gray scale levels for remote manipulation

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Stuart, Mark A.; Sampaio, Carlos E.

    1991-01-01

    A study was conducted to investigate the effects of variant monitor gray scale levels and workplace illumination levels on operators' ability to discriminate between different colors on a monochrome monitor. It was determined that 8-gray scale viewing resulted in significantly worse discrimination performance compared to 16- and 32-gray scale viewing and that there was only a negligible difference found between 16 and 32 shades of gray. Therefore, it is recommended that monitors used while performing remote manipulation tasks have 16 or above shades of gray since this evaluation has found levels lower than this to be unacceptable for color discrimination task. There was no significant performance difference found between a high and a low workplace illumination condition. Further analysis was conducted to determine which specific combinations of colors can be used in conjunction with each other to ensure errorfree color coding/brightness discrimination performance while viewing a monochrome monitor. It was found that 92 three-color combination and 9 four-color combinations could be used with 100 percent accuracy. The results can help to determine which gray scale levels should be provided on monochrome monitors as well as which colors to use to ensure the maximal performance of remotely-viewed color discrimination/coding tasks.

  1. Potential digitization/compression techniques for Shuttle video

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Batson, B. H.

    1978-01-01

    The Space Shuttle initially will be using a field-sequential color television system but it is possible that an NTSC color TV system may be used for future missions. In addition to downlink color TV transmission via analog FM links, the Shuttle will use a high resolution slow-scan monochrome system for uplink transmission of text and graphics information. This paper discusses the characteristics of the Shuttle video systems, and evaluates digitization and/or bandwidth compression techniques for the various links. The more attractive techniques for the downlink video are based on a two-dimensional DPCM encoder that utilizes temporal and spectral as well as the spatial correlation of the color TV imagery. An appropriate technique for distortion-free coding of the uplink system utilizes two-dimensional HCK codes.

  2. Object knowledge changes visual appearance: semantic effects on color afterimages.

    PubMed

    Lupyan, Gary

    2015-10-01

    According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    NASA Astrophysics Data System (ADS)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  4. Color back projection for fruit maturity evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  5. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.28 Section 660.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... Reagents may be color coded with the specified color which shall be a visual match to a specific color...

  6. VizieR Online Data Catalog: Ultraviolet Excess Galaxies (Mitchell+ 1982)

    NASA Astrophysics Data System (ADS)

    Mitchell, K. J.; Brotzman, L. E.; Warnock, A.; Usher, P. D.

    2015-05-01

    The catalog contains a list of 412 faint galaxies selected for their apparent ultraviolet excess. The galaxies were selected from a 3-color (UBV) plate taken with the Palomar 48-inch Schmidt telescope. The 14-inch-square plates cover an area of 30 square degrees centered on Kapteyn Selected Area 28. The catalog includes running numbers, coordinates, color codes, magnitude codes, morphologies, diameters, and notes. The catalogued galaxies were selected by eye from the Palomar Schmidt 3-color (UBV) plate PS24771, centered on Kapteyn Selexted Area 28 and taken by Usher under conditions of good seeing and transparency. (1 data file).

  7. France, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of France was generated with data from the Shuttle Radar Topography Mission (SRTM). For this broad view the resolution of the data was reduced to 6 arcseconds (about 185 meters north-south and 127 meters east-west), resampled to a Mercator projection, and the French border outlined. Even at this decreased resolution the variety of landforms comprising the country is readily apparent.

    The upper central part of this scene is dominated by the Paris Basin, which consists of a layered sequence of sedimentary rocks. Fertile soils over much of the area make good agricultural land. The Normandie coast to the upper left is characterized by high, chalk cliffs, while the Brittany coast (the peninsula to the left) is highly indented where deep valleys were drowned by the sea, and the Biscay coast to the southwest is marked by flat, sandy beaches.

    To the south, the Pyrenees form a natural border between France and Spain, and the south-central part of the country is dominated by the ancient Massif Central. Subject to volcanism that has only subsided in the last 10,000 years, these central mountains are separated from the Alps by the north-south trending Rhone River Basin.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 42 to 51.5 degrees North latitude, 5.5 West to 8 degrees East longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000

  8. Women of Color Organizations & Projects: A National Directory.

    ERIC Educational Resources Information Center

    Burnham, Linda, Comp.

    This directory includes nearly 200 organizations whose staff, membership, or constituency is predominantly women of color; organizations that concern women of color by virtue of their location or issues they address; and projects or organizations whose membership is primarily White but that focus on issues of importance to women of color. Disk…

  9. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    NASA Astrophysics Data System (ADS)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  10. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  11. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.

    PubMed

    Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M

    2018-05-04

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  12. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  13. Incorporating 3-dimensional models in online articles.

    PubMed

    Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-05-01

    The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  15. Reverse Stroop Effects with Untranslated Responses

    ERIC Educational Resources Information Center

    Blais, Chris; Besner, Derek

    2006-01-01

    Translation accounts have argued that the presence of a Stroop effect in the context of a nonvocal untranslated response is caused by verbal mediation. In its simplest form, color-labeled buttons are translated into a verbal code that interferes with color responses. On this logic, in the reverse Stroop task (identify the word; ignore the color),…

  16. The Instructional Effect of Color in Immediate and Delayed Retention.

    ERIC Educational Resources Information Center

    Lamberski, Richard J.

    The effect of verbal and visual (color or black/white) coding strategies in self-paced instruction and test materials in facilitating student retention on different cognitive tasks was studied. The 176 college student subjects received instruction and testing using varied combinations of color or black/white materials. Instructional materials were…

  17. Color Vision and Performance on Color-Coded Cockpit Displays.

    PubMed

    Gaska, James P; Wright, Steven T; Winterbottom, Marc D; Hadley, Steven C

    Although there are numerous studies that demonstrate that color vision deficient (CVD) individuals perform less well than color vision normal (CVN) individuals in tasks that require discrimination or identification of colored stimuli, there remains a need to quantify the relationship between the type and severity of CVD and performance on operationally relevant tasks. Participants were classified as CVN (N = 45) or CVD (N = 49) using the Rabin cone contrast test, which is the standard color vision screening test used by the United States Air Force. In the color condition, test images that were representative of the size, shape, and color of symbols and lines used on fifth-generation fighter aircraft displays were used to measure operational performance. In the achromatic condition, all symbols and lines had the same chromaticity but differed in luminance. Subjects were asked to locate and discriminate between friend vs. foe symbols (red vs. green, or brighter vs. dimmer) while speed and accuracy were recorded. Increasing color deficiency was associated with decreasing speed and accuracy for the color condition (R 2 > 0.2), but not for the achromatic condition. Mean differences between CVN and CVD individuals showed the same pattern. Although lower CCT scores are clearly associated with lower performance in color related tasks, the magnitude of the performance loss was relatively small and there were multiple examples of high-performing CVD individuals who had higher operational scores than low-performing CVN individuals. Gaska JP, Wright ST, Winterbottom MD, Hadley SC. Color vision and performance on color-coded cockpit displays. Aerosp Med Hum Perform. 2016; 87(11):921-927.

  18. Men who have sex with men’s attitudes toward using color-coded wristbands to facilitate sexual communication at sex parties

    PubMed Central

    Grov, Christian; Cruz, Jackeline; Parsons, Jeffrey T.

    2014-01-01

    Sex parties are environments where men who have sex with men (MSM) have the opportunity to have sex with multiple partners over a brief period of time. Dim lighting and non-verbal communication are characteristics of sex parties that make sexual communication more challenging. We report on qualitative data from 47 MSM who attended sex parties in New York City. Participants responded to distinct hypothetical scenarios involving the use of color-coded wristbands to communicate (1) condom use preferences, (2) sexual position (e.g., top, bottom) and (3) HIV status at sex parties. The majority had positive-to-neutral attitudes toward color-coded wristbands to indicate (1) condom use preference and (2) sexual position (70.8%, 75.0% HIV-positive; 63.6%, 81.8%, HIV-negative respectively). These men cited that wristbands would facilitate the process of pursuing partners with similar interests while also avoiding the discomforts of verbal communication. In contrast, 41.7% of HIV-positive and 50.0% of HIV-negative men expressed unfavorable attitudes to using wristbands to communicate HIV status. These men cited the potential for HIV-status discrimination as well as suspicions around dishonest disclosure. Although participants were receptive to utilizing color-coded wristbands at sex parties to convey certain information, it may be unfeasible to use wristbands to communicate HIV status. PMID:24659929

  19. Color categories are not universal: new evidence from traditional and western cultures

    NASA Astrophysics Data System (ADS)

    Roberson, Debi D.; Davidoff, Jules; Davies, Ian R. L.

    2002-06-01

    Evidence presented supports the linguistic relativity of color categories in three different paradigms. Firstly, a series of cross-cultural investigations, which had set out to replicate the seminal work of Rosch Heider with the Dani of New Guinea, failed to find evidence of a set of universal color categories. Instead, we found evidence of linguistic relativity in both populations tested. Neither participants from a Melanesian hunter-gatherer culture, nor those from an African pastoral tribe, whose languages both contain five color terms, showed a cognitive organization of color resembling that of English speakers. Further, Melanesian participants showed evidence of Categorical Perception, but only at their linguistic category boundaries. Secondly, in native English speakers verbal interference was found to selectively remove the defining features of Categorical Perception. Under verbal interference, the greater accuracy normally observed for cross-category judgements compared to within-category judgements disappeared. While both visual and verbal codes may be employed in the recognition memory of colors, participants only make use of verbal coding when demonstrating Categorical Perception. Thirdly, in a brain- damaged patient suffering from a naming disorder, the loss of labels radically impaired his ability to categorize colors. We conclude that language affects both the perception of and memory for colors.

  20. Symbolic comparisons of objects on color attributes.

    PubMed

    Paivio, A; te Linde, J

    1980-11-01

    Symbolic comparisons of object brightness and color were investigated in two experiments using words and outline drawings as stimuli. Both experiments yielded orderly symbolic distance effects. Contrary to prediction, no reliable picture advantages emerged. For color comparison, individual differences in word fluency and color memory predicted decision time with word stimuli. These results contrast sharply with those of previous comparison studies involving concrete dimensions. The results are discussed in terms of dual-coding theory and the role of verbal mechanisms in memory for object color.

  1. The Remote Analysis Station (RAS) as an instructional system

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Wilson, C. L.; Dye, R. H.; Jaworski, E.

    1981-01-01

    "Hands-on" training in LANDSAT data analysis techniques can be obtained using a desk-top, interactive remote analysis station (RAS) which consists of a color CRT imagery display, with alphanumeric overwrite and keyboard, as well as a cursor controller and modem. This portable station can communicate via modem and dial-up telephone with a host computer at 1200 baud or it can be hardwired to a host computer at 9600 baud. A Z80 microcomputer controls the display refresh memory and remote station processing. LANDSAT data is displayed as three-band false-color imagery, one-band color-sliced imagery, or color-coded processed imagery. Although the display memory routinely operates at 256 x 256 picture elements, a display resolution of 128 x 128 can be selected to fill the display faster. In the false color mode the computer packs the data into one 8-bit character. When the host is not sending pictorial information the characters sent are in ordinary ASCII code. System capabilities are described.

  2. Dissociation between awareness and spatial coding: evidence from unilateral neglect.

    PubMed

    Treccani, Barbara; Cubelli, Roberto; Sellaro, Roberta; Umiltà, Carlo; Della Sala, Sergio

    2012-04-01

    Prevalent theories about consciousness propose a causal relation between lack of spatial coding and absence of conscious experience: The failure to code the position of an object is assumed to prevent this object from entering consciousness. This is consistent with influential theories of unilateral neglect following brain damage, according to which spatial coding of neglected stimuli is defective, and this would keep their processing at the nonconscious level. Contrary to this view, we report evidence showing that spatial coding and consciousness can dissociate. A patient with left neglect, who was not aware of contralesional stimuli, was able to process their color and position. However, in contrast to (ipsilesional) consciously perceived stimuli, color and position of neglected stimuli were processed separately. We propose that individual object features, including position, can be processed without attention and consciousness and that conscious perception of an object depends on the binding of its features into an integrated percept.

  3. An open source Java web application to build self-contained Web GIS sites

    NASA Astrophysics Data System (ADS)

    Zavala Romero, O.; Ahmed, A.; Chassignet, E.; Zavala-Hidalgo, J.

    2014-12-01

    This work describes OWGIS, an open source Java web application that creates Web GIS sites by automatically writing HTML and JavaScript code. OWGIS is configured by XML files that define which layers (geographic datasets) will be displayed on the websites. This project uses several Open Geospatial Consortium standards to request data from typical map servers, such as GeoServer, and is also able to request data from ncWMS servers. The latter allows for the displaying of 4D data stored using the NetCDF file format (widely used for storing environmental model datasets). Some of the features available on the sites built with OWGIS are: multiple languages, animations, vertical profiles and vertical transects, color palettes, color ranges, and the ability to download data. OWGIS main users are scientists, such as oceanographers or climate scientists, who store their data in NetCDF files and want to analyze, visualize, share, or compare their data using a website.

  4. Color-Coded Labels Cued Nurses to Adhere to Central Line Connector Change.

    PubMed

    Morrison, Theresa Lynch; Laney, Christina; Foglesong, Jan; Brennaman, Laura

    2016-01-01

    This study examined nurses' adherence to policies regarding needleless connector changes using a novel, day-of-the-week, color-coded label compared with usual care that relied on electronic medical record (EMR) documentation. This was a prospective, comparative study. The study was performed on 4 medical-surgical units in a seasonally fluctuating, 715-bed healthcare system composed of 2 community hospitals. Convenience sample was composed of adults with central lines hospitalized for 4 or more days. At 4-day intervals, investigators observed bedside label use and EMR needleless connector change documentation. Control patients received standard care-needleless connector change with associated documentation in the EMR. Intervention patients, in addition to standard care, had a day-of-the-week, color-coded label placed on each needleless connector. To account for clustering within unit, multinomial logistic regression models using survey sampling methodology were used to conduct Wald χ tests. A multinominal odds ratio and 95% confidence interval (CI) provided an estimate of using labels that were provided on units relative to usual care documentation of needleless connector change in the EMR. In 335 central line observations, the units with labels (n = 205) had a 321% increase rate of documentation of needleless connector change in the EMR (odds ratio, 4.21; 95% CI, 1.76-10.10; P = .003) compared with the usual care control patients. For units with labels, when labels were present, placement of labels on needleless connectors increased the odds that nurses documented connector changes per policy (4.72; 95% CI, 2.02, 10.98; P = .003). Day-of-the-week, color-coded labels cued nurses to document central line needleless connector change in the EMR, which increased adherence to the needleless connector change policy. Providing day-of-the-week, color-coded needleless connector labels increased EMR documentation of timely needleless connector changes. Timely needleless connector changes may lower the incidence of central line-associated bloodstream infection.

  5. Constraining Dust Properties in Circumstellar Envelopes of C-Stars in the Small Magellanic Cloud: Optical Constants And Grain Size Of Carbon Dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-07-01

    We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.

  6. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reconstructing color images of astronomical objects using black and white spectroscopic emulsions

    NASA Technical Reports Server (NTRS)

    Dufour, R. I.; Martins, D. H.

    1976-01-01

    A color photograph of the peculiar elliptical galaxy NGC 5128 (Centaurus A) has been reconstructed from three Kodak 103a emulsion type photographs by projecting positives of the three B&W plates through appropriate filters onto a conventional color film. The resulting photograph shows color balance and latitude characteristics superior to color photographs of similar astronomical objects made with commercially available conventional color film. Similar results have been obtained for color reconstructed photographs of the Large and Small Magellanic Clouds. These and other results suggest that these projection-reconstruction techniques can be used to obtain high-quality color photographs of astronomical objects which overcome many of the problems associated with the use of conventional color film for the long exposures required in astronomy.

  8. Memory-Context Effects of Screen Color in Multiple-Choice and Fill-In Tests

    ERIC Educational Resources Information Center

    Prestera, Gustavo E.; Clariana, Roy; Peck, Andrew

    2005-01-01

    In this experimental study, 44 undergraduates completed five computer-based instructional lessons and either two multiplechoice tests or two fill-in-the-blank tests. Color-coded borders were displayed during the lesson, adjacent to the screen text and illustrations. In the experimental condition, corresponding border colors were shown at posttest.…

  9. Application of remotely sensed multispectral data to automated analysis of marshland vegetation. Inference to the location of breeding habitats of the salt marsh mosquito (Aedes Sollicitans)

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.

    1976-01-01

    The techniques used for the automated classification of marshland vegetation and for the color-coded display of remotely acquired data to facilitate the control of mosquito breeding are presented. A multispectral scanner system and its mode of operation are described, and the computer processing techniques are discussed. The procedures for the selection of calibration sites are explained. Three methods for displaying color-coded classification data are presented.

  10. Two-panel LCOS-based projection system: a potentially compact high-resolution avionics display

    NASA Astrophysics Data System (ADS)

    Sharp, Gary D.; Chen, Jianmin; Robinson, Michael B.; Korah, John K.

    2003-09-01

    Military displays have been limited first by the availability of CRT and then AMLCD for color multifunctional displays. Projection display technology has been offered as an alternative. With the growth of the LCOS based consumer projection display industry, commercially off the shelf (COTS) components and technology are becoming readily available. A projection display system addresses the lessons learned from the CRT or AMLCD based attempts. This approach presents multiple vendors and user defined aspect ratio, resolution, brightness and color. This paper will present the latest work at ColorLink, Inc. on a two-panel LCOS based projection light engine developed for the consumer industry driven Rear Projection Television (RPTV) market. This engine demonstrates throughput, contrast and color performance that exceeds military requirements using COTS technology and components. We will introduce the core technology and philosophy followed by this industry in defining such a product.

  11. 32 CFR 507.5 - Statutory authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... colorable imitations of them, are governed by section 704, title 18, United States Code (18 U.S.C. 704). (b... other designs, prescribed by the head of a U.S. department or agency, or colorable imitations of them...

  12. Color-coded automated signal intensity curves for detection and characterization of breast lesions: preliminary evaluation of a new software package for integrated magnetic resonance-based breast imaging.

    PubMed

    Pediconi, Federica; Catalano, Carlo; Venditti, Fiammetta; Ercolani, Mauro; Carotenuto, Luigi; Padula, Simona; Moriconi, Enrica; Roselli, Antonella; Giacomelli, Laura; Kirchin, Miles A; Passariello, Roberto

    2005-07-01

    The objective of this study was to evaluate the value of a color-coded automated signal intensity curve software package for contrast-enhanced magnetic resonance mammography (CE-MRM) in patients with suspected breast cancer. Thirty-six women with suspected breast cancer based on mammographic and sonographic examinations were preoperatively evaluated on CE-MRM. CE-MRM was performed on a 1.5-T magnet using a 2D Flash dynamic T1-weighted sequence. A dosage of 0.1 mmol/kg of Gd-BOPTA was administered at a flow rate of 2 mL/s followed by 10 mL of saline. Images were analyzed with the new software package and separately with a standard display method. Statistical comparison was performed of the confidence for lesion detection and characterization with the 2 methods and of the diagnostic accuracy for characterization compared with histopathologic findings. At pathology, 54 malignant lesions and 14 benign lesions were evaluated. All 68 (100%) lesions were detected with both methods and good correlation with histopathologic specimens was obtained. Confidence for both detection and characterization was significantly (P < or = 0.025) better with the color-coded method, although no difference (P > 0.05) between the methods was noted in terms of the sensitivity, specificity, and overall accuracy for lesion characterization. Excellent agreement between the 2 methods was noted for both the determination of lesion size (kappa = 0.77) and determination of SI/T curves (kappa = 0.85). The novel color-coded signal intensity curve software allows lesions to be visualized as false color maps that correspond to conventional signal intensity time curves. Detection and characterization of breast lesions with this method is quick and easily interpretable.

  13. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  14. Study and simulation of low rate video coding schemes

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Kipp, G.

    1992-01-01

    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.

  15. Optimal patch code design via device characterization

    NASA Astrophysics Data System (ADS)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  16. Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The volcanic nature of the island of Bali is evident in this shaded relief image generated with data from the Shuttle Radar Topography Mission (SRTM).

    Bali, along with several smaller islands, make up one of the 27 Provinces of Indonesia. It lies over a major subduction zone where the Indo-Australian tectonic plate collides with the Sunda plate, creating one of the most volcanically active regions on the planet.

    The most significant feature on Bali is Gunung Agung, the symmetric, conical mountain at the right-center of the image. This 'stratovolcano,' 3,148 meters (10,308 feet) high, is held sacred in Balinese culture, and last erupted in 1963 after being dormant and thought inactive for 120 years. This violent event resulted in over 1,000 deaths, and coincided with a purification ceremony called Eka Dasa Rudra, meant to restore the balance between nature and man. This most important Balinese rite is held only once per century, and the almost exact correspondence between the beginning of the ceremony and the eruption is though to have great religious significance.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 8.33 degrees South latitude, 115.17 degrees East longitude Orientation: North toward the top, Mercator projection Size: 153 by 112 kilometers (95 by 69 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  17. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  18. Evaluation of a color-coded Landsat 5/6 ratio image for mapping lithologic differences in western South Dakota

    USGS Publications Warehouse

    Raines, Gary L.; Bretz, R.F.; Shurr, George W.

    1979-01-01

    From analysis of a color-coded Landsat 5/6 ratio, image, a map of the vegetation density distribution has been produced by Raines of 25,000 sq km of western South Dakota. This 5/6 ratio image is produced digitally calculating the ratios of the bands 5 and 6 of the Landsat data and then color coding these ratios in an image. Bretz and Shurr compared this vegetation density map with published and unpublished data primarily of the U.S. Geological Survey and the South Dakota Geological Survey; good correspondence is seen between this map and existing geologic maps, especially with the soils map. We believe that this Landsat ratio image can be used as a tool to refine existing maps of surficial geology and bedrock, where bedrock is exposed, and to improve mapping accuracy in areas of poor exposure common in South Dakota. In addition, this type of image could be a useful, additional tool in mapping areas that are unmapped.

  19. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  20. Representing Color Ensembles.

    PubMed

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  1. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  2. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  3. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    PubMed Central

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  4. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  5. The Use of Color Cues to Facilitate Discrimination Learning in Moderately Retarded Adults: A Pilot Study.

    ERIC Educational Resources Information Center

    Haese, Julia B.

    1984-01-01

    Twelve moderately retarded adults served as subjects in testing the hypothesis that colored drawings would be more effective in teaching the identification of common kitchen utensils. The study demonstrated that such adults performed better in discrimination tasks with color coding as an aid to developing such living skills as food preparation.…

  6. Color differences among feral pigeons (Columba livia) are not attributable to sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R)

    PubMed Central

    2013-01-01

    Background Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons. Findings We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene. Conclusions Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons. PMID:23915680

  7. MSLICE Sequencing

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Norris, Jeffrey S.; Morris, John R.

    2011-01-01

    MSLICE Sequencing is a graphical tool for writing sequences and integrating them into RML files, as well as for producing SCMF files for uplink. When operated in a testbed environment, it also supports uplinking these SCMF files to the testbed via Chill. This software features a free-form textural sequence editor featuring syntax coloring, automatic content assistance (including command and argument completion proposals), complete with types, value ranges, unites, and descriptions from the command dictionary that appear as they are typed. The sequence editor also has a "field mode" that allows tabbing between arguments and displays type/range/units/description for each argument as it is edited. Color-coded error and warning annotations on problematic tokens are included, as well as indications of problems that are not visible in the current scroll range. "Quick Fix" suggestions are made for resolving problems, and all the features afforded by modern source editors are also included such as copy/cut/paste, undo/redo, and a sophisticated find-and-replace system optionally using regular expressions. The software offers a full XML editor for RML files, which features syntax coloring, content assistance and problem annotations as above. There is a form-based, "detail view" that allows structured editing of command arguments and sequence parameters when preferred. The "project view" shows the user s "workspace" as a tree of "resources" (projects, folders, and files) that can subsequently be opened in editors by double-clicking. Files can be added, deleted, dragged-dropped/copied-pasted between folders or projects, and these operations are undoable and redoable. A "problems view" contains a tabular list of all problems in the current workspace. Double-clicking on any row in the table opens an editor for the appropriate sequence, scrolling to the specific line with the problem, and highlighting the problematic characters. From there, one can invoke "quick fix" as described above to resolve the issue. Once resolved, saving the file causes the problem to be removed from the problem view.

  8. Olduvai Gorge, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three striking and important areas of Tanzania in eastern Africa are shown in this color-coded shaded relief image from the Shuttle Radar Topography Mission. The largest circular feature in the center right is the caldera, or central crater, of the extinct volcano Ngorongoro. It is surrounded by a number of smaller volcanoes, all associated with the Great Rift Valley, a geologic fault system that extends for about 4,830 kilometers (2,995 miles) from Syria to central Mozambique.

    Ngorongoro's caldera is 22.5 kilometers (14 miles) across at its widest point and is 610 meters (2,000 feet) deep. Its floor is very level, holding a lake fed by streams running down the caldera wall. It is part of the Ngorongoro Conservation Area and is home to over 75,000 animals. The lakes south of the crater are Lake Eyasi and Lake Manyara, also part of the conservation area.

    The relatively smooth region in the upper left of the image is the Serengeti National Park, the largest in Tanzania. The park encompasses the main part of the Serengeti ecosystem, supporting the greatest remaining concentration of plains game in Africa including more than 3,000,000 large mammals. The animals roam the park freely and in the spectacular migrations, huge herds of wild animals move to other areas of the park in search of greener grazing grounds (requiring over 4,000 tons of grass each day) and water.

    The faint, nearly horizontal line near the center of the image is Olduvai Gorge, made famous by the discovery of remains of the earliest humans to exist. Between 1.9 and 1.2 million years ago a salt lake occupied this area, followed by the appearance of fresh water streams and small ponds. Exposed deposits show rich fossil fauna, many hominid remains and items belonging to one of the oldest stone tool technologies, called Olduwan. The time span of the objects recovered dates from 2,100,000 to 15,000 years ago.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 3 degrees south latitude, 35 degrees east longitude Orientation: North toward the top, Mercator projection Size: 223 by 223 kilometers (138 by 138 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  9. False Color Terrain Model of Phoenix Workspace

    NASA Image and Video Library

    2008-05-28

    This is a terrain model of Phoenix Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix Surface Stereo Imager SSI.

  10. Maximizing optical efficacy and color gamut in projection applications by combining four laser wavelengths

    NASA Astrophysics Data System (ADS)

    Wallhead, Ian; Ocaña, Roberto

    2014-05-01

    Laser projection devices should be designed to maximize their luminous efficacy and color gamut. This is for two main reasons. Firstly, being either stand alone devices or embedded in other products, they could be powered by battery, and lifetime is an important factor. Secondly, the increasing use of lasers to project images calls for a consideration of eye safety issues. The brightness of the projected image may be limited by the Class II accessible emission limit. There is reason to believe that current laser beam scanning projection technology is already close to the power ceiling based on eye safety limits. Consequently, it would be desirable to improve luminous efficacy to increase the output luminous flux whilst maintaining or improving color gamut for the same eye-safe optical power limit. Here we present a novel study about the combination of four laser wavelengths in order to maximize both color gamut and efficacy to produce the color white. Firstly, an analytic method to calculate efficacy as function of both four laser wavelengths and four laser powers is derived. Secondly we provide a new way to present the results by providing the diagram efficacy vs color gamut area that summarizes the performance of any wavelength combination for projection purposes. The results indicate that the maximal efficacy for the D65 white is only achievable by using a suitable combination of both laser power ratios and wavelengths.

  11. Grayscale imbalance correction in real-time phase measuring profilometry

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2016-10-01

    Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.

  12. Terrorism-related fear and avoidance behavior in a multiethnic urban population.

    PubMed

    Eisenman, David P; Glik, Deborah; Ong, Michael; Zhou, Qiong; Tseng, Chi-Hong; Long, Anna; Fielding, Jonathan; Asch, Steven

    2009-01-01

    We sought to determine whether groups traditionally most vulnerable to disasters would be more likely than would be others to perceive population-level risk as high (as measured by the estimated color-coded alert level) would worry more about terrorism, and would avoid activities because of terrorism concerns. We conducted a random digit dial survey of the Los Angeles County population October 2004 through January 2005 in 6 languages. We asked respondents what color alert level the country was under, how often they worry about terrorist attacks, and how often they avoid activities because of terrorism. Multivariate regression modeled correlates of worry and avoidance, including mental illness, disability, demographic factors, and estimated color-coded alert level. Persons who are mentally ill, those who are disabled, African Americans, Latinos, Chinese Americans, Korean Americans, and non-US citizens were more likely to perceive population-level risk as high, as measured by the estimated color-coded alert level. These groups also reported more worry and avoidance behaviors because of concerns about terrorism. Vulnerable populations experience a disproportionate burden of the psychosocial impact of terrorism threats and our national response. Further studies should investigate the specific behaviors affected and further elucidate disparities in the disaster burden associated with terrorism and terrorism policies.

  13. Terrorism-Related Fear and Avoidance Behavior in a Multiethnic Urban Population

    PubMed Central

    Glik, Deborah; Ong, Michael; Zhou, Qiong; Tseng, Chi-Hong; Long, Anna; Fielding, Jonathan; Asch, Steven

    2009-01-01

    Objectives. We sought to determine whether groups traditionally most vulnerable to disasters would be more likely than would be others to perceive population-level risk as high (as measured by the estimated color-coded alert level) would worry more about terrorism, and would avoid activities because of terrorism concerns. Methods. We conducted a random digit dial survey of the Los Angeles County population October 2004 through January 2005 in 6 languages. We asked respondents what color alert level the country was under, how often they worry about terrorist attacks, and how often they avoid activities because of terrorism. Multivariate regression modeled correlates of worry and avoidance, including mental illness, disability, demographic factors, and estimated color-coded alert level. Results. Persons who are mentally ill, those who are disabled, African Americans, Latinos, Chinese Americans, Korean Americans, and non-US citizens were more likely to perceive population-level risk as high, as measured by the estimated color-coded alert level. These groups also reported more worry and avoidance behaviors because of concerns about terrorism. Conclusions. Vulnerable populations experience a disproportionate burden of the psychosocial impact of terrorism threats and our national response. Further studies should investigate the specific behaviors affected and further elucidate disparities in the disaster burden associated with terrorism and terrorism policies. PMID:19008521

  14. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  15. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...

  16. A valiant little terminal: A VLT user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga's usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld hadmore » been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC's purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.« less

  17. A valiant little terminal: A VLT user`s manual. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga`s usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld hadmore » been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC`s purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.« less

  18. Color-Coded Clues to Composition Superimposed on Martian Seasonal-Flow Image

    NASA Image and Video Library

    2014-02-10

    This image from NASA Mar Reconnaissance Orbiter combines a photograph of seasonal dark flows on a Martian slope at Palikir Crater with a grid of colors based on data collected by a mineral-mapping spectrometer observing the same area.

  19. Pixel-Wise-Inter/Intra-Channel Color and Luminance Uniformity Corrections for Multi-Channel Projection Displays

    DTIC Science & Technology

    2016-08-11

    Journal Article 3. DATES COVERED (From – To) Jan 2015 – Dec 2015 4. TITLE AND SUBTITLE PIXEL-WISE INTER/INTRA-CHANNEL COLOR & LUMINANCE UNIFORMITY...Conference Dayton, Ohio – 28-29 June 2016 14. ABSTRACT Inter- and intra-channel color and luminance are generally non-uniform in multi-channel...projection display systems. Several methods have been proposed to correct for both inter- and intra-channel color and luminance variation in multi-channel

  20. Real-time range acquisition by adaptive structured light.

    PubMed

    Koninckx, Thomas P; Van Gool, Luc

    2006-03-01

    The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.

  1. Ability of the D-15 panel tests and HRR pseudoisochromatic plates to predict performance in naming VDT colors.

    PubMed

    Ramaswamy, Shankaran; Hovis, Jeffery K

    2004-01-01

    Color codes in VDT displays often contain sets of colors that are confusing to individuals with color-vision deficiencies. The purpose of this study is to determine whether individuals with color-vision deficiencies (color defectives) can perform as well as individuals without color-vision deficiencies (color normals) on a colored VDT display used in the railway industry and to determine whether clinical color-vision tests can predict their performance. Of the 52 color defectives, 58% failed the VDT test. The kappa coefficients of agreement for the Farnsworth D-15, Adams desaturated D-15, and Richmond 3rd Edition HRR PIC diagnostic plates were significantly greater than chance. In particular, the D-15 tests have a high probability of predicting who fails the practical test. However, all three tests had an unacceptably high false-negative rate (9.5-35%); so that a practical test is still needed.

  2. Displaying Geographically-Based Domestic Statistics

    NASA Technical Reports Server (NTRS)

    Quann, J.; Dalton, J.; Banks, M.; Helfer, D.; Szczur, M.; Winkert, G.; Billingsley, J.; Borgstede, R.; Chen, J.; Chen, L.; hide

    1982-01-01

    Decision Information Display System (DIDS) is rapid-response information-retrieval and color-graphics display system. DIDS transforms tables of geographically-based domestic statistics (such as population or unemployment by county, energy usage by county, or air-quality figures) into high-resolution, color-coded maps on television display screen.

  3. Laser-based volumetric flow visualization by digital color imaging of a spectrally coded volume.

    PubMed

    McGregor, T J; Spence, D J; Coutts, D W

    2008-01-01

    We present the framework for volumetric laser-based flow visualization instrumentation using a spectrally coded volume to achieve three-component three-dimensional particle velocimetry. By delivering light from a frequency doubled Nd:YAG laser with an optical fiber, we exploit stimulated Raman scattering within the fiber to generate a continuum spanning the visible spectrum from 500 to 850 nm. We shape and disperse the continuum light to illuminate a measurement volume of 20 x 10 x 4 mm(3), in which light sheets of differing spectral properties overlap to form an unambiguous color variation along the depth direction. Using a digital color camera we obtain images of particle fields in this volume. We extract the full spatial distribution of particles with depth inferred from particle color. This paper provides a proof of principle of this instrument, examining the spatial distribution of a static field and a spray field of water droplets ejected by the nozzle of an airbrush.

  4. The use of computer-generated color graphic images for transient thermal analysis. [for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.

    1979-01-01

    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.

  5. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    PubMed

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N

    2017-08-01

    We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.

  7. Durability of switchable QR code carriers under hydrolytic and photolytic conditions

    NASA Astrophysics Data System (ADS)

    Ecker, Melanie; Pretsch, Thorsten

    2013-09-01

    Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.

  8. Ambae Island, Vanuatu (South Pacific)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The recently active volcano Mt. Manaro is the dominant feature in this shaded relief image of Ambae Island, part of the Vanuatu archipelago located 1400 miles northeast of Sydney, Australia. About 5000 inhabitants, half the island's population, were evacuated in early December from the path of a possible lahar, or mud flow, when the volcano started spewing clouds of steam and toxic gases 10,000 feet into the atmosphere.

    Last active in 1996, the 1496 meter (4908 ft.) high Hawaiian-style basaltic shield volcano features two lakes within its summit caldera, or crater. The ash and gas plume is actually emerging from a vent at the center of Lake Voui (at left), which was formed approximately 425 years ago after an explosive eruption.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 15.4 degree south latitude, 167.9 degrees east longitude Orientation: North toward the top, Mercator projection Size: 36.8 by 27.8 kilometers (22.9 by 17.3 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  9. Management of natural resources through automatic cartographic inventory

    NASA Technical Reports Server (NTRS)

    Rey, P. A.; Gourinard, Y.; Cambou, F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Significant correspondence codes relating ERTS imagery to ground truth from vegetation and geology maps have been established. The use of color equidensity and color composite methods for selecting zones of equal densitometric value on ERTS imagery was perfected. Primary interest of temporal color composite is stressed. A chain of transfer operations from ERTS imagery to the automatic mapping of natural resources was developed.

  10. Using a color-coded ambigraphic nucleic acid notation to visualize conserved palindromic motifs within and across genomes

    PubMed Central

    2014-01-01

    Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494

  11. Real-time 3D video compression for tele-immersive environments

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William

    2006-01-01

    Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).

  12. Optical Coronagraphic Spectroscopy of AU Mic: Evidence of Time Variable Colors?

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Roberge, Aki; Donaldson, Jessica K.; Debes, John H.; Malumuth, Eliot M.; Weinberger, Alycia J.

    2018-02-01

    We present coronagraphic long slit spectra of AU Mic’s debris disk taken with the STIS instrument aboard the Hubble Space Telescope. Our spectra are the first spatially-resolved, scattered light spectra of the system’s disk, which we detect at projected distances between approximately 10 and 45 au. Our spectra cover a wavelength range between 5200 and 10200 Å. We find that the color of AU Mic’s debris disk is bluest at small (12–17 au) projected separations. These results both confirm and quantify the findings qualitatively noted by Krist et al. and are different than IR observations that suggested a uniform blue or gray color as a function of projected separation in this region of the disk. Unlike previous literature, which reported that the color of AU Mic’s disk became increasingly more blue as a function of projected separation beyond ∼30 au, we find the disk’s optical color between 35 and 45 au to be uniformly blue on the southeast side of the disk and decreasingly blue on the northwest side. We note that this apparent change in disk color at larger projected separations coincides with several fast, outward moving “features” that are passing through this region of the southeast side of the disk. We speculate that these phenomenon might be related and that the fast moving features could be changing the localized distribution of sub-micron-sized grains as they pass by, thereby reducing the blue color of the disk in the process. We encourage follow-up optical spectroscopic observations of AU Mic to both confirm this result and search for further modifications of the disk color caused by additional fast moving features propagating through the disk.

  13. [Venous Doppler color echography: importance and inconveniences].

    PubMed

    Laroche, J P; Dauzat, M; Muller, G; Janbon, C

    1993-01-01

    Color Doppler is a technique which performs a real-time opacification of the vascular system with blue indicating reverse flow and red indicating forward flow (directional color coding). In venous pathology, the use of color Doppler improves significantly the anatomical evaluation of the inferior vena cava, the iliac vein, the deep femoral vein, and the sural system. Color Doppler facilitates the study of deep venous thrombosis (providing useful information to differentiate ancient from most recent thrombus) and also the study of post-thrombotic conditions (assessment of reverse flow, repermeation phenomena). Finally, color Doppler produces a better insight for the study of varicose veins, especially with regard to mapping, identification of communicante veins, and study of the external saphenous vein.

  14. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  15. Environmental durability diagnostic for printed identification codes of polymer insulation for distribution pipelines

    NASA Astrophysics Data System (ADS)

    Zhuravleva, G. N.; Nagornova, I. V.; Kondratov, A. P.; Bablyuk, E. B.; Varepo, L. G.

    2017-08-01

    A research and modelling of weatherability and environmental durability of multilayer polymer insulation of both cable and pipelines with printed barcodes or color identification information were performed. It was proved that interlayer printing of identification codes in distribution pipelines insulation coatings provides high marking stability to light and atmospheric condensation. This allows to carry out their distant damage control. However, microbiological fouling of upper polymer layer hampers the distant damage pipelines identification. The color difference values and density changes of PE and PVC printed insolation due to weather and biological factors were defined.

  16. Tensor discriminant color space for face recognition.

    PubMed

    Wang, Su-Jing; Yang, Jian; Zhang, Na; Zhou, Chun-Guang

    2011-09-01

    Recent research efforts reveal that color may provide useful information for face recognition. For different visual tasks, the choice of a color space is generally different. How can a color space be sought for the specific face recognition problem? To address this problem, this paper represents a color image as a third-order tensor and presents the tensor discriminant color space (TDCS) model. The model can keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color space transformation matrix and two discriminant projection matrices by maximizing the ratio of these two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech face databases, and the results show that both the performance and the efficiency of the proposed method are better than those of the state-of-the-art color image discriminant model, which involve one color space transformation matrix and one discriminant projection matrix, specifically in a complicated face database with various pose variations.

  17. Color discrimination, color naming and color preferences in 80-year olds.

    PubMed

    Wijk, H; Berg, S; Sivik, L; Steen, B

    1999-06-01

    The aim of the present study was to investigate color discrimination, color naming and color preference in a random sample of 80-year-old men and women. Knowledge of color perception in old age can be of value when using color contrast, cues and codes in the environment to promote orientation and function. The color naming test indicated that the colors white, black, yellow, red, blue and green promoted recognition to the highest degree among all subjects. A gender-related difference, in favor of women, occurred in naming five of the mixed colors. Women also used more varied color names than men. Color discrimination was easier in the red and yellow area than in the blue and green area. This result correlates positively with visual function on far sight, and negatively with diagnosis of a cataract. The preference order for seven colors put blue, green and red at the top, and brown at the bottom, hence agreeing with earlier studies, and indicating that the preference order for colors remains relatively stable also in old age. This result should be considered when designing environments for old people.

  18. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.

    PubMed

    Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun

    2016-07-01

    Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Logical qubit fusion

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan; Ryan-Anderson, Ciaran

    The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. A Simple Principled Approach for Modeling and Understanding Uniform Color Metrics

    PubMed Central

    Smet, Kevin A.G.; Webster, Michael A.; Whitehead, Lorne A.

    2016-01-01

    An important goal in characterizing human color vision is to order color percepts in a way that captures their similarities and differences. This has resulted in the continuing evolution of “uniform color spaces,” in which the distances within the space represent the perceptual differences between the stimuli. While these metrics are now very successful in predicting how color percepts are scaled, they do so in largely empirical, ad hoc ways, with limited reference to actual mechanisms of color vision. In this article our aim is to instead begin with general and plausible assumptions about color coding, and then develop a model of color appearance that explicitly incorporates them. We show that many of the features of empirically-defined color order systems (such as those of Munsell, Pantone, NCS, and others) as well as many of the basic phenomena of color perception, emerge naturally from fairly simple principles of color information encoding in the visual system and how it can be optimized for the spectral characteristics of the environment. PMID:26974939

  1. Asymmetry of Peak Thicknesses between the Superior and Inferior Retinal Nerve Fiber Layers for Early Glaucoma Detection: A Simple Screening Method.

    PubMed

    Bae, Hyoung Won; Lee, Sang Yeop; Kim, Sangah; Park, Chan Keum; Lee, Kwanghyun; Kim, Chan Yun; Seong, Gong Je

    2018-01-01

    To assess whether the asymmetry in the peripapillary retinal nerve fiber layer (pRNFL) thickness between superior and inferior hemispheres on optical coherence tomography (OCT) is useful for early detection of glaucoma. The patient population consisted of Training set (a total of 60 subjects with early glaucoma and 59 normal subjects) and Validation set (30 subjects with early glaucoma and 30 normal subjects). Two kinds of ratios were employed to measure the asymmetry between the superior and inferior pRNFL thickness using OCT. One was the ratio of the superior to inferior peak thicknesses (peak pRNFL thickness ratio; PTR), and the other was the ratio of the superior to inferior average thickness (average pRNFL thickness ratio; ATR). The diagnostic abilities of the PTR and ATR were compared to the color code classification in OCT. Using the optimal cut-off values of the PTR and ATR obtained from the Training set, the two ratios were independently validated for diagnostic capability. For the Training set, the sensitivities/specificities of the PTR, ATR, quadrants color code classification, and clock-hour color code classification were 81.7%/93.2%, 71.7%/74.6%, 75.0%/93.2%, and 75.0%/79.7%, respectively. The PTR showed a better diagnostic performance for early glaucoma detection than the ATR and the clock-hour color code classification in terms of areas under the receiver operating characteristic curves (AUCs) (0.898, 0.765, and 0.773, respectively). For the Validation set, the PTR also showed the best sensitivity and AUC. The PTR is a simple method with considerable diagnostic ability for early glaucoma detection. It can, therefore, be widely used as a new screening method for early glaucoma. © Copyright: Yonsei University College of Medicine 2018

  2. 7 CFR 4274.337 - Other regulatory requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....337 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE... recipient on the basis of sex, marital status, race, color, religion, national origin, age, physical or... of one of the following model building codes or the latest edition of that code providing an...

  3. Modeling Of A Monocular, Full-Color, Laser-Scanning, Helmet-Mounted Display for Aviator Situational Awareness

    DTIC Science & Technology

    2017-03-27

    USAARL Report No. 2017-10 Modeling of a Monocular, Full -Color, Laser- Scanning, Helmet-Mounted Display for Aviator Situational Awareness By Thomas...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 27-03-2017 Final 2002-2003 Modeling of a Monocular, Full -Color, Laser-Scanning, Helmet...was the idea of modeling HMDs by producing computer imagery for an observer to evaluate the quality of symbology. HMD, ANVIS, HGU-56P, Virtual

  4. Advanced Mail Systems Scanner Technology. Executive Summary and Appendixes A-E.

    DTIC Science & Technology

    1980-10-01

    data base. 6. Perform color acquisition studies. 7. Investigate address and bar code reading. MASS MEMORY TECHNOLOGY 1. Collect performance data on...area of the 1728-by-2200 ICAS image memory and to transmit the data to any of the three color memories of the Comtal. Function table information can...for printing color images. The software allows the transmission of data from the ICAS frame-store memory via the MCU to the Dicomed. Software test

  5. White Letters on Colored Backgrounds: Legibility and Preference.

    ERIC Educational Resources Information Center

    Pett, Dennis

    This paper reviews two studies of color preference and the relationships between color and legibility. The Gustin study in 1991 dealt with the legibility of and preference for projected slides with colored backgrounds and white text. The order of background color preference was cyan, blue, green, yellow, magenta, and red. The follow-up study by…

  6. Inequality Frames: How Teachers Inhabit Color-Blind Ideology

    ERIC Educational Resources Information Center

    Cobb, Jessica S.

    2017-01-01

    This paper examines how public school teachers take up, modify, or resist the dominant ideology of color-blind racism. This examination is based on in-depth interviews with 60 teachers at three segregated schools: one was race/class privileged and two were disadvantaged. Inductive coding revealed that teachers at each school articulated a shared…

  7. Advantages and difficulties of implementation of flat-panel multimedia monitoring system in a surgical MRI suite

    NASA Astrophysics Data System (ADS)

    Deckard, Michael; Ratib, Osman M.; Rubino, Gregory

    2002-05-01

    Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.

  8. Investigation of digital encoding techniques for television transmission

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1983-01-01

    Composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional Walsh functions. It is shown that by properly sampling a composite color signal and employing a Walsh transform the YIQ time signals which sum to produce the composite color signal can be represented, in the transform domain, by three component signals in space. By suitably zonal quantizing the transform coefficients, the YIQ signals can be processed independently to achieve data compression and obtain the same results as component coding. Computer simulations of three bandwidth compressors operating at 1.09, 1.53 and 1.8 bits/ sample are presented. The above results can also be applied to the PAL color system.

  9. An interactive method for digitizing zone maps

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.; Thompson, E. J.

    1975-01-01

    A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given.

  10. Evaluation of arteriovenous fistulas and pseudoaneurysms in renal allografts following percutaneous needle biopsy. Color-coded Doppler sonography versus duplex Doppler sonography.

    PubMed

    Hübsch, P J; Mostbeck, G; Barton, P P; Gritzmann, N; Fruehwald, F X; Schurawitzki, H; Kovarik, J

    1990-02-01

    One hundred one patients with renal allografts were studied by two independent observers using duplex Doppler sonography (DDS) and color-coded Doppler sonography (CCDS). In all patients, single or multiple percutaneous needle biopsies of the transplant had been performed 1 to 30 days before. In 6 patients CCDS following the biopsy demonstrated an area of combined red and blue color-coded blood flow within the renal parenchyma (n = 5) or within the sinus (n = 1); the Doppler waveform was abnormal in these areas with signals above and below the zero line indicating turbulent blood flow. Consecutive intraarterial digital subtraction angiography (DSA) revealed the presence of an arteriovenous fistula (n = 4) or of a pseudoaneurysm (n = 2). In one patient, gross hematuria with obstruction of the bladder occurred as a complication of a pseudoaneurysm within the renal sinus; the bleeding could not be stopped by embolization of the lesion and the kidney had to be removed. DDS demonstrated the lesion in only one of the six patients. Thus, CCDS is the method of choice for noninvasive detection of vascular lesions due to percutaneous biopsy.

  11. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    NASA Astrophysics Data System (ADS)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  12. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  13. Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities.

    PubMed

    Dai, Meiling; Yang, Fujun; He, Xiaoyuan

    2012-04-20

    A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.

  14. A color video display technique for flow field surveys

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Tsao, C. P.

    1982-01-01

    A computer driven color video display technique has been developed for the presentation of wind tunnel flow field survey data. The results of both qualitative and quantitative flow field surveys can be presented in high spatial resolutions color coded displays. The technique has been used for data obtained with a hot-wire probe, a split-film probe, a Conrad (pitch) probe and a 5-tube pressure probe in surveys above and behind a wing with partially stalled and fully stalled flow.

  15. [Current Situation Survey of the Measures to Prevent Medication Errors in the Operating Room: Report of the Japan Society of Anesthesiologists Safety Commission Working Group for Consideration of Recommendations for Color Coding of Prepared Syringe Labels for Prevention of Medication Errors].

    PubMed

    Shida, Kyoko; Suzuki, Toshiyasu; Sugahara, Kazuhiro; Sobue, Kazuya

    2016-05-01

    In the case of medication errors which are among the more frequent adverse events that occur in the hospital, there is a need for effective measures to prevent incidence. According to the Japan Society of Anesthesiologists study "Drug incident investigation 2005-2007 years", "Error of a syringe at the selection stage" was the most frequent (44.2%). The status of current measures and best practices implemented in Japanese hospitals was the focus of a subsequent investigation. Representative specialists in anesthesiology certified hospitals across the country were surveyed via a questionnaire sampling that lasted 46 days. Investigation method was via the Web with survey responses anonymous. With respect to preventive measures implemented to mitigate risk of medication errors in perioperative settings, responses included: incident and accident report (215 facilities, 70.3%), use of pre-filled syringes (180 facilities, 58.8%), devised the arrangement of dangerous drugs (154 facilities, 50.3%), use of the product with improper connection preventing mechanism (123 facilities, 40.2%), double-check (116 facilities, 37.9%), use of color barreled syringe (115 facilities, 37.6%), use of color label or color tape (89 facilities, 29.1%), presentation of medication such as placing the ampoule or syringe on a tray by dividing color code for drug class on a tray (54 facilities, 17.6%), the discontinuance of handwritten labels (23 facilities, 7.5%), use of a drug verification system that uses bar code (20 facilities, 6.5%), and facilities that have not implemented any means (11 facilities, 3.6%), others not mentioned (10 facilities, 3.3%), and use of carts that count/account the agents by drug type and record selection and number picked automatically (6 facilities, 2.0%). Drug name identification affixed to the syringe via perforated label torn from the ampoule/vial, etc. (245 facilities, 28.1%), handwriting directly to the syringe (208 facilities, 23.8%), use of the attached label (like that comes with the product) (187 facilities, 21.4%), handwriting on the plain tape (87 facilities, 10.0%), printing labels (62 facilities, 7.1%), printed color labels (44 facilities, 5.0%), handwriting on the color tape (27 facilities, 3.1%), machinery for printing the drug name by scanning bar code of the ampoule, etc.(10 facilities, 1.1%), others (3 facilities, 0.3%), no description on the prepared drug (0 facilities, 0%). The awareness of international standard color code, such as by the International Organization for Standardization (ISO), was only 18.6%. Targeting anesthesiology certified hospitals recognized by the Japan Society of Anesthesiologists, the result of the survey on the measures to prevent medication errors during perioperative procedures indicated that various measures were documented in use. However, many facilities still use hand written labels (a common cause for errors). Confirmation of the need for improved drug name and drug recognition on syringe was documented.

  16. The First Six Months of the LLNL-CfPA-MSSSO Search for Baryonic Dark Matter in the Galaxy's Halo via its Gravitational Microlensing Signature

    NASA Astrophysics Data System (ADS)

    Cook, K.; Alcock, C.; Allsman, R.; Axelrod, T.; Bennett, D.; Marshall, S.; Stubbs, C.; Griest, K.; Perlmutter, S.; Sutherland, W.; Freeman, K.; Peterson, B.; Quinn, P.; Rodgers, A.

    1992-12-01

    This collaboration, dubbed the MACHO Project (an acronym for MAssive Compact Halo Objects), has refurbished the 1.27-m, Great Melbourne Telescope at Mt. Stromlo and equipped it with a corrected {1°} FOV. The prime focus corrector yields a red and blue beam for simultaneous imaging in two passbands, 4500{ Angstroms}--6100{ Angstroms} and 6100{ Angstroms}--7900{ Angstroms}. Each beam is imaged by a 2x2 array of 2048x2048 pixel CCDs which are simultaneously read out from two amplifiers on each CCD. A 32 Megapixel dual-color image of 0.5 square degree is clocked directly into computer memory in less than 70 seconds. We are using this system to monitor more than 10(7) stars in the Magellanic Clouds for gravitational microlensing events and will soon monitor an additional 10(7) stars in the bulge of our galaxy. Image data goes directly into a reduction pipeline where photometry for stars in an image is determined and stored in a database. An early version of this pipeline has used a simple aperture photometry code and results from this will be presented. A more sophisticated PSF fitting photometry code is currently being installed in the pipeline and results should also be available at the meeting. The PSF fitting code has also been used to produce ~ 10(7) photometric measurements outside of the pipeline. This poster will present details of the instrumentation, data pipeline, observing conditions (weather and seeing), reductions and analyses for the first six months of dual-color observing. Eventually, we expect to be able to determine whether MACHOs are a significant component of the galactic halo in the mass range of \\(10^{-6} M_{\\sun} < M \\ {lower .5exhbox {\\: \\buildrel < \\over \\sim ;}} \\ 100 M_{\\sun}\\).

  17. MicroV Technology to Improve Transcranial Color Coded Doppler Examinations.

    PubMed

    Malferrari, Giovanni; Pulito, Giuseppe; Pizzini, Attilia Maria; Carraro, Nicola; Meneghetti, Giorgio; Sanzaro, Enzo; Prati, Patrizio; Siniscalchi, Antonio; Monaco, Daniela

    2018-05-04

    The purpose of this review is to provide an update on technology related to Transcranial Color Coded Doppler Examinations. Microvascularization (MicroV) is an emerging Power Doppler technology which can allow visualization of low and weak blood flows even at high depths, thus providing a suitable technique for transcranial ultrasound analysis. With MicroV, reconstruction of the vessel shape can be improved, without any overestimation. Furthermore, by analyzing the Doppler signal, MicroV allows a global image of the Circle of Willis. Transcranial Doppler was originally developed for the velocimetric analysis of intracranial vessels, in particular to detect stenoses and the assessment of collateral circulation. Doppler velocimetric analysis was then compared to other neuroimaging techniques, thus providing a cut-off threshold. Transcranial Color Coded Doppler sonography allowed the characterization of vessel morphology. In both Color Doppler and Power Doppler, the signal overestimated the shape of the intracranial vessels, mostly in the presence of thin vessels and high depths of study. In further neurosonology technology development efforts, attempts have been made to address morphology issues and overcome technical limitations. The use of contrast agents has helped in this regard by introducing harmonics and subtraction software, which allowed better morphological studies of vessels, due to their increased signal-to-noise ratio. Having no limitations in the learning curve, in time and contrast agent techniques, and due to its high signal-to-noise ratio, MicroV has shown great potential to obtain the best morphological definition. Copyright © 2018 by the American Society of Neuroimaging.

  18. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  19. Eye-Movements During Search for Coded and Uncoded Targets

    DTIC Science & Technology

    1974-06-28

    effective a coding system as solor . Subjects did not exhibit a reliable, characteristic scan-path, except for two subjects in the uncoded condition...Psychophysics 8, 171- 172, 1970. 31. Clarke, S. E. Retrieval of color information from the pre-perceptu- al storage system . J Exp Psychol 82, 263

  20. ZENO: N-body and SPH Simulation Codes

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2011-02-01

    The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere. Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include: Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.Simulation codes include both pure N-body and combined N-body/SPH programs: Pure N-body codes are available in both uniprocessor and parallel versions.SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

  1. Making Ordered DNA and Protein Structures from Computer-Printed Transparency Film Cut-Outs

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Instructions are given for building physical scale models of ordered structures of B-form DNA, protein [alpha]-helix, and parallel and antiparallel protein [beta]-pleated sheets made from colored computer printouts designed for transparency film sheets. Cut-outs from these sheets are easily assembled. Conventional color coding for atoms are used…

  2. Color associations among designers and non-designers for common warning and operation concepts.

    PubMed

    Ng, Annie W Y; Chan, Alan H S

    2018-07-01

    This study examined color-concept associations among designers and non-designers with commonly used warning and operation concepts. This study required 199 designers and 175 non-designers to indicate their choice among nine colors to associate with each of the 38 concepts in a color-concept table. The results showed that the designers and non-designers had the same color associations and similar strengths of stereotypes for 17 concepts. The strongest color-concept stereotypes for both groups were red-danger, red-fire, and red-hot. However, the designers and non-designers had different color associations for the concepts of escape (green, red), increase (green, red), potential hazard (red, orange), fatal (black, red), and normal (white, green), while the strengths of the 16 remaining associations for both groups were not at equivalent levels. These findings provide ergonomists and design practitioners with a better understanding of population stereotypes for color coding, and consequently to effectively use colors in their user-centered designs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Assessing Attentional Prioritization of Front-of-Pack Nutrition Labels using Change Detection

    PubMed Central

    Becker, Mark W.; Sundar, Raghav Prashant; Bello, Nora; Alzahabi, Reem; Weatherspoon, Lorraine; Bix, Laura

    2015-01-01

    We used a change detection method to evaluate attentional prioritization of nutrition information that appears in the traditional “Nutrition Facts Panel” and in front-of-pack nutrition labels. Results provide compelling evidence that front-of-pack labels attract attention more readily than the Nutrition Facts Panel, even when participants are not specifically tasked with searching for nutrition information. Further, color-coding the relative nutritional value of key nutrients within the front-of-pack label resulted in increased attentional prioritization of nutrition information, but coding using facial icons did not significantly increase attention to the label. Finally, the general pattern of attentional prioritization across front-of-pack designs was consistent across a diverse sample of participants. Our results indicate that color-coded, front-of-pack nutrition labels increase attention to the nutrition information of packaged food, a finding that has implications for current policy discussions regarding labeling change. PMID:26851468

  4. Information retrieval based on single-pixel optical imaging with quick-response code

    NASA Astrophysics Data System (ADS)

    Xiao, Yin; Chen, Wen

    2018-04-01

    Quick-response (QR) code technique is combined with ghost imaging (GI) to recover original information with high quality. An image is first transformed into a QR code. Then the QR code is treated as an input image in the input plane of a ghost imaging setup. After measurements, traditional correlation algorithm of ghost imaging is utilized to reconstruct an image (QR code form) with low quality. With this low-quality image as an initial guess, a Gerchberg-Saxton-like algorithm is used to improve its contrast, which is actually a post processing. Taking advantage of high error correction capability of QR code, original information can be recovered with high quality. Compared to the previous method, our method can obtain a high-quality image with comparatively fewer measurements, which means that the time-consuming postprocessing procedure can be avoided to some extent. In addition, for conventional ghost imaging, the larger the image size is, the more measurements are needed. However, for our method, images with different sizes can be converted into QR code with the same small size by using a QR generator. Hence, for the larger-size images, the time required to recover original information with high quality will be dramatically reduced. Our method makes it easy to recover a color image in a ghost imaging setup, because it is not necessary to divide the color image into three channels and respectively recover them.

  5. Segregating animals in naturalistic surroundings: interaction of color distributions and mechanisms.

    PubMed

    Jansen, Michael; Giesel, Martin; Zaidi, Qasim

    2016-03-01

    Humans have been shown to rapidly detect animals in naturalistic scenes, but the role of color in this task is unclear. We first analyze the color information contained in a large number of images of salient and camouflaged animals in generic backgrounds. We found that color distributions of most animals and of their immediate backgrounds were oriented along other than the cardinal directions of color space. In addition, the maximum distances between animals and background distributions also tended to be along noncardinal directions, suggesting a role for higher-order cortical color mechanisms whose preferred axes are distributed widely in color space. We measured temporal thresholds for segmenting animal color distributions from background distributions in the absence of spatial cues. Combined over all observers and all images in our sample, thresholds for segmenting isoluminant projections of these distributions were lower than for segmenting the original distributions and considerably lower than for segmenting achromatic projections. Color information is thus likely to be useful in segregating animals in generic views, i.e., views not purposely chosen by the photographer to enhance the visibility of the animal. However, a comparison of thresholds with distances between distributions failed to reveal any advantage conferred by higher-order color mechanisms.

  6. [The effect of colored syringes and a colored sheet on the incidence of syringe swaps during anesthetic management].

    PubMed

    Hirabayashi, Yoshihiro; Kawakami, Takayuki; Suzuki, Hideo; Igarashi, Takashi; Saitoh, Kazuhiko; Seo, Norimasa

    2005-09-01

    Syringe swap is an important problem in anesthetic care, causing harm to patients. We examined the effect of colored syringe and a colored sheet on the incidence of syringe swaps during anesthetic management. We determined the color code. The blue-syringe contains local anesthetics; yellow-syringe, sympathomimetic drugs; and white-syringe with a red label fixed opposite the scale, muscle relaxants. The colored sheet displays the photographs of the syringe with drug name, dose and volume. The colored syringe and colored sheet were supplied for use from February 2004. We compared the incidence of syringe swaps during the period from February 2004 to January 2005 with that from February 2003 to January 2004. Although five syringe swaps were recorded from February 2003 to January 2004, in 5901 procedures, we encountered no syringe swaps from February 2004 to January 2005, in 6078 procedures. The colored syringe and colored sheet significantly decreased the incidence of syringe swaps during anesthetic management (P <0.05). The use of the sheet together with colored syringes can prevent syringe swaps during anesthesia.

  7. Locality-preserving logical operators in topological stabilizer codes

    NASA Astrophysics Data System (ADS)

    Webster, Paul; Bartlett, Stephen D.

    2018-01-01

    Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.

  8. Earthquakes in and near the northeastern United States, 1638-1998

    USGS Publications Warehouse

    Wheeler, R.L.; Trevor, N.K.; Tarr, A.C.; Crone, A.J.

    2000-01-01

    The data are those used to make a large-format, colored map of earthquakes in the northeastern United States and adjacent parts of Canada and the Atlantic Ocean (Wheeler, 2000; Wheeler and others, 2001; references in Data_Quality_Information, Lineage). The map shows the locations of 1,069 known earthquakes of magnitude 3.0 or larger, and is designed for a non-technical audience. Colored circles represent earthquake locations, colored and sized by magnitude. Short descriptions, colonial-era woodcuts, newspaper headlines, and photographs summarize the dates, times of day, damage, and other effects of notable earthquakes. The base map shows color-coded elevation, shaded to emphasize relief.

  9. Decomposing experience-driven attention: Opposite attentional effects of previously predictive cues.

    PubMed

    Lin, Zhicheng; Lu, Zhong-Lin; He, Sheng

    2016-10-01

    A central function of the brain is to track the dynamic statistical regularities in the environment - such as what predicts what over time. How does this statistical learning process alter sensory and attentional processes? Drawing upon animal conditioning and predictive coding, we developed a learning procedure that revealed two distinct components through which prior learning-experience controls attention. During learning, a visual search task was used in which the target randomly appeared at one of several locations but always inside an encloser of a particular color - the learned color served to direct attention to the target location. During test, the color no longer predicted the target location. When the same search task was used in the subsequent test, we found that the learned color continued to attract attention despite the behavior being counterproductive for the task and despite the presence of a completely predictive cue. However, when tested with a flanker task that had minimal location uncertainty - the target was at the fixation surrounded by a distractor - participants were better at ignoring distractors in the learned color than other colors. Evidently, previously predictive cues capture attention in the same search task but can be better suppressed in a flanker task. These results demonstrate opposing components - capture and inhibition - in experience-driven attention, with their manifestations crucially dependent on task context. We conclude that associative learning enhances context-sensitive top-down modulation while it reduces bottom-up sensory drive and facilitates suppression, supporting a learning-based predictive coding account.

  10. Color Map of Ceres Elliptical Projection

    NASA Image and Video Library

    2016-03-22

    This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.

  11. Comparison of lossless compression techniques for prepress color images

    NASA Astrophysics Data System (ADS)

    Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.

    1998-12-01

    In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.

  12. Implementation of Custom Colors in the DECwindows Environment

    DTIC Science & Technology

    1992-01-01

    Implementation of Custom Colors in the DECwindlows Environment Program Element No 0604262 Project No 64214 6. Author(s). Task No Stephanie A. Myrick, Maura C...13. Abstract (Maximum 200 words), This paper describes the implementation of user-defined, or custom , colors in the DECwindows environmeot Custom ...colors can be used to augment the standard color set that is associated with the hardware colormap. The custom color set that is included in this paper

  13. Color constancy: phenomenal or projective?

    PubMed

    Reeves, Adam J; Amano, Kinjiro; Foster, David H

    2008-02-01

    Naive observers viewed a sequence of colored Mondrian patterns, simulated on a color monitor. Each pattern was presented twice in succession, first under one daylight illuminant with a correlated color temperature of either 16,000 or 4000 K and then under the other, to test for color constancy. The observers compared the central square of the pattern across illuminants, either rating it for sameness of material appearance or sameness of hue and saturation or judging an objective property-that is, whether its change of color originated from a change in material or only from a change in illumination. Average color constancy indices were high for material appearance ratings and binary judgments of origin and low for hue-saturation ratings. Individuals' performance varied, but judgments of material and of hue and saturation remained demarcated. Observers seem able to separate phenomenal percepts from their ontological projections of mental appearance onto physical phenomena; thus, even when a chromatic change alters perceived hue and saturation, observers can reliably infer the cause, the constancy of the underlying surface spectral reflectance.

  14. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000

  15. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  16. Automatic transfer function design for medical visualization using visibility distributions and projective color mapping.

    PubMed

    Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng

    2013-01-01

    Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Reimagining the Color Wheel

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  18. INDEX TO 16MM EDUCATIONAL FILMS.

    ERIC Educational Resources Information Center

    University of Southern California, Los Angeles. National Information Center for Educational Media.

    SIXTEEN MILLIMETER EDUCATIONAL FILMS ARE LISTED WITH TITLE, DESCRIPTION, TIME, COLOR/BLACK AND WHITE, PRODUCER CODE NAME, DISTRIBUTER CODE NAME, AND DATE OF PRODUCTION. FILMS ARE LISTED IN TWO WAYS--WITH TITLE ONLY BY SUBJECT IN A SUBJECT MATTER SECTION WHICH HAS AN OUTLINE AND INDEX, AND WITH ALL DATA IN A SECTION WHICH LISTS ALL FILMS…

  19. Algorithm Science to Operations for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible/Infrared Imager/Radiometer Suite (VIIRS)

    NASA Technical Reports Server (NTRS)

    Duda, James L.; Barth, Suzanna C

    2005-01-01

    The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.

  20. Characterization of flotation color by machine vision

    NASA Astrophysics Data System (ADS)

    Siren, Ari

    1999-09-01

    Flotation is the most common industrial method by which valuable minerals are separated from waste rock after crushing and grinding the ore. For process control, flotation plants and devices are equipped with conventional and specialized sensors. However, certain variables are left to the visual observation of the operator, such as the color of the froth and the size of the bubbles in the froth. The ChaCo-Project (EU-Project 24931) was launched in November 1997. In this project a measuring station was built at the Pyhasalmi flotation plant. The system includes an RGB camera and a spectral color measuring instrument for the color inspection of the flotation. The RGB camera or visible spectral range is also measured to compare the operators' comments on the color of the froth relating to the sphalerite concentration and the process balance. Different dried mineral (sphalerite) ratios were studied with iron pyrite to find out about the minerals' typical spectral features. The correlation between sphalerite spectral reflectance and sphalerite concentration over various wavelengths are used to select the proper camera system with filters or to compare the results with the color information from the RGB camera. Various machine vision candidate techniques are discussed for this application and the preprocessed information of the dried mineral colors is used and adapted to the online measuring station. Moving froth bubbles produce total reflections, disturbing the color information. Polarization filters are used and the results are reported. Also the reflectance outside the visible light is studied and reported.

  1. Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques

    PubMed Central

    Conway, Bevil R.; Kanwisher, Nancy G.

    2016-01-01

    The existence of color-processing regions in the human ventral visual pathway (VVP) has long been known from patient and imaging studies, but their location in the cortex relative to other regions, their selectivity for color compared with other properties (shape and object category), and their relationship to color-processing regions found in nonhuman primates remain unclear. We addressed these questions by scanning 13 subjects with fMRI while they viewed two versions of movie clips (colored, achromatic) of five different object classes (faces, scenes, bodies, objects, scrambled objects). We identified regions in each subject that were selective for color, faces, places, and object shape, and measured responses within these regions to the 10 conditions in independently acquired data. We report two key findings. First, the three previously reported color-biased regions (located within a band running posterior–anterior along the VVP, present in most of our subjects) were sandwiched between face-selective cortex and place-selective cortex, forming parallel bands of face, color, and place selectivity that tracked the fusiform gyrus/collateral sulcus. Second, the posterior color-biased regions showed little or no selectivity for object shape or for particular stimulus categories and showed no interaction of color preference with stimulus category, suggesting that they code color independently of shape or stimulus category; moreover, the shape-biased lateral occipital region showed no significant color bias. These observations mirror results in macaque inferior temporal cortex (Lafer-Sousa and Conway, 2013), and taken together, these results suggest a homology in which the entire tripartite face/color/place system of primates migrated onto the ventral surface in humans over the course of evolution. SIGNIFICANCE STATEMENT Here we report that color-biased cortex is sandwiched between face-selective and place-selective cortex on the bottom surface of the brain in humans. This face/color/place organization mirrors that seen on the lateral surface of the temporal lobe in macaques, suggesting that the entire tripartite system is homologous between species. This result validates the use of macaques as a model for human vision, making possible more powerful investigations into the connectivity, precise neural codes, and development of this part of the brain. In addition, we find substantial segregation of color from shape selectivity in posterior regions, as observed in macaques, indicating a considerable dissociation of the processing of shape and color in both species. PMID:26843649

  2. Spectral Variability of Airborne Ocean Color Data Linked to Variations in Lidar Backscattering Profiles

    DTIC Science & Technology

    2009-01-01

    1008.3 r <•-• ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703Q 4 ’𔃻 iJL:,. iUn’i i’-"Vt... global ocean color sensors (e.g., MODIS). Also, this resolution roughly matches the swath of MicroSAS radiometric measurements in the visible range

  3. Where on Mars Does Carbon Dioxide Frost Form Often?

    NASA Image and Video Library

    2016-07-08

    This map shows the frequency of carbon dioxide frost's presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. Color coding is based on data from the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. A color-key bar below the map shows how colors correspond to frequencies. Yellow indicates high frequencies, identifying areas where carbon dioxide ice is present on the ground at night during most of the year. Blue identifies areas where it is rarely present; red is intermediate. Areas without color coding are regions where carbon dioxide frost is not detected at any time of year. The areas with highest frequency of overnight carbon dioxide frost correspond to regions with surfaces of loose dust, which do not retain heat well, compared to rockier areas. Those areas also have some of the highest mid-afternoon temperatures on the planet. The dust surface heats up and cools off rapidly. http://photojournal.jpl.nasa.gov/catalog/PIA20758

  4. Color Vision and the Railways: Part 3. Comparison of FaLant, OPTEC 900, and Railway LED Lantern Tests.

    PubMed

    Dain, Stephen J; Casolin, Armand; Long, Jennifer

    2015-02-01

    The Farnsworth Lantern (FaLant) and the OPTEC 900 are nominated in the Commission Internationale de l'Éclairage (CIE) Color Vision Standard 2. Neither test uses the railway signal color code of red, yellow, and green, and only the OPTEC 900 is commercially available. The Railway LED Lantern Test (RLLT) is based on railway signaling practices in New South Wales, Australia, and is nominated in the Australian railway medical standard. The objective of this study is to compare the performance of the three lantern tests. The RLLT, FaLant, and OPTEC 900 were administered to 46 color vision-normal and 37 color vision-deficient (CVD) subjects. The pattern of errors on the RLLT was different from that of the FaLant and OPTEC 900. This may be accounted for, at least in part, by the different colors and the use of blank presentations in the RLLT. The three lanterns showed agreement in failing 21 and passing 6 of the CVD subjects (72.9%). The lanterns gave different results for 10 CVD subjects (27.9%): n = 5 passed only the RLLT and n = 3 passed only the FaLant; n = 1 failed only the FaLant and n = 1 failed only the RLLT. The overall failure rate by CVD for each lantern was 67.6% (RLLT), 73.0% (FaLant), and 78.4% (OPTEC 900). Despite the different construction principles, the pass/fail levels of the RLLT, FaLant, and OPTEC 900 are comparable and consistent with the performance of other lanterns listed by the CIE for Color Vision Standard 2. The RLLT may be a little easier to pass and is based on the signal color code used and actual signaling practice. We propose that the RLLT is also an appropriate lantern for CIE Color Vision Standard 2.

  5. Color categories affect pre-attentive color perception.

    PubMed

    Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna

    2010-10-01

    Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Large laser projection displays utilizing all-solid-state RGB lasers

    NASA Astrophysics Data System (ADS)

    Xu, Zuyan; Bi, Yong

    2005-01-01

    RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.

  7. The Eyes Have It!

    ERIC Educational Resources Information Center

    Klopak, Ken

    2008-01-01

    The seventh- and eight-grade students in the author's art program sharpened up their eyesight and their use of color charts in preparation for an op art project. Op art is short for "optical patterns and designs." The goal of the project is to create and organize line and color into shapes, patterns, and design in symmetrical and asymmetrical…

  8. Express Yourself: Using Color Schemes, Cameras, and Computers

    ERIC Educational Resources Information Center

    Lott, Debra

    2005-01-01

    Self-portraiture is a great project to introduce the study of color schemes and Expressionism. Through this drawing project, students learn about identity, digital cameras, and creative art software. The lesson can be introduced with a study of Edvard Munch and Expressionism. Expressionism was an art movement in which the intensity of the artist's…

  9. Spectrum Project

    NASA Image and Video Library

    2017-10-16

    Inside the Spectrum prototype unit, organisms in a Petri plate are exposed to different colors of lighting. The device works by exposing organisms to different colors of fluorescent light while a camera records what's happening with time-lapse photography. Results from the Spectrum project will shed light on which living things are best suited for long-duration flights into deep space.

  10. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    PubMed

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  11. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  12. Pixel Statistical Analysis of Diabetic vs. Non-diabetic Foot-Sole Spectral Terahertz Reflection Images

    NASA Astrophysics Data System (ADS)

    Hernandez-Cardoso, G. G.; Alfaro-Gomez, M.; Rojas-Landeros, S. C.; Salas-Gutierrez, I.; Castro-Camus, E.

    2018-03-01

    In this article, we present a series of hydration mapping images of the foot soles of diabetic and non-diabetic subjects measured by terahertz reflectance. In addition to the hydration images, we present a series of RYG-color-coded (red yellow green) images where pixels are assigned one of the three colors in order to easily identify areas in risk of ulceration. We also present the statistics of the number of pixels with each color as a potential quantitative indicator for diabetic foot-syndrome deterioration.

  13. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering.

    PubMed

    Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien

    2017-04-17

    We study the performance limits of mono-color cyclic coding applied to Brillouin optical time-domain analysis (BOTDA) sensors that use probe wave dithering. BOTDA analyzers with dithering of the probe use a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This avoids non-local effects while keeping the Brillouin threshold at its highest level, thus preventing the spontaneous Brillouin scattering from generating noise in the deployed sensing fiber. In these conditions, it is possible to introduce an unprecedented high probe power into the sensing fiber, which leads to an enhancement of the signal-to-noise ratio (SNR) and consequently to a performance improvement of the analyzer. The addition of cyclic coding in these set-ups can further increase the SNR and accordingly enhance the performance. However, this unprecedented probe power levels that can be employed result in the appearance of detrimental effects in the measurement that had not previously been observed in other BOTDA set-ups. In this work, we analyze the distortion in the decoding process and the errors in the measurement that this distortion causes, due to three factors: the power difference of the successive pulses of a code sequence, the appearance of first-order non-local effects and the non-linear amplification of the probe wave that results when using mono-color cyclic coding of the pump pulses. We apply the results of this study to demonstrate the performance enhancement that can be achieved in a long-range dithered dual-probe BOTDA. A 164-km fiber-loop is measured with 1-m spatial resolution, obtaining 3-MHz Brillouin frequency shift measurement precision at the worst contrast location. To the best of our knowledge, this is the longest sensing distance achieved with a BOTDA sensor using mono-color cyclic coding.

  14. Differentiating self-projection from simulation during mentalizing: evidence from fMRI.

    PubMed

    Schurz, Matthias; Kogler, Christoph; Scherndl, Thomas; Kronbichler, Martin; Kühberger, Anton

    2015-01-01

    We asked participants to predict which of two colors a similar other (student) and a dissimilar other (retiree) likes better. We manipulated if color-pairs were two hues from the same color-category (e.g. green) or two conceptually different colors (e.g. green versus blue). In the former case, the mental state that has to be represented (i.e., the percept of two different hues of green) is predominantly non-conceptual or phenomenal in nature, which should promote mental simulation as a strategy for mentalizing. In the latter case, the mental state (i.e. the percept of green versus blue) can be captured in thought by concepts, which facilitates the use of theories for mentalizing. In line with the self-projection hypothesis, we found that cortical midline areas including vmPFC / orbitofrontal cortex and precuneus were preferentially activated for mentalizing about a similar other. However, activation was not affected by the nature of the color-difference, suggesting that self-projection subsumes simulation-like processes but is not limited to them. This indicates that self-projection is a universal strategy applied in different contexts--irrespective of the availability of theories for mentalizing. Along with midline activations linked to self-projection, we also observed activation in right lateral frontal and dorsal parietal areas showing a theory-like pattern. Taken together, this shows that mentalizing does not operate based on simulation or theory, but that both strategies are used concurrently to predict the choices of others.

  15. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  16. Quantitative Assessment of Neovascularization after Indirect Bypass Surgery: Color-Coded Digital Subtraction Angiography in Pediatric Moyamoya Disease.

    PubMed

    Cho, H-H; Cheon, J-E; Kim, S-K; Choi, Y H; Kim, I-O; Kim, W S; Lee, S-M; You, S K; Shin, S-M

    2016-05-01

    For the postoperative follow-up in pediatric patients with Moyamoya disease, it is essential to evaluate the degree of neovascularization status. Our aim was to quantitatively assess the neovascularization status after bypass surgery in pediatric Moyamoya disease by using color-coded digital subtraction angiography. Time-attenuation intensity curves were generated at ROIs corresponding to surgical flap sites from color-coded DSA images of the common carotid artery, internal carotid artery, and external carotid artery angiograms obtained pre- and postoperatively in 32 children with Moyamoya disease. Time-to-peak and area under the curve values were obtained. Postoperative changes in adjusted time-to-peak (ΔTTP) and ratios of adjusted area under the curve changes (ΔAUC ratio) of common carotid artery, ICA, and external carotid artery angiograms were compared across clinical and angiographic outcome groups. To analyze diagnostic performance, we categorized clinical outcomes into favorable and unfavorable groups. The ΔTTP at the common carotid artery increased among clinical and angiographic outcomes, in that order, with significant differences (P = .003 and .005, respectively). The ΔAUC ratio at the common carotid artery and external carotid artery also increased, in that order, among clinical and angiographic outcomes with a significant difference (all, P = .000). The ΔAUC ratio of ICA showed no significant difference among clinical and angiographic outcomes (P = .418 and .424, respectively). The ΔTTP for the common carotid artery of >1.27 seconds and the ΔAUC ratio of >33.5% for the common carotid artery and 504% for the external carotid artery are revealed as optimal cutoff values between favorable and unfavorable groups. Postoperative changes in quantitative values obtained with color-coded DSA software showed a significant correlation with outcome scores and can be used as objective parameters for predicting the outcome in pediatric Moyamoya disease, with an additional cutoff value calculated through the receiver operating characteristic curve. © 2016 by American Journal of Neuroradiology.

  17. Evaluating Varied Label Designs for Use with Medical Devices: Optimized Labels Outperform Existing Labels in the Correct Selection of Devices and Time to Select.

    PubMed

    Bix, Laura; Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W

    2016-01-01

    Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.

  18. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  19. Color of Minerals. Earth Science Curriculum Project Pamphlet Series PS-6.

    ERIC Educational Resources Information Center

    Rapp, George, Jr.

    The causes for many of the colors exhibited by minerals are presented to students. Several theories of modern physics are introduced. The nature of light, the manner in which light interacts with matter, atomic theory, and crystal structure are all discussed in relation to the origin of color in minerals. Included are color pictures of many…

  20. Digital coding of Shuttle TV

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Batson, B.

    1976-01-01

    Space Shuttle will be using a field-sequential color television system for the first few missions, but the present plans are to switch to a NTSC color TV system for future missions. The field-sequential color TV system uses a modified black and white camera, producing a TV signal with a digital bandwidth of about 60 Mbps. This article discusses the characteristics of the Shuttle TV systems and proposes a bandwidth-compression technique for the field-sequential color TV system that could operate at 13 Mbps to produce a high-fidelity signal. The proposed bandwidth-compression technique is based on a two-dimensional DPCM system that utilizes temporal, spectral, and spatial correlation inherent in the field-sequential color TV imagery. The proposed system requires about 60 watts and less than 200 integrated circuits.

  1. Color Magnitude Diagrams of Old, Massive GCs in M31

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Williams, B.; Dolphin, A. E.; Johnson, L. C.; Weisz, D. R.

    2013-01-01

    Multicolor stellar photometry of HST data of M31 collected as part of the PHAT project has been performed using the DOLPHOT suite of programs. We present results of color-magnitude diagrams created in F475W and F814W (BI) of more than 50 massive, old clusters. These are clusters in or projected on the disk. We compare the metallicities derived from the color of the giant branch stars with that derived from integrated light spectroscopy. As well, we compare the ages of massive, young clusters with those found from spectra.

  2. Effects of Whitecaps on Satellite-Derived Ocean Color

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    2000-01-01

    During the 3.25 years of the project, various aspects of satellite ocean-color remote sensing were investigated, including effect of whitecaps on atmospheric correction, validity of aerosol models, and evaluation of ocean-color products. Algorithms to estimate pigment concentration and photo-synthetically active radiation (PAR) were developed, and studies of geophysical phenomena, such as the 1998 Asian Dust event, were performed. The influence of solar radiation absorption by phytoplankton on mixed layer dynamics, ocean circulation, and climate was also investigated. The project's results and findings are described.

  3. 76 FR 39879 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Have Sex with Men and Young Transgender Persons of Color, Funding Opportunity Announcement (FOA) PS11... Prevention Projects for Young Men of Color Who Have Sex with Men and Young Transgender Persons of Color, FOA...

  4. Learning the scientific method using GloFish.

    PubMed

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  5. The GIS map coloring support decision-making system based on case-based reasoning and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Shuang; Xiang, Wenting; Tian, Yangge

    2009-10-01

    Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.

  6. Colored Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. "Does Hope Change? Testing a Project-Based Health Intervention among Urban Students of Color"

    ERIC Educational Resources Information Center

    Zusevics, Kaija L.; Johnson, Sheri

    2014-01-01

    Hope is positively correlated with educational attainment and health. Interventions based on project-based learning (PBL) may increase youth hope. This study examined how a PBL intervention affected hope among urban students of color. Students in health classes were invited to participate. A PBL health class was implemented in four classrooms. The…

  11. Astronaut John Young displays drawing of Charlie Brown

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Charlie Brown in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Charlie Brown will be the code name of the Command Module (CM) during Apollo 10 operations when the Lunar Module and CM are separated (34075); Young displays drawing of Snoopy in this reproduction taken from a television transmission. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated (34076).

  12. Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    NASA Astrophysics Data System (ADS)

    Long, David L.

    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers.

  13. 3D Rainbow Particle Tracking Velocimetry

    NASA Astrophysics Data System (ADS)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  14. Study of CCD Eyepiece on T-4 Theodolite.

    DTIC Science & Technology

    1982-11-01

    11. REVIEW OF TWO-COLOR REFRACTOMETRY OBJECTIVES .....................3 III, ACHIEVEMENTS IN TWO- COLOR REFRACTOMETRY DURING THIS CONTRA...indirectly influence the questions of star catalogs. The initial efforts under this contract were addressed toward Two- Color Refractometry . This is a...in the astroposition procedure. Future efforts on other projects will consist of the return to the Two-Color Refractometry to provide a parallel

  15. Evaluation of color mapping algorithms in different color spaces

    NASA Astrophysics Data System (ADS)

    Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj

    2016-09-01

    The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.

  16. A flower image retrieval method based on ROI feature.

    PubMed

    Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan

    2004-07-01

    Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

  17. Continuing Through Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image continues the northward trend through the Iani Chaos region. Compare this image to Monday's and Tuesday's. This image was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -0.1 Longitude 342.6 East (17.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Aureum Chaos: Another View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image is located in a different part of Aureum Chaos. Compare the surface textures with yesterday's image. This image was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -4.1, Longitude 333.9 East (26.1 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Auream Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image was collected during Southern Fall and shows part of the Aureum Chaos.

    Image information: VIS instrument. Latitude -3.6, Longitude 332.9 East (27.1 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Mawrth Valles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of an old channel floor and surrounding highlands is located in the lower reach of Mawrth Valles. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 25.7, Longitude 341.2 East (18.8 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Northern Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 13 May 2004 This nighttime visible color image was collected on November 26, 2002 during the Northern Summer season near the North Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 80, Longitude 43.2 East (316.8 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. A visual tristimulus projection colorimeter.

    PubMed

    Valberg, A

    1971-01-01

    Based on the optical principle of a slide projector, a visual tristimulus projection colorimeter has been developed. The calorimeter operates with easily interchangeable sets of primary color filters placed in a frame at the objective. The apparatus has proved to be fairly accurate. The reproduction of the color matches as measured by the standard deviation is equal to the visual sensitivity to color differences for each observer. Examples of deviations in the matches among individuals as well as deviations compared with the CIE 1931 Standard Observer are given. These deviations are demonstrated to be solely due to individual differences in the perception of metameric colors. Thus, taking advantage of an objective observation (allowing all adjustments to be judged by a group of impartial observers), the colorimeter provides an excellent aid in the study of discrimination, metamerism, and related effects which are of considerable interest in current research in colorimetry and in the study of color vision tests.

  3. Combining Satellite Ocean Color Imagery and Circulation Modeling to Forecast Bio-Optical Properties: Comparison of Models and Advection Schemes

    DTIC Science & Technology

    2008-10-01

    Director NCST E. R. Franchi , 7000 ^^M^4^k ro£— 4// 2^/s y Public Affairs (Unclassified/ Unlimited Only), Code 7030 4 Division, Code Author, Code...from the Navy Operational Global Atmospheric Prediction System (NOGAPS, Hogan and Rosmond, 1991) and assimilates data via the Navy Coupled Ocean...forecasts using Global , Atlantic, Gulf of Mexico, and northern Gulf of Mexico configurations of HYCOM. Proceedings, Ocean Optics XIX, Castelvecchio Pascoli

  4. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection

    NASA Astrophysics Data System (ADS)

    Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai

    2007-08-01

    We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.

  5. ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.

    PubMed

    Zaal, Dionne; Nota, Benjamin

    2016-01-01

    We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images.

    PubMed

    Heath, Daniel J; Mills, Ben; Feinaeugle, Matthias; Eason, Robert W

    2015-06-01

    A digital micromirror device has been used to project variable-period grating patterns at high values of demagnification for direct laser ablation on planar surfaces. Femtosecond laser pulses of ∼1  mJ pulse energy at 800 nm wavelength from a Ti:sapphire laser were used to machine complex patterns with areas of up to ∼1  cm2 on thin films of bismuth telluride by dynamically modifying the grating period as the sample was translated beneath the imaged laser pulses. Individual ∼30 by 30 μm gratings were stitched together to form contiguous structures, which had diffractive effects clearly visible to the naked eye. This technique may have applications in marking, coding, and security features.

  7. CARETS: A prototype regional environmental information system. Volume 5: Interpretation, compilation and field verification procedures in the CARETS project

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Deforth, P. W.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III

    1975-01-01

    The author has identified the following significant results. Level 2 land use mapping from high altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. To enhance the value of the land use sheets, a series of overlays was compiled, showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing level 1 land use maps from LANDSAT imagery, at a scale of 1:250,000 drafting film was directly overlaid on LANDSAT color composite transparencies. Numerous areas of change were identified, but extensive areas of false changes were also noted.

  8. Secure information display with limited viewing zone by use of multi-color visual cryptography.

    PubMed

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2004-04-05

    We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.

  9. Recent progress in liquid crystal projection displays

    NASA Astrophysics Data System (ADS)

    Hamada, Hiroshi

    1997-05-01

    An LC-projector usually contains 3 monochrome TFT-LCDs with a 3-channel dichroic system or a single TFT-LCD with a micro color filter. The liquid crystal operation mode adopted in a TFT-LCD is TN. The optical throughput of an LC-projector is reduced by a pair of polarizers, an aperture ratio of a TFT- LCD and a color filter in a single-LCD projector. In order to eliminate absorption loss by a color filter, a single LCD projection system which consists of a monochrome LCD with a microlens array and a color splitting system using tilted dichroic mirrors or another optical element such as a holographic optical element or a blazed grating has been developed. And LC rear projection TVs have started to challenge CRT-based rear projection TVs. In addition to this system, new technologies to improve optical throughput have been developed to the practical stage such as an active- matrix-addressed PDLC and a reflective type LCD on a Si-LSI chip. Merits and technical issues of newly developed systems and conventional systems including a-Si TFT-LCDs and p-Si TFT-LCDs are discussed mainly in terms of optical throughput.

  10. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.

  11. Simon and Garner effects with color and location: Evidence for two independent routes by which irrelevant location influences performance.

    PubMed

    Fitousi, Daniel

    2016-11-01

    Classic theories of attention assume that the processing of a target's featural dimension (e.g., color) is contingent on the processing of its spatial location. The present study challenges this maxim. Three experiments evaluated the dimensional independence of spatial location and color using a combined Simon (Simon & Rudell Journal of Applied Psychology: 51, 300-304, 1967) and Garner (Garner, 1974) design. The results showed that when the stimulus's spatial location was rendered more discriminable than its color (Experiment 1 and 2), both Simon and Garner effects were obtained, and location interfered with color judgments to a larger extent than color intruded on location. However, when baseline discriminabilities of location and color were matched (Experiment 3), no Garner interference was obtained from location to color, yet Simon effects still emerged, proving resilient to manipulations of discriminability. Further correlational and distributional analyses showed that Garner and Simon effects have dissociable effects. A triple-route model is proposed to account for the results, according to which irrelevant location can influence performance via two independent location routes/codes.

  12. Categorical encoding of color in the brain.

    PubMed

    Bird, Chris M; Berens, Samuel C; Horner, Aidan J; Franklin, Anna

    2014-03-25

    The areas of the brain that encode color categorically have not yet been reliably identified. Here, we used functional MRI adaptation to identify neuronal populations that represent color categories irrespective of metric differences in color. Two colors were successively presented within a block of trials. The two colors were either from the same or different categories (e.g., "blue 1 and blue 2" or "blue 1 and green 1"), and the size of the hue difference was varied. Participants performed a target detection task unrelated to the difference in color. In the middle frontal gyrus of both hemispheres and to a lesser extent, the cerebellum, blood-oxygen level-dependent response was greater for colors from different categories relative to colors from the same category. Importantly, activation in these regions was not modulated by the size of the hue difference, suggesting that neurons in these regions represent color categorically, regardless of metric color difference. Representational similarity analyses, which investigated the similarity of the pattern of activity across local groups of voxels, identified other regions of the brain (including the visual cortex), which responded to metric but not categorical color differences. Therefore, categorical and metric hue differences appear to be coded in qualitatively different ways and in different brain regions. These findings have implications for the long-standing debate on the origin and nature of color categories, and also further our understanding of how color is processed by the brain.

  13. Shaded Relief with Height as Color and Landsat, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The top picture is a shaded relief image of the northwest corner of Mexico's Yucatan Peninsula generated from Shuttle Radar Topography Mission (SRTM) data, and shows a subtle, but unmistakable, indication of the Chicxulub impact crater. Most scientists now agree that this impact was the cause of the Cretatious-Tertiary Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life on Earth. The pattern of the crater's rim is marked by a trough, the darker green semicircular line near the center of the picture. This trough is only about 3 to 5 meters (10 - 15 feet) deep and is about 5 km (3 miles) wide; so subtle that if you walked across it you probably would not notice it. It is the surface expression of the buried crater's outer boundary. Scientists believe the impact, which was centered just off the coast in the Caribbean, altered the subsurface rocks such that the overlying limestone sediments, which formed later and erode very easily, would preferentially erode along the crater rim. This formed the trough as well as numerous sinkholes (called cenotes) which are visible as small circular depressions.

    The bottom picture is the same area viewed by the Landsat satellite, and was made by displaying the Thematic Mapper's Band 7 (mid-infrared), Band 4 (near-infrared) and Band 2 (green) as red, green and blue. These colors were chosen to maximize the contrast between different vegetation and land cover types, with native vegetation and cultivated land showing as green, yellow and magenta, and urban areas as white. The circular white area near the center of the image is Merida, a city of about 720,000 population. Notice that in the SRTM image, which shows only topography, the city is not visible, while in the Landsat image, which does not show elevations, the trough is not visible.

    Two visualization methods were combined to produce the SRTM image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 261 by 162 kilometers (162 by 100 miles) Location: 20.8 degrees North latitude, 89.3 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000

  14. Guide to the TANDEM System for the Modern Languages Department Tape Library: A Non-Technical Guide for Teachers.

    ERIC Educational Resources Information Center

    Hounsell, D.; And Others

    This guide for teachers to the tape indexing system (TANDEM) in use at the Modern Languages Department at Portsmouth Polytechnic focuses on tape classification, numbering, labeling, and shelving system procedures. The appendixes contain information on: (1) the classification system and related codes, (2) color and letter codes, (3) marking of tape…

  15. Io Shown in Lambertian Equal Area Projection and in Approximately Natural Color

    NASA Image and Video Library

    1998-06-04

    NASA's Voyager 1 computer color mosaics, shown in approximately natural color and in Lambertian equal-area projections, show the Eastern (left) and Western (right) hemispheres of Io. This innermost of Jupiter's 4 major satellites is the most volcanically active object in the solar system. Io is 2263 mi (3640 km) in diameter, making it a little bigger than Earth's moon. Almost all the features visible here have volcanic origins, including several calderas and eruption plumes that were active at the time of the Voyager 1 encounter. http://photojournal.jpl.nasa.gov/catalog/PIA00318

  16. Light and Color Research Continues in Arkansas.

    ERIC Educational Resources Information Center

    Sydoriak, Diane

    1984-01-01

    Describes a research project that will measure whether student achievement, blood pressure, height, and weight gain are influenced by the choice of color and/or the source of artificial light in the classroom. Four third-grade classrooms will be the treatment groups involving two colors and three different artificial light sources. (MLF)

  17. Wide Angle, Color, Holographic Infinity Optics Display. Final Report.

    ERIC Educational Resources Information Center

    Magarinos, Jose R.; Coleman, Daniel J.

    The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…

  18. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  19. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  20. Decomposing experience-driven attention: opposite attentional effects of previously predictive cues

    PubMed Central

    Lin, Zhicheng; Lu, Zhong-Lin; He, Sheng

    2016-01-01

    A central function of the brain is to track the dynamic statistical regularities in the environment—such as what predicts what over time. How does this statistical learning process alter sensory and attentional processes? Drawing upon animal conditioning and predictive coding, we developed a learning procedure that revealed two distinct components through which prior learning-experience controls attention. During learning, a visual search task was used in which the target randomly appeared at one of several locations but always inside an encloser of a particular color—the learned color served to direct attention to the target location. During test, the color no longer predicted the target location. When the same search task was used in the subsequent test, we found that the learned color continued to attract attention despite the behavior being counterproductive for the task and despite the presence of a completely predictive cue. However, when tested with a flanker task that had minimal location uncertainty—the target was at the fixation surrounded by a distractor—participants were better at ignoring distractors in the learned color than other colors. Evidently, previously predictive cues capture attention in the same search task but can be better suppressed in a flanker task. These results demonstrate opposing components—capture and inhibition—in experience-driven attention, with their manifestations crucially dependent on task context. We conclude that associative learning enhances context-sensitive top-down modulation while reduces bottom-up sensory drive and facilitates suppression, supporting a learning-based predictive coding account. PMID:27068051

  1. Attention mediates the effect of nutrition label information on consumers' choice. Evidence from a choice experiment involving eye-tracking.

    PubMed

    Bialkova, Svetlana; Grunert, Klaus G; Juhl, Hans Jørn; Wasowicz-Kirylo, Grazyna; Stysko-Kunkowska, Malgorzata; van Trijp, Hans C M

    2014-05-01

    In two eye-tracking studies, we explored whether and how attention to nutrition information mediates consumers' choice. Consumers had to select either the healthiest option or a product of their preference within an assortment. On each product a particular label (Choices logo, monochrome GDA label, or color-coded GDA label) communicated the product's nutrient profile. In study 1, participants had to select from 4 products differentiated, in addition to the nutrition information, by flavor (strawberry, muesli, apple, chocolate; varied within participants) and brand (local vs. global, varied between participants). Study 2 further explored brand effect within-participants, and thus only 2 flavors (strawberry, chocolate) were presented within an assortment. Actual choice made, response time and eye movements were recorded. Respondents fixated longer and more often on products with color-coded GDAs label than on products with monochrome GDAs or Choices logo. A health goal resulted in longer and more frequent fixations in comparison to a preference goal. Products with color-coded and monochrome GDAs had the highest likelihood of being chosen, and this effect was related to the attention-getting property of the label (irrespective of brand and flavor effects). The product fixated most had the highest likelihood of being chosen. These results suggest that attention mediates the effect of nutrition labels on choice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Interactive QR code beautification with full background image embedding

    NASA Astrophysics Data System (ADS)

    Lin, Lijian; Wu, Song; Liu, Sijiang; Jiang, Bo

    2017-06-01

    QR (Quick Response) code is a kind of two dimensional barcode that was first developed in automotive industry. Nowadays, QR code has been widely used in commercial applications like product promotion, mobile payment, product information management, etc. Traditional QR codes in accordance with the international standard are reliable and fast to decode, but are lack of aesthetic appearance to demonstrate visual information to customers. In this work, we present a novel interactive method to generate aesthetic QR code. By given information to be encoded and an image to be decorated as full QR code background, our method accepts interactive user's strokes as hints to remove undesired parts of QR code modules based on the support of QR code error correction mechanism and background color thresholds. Compared to previous approaches, our method follows the intention of the QR code designer, thus can achieve more user pleasant result, while keeping high machine readability.

  3. Hybrid rendering of the chest and virtual bronchoscopy [corrected].

    PubMed

    Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D

    2000-10-30

    Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.

  4. Advanced imaging techniques in brain tumors

    PubMed Central

    2009-01-01

    Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287

  5. Extremely simple holographic projection of color images

    NASA Astrophysics Data System (ADS)

    Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej

    2012-03-01

    A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).

  6. Using Project-Based Learning to Design, Build, and Test Student-Made Photometer by Measuring the Unknown Concentration of Colored Substances

    ERIC Educational Resources Information Center

    Diawati, Chansyanah; Liliasari; Setiabudi, Agus; Buchari

    2018-01-01

    Students learned the principles and practice of photometry through project-based learning. They addressed the challenge of measuring the unknown concentration of a colored substance using a photometer they were required to design, build, and test. Then, they used that instrument to carry out the experiment and fulfill the challenge. A photometer…

  7. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  8. BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity

    NASA Technical Reports Server (NTRS)

    Antoine, David; Chami, Malik; Claustre, Herve; d'Ortenzio, Fabrizio; Morel, Andre; Becu, Guislain; Gentili, Bernard; Louis, Francis; Ras, Josephine; Roussier, Emmanuel; hide

    2006-01-01

    This report presents the Bouee pour l'acquisition de Series Optiques a Long Terme (BOUSSOLE) project, the primary objectives of which are to provide a long-term time series of optical properties in support of a) calibration and validation activities associated with satellite ocean color missions, and b) bio-optical research in oceanic waters. The following are included in the report: 1) an introduction to the rationale for establishing the project; 2) a definition of vicarious calibration and the specific requirements attached to it; 3) the organization of the project and the characteristics of the measurement site--in the northwestern Mediterranean Sea; 4) a qualitative overview of the collected data; 5) details about the buoy that was specifically designed and built for this project; 6) data collection protocols and data processing techniques; 7) a quantitative summary of the collected data, and a discussion of some sample results, including match-up analyses for the currently operational ocean color sensors, namely MERIS, SeaWiFS, and MODIS; and 8) preliminary results of the vicarious radiometric calibration of MERIS, including a tentative uncertainty budget. The results of this match-up analysis allow performance comparisons of various ocean color sensors to be performed, demonstrating the ability of the BOUSSOLE activity, i.e., combining a dedicated platform and commercial-off-the-shelf instrumentation, to provide data qualified to monitor the quality of ocean color products on the long term.

  9. Effective declutter of complex flight displays using stereoptic 3-D cueing

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    The application of stereo technology to new, integrated pictorial display formats has been effective in situational awareness enhancements, and stereo has been postulated to be effective for the declutter of complex informational displays. This paper reports a full-factorial workstation experiment performed to verify the potential benefits of stereo cueing for the declutter function in a simulated tracking task. The experimental symbology was designed similar to that of a conventional flight director, although the format was an intentionally confused presentation that resulted in a very cluttered dynamic display. The subject's task was to use a hand controller to keep a tracking symbol, an 'X', on top of a target symbol, another X, which was being randomly driven. In the basic tracking task, both the target symbol and the tracking symbol were presented as red X's. The presence of color coding was used to provide some declutter, thus making the task more reasonable to perform. For this condition, the target symbol was coded red, and the tracking symbol was coded blue. Noise conditions, or additional clutter, were provided by the inclusion of randomly moving, differently colored X symbols. Stereo depth, which was hypothesized to declutter the display, was utilized by placing any noise in a plane in front of the display monitor, the tracking symbol at screen depth, and the target symbol behind the screen. The results from analyzing the performances of eight subjects revealed that the stereo presentation effectively offsets the cluttering effects of both the noise and the absence of color coding. The potential of stereo cueing to declutter complex informational displays has therefore been verified; this ability to declutter is an additional benefit from the application of stereoptic cueing to pictorial flight displays.

  10. The Task-Relevant Attribute Representation Can Mediate the Simon Effect

    PubMed Central

    Chen, Antao

    2014-01-01

    Researchers have previously suggested a working memory (WM) account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual) in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally) and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally), respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes) and to discriminate isosceles trapezoid from rectangle (between-category shapes), and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs) distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute. PMID:24618692

  11. Illustration of Some Consequences of the Indistinguishability of Electrons

    ERIC Educational Resources Information Center

    Moore, John W.; Davies, William G.

    1976-01-01

    Discusses how color-coded overhead transparencies of computer-generated dot-density diagrams can be used to illustrate hybrid orbitals and the principle of the indistinguishability of electrons. (MLH)

  12. Effect of Air Power on Military Operations, Western Europe

    DTIC Science & Technology

    1945-07-15

    AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED UNANNOUNCED Original contains color plates. All DTIC reproduct- DISTRIBUTION STAMP i ons will be...positions of these less massive structures, direct hits were rare. Demorali- zation, neutralization and disruption were an immediate after- effectof the bom...attack and making feints at the DEVELOPED enemy to keep him down while our infantry closed in, marking the target by colored smoke and other details not

  13. Pictorial Formats. Volume 1. Format Development

    DTIC Science & Technology

    1982-02-01

    inside a threat envelope when the map scale prevents showing the normal cues. 3.1.4 Special Topographic Formats The primary tactical interest in...coverage is in white to prevent confuzing it with the threat’s envelopes. The border between, PMAXI and RMAX2 missile ranges is lined with yellow and... prevent confusion with red-coded emergency action items. 4.3 STORES DISPLAYS: COLOR RASTER Figures 55, 56, 57 and 58 illustrate the color raster

  14. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  15. Sir John Pople, Gaussian Code, and Complex Chemical Reactions

    Science.gov Websites

    tool that describes the dance of molecules in chemical reactions ... . Dr. Pople was among the first to colors of light they will absorb or emit, and the pace of chemical reactions. The work culminated in a dropdown arrow Site Map A-Z Index Menu Synopsis Sir John Pople, Gaussian Code, and Complex Chemical

  16. DNATagger, colors for codons.

    PubMed

    Scherer, N M; Basso, D M

    2008-09-16

    DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.

  17. Color in the Cortex—single- and double-opponent cells

    PubMed Central

    Shapley, Robert; Hawken, Michael

    2011-01-01

    This is a review of the research during the past 25 years on cortical processing of color signals. At the beginning of the period the modular view of cortical processing predominated. However, at present an alternative view, that color and form are linked inextricably in visual cortical processing, is more persuasive than it seemed in 1985. Also, the role of the primary visual cortex, V1, in color processing now seems much larger than it did in 1985. The re-evaluation of the important role of V1 in color vision was caused in part by investigations of human V1 responses to color, measured with functional magnetic resonance imaging, fMRI, and in part by the results of numerous studies of single-unit neurophysiology in non-human primates. The neurophysiological results have highlighted the importance of double-opponent cells in V1. Another new concept is population coding of hue, saturation, and brightness in cortical neuronal population activity. PMID:21333672

  18. Pluto in Extended Color

    NASA Image and Video Library

    2015-09-24

    This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956

  19. HeatmapGenerator: high performance RNAseq and microarray visualization software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline.

    PubMed

    Khomtchouk, Bohdan B; Van Booven, Derek J; Wahlestedt, Claes

    2014-01-01

    The graphical visualization of gene expression data using heatmaps has become an integral component of modern-day medical research. Heatmaps are used extensively to plot quantitative differences in gene expression levels, such as those measured with RNAseq and microarray experiments, to provide qualitative large-scale views of the transcriptonomic landscape. Creating high-quality heatmaps is a computationally intensive task, often requiring considerable programming experience, particularly for customizing features to a specific dataset at hand. Software to create publication-quality heatmaps is developed with the R programming language, C++ programming language, and OpenGL application programming interface (API) to create industry-grade high performance graphics. We create a graphical user interface (GUI) software package called HeatmapGenerator for Windows OS and Mac OS X as an intuitive, user-friendly alternative to researchers with minimal prior coding experience to allow them to create publication-quality heatmaps using R graphics without sacrificing their desired level of customization. The simplicity of HeatmapGenerator is that it only requires the user to upload a preformatted input file and download the publicly available R software language, among a few other operating system-specific requirements. Advanced features such as color, text labels, scaling, legend construction, and even database storage can be easily customized with no prior programming knowledge. We provide an intuitive and user-friendly software package, HeatmapGenerator, to create high-quality, customizable heatmaps generated using the high-resolution color graphics capabilities of R. The software is available for Microsoft Windows and Apple Mac OS X. HeatmapGenerator is released under the GNU General Public License and publicly available at: http://sourceforge.net/projects/heatmapgenerator/. The Mac OS X direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_MAC_OSX.tar.gz/download. The Windows OS direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_WINDOWS.zip/download.

  20. C++ Coding Standards for the AMP Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas M; Clarno, Kevin T

    2009-09-01

    This document provides an initial starting point to define the C++ coding standards used by the AMP nuclear fuel performance integrated code project and a part of AMP's software development process. This document draws from the experiences, and documentation [1], of the developers of the Marmot Project at Los Alamos National Laboratory. Much of the software in AMP will be written in C++. The power of C++ can be abused easily, resulting in code that is difficult to understand and maintain. This document gives the practices that should be followed on the AMP project for all new code that ismore » written. The intent is not to be onerous but to ensure that the code can be readily understood by the entire code team and serve as a basis for collectively defining a set of coding standards for use in future development efforts. At the end of the AMP development in fiscal year (FY) 2010, all developers will have experience with the benefits, restrictions, and limitations of the standards described and will collectively define a set of standards for future software development. External libraries that AMP uses do not have to meet these requirements, although we encourage external developers to follow these practices. For any code of which AMP takes ownership, the project will decide on any changes on a case-by-case basis. The practices that we are using in the AMP project have been in use in the Denovo project [2] for several years. The practices build on those given in References [3-5]; the practices given in these references should also be followed. Some of the practices given in this document can also be found in [6].« less

  1. Mts. Agung and Batur, Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This perspective view shows the major volcanic group of Bali, one 13,000 islands comprising the nation of Indonesia. The conical mountain to the left is Gunung Agung, at 3,148 meters (10,308 feet) the highest point on Bali and an object of great significance in Balinese religion and culture. Agung underwent a major eruption in 1963 after more than 100 years of dormancy, resulting in the loss of over 1,000 lives.

    In the center is the complex structure of Batur volcano, showing a caldera (volcanic crater) left over from a massive catastrophic eruption about 30,000 years ago. Judging from the total volume of the outer crater and the volcano, that once lay above it, approximately 140 cubic kilometers(33.4 cubic miles) of material must have been produced by this eruption, making it one of the largest known volcanic events on Earth. Batur is still active and has erupted at least 22 times since the 1800's.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 8.33 degrees South latitude, 115.17 degrees East longitude Orientation: Looking southwest Size: scale varies in this perspective image Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  2. Shenandoah National Park, Virginia, Shaded Relief with Height as Color

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Shenandoah National Park lies astride part of the Blue Ridge Mountains, which form the southeastern range of the greater Appalachian Mountains in Virginia. The park is well framed by this one-degree of latitude (38-39 north) by one-degree of longitude (78-79 west) cell of Shuttle Radar Topography Mission data, and it appears here as the most prominent ridge trending diagonally across the scene. Skyline Drive, a 169-kilometer (105-mile) road that winds along the crest of the mountains through the length the park, provides vistas of the surrounding landscape. The Shenandoah River flows through the valley to the west, with Massanutten Mountain standing between the river's north and south forks. Unusually pronounced meanders of both river forks are very evident near the top center of this scene. Massanutten Mountain itself is an unusually distinctive landform also, consisting of highly elongated looping folds of sedimentary rock. The rolling Piedmont country lies to the southeast of the park, with Charlottesville located at the bottom center of the scene.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to bluish-white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Size: 111 by 87 kilometers (69 by 54 miles) Location: 38-39 degrees North latitude, 78-79 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  3. SRTM Colored Height and Shaded Relief: Las Bayas, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The interplay of volcanism, stream erosion and landslides is evident in this Shuttle Radar Topography Mission view of the eastern flank of the Andes Mountains, southeast of San Carlos de Bariloche, Argentina. Older lava flows emanating from the Andes once covered much of this area. Younger, local volcanoes (seen here as small peaks) then covered parts of the area with fresh, erosion resistant flows (seen here as very smooth surfaces). Subsequent erosion has created fine patterns on the older surfaces (bottom of the image) and bolder, irregular patterns through and around the younger surfaces (upper center and right center). Meanwhile, where a large stream immediately borders the resistant plateau (center of the image), lateral erosion has undercut the resistant plateau causing slivers of it to fall into the stream channel. This scene well illustrate show topographic data alone can reveal some aspects of recent geologic history.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 54.3 x 36.4 kilometers ( 33.7 x 22.6 miles) Location: 41.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  4. SRTM Colored Height and Shaded Relief: Near Zapala, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topographic data provided by the Shuttle Radar Topography Mission can provide many clues to geologic history and processes. This view of an area southwest of Zapala, Argentina, shows a wide diversity of geologic features. The highest peaks (left) appear to be massive (un-layered)crystalline rocks, perhaps granites. To their right (eastward) are tilted and eroded layered rocks, perhaps old lava flows, forming prominent ridges. Farther east and south, more subtle and curvilinear ridges show that the rock layers have not only been tilted but also folded. At the upper right, plateaus that cap the underlying geologic complexities are more recent lava flows - younger than the folding, but older than the current erosional pattern. Landforms in the southeast (lower right) and south-central areas appear partially wind sculpted.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on Space Shuttle Endeavour in 1994. Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 45.9 by 36.0 kilometers ( 28.5 by 22.3 miles) Location: 39.4 deg. South lat., 70.3 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  5. SRTM Perspective of Colored Height and Shaded Relief Laguna Mellquina, Andes Mountains, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM)view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters (2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.

    Three visualization methods were combined to produce this image: shading, color coding of topographic height and a perspective view. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. The perspective is toward the west, 20 degrees off horizontal with 2X vertical exaggeration. The back (west) edge of the data set forms a false skyline within the Andes Range.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 55.0 x 37.2 kilometers ( 34.1 x 23.1 miles) Location: 40.4 deg. South lat., 71.3 deg. West lon. Orientation: West toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  6. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.

  7. Categorical encoding of color in the brain

    PubMed Central

    Bird, Chris M.; Berens, Samuel C.; Horner, Aidan J.; Franklin, Anna

    2014-01-01

    The areas of the brain that encode color categorically have not yet been reliably identified. Here, we used functional MRI adaptation to identify neuronal populations that represent color categories irrespective of metric differences in color. Two colors were successively presented within a block of trials. The two colors were either from the same or different categories (e.g., “blue 1 and blue 2” or “blue 1 and green 1”), and the size of the hue difference was varied. Participants performed a target detection task unrelated to the difference in color. In the middle frontal gyrus of both hemispheres and to a lesser extent, the cerebellum, blood-oxygen level-dependent response was greater for colors from different categories relative to colors from the same category. Importantly, activation in these regions was not modulated by the size of the hue difference, suggesting that neurons in these regions represent color categorically, regardless of metric color difference. Representational similarity analyses, which investigated the similarity of the pattern of activity across local groups of voxels, identified other regions of the brain (including the visual cortex), which responded to metric but not categorical color differences. Therefore, categorical and metric hue differences appear to be coded in qualitatively different ways and in different brain regions. These findings have implications for the long-standing debate on the origin and nature of color categories, and also further our understanding of how color is processed by the brain. PMID:24591602

  8. Interactive bibliographical database on color

    NASA Astrophysics Data System (ADS)

    Caivano, Jose L.

    2002-06-01

    The paper describes the methodology and results of a project under development, aimed at the elaboration of an interactive bibliographical database on color in all fields of application: philosophy, psychology, semiotics, education, anthropology, physical and natural sciences, biology, medicine, technology, industry, architecture and design, arts, linguistics, geography, history. The project is initially based upon an already developed bibliography, published in different journals, updated in various opportunities, and now available at the Internet, with more than 2,000 entries. The interactive database will amplify that bibliography, incorporating hyperlinks and contents (indexes, abstracts, keywords, introductions, or eventually the complete document), and devising mechanisms for information retrieval. The sources to be included are: books, doctoral dissertations, multimedia publications, reference works. The main arrangement will be chronological, but the design of the database will allow rearrangements or selections by different fields: subject, Decimal Classification System, author, language, country, publisher, etc. A further project is to develop another database, including color-specialized journals or newsletters, and articles on color published in international journals, arranged in this case by journal name and date of publication, but allowing also rearrangements or selections by author, subject and keywords.

  9. Solid Geometric Modeling - The Key to Improved Materiel Acquisition from Concept to Deployment

    DTIC Science & Technology

    1984-09-01

    M. J. Reisinger, "The GIFT Code User Manual; Volume I, Introduction and Input Requirements (U)," BRL Report No. 1802, July 1975. AD# A078364. 8 G...G. Kuehl, L. W. Bain, Jr., M. J. Reisinger, "The GIFT Code User Manual; Volume II, The Output Options (U)," USA ARRAOCOM Report No. 02189, Sep 79, AD...A078364 . • These results are plotted by a code called RunShot written by L. M. Rybak which takes input from GIFT and plots color shotlines on a

  10. A novel quantum steganography scheme for color images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Liu, Xiande

    In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.

  11. Identity of Artificial Color on Oranges; Analysis for Spoilage Indicators in Butter; Rapid Identity of Margarine and Butter; Identity of Synthetic Colors in Foods. FDA's Science Project Series.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Washington, DC.

    These guides are four of several prepared through the F.D.A.'s Science Project Series for senior high school chemistry students and teachers investigating the quality of constituents of foods through experimentation. Each eight page pamphlet gives background information on the subject, equipment and reagents needed for the experiment, the…

  12. A progressive data compression scheme based upon adaptive transform coding: Mixture block coding of natural images

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.

  13. Real-time color measurement using active illuminant

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Horiuchi, Takahiko; Yoshimura, Akihiko

    2010-01-01

    This paper proposes a method for real-time color measurement using active illuminant. A synchronous measurement system is constructed by combining a high-speed active spectral light source and a high-speed monochrome camera. The light source is a programmable spectral source which is capable of emitting arbitrary spectrum in high speed. This system is the essential advantage of capturing spectral images without using filters in high frame rates. The new method of real-time colorimetry is different from the traditional method based on the colorimeter or the spectrometers. We project the color-matching functions onto an object surface as spectral illuminants. Then we can obtain the CIE-XYZ tristimulus values directly from the camera outputs at every point on the surface. We describe the principle of our colorimetric technique based on projection of the color-matching functions and the procedure for realizing a real-time measurement system of a moving object. In an experiment, we examine the performance of real-time color measurement for a static object and a moving object.

  14. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less

  15. Blind phase error suppression for color-encoded digital fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.

    2012-04-01

    Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.

  16. The Geometric Organizer: A Study Technique.

    ERIC Educational Resources Information Center

    Derr, Alice M.; Peters, Chris L.

    1986-01-01

    The geometric organizer, a multisensory technique using visual mnemonic devices that key information to color-coded geometric shapes, can help learning disabled students read, organize, and study information in content subject textbooks. (CL)

  17. Linearly additive shape and color signals in monkey inferotemporal cortex.

    PubMed

    McMahon, David B T; Olson, Carl R

    2009-04-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes-shape and color-varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape-color combinations.

  18. Mount Saint Helens, Washington, USA, SRTM Perspective: Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Mount Saint Helens is a prime example of how Earth's topographic form can greatly change even within our lifetimes. The mountain is one of several prominent volcanoes of the Cascade Range that stretches from British Columbia, Canada, southward through Washington, Oregon, and into northern California. Mount Adams (left background) and Mount Hood (right background) are also seen in this view, which was created entirely from elevation data produced by the Shuttle Radar Topography Mission.

    Prior to 1980, Mount Saint Helens had a shape roughly similar to other Cascade peaks, a tall, bold, irregular conic form that rose to 2950 meters (9677 feet). However, the explosive eruption of May 18, 1980, caused the upper 400 meters (1300 feet) of the mountain to collapse, slide, and spread northward, covering much of the adjacent terrain (lower left), leaving a crater atop the greatly shortened mountain. Subsequent eruptions built a volcanic dome within the crater, and the high rainfall of this area lead to substantial erosion of the poorly consolidated landslide material.

    Eruptions at Mount Saint Helens subsided in 1986, but renewed volcanic activity here and at other Cascade volcanoes is inevitable. Predicting such eruptions still presents challenges, but migration of magma within these volcanoes often produces distinctive seismic activity and minor but measurable topographic changes that can give warning of a potential eruption.

    Three visualization methods were combined to produce this image: shading of topographic slopes, color coding of topographic height, and then projection into a perspective view. The shade image was derived by computing topographic slope in the northeast-southwest (left to right) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The perspective view simulates the geometry of the surface as it would be viewed on a clear day.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's NASA's Science Mission Directorate, Washington, D.C.

    Size: View distance about 150 km (about 100 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: View Southeast Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  19. Coloring the Academic Landscape: Faculty of Color Breaking the Silence in Predominantly White Colleges and Universities

    ERIC Educational Resources Information Center

    Stanley, Christine A.

    2006-01-01

    This article, based on a larger, autoethnographic qualitative research project, focuses on the first-hand experiences of 27 faculty of color teaching in predominantly White colleges and universities. The 27 faculty represented a variety of institutions, disciplines, academic titles, and ranks. They identified themselves as African American,…

  20. Women of Color Navigating the Academy: The Discursive Power of Professionalism

    ERIC Educational Resources Information Center

    Castro, Corinne

    2012-01-01

    This project examines the professional experiences of women of color faculty to uncover less visible mechanisms of inequality in the academy. It is a mixed-methods study with both qualitative and quantitative components. I address the limitations of past research by revealing how even despite the relative successes of women of color in academia,…

  1. What to do with a Dead Research Code

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2016-01-01

    The project has ended -- should all of the computer codes that enabled the project be deleted? No. Like research papers, research codes typically carry valuable information past project end dates. Several possible end states to the life of research codes are reviewed. Historically, codes are typically left dormant on an increasingly obscure local disk directory until forgotten. These codes will likely become any or all of: lost, impossible to compile and run, difficult to decipher, and likely deleted when the code's proprietor moves on or dies. It is argued here, though, that it would be better for both code authors and astronomy generally if project codes were archived after use in some way. Archiving is advantageous for code authors because archived codes might increase the author's ADS citable publications, while astronomy as a science gains transparency and reproducibility. Paper-specific codes should be included in the publication of the journal papers they support, just like figures and tables. General codes that support multiple papers, possibly written by multiple authors, including their supporting websites, should be registered with a code registry such as the Astrophysics Source Code Library (ASCL). Codes developed on GitHub can be archived with a third party service such as, currently, BackHub. An important code version might be uploaded to a web archiving service like, currently, Zenodo or Figshare, so that this version receives a Digital Object Identifier (DOI), enabling it to found at a stable address into the future. Similar archiving services that are not DOI-dependent include perma.cc and the Internet Archive Wayback Machine at archive.org. Perhaps most simply, copies of important codes with lasting value might be kept on a cloud service like, for example, Google Drive, while activating Google's Inactive Account Manager.

  2. VizieR Online Data Catalog: Spectroscopic survey of youngest field stars II. (Frasca+, 2018)

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Guillout, P.; Klutsch, A.; Freire Ferrero, R.; Marilli, E.; Biazzo, K.; Gandolfi, D.; Montes, D.

    2018-01-01

    Radial velocity (RV) and projected rotational velocity (vsini) of the single stars and SB1 systems are quoted in Table A1 along with the V magnitude and B-V color index. The vsini values measured from the full width at half maximum of the of the cross-correlation function (CCF) and by means of the code ROTFIT are both listed in Table A1. Table A2 and A3 report RV and vsini from the CCF for the components of SB2 and triple (SB3) systems, respectively. Table A4 reports, for the single stars and SB1 systems, the spectral type, atmospheric parameters (Teff, logg, and [Fe/H]), the equivalent width of the lithium 6708-A line (corrected for the FeI blends) and the net equivalent width of Hα line, measured after the subtraction of the inactive photospheric template. (4 data files).

  3. Phoenix's New Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The center of the red circle on this map shows where NASA's Phoenix Mars Lander eased down to the surface of Mars, at approximately 68 degrees north latitude, 234 degrees east longitude. Before Phoenix landed, engineers had predicted it would land within the blue ellipse.

    Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis.

    The map shows a color-coded interpretation of geomorphic units categories based on the surface textures and contours. The geomorphic mapping is overlaid on a shaded relief map based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Unconscious Familiarity-based Color-Form Binding: Evidence from Visual Extinction.

    PubMed

    Rappaport, Sarah J; Riddoch, M Jane; Chechlacz, Magda; Humphreys, Glyn W

    2016-03-01

    There is good evidence that early visual processing involves the coding of different features in independent brain regions. A major question, then, is how we see the world in an integrated manner, in which the different features are "bound" together. A standard account of this has been that feature binding depends on attention to the stimulus, which enables only the relevant features to be linked together [Treisman, A., & Gelade, G. A feature-integration theory of attention. Cognitive Psychology, 12, 97-136, 1980]. Here we test this influential idea by examining whether, in patients showing visual extinction, the processing of otherwise unconscious (extinguished) stimuli is modulated by presenting objects in their correct (familiar) color. Correctly colored objects showed reduced extinction when they had a learned color, and this color matched across the ipsi- and contralesional items (red strawberry + red tomato). In contrast, there was no reduction in extinction under the same conditions when the stimuli were colored incorrectly (blue strawberry + blue tomato; Experiment 1). The result was not due to the speeded identification of a correctly colored ipsilesional item, as there was no benefit from having correctly colored objects in different colors (red strawberry + yellow lemon; Experiment 2). There was also no benefit to extinction from presenting the correct colors in the background of each item (Experiment 3). The data suggest that learned color-form binding can reduce extinction even when color is irrelevant for the task. The result is consistent with preattentive binding of color and shape for familiar stimuli.

  5. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  6. Preparation and Presentation of Digital Maps in Raster Format

    USGS Publications Warehouse

    Edwards, K.; Batson, R.M.

    1980-01-01

    A set of algorithms has been developed at USGS Flagstaff for displaying digital map data in raster format. The set includes: FILLIN, which assigns a specified attribute code to units of a map which have been outlined on a digitizer and converted to raster format; FILBND, which removes the outlines; ZIP, which adds patterns to the map units; and COLOR, which provides a simplified process for creating color separation plates for either photographic or lithographic reproduction. - Authors

  7. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  8. Mars Atmospheric Temperature and Dust Storm Tracking

    NASA Image and Video Library

    2016-06-09

    This graphic overlays Martian atmospheric temperature data as curtains over an image of Mars taken during a regional dust storm. The temperature profiles extend from the surface to about 50 miles (80 kilometers) up. Temperatures are color coded, ranging from minus 243 degrees Fahrenheit (minus 153 degrees Celsius) where coded purple to minus 9 F (minus 23 C) where coded red. The temperature data and global image were both recorded on Oct. 18, 2014, by instruments on NASA's Mars Reconnaissance Orbiter: Mars Climate Sounder and Mars Color Imager. On that day a regional dust storm was active in the Acidalia Planitia region of northern Mars, at the upper center of this image. A storm from this area in typically travels south and grows into a large regional storm in the southern hemisphere during southern spring. That type of southern-spring storm and two other large regional dust storms repeat as a three-storm series most Martian years. The pattern has been identified from their effects on atmospheric temperature in a layer about 16 miles (25 kilometers) above the surface. http://photojournal.jpl.nasa.gov/catalog/PIA20747

  9. Color-Coded Front-of-Pack Nutrition Labels-An Option for US Packaged Foods?

    PubMed

    Dunford, Elizabeth K; Poti, Jennifer M; Xavier, Dagan; Webster, Jacqui L; Taillie, Lindsey Smith

    2017-05-10

    The implementation of a standardized front-of-pack-labelling (FoPL) scheme would likely be a useful tool for many consumers trying to improve the healthfulness of their diets. Our objective was to examine what the traffic light labelling scheme would look like if implemented in the US. Data were extracted from Label Insight's Open Access branded food database in 2017. Nutrient levels and the proportion of products classified as "Red" (High), "Amber" (Medium) or "Green" (Low) in total fat, saturated fat, total sugar and sodium for food and beverage items were examined. The proportion of products in each category that had each possible combination of traffic light colors, and met the aggregate score for "healthy" was examined. Out of 175,198 products, >50% of all US packaged foods received a "Red" rating for total sugar and sodium. "Confectionery" had the highest mean total sugar (51.9 g/100 g) and "Meat and meat alternatives" the highest mean sodium (781 mg/100 g). The most common traffic light label combination was "Red" for total fat, saturated fat and sodium and "Green" for sugar. Only 30.1% of products were considered "healthy". A wide variety ( n = 80) of traffic light color combinations were observed. A color coded traffic light scheme appears to be an option for implementation across the US packaged food supply to support consumers in making healthier food choices.

  10. Detection of genetic diversity and selection at the coding region of the melanocortin receptor 1 (MC1R) gene in Tibetan pigs and Landrace pigs.

    PubMed

    Liu, Rui; Jin, Long; Long, Keren; Chai, Jie; Ma, Jideng; Tang, Qianzi; Tian, Shilin; Hu, Yaodong; Lin, Ling; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2016-01-10

    Domestication and subsequent selective pressures have produced a large variety of pig coat colors in different regions and breeds. The melanocortin 1 receptor (MC1R) gene plays a crucial role in determining coat color of mammals. Here, we investigated genetic diversity and selection at the coding region of the porcine melanocortin receptor 1 (MC1R) in Tibetan pigs and Landrace pigs. By contrast, genetic variability was much lower in Landrace pigs than in Tibetan pigs. Meanwhile, haplotype analysis showed that Tibetan pigs possessed shared haplotypes, suggesting a possibility of recent introgression event by way of crossbreeding with neighboring domestic pigs or shared ancestral polymorphism. Additionally, we detected positive selection at the MC1R in both Tibetan pigs and Landrace pigs through the dN/dS analysis. These findings suggested that novel phenotypic change (dark coat color) caused by novel mutations may help Tibetan pigs against intensive solar ultraviolet (UV) radiation and camouflage in wild environment, whereas white coat color in Landrace were intentionally selected by human after domestication. Furthermore, both the phylogenetic analysis and the network analysis provided clues that MC1R in Asian and European wild boars may have initially experienced different selective pressures, and MC1R alleles diversified in modern domesticated pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The alpaca melanocortin 1 receptor: gene mutations, transcripts, and relative levels of expression in ventral skin biopsies.

    PubMed

    Chandramohan, Bathrachalam; Renieri, Carlo; La Manna, Vincenzo; La Terza, Antonietta

    2015-01-01

    The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms (SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as F1 and F2, differing only in the length of their 5'-terminal untranslated region (UTR) sequences and presenting a color specific expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2 transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3'UTR. A 4 bp deletion (c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations in the MC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the MC1R gene and provides additional information on its role in alpaca pigmentation.

  12. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2004 This image was collected February 29, 2004 during the end of southern summer season. The local time at the location of the image was about 2 pm. The image shows an area in the South Polar region.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -84.7, Longitude 9.3 East (350.7 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Occator Topography

    NASA Image and Video Library

    2015-09-30

    This view, made using images taken by NASA Dawn spacecraft, is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. http://photojournal.jpl.nasa.gov/catalog/PIA19975

  14. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  15. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, F

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes althoughmore » helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.« less

  16. Central Brain Circuitry for Color-Vision-Modulated Behaviors.

    PubMed

    Longden, Kit D

    2016-10-24

    Color is famous for not existing in the external world: our brains create the perception of color from the spatial and temporal patterns of the wavelength and intensity of light. For an intangible quality, we have detailed knowledge of its origins and consequences. Much is known about the organization and evolution of the first phases of color processing, the filtering of light in the eye and processing in the retina, and about the final phases, the roles of color in behavior and natural selection. To understand how color processing in the central brain has evolved, we need well-defined pathways or circuitry where we can gauge how color contributes to the computations involved in specific behaviors. Examples of such pathways or circuitry that are dedicated to processing color cues are rare, despite the separation of color and luminance pathways early in the visual system of many species, and despite the traditional definition of color as being independent of luminance. This minireview presents examples in which color vision contributes to behaviors dominated by other visual modalities, examples that are not part of the canon of color vision circuitry. The pathways and circuitry process a range of chromatic properties of objects and their illumination, and are taken from a variety of species. By considering how color processing complements luminance processing, rather than being independent of it, we gain an additional way to account for the diversity of color coding in the central brain, its consequences for specific behaviors and ultimately the evolution of color vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Hybrid 3-D rendering of the thorax and surface-based virtual bronchoscopy in surgical and interventional therapy control].

    PubMed

    Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D

    2001-07-01

    The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.

  18. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    PubMed

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SequenceCEROSENE: a computational method and web server to visualize spatial residue neighborhoods at the sequence level.

    PubMed

    Heinke, Florian; Bittrich, Sebastian; Kaiser, Florian; Labudde, Dirk

    2016-01-01

    To understand the molecular function of biopolymers, studying their structural characteristics is of central importance. Graphics programs are often utilized to conceive these properties, but with the increasing number of available structures in databases or structure models produced by automated modeling frameworks this process requires assistance from tools that allow automated structure visualization. In this paper a web server and its underlying method for generating graphical sequence representations of molecular structures is presented. The method, called SequenceCEROSENE (color encoding of residues obtained by spatial neighborhood embedding), retrieves the sequence of each amino acid or nucleotide chain in a given structure and produces a color coding for each residue based on three-dimensional structure information. From this, color-highlighted sequences are obtained, where residue coloring represent three-dimensional residue locations in the structure. This color encoding thus provides a one-dimensional representation, from which spatial interactions, proximity and relations between residues or entire chains can be deduced quickly and solely from color similarity. Furthermore, additional heteroatoms and chemical compounds bound to the structure, like ligands or coenzymes, are processed and reported as well. To provide free access to SequenceCEROSENE, a web server has been implemented that allows generating color codings for structures deposited in the Protein Data Bank or structure models uploaded by the user. Besides retrieving visualizations in popular graphic formats, underlying raw data can be downloaded as well. In addition, the server provides user interactivity with generated visualizations and the three-dimensional structure in question. Color encoded sequences generated by SequenceCEROSENE can aid to quickly perceive the general characteristics of a structure of interest (or entire sets of complexes), thus supporting the researcher in the initial phase of structure-based studies. In this respect, the web server can be a valuable tool, as users are allowed to process multiple structures, quickly switch between results, and interact with generated visualizations in an intuitive manner. The SequenceCEROSENE web server is available at https://biosciences.hs-mittweida.de/seqcerosene.

  20. Reconstruction of color images via Haar wavelet based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Liu, Xingjiong; He, Weiji; Gu, Guohua

    2015-10-01

    A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.

  1. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  2. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  3. Continuous Codes and Standards Improvement (CCSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl H; Burgess, Robert M; Buttner, William J

    2015-10-21

    As of 2014, the majority of the codes and standards required to initially deploy hydrogen technologies infrastructure in the United States have been promulgated. These codes and standards will be field tested through their application to actual hydrogen technologies projects. Continuous codes and standards improvement (CCSI) is a process of identifying code issues that arise during project deployment and then developing codes solutions to these issues. These solutions would typically be proposed amendments to codes and standards. The process is continuous because as technology and the state of safety knowledge develops there will be a need to monitor the applicationmore » of codes and standards and improve them based on information gathered during their application. This paper will discuss code issues that have surfaced through hydrogen technologies infrastructure project deployment and potential code changes that would address these issues. The issues that this paper will address include (1) setback distances for bulk hydrogen storage, (2) code mandated hazard analyses, (3) sensor placement and communication, (4) the use of approved equipment, and (5) system monitoring and maintenance requirements.« less

  4. An overview of new video coding tools under consideration for VP10: the successor to VP9

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debargha; Su, Hui; Bankoski, James; Converse, Alex; Han, Jingning; Liu, Zoe; Xu, Yaowu

    2015-09-01

    Google started an opensource project, entitled the WebM Project, in 2010 to develop royaltyfree video codecs for the web. The present generation codec developed in the WebM project called VP9 was finalized in mid2013 and is currently being served extensively by YouTube, resulting in billions of views per day. Even though adoption of VP9 outside Google is still in its infancy, the WebM project has already embarked on an ambitious project to develop a next edition codec VP10 that achieves at least a generational bitrate reduction over the current generation codec VP9. Although the project is still in early stages, a set of new experimental coding tools have already been added to baseline VP9 to achieve modest coding gains over a large enough test set. This paper provides a technical overview of these coding tools.

  5. Hanford business structure for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    The Hanford Business Structure integrates the project`s technical, schedule, and cost baselines; implements the use of a standard code of accounts; and streamlines performance reporting and cost collection. Technical requirements drive the technical functions and come from the RDD 100 database. The functions will be identified in the P3 scheduling system and also in the PeopleSoft system. Projects will break their work down from the technical requirements in the P3 schedules. When the level at which they want to track cost via the code of accounts is reached, a Project ID will be generated in the PeopleSoft system. P3 maymore » carry more detailed schedules below the Project ID level. The standard code of accounts will identify discrete work activities done across the site and various projects. They will include direct and overhead type work scopes. Activities in P3 will roll up to this standard code of accounts. The field that will be used to record this in PeopleSoft is ``Activity``. In Passport it is a user-defined field. It will have to be added to other feeder systems. Project ID and code of accounts are required fields on all cost records.« less

  6. Wheels Don't Have to Be Round

    ERIC Educational Resources Information Center

    Laird, Shirley

    2012-01-01

    Every year, the author's eighth-graders do some projects on color mixing and color schemes. In this article, the author gives a twist to the basic color wheel. Using rough-draft paper the same size as the paper they would eventually work on, students were to figure out a way to divide it into six spaces. They were not limited to basic rectangles,…

  7. Color machine vision in industrial process control: case limestone mine

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.; Lemstrom, Guy F.; Koskinen, Seppo

    1994-11-01

    An optical sorter technology has been developed to improve profitability of a mine by using color line scan machine vision technology. The new technology adapted longers the expected life time of the limestone mine and improves its efficiency. Also the project has proved that color line scan technology of today can successfully be applied to industrial use in harsh environments.

  8. NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1992-01-01

    The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.

  9. Water Around a Carbon Star

    NASA Image and Video Library

    2010-09-01

    This ESA Herschel image shows IRC+10216, also known as CW Leonis, a star rich in carbon where astronomers were surprised to find water. This color-coded image shows the star, surrounded by a clumpy envelope of dust.

  10. Black Hills

    Atmospheric Science Data Center

    2014-05-15

    ... 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  11. Safety and Liability.

    ERIC Educational Resources Information Center

    Berthelot, Ronald J.; And Others

    1982-01-01

    This series of five articles highlights Pensacola Junior College's occupational safety course, involving simulated emergencies, Florida's standards for teacher liability, electrical safety in the classroom and laboratory, color coding for machine safety, and Florida industrial arts safety instructional materials. (SK)

  12. A Valentine from Vesta

    NASA Image and Video Library

    2012-02-14

    This image from NASA Dawn spacecraft, is based on a framing camera image that is overlain by a color-coded height representation of topography. This heart-shaped hollow is roughly 10 kilometers 6 miles across at its widest point.

  13. Sedna Planitia Right Member of a Synthetic Stereo Pair

    NASA Image and Video Library

    1998-06-04

    This perspective view of Venus, generated by computer from NASA Magellan data and color-coded with emissivity, shows part of the lowland plains in Sedna Planitia. http://photojournal.jpl.nasa.gov/catalog/PIA00314

  14. Rationale and description of a coordinated cockpit display for aircraft flight management

    NASA Technical Reports Server (NTRS)

    Baty, D. L.

    1976-01-01

    The design for aircraft cockpit display systems is discussed in detail. The system consists of a set of three beam penetration color cathode ray tubes (CRT). One of three orthogonal projects of the aircraft's state appears on each CRT which displays different views of the same information. The color feature is included to obtain visual separation of information elements. The colors of red, green and yellow are used to differentiate control, performance and navigation information. Displays are coordinated in information and color.

  15. A Comparison of Three Elliptical Galaxy Photochemical Evolution Codes

    NASA Astrophysics Data System (ADS)

    Gibson, Brad K.

    1996-09-01

    Working within the classic supernovae-driven wind framework for elliptical galaxy evolution, We perform a systematic investigation into the discrepancies between the predictions of three contemporary codes (by Arimoto & Yoshii, Bressan et al., and Gibson). By being primarily concerned with reproducing the present-day color-metallicity-luminosity (CML) relations among elliptical galaxies, the approaches taken in the theoretical modeling have managed to obscure many of the hidden differences between the codes. Targeting the timescale for the onset of the initial galactic wind, t_GW_, as a primary "difference" indicator, We demonstrate exactly how and why each code is able to claim successful reproduction of the CML relations, despite possessing apparently incompatible input ingredients.

  16. Role of oceanic air bubbles in atmospheric correction of ocean color imagery.

    PubMed

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-20

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere--ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  17. Role of oceanic air bubbles in atmospheric correction of ocean color imagery

    NASA Astrophysics Data System (ADS)

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-01

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere-ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  18. A Physicist's view on Chopin's Études

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo

    2017-07-01

    We propose the use of specific dynamical processes and more in general of ideas from Physics to model the evolution in time of musical structures. We apply this approach to two Études by F. Chopin, namely Op.10 n.3 and Op.25 n.1, proposing some original description based on concepts of symmetry breaking/restoration and quantum coherence, which could be useful for interpretation. In this analysis, we take advantage of colored musical scores, obtained by implementing Scriabin's color code for sounds to musical notation.

  19. Development of Lead Compounds as Fusion Inhibitors for Dengue Virus

    DTIC Science & Technology

    2009-08-01

    19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b . ABSTRACT U c. THIS PAGE U UU 61 19b. TELEPHONE NUMBER (include area code...and III (blue). B ) Structural alignment of E2 protein monomer in the absence and presence of βOG (pdbIDs 1OAN and 1OKE respectively), with the kl-β...hairpin loop colored as follows: prefusion state (yellow), intermediate βOG-E2 complex (blue), secondary structure colored by B -factor from blue

  20. Rotorcraft Use in Disaster Relief and Mass Casualty Incidents - Case Studies

    DTIC Science & Technology

    1990-06-01

    Disaster Relief and Mass 6. Performing Organization Code C asuallty Incidents- C ase Studies 8._P rfo minOr ani ati nR porNo 7. Author (s) 8...disaster planning process; and 3) produce a color video tape promoting the need for and the use of rotorcraft and heliports in disaster relief. 17...disaster prepaLedness ageicies for use in the integration of local helicopter assets into the disaster planning process; and 3) produce a color video tape

  1. Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.

    PubMed

    Dai, Jingwen; Chung, Chi-Kit Ronald

    2014-08-01

    We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.

  2. Predicting Morphology of Polymers Using Mesotek+

    DTIC Science & Technology

    2010-02-01

    file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6  Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the

  3. Color and temperature of the crater lakes at Kelimutu volcano through time

    NASA Astrophysics Data System (ADS)

    Murphy, Sam; Wright, Robert; Rouwet, Dmitri

    2018-01-01

    We investigated the color and temperature of three volcanic crater lakes that co-exist at Kelimutu volcano (Indonesia) using 30 years of Landsat data. These satellite data were obtained through Google Earth Engine. Time series of surface reflectance (visible wavelengths) and brightness temperature above background (thermal infrared wavelengths) were calculated. Color was defined in the RGB (red-green-blue) and HSV (hue-saturation-value) color spaces, and we introduce a visualization concept called "hue stretch" to consistently represent hue through time. These parameters display long-term trends, seasonal cycles and short duration bursts of activity at the lakes. We demonstrate that the color of the lakes are related over a period of months to years and discovered a previously unreported but significant episode around 1997, which included large agglomerations of floating elemental sulfur. Globally speaking, these techniques could reveal trends at any of the 100 crater lakes on active volcanoes. Furthermore, they could apply to any target whose color changes through time (e.g., forests, crops, and non-volcanic water bodies). We have open-sourced the code necessary to perform these analyses.

  4. Real Data and Rapid Results: Ocean Color Data Analysis with Giovanni (GES DISC Interactive Online Visualization and ANalysis Infrastructure)

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Leptoukh, G.; Kempler, S.; Gregg, W.; Berrick, S.; Zhu, T.; Liu, Z.; Rui, H.; Shen, S.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step addressing the challenge of using archived Earth Observing System (EOS) data for regional or global studies by developing an infrastructure with a World Wide Web interface which allows online, interactive, data analysis: the GES DISC Interactive Online Visualization and ANalysis Infrastructure, or "Giovanni." Giovanni provides a data analysis environment that is largely independent of underlying data file format. The Ocean Color Time-Series Project has created an initial implementation of Giovanni using monthly Standard Mapped Image (SMI) data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission. Giovanni users select geophysical parameters, and the geographical region and time period of interest. The system rapidly generates a graphical or ASCII numerical data output. Currently available output options are: Area plot (averaged or accumulated over any available data period for any rectangular area); Time plot (time series averaged over any rectangular area); Hovmeller plots (image view of any longitude-time and latitude-time cross sections); ASCII output for all plot types; and area plot animations. Future plans include correlation plots, output formats compatible with Geographical Information Systems (GIs), and higher temporal resolution data. The Ocean Color Time-Series Project will produce sensor-independent ocean color data beginning with the Coastal Zone Color Scanner (CZCS) mission and extending through SeaWiFS and Moderate Resolution Imaging Spectroradiometer (MODIS) data sets, and will enable incorporation of Visible/lnfrared Imaging Radiometer Suite (VIIRS) data, which will be added to Giovanni. The first phase of Giovanni will also include tutorials demonstrating the use of Giovanni and collaborative assistance in the development of research projects using the SeaWiFS and Ocean Color Time-Series Project data in the online Laboratory for Ocean Color Users (LOCUS). The synergy of Giovanni with high-quality ocean color data provides users with the ability to investigate a variety of important oceanic phenomena, such as coastal primary productivity related to pelagic fisheries, seasonal patterns and interannual variability, interdependence of atmospheric dust aerosols and harmful algal blooms, and the potential effects of climate change on oceanic productivity.

  5. Linearly Additive Shape and Color Signals in Monkey Inferotemporal Cortex

    PubMed Central

    McMahon, David B. T.; Olson, Carl R.

    2009-01-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes—shape and color—varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape–color combinations. PMID:19144745

  6. Kepler's Supernova Remnant: A View from Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site] Figure 1

    Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images.

    The bottom panels are close-up views of the remnant. In the bottom, center image, Hubble sees fine details in the brightest, densest areas of gas. The region seen in these images is outlined in the top, center panel.

    The images indicate that the bubble of gas that makes up the supernova remnant appears different in various types of light. Chandra reveals the hottest gas [colored blue and colored green], which radiates in X-rays. The blue color represents the higher-energy gas; the green, the lower-energy gas. Hubble shows the brightest, densest gas [colored yellow], which appears in visible light. Spitzer unveils heated dust [colored red], which radiates in infrared light.

  7. VARiD: a variation detection framework for color-space and letter-space platforms.

    PubMed

    Dalca, Adrian V; Rumble, Stephen M; Levy, Samuel; Brudno, Michael

    2010-06-15

    High-throughput sequencing (HTS) technologies are transforming the study of genomic variation. The various HTS technologies have different sequencing biases and error rates, and while most HTS technologies sequence the residues of the genome directly, generating base calls for each position, the Applied Biosystem's SOLiD platform generates dibase-coded (color space) sequences. While combining data from the various platforms should increase the accuracy of variation detection, to date there are only a few tools that can identify variants from color space data, and none that can analyze color space and regular (letter space) data together. We present VARiD--a probabilistic method for variation detection from both letter- and color-space reads simultaneously. VARiD is based on a hidden Markov model and uses the forward-backward algorithm to accurately identify heterozygous, homozygous and tri-allelic SNPs, as well as micro-indels. Our analysis shows that VARiD performs better than the AB SOLiD toolset at detecting variants from color-space data alone, and improves the calls dramatically when letter- and color-space reads are combined. The toolset is freely available at http://compbio.cs.utoronto.ca/varid.

  8. Human preference for individual colors

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-02-01

    Color preference is an important aspect of human behavior, but little is known about why people like some colors more than others. Recent results from the Berkeley Color Project (BCP) provide detailed measurements of preferences among 32 chromatic colors as well as other relevant aspects of color perception. We describe the fit of several color preference models, including ones based on cone outputs, color-emotion associations, and Palmer and Schloss's ecological valence theory. The ecological valence theory postulates that color serves an adaptive "steering' function, analogous to taste preferences, biasing organisms to approach advantageous objects and avoid disadvantageous ones. It predicts that people will tend to like colors to the extent that they like the objects that are characteristically that color, averaged over all such objects. The ecological valence theory predicts 80% of the variance in average color preference ratings from the Weighted Affective Valence Estimates (WAVEs) of correspondingly colored objects, much more variance than any of the other models. We also describe how hue preferences for single colors differ as a function of gender, expertise, culture, social institutions, and perceptual experience.

  9. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    PubMed Central

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2010-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: 1) the categorical relationship between the target and the distracters and 2) the visual field in which the target was presented. Similar to controls, the RH patients were faster in detecting targets in the right visual field when the target and distracters had different color names compared to when their names were the same. This effect was absent in the LH patients, consistent with the hypothesis that injury to the left hemisphere handicaps the automatic activation of lexical codes. Moreover, the LH patients showed a reversed effect, such that the advantage of different target-distracter names was now evident for targets in the left visual field. This reversal may suggest a reorganization of the color lexicon in the right hemisphere following left hemisphere brain injury and/or the unmasking of a heightened right hemisphere sensitivity to color categories. PMID:21216454

  10. A comparison of viewer reactions to outdoor scenes and photographs of those scenes

    Treesearch

    Elwood, Jr. Shafer; Thomas A. Richards; Thomas A. Richards

    1974-01-01

    A color-slide projection or photograph can be used to determine reactions to an actual scene if the presentation adequately includes most of the elements in the scene. Eight kinds of scenes were subjected to three different types of presentation: (A) viewing. the actual scenes, (B) viewing color slides of the scenes, and (C) viewing color photographs of the scenes. For...

  11. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  12. Perspective View with Color-Coded Shaded Relief, Central Panama

    NASA Image and Video Library

    2002-10-25

    This perspective view from NASA Shuttle Radar Topography Mission SRTM, acquired on February 2000, shows central Panama, with the remnants of the extinct volcano El Valle in the foreground and the Caribbean Sea in the distance.

  13. Hydration Map, Based on Mastcam Spectra, for Knorr Rock Target

    NASA Image and Video Library

    2013-03-18

    On this image of the rock target Knorr, color coding maps the amount of mineral hydration indicated by a ratio of near-infrared reflectance intensities measured by the Mastcam on NASA Mars rover Curiosity.

  14. Hydration Map, Based on Mastcam Spectra, for broken rock Tintina

    NASA Image and Video Library

    2013-03-18

    On this image of the broken rock called Tintina, color coding maps the amount of mineral hydration indicated by a ratio of near-infrared reflectance intensities measured by the Mastcam on NASA Mars rover Curiosity.

  15. Tendril-producing Geysers on Enceladus South Polar Terrain

    NASA Image and Video Library

    2015-04-14

    This graphic plots the source locations of geysers scientists have located on Enceladus south polar terrain, with the 36 most active geyser sources marked and color coded by the behavior of the grains erupting from the geysers.

  16. Coastal Chile Shaded Relief View

    NASA Image and Video Library

    2010-03-04

    This color-coded shaded relief view from NASA Shuttle Radar Topography Mission of coastal Chile indicates the epicenter red marker of the 8.8 earthquake on Feb. 27, 2010, just offshore of the Maule region in the Bahia de Chanco.

  17. Emodiversity and the emotional ecosystem.

    PubMed

    Quoidbach, Jordi; Gruber, June; Mikolajczak, Moïra; Kogan, Alexsandr; Kotsou, Ilios; Norton, Michael I

    2014-12-01

    [Correction Notice: An Erratum for this article was reported in Vol 143(6) of Journal of Experimental Psychology: General (see record 2014-49316-001). There is a color coding error in Figure 2. The correct color coding is explained in the erratum.] Bridging psychological research exploring emotional complexity and research in the natural sciences on the measurement of biodiversity, we introduce--and demonstrate the benefits of--emodiversity: the variety and relative abundance of the emotions that humans experience. Two cross-sectional studies across more than 37,000 respondents demonstrate that emodiversity is an independent predictor of mental and physical health--such as decreased depression and doctor's visits--over and above mean levels of positive and negative emotion. These results remained robust after controlling for gender, age, and the 5 main dimensions of personality. Emodiversity is a practically important and previously unidentified metric for assessing the health of the human emotional ecosystem. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. An ultraviolet-visible spectrophotometer automation system. Part 3: Program documentation

    NASA Astrophysics Data System (ADS)

    Roth, G. S.; Teuschler, J. M.; Budde, W. L.

    1982-07-01

    The Ultraviolet-Visible Spectrophotometer (UVVIS) automation system accomplishes 'on-line' spectrophotometric quality assurance determinations, report generations, plot generations and data reduction for chlorophyll or color analysis. This system also has the capability to process manually entered data for the analysis of chlorophyll or color. For each program of the UVVIS system, this document contains a program description, flowchart, variable dictionary, code listing, and symbol cross-reference table. Also included are descriptions of file structures and of routines common to all automated analyses. The programs are written in Data General extended BASIC, Revision 4.3, under the RDOS operating systems, Revision 6.2. The BASIC code has been enhanced for real-time data acquisition, which is accomplished by CALLS to assembly language subroutines. Two other related publications are 'An Ultraviolet-Visible Spectrophotometer Automation System - Part I Functional Specifications,' and 'An Ultraviolet-Visible Spectrophotometer Automation System - Part II User's Guide.'

  19. Temperature Map, "Bonneville Crater" (1:35 p.m.)

    NASA Image and Video Library

    2004-05-17

    Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930

  20. Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Nickel, Matthew; Rose, Steven; Fries, Rainer

    2017-09-01

    Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.

  1. [Non elective cesarean section: use of a color code to optimize management of obstetric emergencies].

    PubMed

    Rudigoz, René-Charles; Huissoud, Cyril; Delecour, Lisa; Thevenet, Simone; Dupont, Corinne

    2014-06-01

    The medical team of the Croix Rousse teaching hospital maternity unit has developed, over the last ten years, a set of procedures designed to respond to various emergency situations necessitating Caesarean section. Using the Lucas classification, we have defined as precisely as possible the degree of urgency of Caesarian sections. We have established specific protocols for the implementation of urgent and very urgent Caesarean section and have chosen a simple means to convey the degree of urgency to all team members, namely a color code system (red, orange and green). We have set time goals from decision to delivery: 15 minutes for the red code and 30 minutes for the orange code. The results seem very positive: The frequency of urgent and very urgent Caesareans has fallen over time, from 6.1 % to 1.6% in 2013. The average time from decision to delivery is 11 minutes for code red Caesareans and 21 minutes for code orange Caesareans. These time goals are now achieved in 95% of cases. Organizational and anesthetic difficulties are the main causes of delays. The indications for red and orange code Caesarians are appropriate more than two times out of three. Perinatal outcomes are generally favorable, code red Caesarians being life-saving in 15% of cases. No increase in maternal complications has been observed. In sum: Each obstetric department should have its own protocols for handling urgent and very urgent Caesarean sections. Continuous monitoring of their implementation, relevance and results should be conducted Management of extreme urgency must be integrated into the management of patients with identified risks (scarred uterus and twin pregnancies for example), and also in structures without medical facilities (birthing centers). Obstetric teams must keep in mind that implementation of these protocols in no way dispenses with close monitoring of labour.

  2. Color Imaging management in film processing

    NASA Astrophysics Data System (ADS)

    Tremeau, Alain; Konik, Hubert; Colantoni, Philippe

    2003-12-01

    The latest research projects in the laboratory LIGIV concerns capture, processing, archiving and display of color images considering the trichromatic nature of the Human Vision System (HSV). Among these projects one addresses digital cinematographic film sequences of high resolution and dynamic range. This project aims to optimize the use of content for the post-production operators and for the end user. The studies presented in this paper address the use of metadata to optimise the consumption of video content on a device of user's choice independent of the nature of the equipment that captured the content. Optimising consumption includes enhancing the quality of image reconstruction on a display. Another part of this project addresses the content-based adaptation of image display. Main focus is on Regions of Interest (ROI) operations, based on the ROI concepts of MPEG-7. The aim of this second part is to characterize and ensure the conditions of display even if display device or display media changes. This requires firstly the definition of a reference color space and the definition of bi-directional color transformations for each peripheral device (camera, display, film recorder, etc.). The complicating factor is that different devices have different color gamuts, depending on the chromaticity of their primaries and the ambient illumination under which they are viewed. To match the displayed image to the aimed appearance, all kind of production metadata (camera specification, camera colour primaries, lighting conditions) should be associated to the film material. Metadata and content build together rich content. The author is assumed to specify conditions as known from digital graphics arts. To control image pre-processing and image post-processing, these specifications should be contained in the film's metadata. The specifications are related to the ICC profiles but need additionally consider mesopic viewing conditions.

  3. 42 CFR 137.328 - Must a construction project proposal incorporate provisions of Federal construction guidelines...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., the Self-Governance Tribe and the Secretary must agree upon and specify appropriate building codes and...-Governance Tribe in the preparation of its construction project proposal. If Tribal construction codes and standards (including national, regional, State, or Tribal building codes or construction industry standards...

  4. 42 CFR 137.328 - Must a construction project proposal incorporate provisions of Federal construction guidelines...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., the Self-Governance Tribe and the Secretary must agree upon and specify appropriate building codes and...-Governance Tribe in the preparation of its construction project proposal. If Tribal construction codes and standards (including national, regional, State, or Tribal building codes or construction industry standards...

  5. 42 CFR 137.328 - Must a construction project proposal incorporate provisions of Federal construction guidelines...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., the Self-Governance Tribe and the Secretary must agree upon and specify appropriate building codes and...-Governance Tribe in the preparation of its construction project proposal. If Tribal construction codes and standards (including national, regional, State, or Tribal building codes or construction industry standards...

  6. 42 CFR 137.328 - Must a construction project proposal incorporate provisions of Federal construction guidelines...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., the Self-Governance Tribe and the Secretary must agree upon and specify appropriate building codes and...-Governance Tribe in the preparation of its construction project proposal. If Tribal construction codes and standards (including national, regional, State, or Tribal building codes or construction industry standards...

  7. ARC-2001-ACD01-0018

    NASA Image and Video Library

    2001-02-16

    New Center Network Deployment ribbon Cutting: from left to right: Maryland Edwards, Code JT upgrade project deputy task manager; Ed Murphy, foundry networks systems engineer; Bohdan Cmaylo, Code JT upgrade project task manager, Scott Santiago, Division Chief, Code JT; Greg Miller, Raytheon Network engineer and Frank Daras, Raytheon network engineering manager.

  8. 42 CFR 137.328 - Must a construction project proposal incorporate provisions of Federal construction guidelines...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., the Self-Governance Tribe and the Secretary must agree upon and specify appropriate building codes and...-Governance Tribe in the preparation of its construction project proposal. If Tribal construction codes and standards (including national, regional, State, or Tribal building codes or construction industry standards...

  9. Perfect Color Registration Realized.

    ERIC Educational Resources Information Center

    Lovedahl, Gerald G.

    1979-01-01

    Describes apparatus and procedures to design and construct a "printing box" as a graphic arts project to make color prints on T-shirts using photography, indirect and direct photo screen methods, and other types of stencils. Step-by-step photographs illustrate the process. (MF)

  10. Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet). Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000 Image courtesy NASA/JPL/NIMA

  11. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing operation through network firewalls; data is compressed to enhance performance over limited bandwidth connections. All applications and services are written in the JAVA program language for platform independence. Several versions of SARDS have been in operational use by the NASA Space Radiation Analysis Group, NOAA Space Weather Operations, and U.S. Air Force Weather Agency since 1999.

  12. Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida

    NASA Technical Reports Server (NTRS)

    Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.

    1977-01-01

    In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.

  13. Topographic map of the Parana Valles region of Mars MTM 500k -25/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –25/347E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 25° S., longitude 347.5° E. in planetocentric coordinate system (this corresponds to –25/012; latitude 25° S., longitude 12.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  14. Topographic Map of the Northwest Loire Valles Region of Mars MTM 500k -15/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –15/337E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 15° S., longitude 337.5° E. in planetocentric coordinate system (this corresponds to –15/022; latitude 15° S., longitude 22.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0–km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  15. Effect of the atmosphere on the color coordinates of sunlit surfaces

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Viljoen, Johan W.

    2016-02-01

    Aerosol attenuation in the atmosphere has a relatively weak spectral variation compared to molecular absorption. However, the solar spectral irradiance differs considerably for the sun at high zenith angles versus the sun at low zenith angles. The perceived color of a sunlit object depends on the object's spectral reflectivity as well as the irradiance spectrum. The color coordinates of the sunlit object, hence also the color balance in a scene, shift with changes in the solar zenith angle. The work reported here does not claim accurate color measurement. With proper calibration mobile phones may provide reasonably accurate color measurement, but the mobile phones used for taking these pictures and videos are not scientific instruments and were not calibrated. The focus here is on the relative shift of the observed colors, rather than absolute color. The work in this paper entails the theoretical analysis of color coordinates of surfaces and how they change for different colored surfaces. Then follows three separate investigations: (1) Analysis of a number of detailed atmospheric radiative transfer code (Modtran) runs to show from the theory how color coordinates should change. (2) Analysis of a still image showing how the colors of two sample surfaces vary between sunlit and shaded areas. (3) Time lapse video recordings showing how the color coordinates of a few surfaces change as a function of time of day. Both the theoretical and experimental work shows distinct shifts in color as function of atmospheric conditions. The Modtran simulations demonstrate the effect from clear atmospheric conditions (no aerosol) to low visibility conditions (5 km visibility). Even under moderate atmospheric conditions the effect was surprisingly large. The experimental work indicated significant shifts during the diurnal cycle.

  16. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation).

  17. Color-Coded Front-of-Pack Nutrition Labels—An Option for US Packaged Foods?

    PubMed Central

    Dunford, Elizabeth K.; Poti, Jennifer M.; Xavier, Dagan; Webster, Jacqui L.; Taillie, Lindsey Smith

    2017-01-01

    The implementation of a standardized front-of-pack-labelling (FoPL) scheme would likely be a useful tool for many consumers trying to improve the healthfulness of their diets. Our objective was to examine what the traffic light labelling scheme would look like if implemented in the US. Data were extracted from Label Insight’s Open Access branded food database in 2017. Nutrient levels and the proportion of products classified as “Red” (High), “Amber” (Medium) or “Green” (Low) in total fat, saturated fat, total sugar and sodium for food and beverage items were examined. The proportion of products in each category that had each possible combination of traffic light colors, and met the aggregate score for “healthy” was examined. Out of 175,198 products, >50% of all US packaged foods received a “Red” rating for total sugar and sodium. “Confectionery” had the highest mean total sugar (51.9 g/100 g) and “Meat and meat alternatives” the highest mean sodium (781 mg/100 g). The most common traffic light label combination was “Red” for total fat, saturated fat and sodium and “Green” for sugar. Only 30.1% of products were considered “healthy”. A wide variety (n = 80) of traffic light color combinations were observed. A color coded traffic light scheme appears to be an option for implementation across the US packaged food supply to support consumers in making healthier food choices. PMID:28489037

  18. The Alpaca Melanocortin 1 Receptor: Gene Mutations, Transcripts, and Relative Levels of Expression in Ventral Skin Biopsies

    PubMed Central

    Renieri, Carlo; La Terza, Antonietta

    2015-01-01

    The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms (SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as F1 and F2, differing only in the length of their 5′-terminal untranslated region (UTR) sequences and presenting a color specific expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2 transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3′UTR. A 4 bp deletion (c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations in the MC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the MC1R gene and provides additional information on its role in alpaca pigmentation. PMID:25685836

  19. Does the Numeric Rating Scale (NRS) represent the optimal tool for evaluating pain in the triage process of patients presenting to the ED? Results of a muticenter study.

    PubMed

    Capponi, Rebecca; Loguercio, Valentina; Guerrini, Stefania; Beltrami, Giampietro; Vesprini, Andrea; Giostra, Fabrizio

    2017-01-16

    Pain evaluation at triage in Emergency Department (ED) is fundamental, as it influences significantly patients color code determination. Different scales have been proposed to quantify pain but they are not always reliable. This study aims to determine a) how important is for triage nurses pain measurement b) reliability of Numeric Rating Scale (NRS), the most used instrument to evaluate pain in Italian EDs, because it frequently shows higher pain scores than others scales. End point 1: a questionnaire was administered to triage nurses in some hospitals of northern Italy. End point 2: 250 patients arriving at the ED referring pain have been evaluated using, randomly, either the NRS or a fake "30-50" scale. End point 1: Triage nurses acknowledge to modify frequently the referred pain intensity. This for several reasons: nurses think that patients may exaggerate to obtain a higher priority color code; they may be influenced by specific patients categories (non EU citizens, drugs-addicted, elderly); the pain score referred by patients is not correspondent to nurse perception. End point 2: Data show that the mean value obtained with NRS is significantly (p<0.05) higher that the mean obtained with the "30-50" scale. Manipulation on pain evaluation performed by nurses might result in a dangerous underestimation of this symptom. At the same time, the use of NRS seems to allow patients to exaggerate pain perception with consequent altered attribution of color code at triage.

  20. Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?

    PubMed

    Baltzer, P A; Dietzel, M; Vag, T; Beger, S; Freiberg, C; Herzog, A B; Gajda, M; Camara, O; Kaiser, W A

    2010-03-01

    Post-contrast enhancement characteristics (PEC) are a major criterion for differential diagnosis in MR mammography (MRM). Manual placement of regions of interest (ROIs) to obtain time/signal intensity curves (TSIC) is the standard approach to assess dynamic enhancement data. Computers can automatically calculate the TSIC in every lesion voxel and combine this data to form one color-coded parametric map (CCPM). Thus, the TSIC of the whole lesion can be assessed. This investigation was conducted to compare the diagnostic accuracy (DA) of CCPM with TSIC for the assessment of PEC. 329 consecutive patients with 469 histologically verified lesions were examined. MRM was performed according to a standard protocol (1.5 T, 0.1 mmol/kgbw Gd-DTPA). ROIs were drawn manually within any lesion to calculate the TSIC. CCPMs were created in all patients using dedicated software (CAD Sciences). Both methods were rated by 2 observers in consensus on an ordinal scale. Receiver operating characteristics (ROC) analysis was used to compare both methods. The area under the curve (AUC) was significantly (p=0.026) higher for CCPM (0.829) than TSIC (0.749). The sensitivity was 88.5% (CCPM) vs. 82.8% (TSIC), whereas equal specificity levels were found (CCPM: 63.7%, TSIC: 63.0%). The color-coded parametric maps (CCPMs) showed a significantly higher DA compared to TSIC, in particular the sensitivity could be increased. Therefore, the CCPM method is a feasible approach to assessing dynamic data in MRM and condenses several imaging series into one parametric map. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    PubMed

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. A Statistical Analysis of a Traffic-Light Food Rating System to Promote Healthy Nutrition and Body Weight.

    PubMed

    Larrivee, Sandra; Greenway, Frank L; Johnson, William D

    2015-06-30

    Restaurant eating while optimizing nutrition and maintaining a healthy weight is challenging. Even when nutritional information is available, consumers often consider only calories. A quick and easy method to rate both caloric density and nutrition is an unmet need. A food rating system created to address that need is assessed in this study. The food rating system categorizes food items into 3 color-coded categories: most healthy (green), medium healthy (yellow), or least healthy (red) based on calorie density and general nutritional quality from national guidelines. Nutritional information was downloaded from 20 popular fast-food chains. Nutritional assessments and the 3 color coded categories were compared using the Wilcoxon and Median tests to demonstrate the significance of nutrition differences. Green foods were significantly lower than yellow foods, which in turn were significantly lower than red foods, for calories and calories from fat, in addition to content of total fat, saturated fat and carbohydrates per 100 g serving weight (all P < .02). The green foods had significantly lower cholesterol than the yellow (P = .0006) and red (P < .0001) foods. Yellow foods had less sugar than red foods (P < .0001). Yellow foods were significantly higher in dietary fiber than red foods (P = .001). The food rating color-coded system identifies food items with superior nutrition, and lower caloric density. The smartphone app, incorporating the system, has the potential to improve nutrition; reduce the risk of developing diabetes, hypertension, heart disease, and stroke; and improve public health. © 2015 Diabetes Technology Society.

  3. A Statistical Analysis of a Traffic-Light Food Rating System to Promote Healthy Nutrition and Body Weight

    PubMed Central

    Larrivee, Sandra; Greenway, Frank L.; Johnson, William D.

    2015-01-01

    Background: Restaurant eating while optimizing nutrition and maintaining a healthy weight is challenging. Even when nutritional information is available, consumers often consider only calories. A quick and easy method to rate both caloric density and nutrition is an unmet need. A food rating system created to address that need is assessed in this study. Methods: The food rating system categorizes food items into 3 color-coded categories: most healthy (green), medium healthy (yellow), or least healthy (red) based on calorie density and general nutritional quality from national guidelines. Nutritional information was downloaded from 20 popular fast-food chains. Nutritional assessments and the 3 color coded categories were compared using the Wilcoxon and Median tests to demonstrate the significance of nutrition differences. Results: Green foods were significantly lower than yellow foods, which in turn were significantly lower than red foods, for calories and calories from fat, in addition to content of total fat, saturated fat and carbohydrates per 100 g serving weight (all P < .02). The green foods had significantly lower cholesterol than the yellow (P = .0006) and red (P < .0001) foods. Yellow foods had less sugar than red foods (P < .0001). Yellow foods were significantly higher in dietary fiber than red foods (P = .001). Conclusion: The food rating color-coded system identifies food items with superior nutrition, and lower caloric density. The smartphone app, incorporating the system, has the potential to improve nutrition; reduce the risk of developing diabetes, hypertension, heart disease, and stroke; and improve public health. PMID:26134833

  4. Multiple Instruments Used for Mars Carbon Estimate

    NASA Image and Video Library

    2015-09-02

    Researchers estimating the amount of carbon held in the ground at the largest known carbonate-containing deposit on Mars utilized data from three different NASA Mars orbiters. Each image in this pair covers the same area about 36 miles (58 kilometers) wide in the Nili Fossae plains region of Mars' northern hemisphere. The tally of carbon content in the rocks of this region is a key piece in solving a puzzle of how the Martian atmosphere has changed over time. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere. The image on the left presents data from the Thermal Emission Imaging System (THEMIS) instrument on NASA's Mars Odyssey orbiter. The color coding indicates thermal inertia -- the property of how quickly a surface material heats up or cools off. Sand, for example (blue hues), cools off quicker after sundown than bedrock (red hues) does. The color coding in the image on the right presents data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on NASA's Mars Reconnaissance Orbiter. From the brightness at many different wavelengths, CRISM data can indicate what minerals are present on the surface. In the color coding used here, green hues are consistent with carbonate-bearing materials, while brown or yellow hues are olivine-bearing sands and locations with purple hues are basaltic in composition. The gray scale base map is a mosaic of daytime THEMIS infrared images. Annotations point to areas with different surface compositions. The scale bar indicates 20 kilometers (12.4 miles). http://photojournal.jpl.nasa.gov/catalog/PIA19816

  5. Using an Art Project to Stimulate Youth Interest in Soil

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Brevik, Corinne E.; Steffan, Joshua J.

    2017-04-01

    Dickinson State University organizes four Family Science Day events each fall during the months of September, October, November, and December. Activities are geared toward elementary-aged children to increase student engagement in the sciences. Offered on Saturday afternoons, each event focuses on a different science-related theme. Families can attend these events free of charge, and the kids participate in a large variety of hands-on activities that center around the event's theme. An important part of generating enthusiasm for a subject is making it interesting, and with young children art projects provide a great avenue to generate interest and enthusiasm. Such projects are fun and involve creativity, allowing the children a chance to express themselves. To this end, each of the Family Science Days includes one or more arts and crafts projects that result in a fun learning experience the children can take home. In November 2015 the art project involved creating a soil profile. The children were given a paper handout showing a soil profile sketch lined up beside a color photograph of a soil profile. They were also supplied with glue and several containers of different colored soils from surface and subsurface horizons. To create their art project, the children glued samples of soil onto their profile sketch, attempting to create a profile that looked similar to the color photograph. The handout also included fundamental information about each of the horizons shown. The children received this project with great enthusiasm. There were nine other science-based activities available at the Family Science Day when the soil art project was offered, and the art project was one of the most popular stops in the room. The children typically spent a good deal of time working on their art project, including asking questions about the various colored soils available to them and the basic properties of soil. Whether the popularity of the project came from the chance to be creative, the challenge of trying to recreate the photograph, or just a general interest in getting their fingers dirty, it is our hope (in the bigger picture) that the art project created more awareness of soil and, in at least a few of the young participants, that it might stimulate interest in soil later in their lives.

  6. The prior statistics of object colors.

    PubMed

    Koenderink, Jan J

    2010-02-01

    The prior statistics of object colors is of much interest because extensive statistical investigations of reflectance spectra reveal highly non-uniform structure in color space common to several very different databases. This common structure is due to the visual system rather than to the statistics of environmental structure. Analysis involves an investigation of the proper sample space of spectral reflectance factors and of the statistical consequences of the projection of spectral reflectances on the color solid. Even in the case of reflectance statistics that are translationally invariant with respect to the wavelength dimension, the statistics of object colors is highly non-uniform. The qualitative nature of this non-uniformity is due to trichromacy.

  7. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  8. Desmoglein 4 diversity and correlation analysis with coat color in goat.

    PubMed

    E, G X; Zhao, Y J; Ma, Y H; Cao, G L; He, J N; Na, R S; Zhao, Z Q; Jiang, C D; Zhang, J H; Arlvd, S; Chen, L P; Qiu, X Y; Hu, W; Huang, Y F

    2016-03-04

    Desmoglein 4 (DSG4) has an important role in the development of wool traits in domestic animals. The full-length DSG4 gene, which contains 3918 bp, a complete open-reading-frame, and encodes a 1040-amino acid protein, was amplified from Liaoning cashmere goat. The sequence was compared with that of DSG4 from other animals and the results show that the DSG4 coding region is consistent with interspecies conservation. Thirteen single-nucleotide polymorphisms (SNPs) were identified in a highly variable region of DSG4, and one SNP (M-1, G>T) was significantly correlated with white and black coat color in goat. Haplotype distribution of the highly variable region of DSG4 was assessed in 179 individuals from seven goat breeds to investigate its association with coat color and its differentiation among populations. However, the lack of a signature result indicates DGS4 haplotypes related with the color of goat coat.

  9. Ergonomic glovebox workspace layout tool and associated method of use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roddy, Shannon Howard

    The present invention provides an elongate tool that aides in the placement of objects and machinery within a glovebox, such that the objects and machinery can be safely handled by a user. The tool includes a plurality of visual markings (in English units, metric units, other units, grooves, ridges, varying widths, etc.) that indicate distance from the user within the glovebox, optionally broken into placement preference zones that are color coded, grayscale coded, or the like.

  10. Beyond the First Optical Depth: Fusing Optical Data From Ocean Color Imagery and Gliders

    DTIC Science & Technology

    2009-01-01

    34*/ Office of Counsel,Code 1008.3 U •• "*-<-, ADOR/Director NCST E. R. Franchi , 7000 %. Public Affairs (Unclassified/ Unlimited Only). Code -rn...extreme weather (e.g., hurricanes) becoming a safe and efficient alternative to shipboard surveys3. Despite these benefits , data streams provided by...ECO-triplet poke, WetLabs). Unlike other glider types (e.g., spray, seaglider), the use of Slocums was especially advantageous in the WAP region to

  11. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Gaarder, N. T.; Lin, S.

    1986-01-01

    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.

  12. Color Coding Organic Chemicals for Inventory Control.

    ERIC Educational Resources Information Center

    Wystrach, V. P.; George, Babu

    1985-01-01

    Describes a system in which organic chemicals are recoded for inventory control and reshelving purposes. The system works well in undergraduate organic chemistry or biology laboratories but can be expanded to handle a larger and more complicated inventory. (JN)

  13. 77 FR 41370 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Response: 5 minutes. Burden Hours: 10,235. Needs and Uses: This request is for extension of a current... one or two color codes, designating the type of gear and area where the gear is set. The surface buoys...

  14. A Hypertext Glossary of Nematology.

    ERIC Educational Resources Information Center

    Francl, Leonard J.

    1993-01-01

    Describes NEMATODE GLOSSARY, a hypertext glossary of terminology used in graduate nematology courses. Glossary definitions of anatomical terms are linked to color illustrations. Common names of plant and animal parasites and mnemonic codes for nematode genes are in separate appendices. (Author/MDH)

  15. Magellan Perspective View of Sedna Planitia, 45° N, 11° E

    NASA Image and Video Library

    1998-06-04

    This perspective view of Venus, generated by computer from NASA Magellan data and color-coded with emissivity, shows part of the lowland plains in Sedna Planitia. http://photojournal.jpl.nasa.gov/catalog/PIA00307

  16. Topography of Gale Crater

    NASA Image and Video Library

    2011-11-21

    Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA Mars Science Laboratory yellow dot to a high point on the mountain inside the crater.

  17. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  18. Color transfer algorithm in medical images

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Xu, Yangfa

    2007-12-01

    In digital virtual human project, image data acquires from the freezing slice of human body specimen. The color and brightness between a group of images of a certain organ could be quite different. The quality of these images could bring great difficulty in edge extraction, segmentation, as well as 3D reconstruction process. Thus it is necessary to unify the color of the images. The color transfer algorithm is a good algorithm to deal with this kind of problem. This paper introduces the principle of this algorithm and uses it in the medical image processing.

  19. 76 FR 59133 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Have Sex with Men and Young Transgender Persons of Color, Funding Opportunity Announcement (FOA) PS11... application received in response to ``HIV Prevention Projects for Young Men of Color Who Have Sex with Men and...

  20. LGBTQ Youth of Color Video Making as Radical Curriculum: A Brother Mourning His Brother and a Theory in the Flesh

    ERIC Educational Resources Information Center

    Cruz, Cindy

    2013-01-01

    This essay examines a video poem curriculum for Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ) students of color at a continuation school in Los Angeles, California. In this close reading of a video poem that draws from a larger research project of a community-based learning curriculum, I have found that for LGBTQ students of color whose…

  1. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors correspond to elevations above or below zero, in kilometers. Analysis that subtracts effects of the surface topography from the free-air gravity mapping, combined with an assumption that crust material has a uniform density, leads to the derived mapping of crustal thickness -- or subsurface "lumpiness" -- on the right. Highs in gravity indicate places where the denser mantle material beneath the crust is closer to the surface, and hence where the crust is thinner. The color-coding key for this map indicates how the colors on the map correspond to the thickness of the crust, in kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA20277

  2. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-??m absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body. ?? 1983.

  3. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains

    PubMed Central

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-01-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha–Sorghum), AM (Acha–Millet), SM (Sorghum–Millet), ASG (Acha–Sorghum Germinated), AMG (Acha–Millet Germinated), and SMG (Sorghum–Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal–Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on parameters (P = 0.055 > 0.05). However, panelists showed preference for the taste and aroma of the germinated drink SMG but more preference for the color of the ungerminated drink SM with preference significantly dependent on the parameters (P = 0.028 < 0.05). Crude fiber values were higher – 11.3%, 13.1%, and 17.37% for SMG, AMG and ASG, respectively. Germination increased %Fat values slightly but the %Ash was relatively stable in both germinated and ungerminated drinks. Addition of germinated acha cereal grains to either sorghum or millet prior to fermentation offers desirable sensory and nutritional quality attributes in kunu-zaki. PMID:24804038

  4. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains.

    PubMed

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-07-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha-Sorghum), AM (Acha-Millet), SM (Sorghum-Millet), ASG (Acha-Sorghum Germinated), AMG (Acha-Millet Germinated), and SMG (Sorghum-Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal-Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on parameters (P = 0.055 > 0.05). However, panelists showed preference for the taste and aroma of the germinated drink SMG but more preference for the color of the ungerminated drink SM with preference significantly dependent on the parameters (P = 0.028 < 0.05). Crude fiber values were higher - 11.3%, 13.1%, and 17.37% for SMG, AMG and ASG, respectively. Germination increased %Fat values slightly but the %Ash was relatively stable in both germinated and ungerminated drinks. Addition of germinated acha cereal grains to either sorghum or millet prior to fermentation offers desirable sensory and nutritional quality attributes in kunu-zaki.

  5. Evaluation of color grading impact in restoration process of archive films

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Janout, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2016-09-01

    Color grading of archive films is a very particular task in the process of their restoration. The ultimate goal of color grading here is to achieve the same look of the movie as intended at the time of its first presentation. The role of the expert restorer, expert group and a digital colorist in this complicated process is to find the optimal settings of the digital color grading system so that the resulting image look is as close as possible to the estimate of the original reference release print adjusted by the expert group of cinematographers. A methodology for subjective assessment of perceived differences between the outcomes of color grading is introduced, and results of a subjective study are presented. Techniques for objective assessment of perceived differences are discussed, and their performance is evaluated using ground truth obtained from the subjective experiment. In particular, a solution based on calibrated digital single-lens reflex camera and subsequent analysis of image features captured from the projection screen is described. The system based on our previous work is further developed so that it can be used for the analysis of projected images. It allows assessing color differences in these images and predict their impact on the perceived difference in image look.

  6. Sunset in Mars Gale Crater

    NASA Image and Video Library

    2015-05-08

    NASA's Curiosity Mars rover recorded this view of the sun setting at the close of the mission's 956th Martian day, or sol (April 15, 2015), from the rover's location in Gale Crater. This was the first sunset observed in color by Curiosity. The image comes from the left-eye camera of the rover's Mast Camera (Mastcam). The color has been calibrated and white-balanced to remove camera artifacts. Mastcam sees color very similarly to what human eyes see, although it is actually a little less sensitive to blue than people are. Dust in the Martian atmosphere has fine particles that permit blue light to penetrate the atmosphere more efficiently than longer-wavelength colors. That causes the blue colors in the mixed light coming from the sun to stay closer to sun's part of the sky, compared to the wider scattering of yellow and red colors. The effect is most pronounced near sunset, when light from the sun passes through a longer path in the atmosphere than it does at mid-day. Malin Space Science Systems, San Diego, built and operates the rover's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19400

  7. Toward unsupervised outbreak detection through visual perception of new patterns

    PubMed Central

    Lévy, Pierre P; Valleron, Alain-Jacques

    2009-01-01

    Background Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available. This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases. Methods The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2nd version (ICPC-2). The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest. Results The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs) participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED). Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems), and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data. Conclusion Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts, based on "image walls" presenting the local, regional and/or national surveillance patterns, with specialized field epidemiologists assigned to validate the signals detected. PMID:19515246

  8. Integrating Bar-Code Medication Administration Competencies in the Curriculum: Implications for Nursing Education and Interprofessional Collaboration.

    PubMed

    Angel, Vini M; Friedman, Marvin H; Friedman, Andrea L

    This article describes an innovative project involving the integration of bar-code medication administration technology competencies in the nursing curriculum through interprofessional collaboration among nursing, pharmacy, and computer science disciplines. A description of the bar-code medication administration technology project and lessons learned are presented.

  9. Selective document image data compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1998-05-19

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

  10. Selective document image data compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1998-01-01

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)

  11. ImageX: new and improved image explorer for astronomical images and beyond

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Gopu, Arvind; Kotulla, Ralf; Young, Michael D.

    2016-08-01

    The One Degree Imager - Portal, Pipeline, and Archive (ODI-PPA) has included the Image Explorer interactive image visualization tool since it went operational. Portal users were able to quickly open up several ODI images within any HTML5 capable web browser, adjust the scaling, apply color maps, and perform other basic image visualization steps typically done on a desktop client like DS9. However, the original design of the Image Explorer required lossless PNG tiles to be generated and stored for all raw and reduced ODI images thereby taking up tens of TB of spinning disk space even though a small fraction of those images were being accessed by portal users at any given time. It also caused significant overhead on the portal web application and the Apache webserver used by ODI-PPA. We found it hard to merge in improvements made to a similar deployment in another project's portal. To address these concerns, we re-architected Image Explorer from scratch and came up with ImageX, a set of microservices that are part of the IU Trident project software suite, with rapid interactive visualization capabilities useful for ODI data and beyond. We generate a full resolution JPEG image for each raw and reduced ODI FITS image before producing a JPG tileset, one that can be rendered using the ImageX frontend code at various locations as appropriate within a web portal (for example: on tabular image listings, views allowing quick perusal of a set of thumbnails or other image sifting activities). The new design has decreased spinning disk requirements, uses AngularJS for the client side Model/View code (instead of depending on backend PHP Model/View/Controller code previously used), OpenSeaDragon to render the tile images, and uses nginx and a lightweight NodeJS application to serve tile images thereby significantly decreasing the Time To First Byte latency by a few orders of magnitude. We plan to extend ImageX for non-FITS images including electron microscopy and radiology scan images, and its featureset to include basic functions like image overlay and colormaps. Users needing more advanced visualization and analysis capabilities could use a desktop tool like DS9+IRAF on another IU Trident project called StarDock, without having to download Gigabytes of FITS image data.

  12. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less

  13. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  14. Color universal design: analysis of color category dependency on color vision type (4)

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomohiro; Ichihara, Yasuyo G.; Kojima, Natsuki; Tanaka, Hisaya; Ito, Kei

    2013-02-01

    This report is af ollow-up to SPIE-IS+T / Vol. 7528 7528051-8, SPIE-IS+T / Vol. 7866 78660J-1-8 and SPIE-IS+T / Vol. 8292 829206-1-8. Colors are used to communicate information in various situations, not just for design and apparel. However, visual information given only by color may be perceived differently by individuals with different color vision types. Human color vision is non-uniform and the variation in most cases is genetically linked to L-cones and M-cones. Therefore, color appearance is not the same for all color vision types. Color Universal Design is an easy-to-understand system that was created to convey color-coded information accurately to most people, taking color vision types into consideration. In the present research, we studied trichromat (C-type), prolan (P-type), and deutan (D-type) forms of color vision. We here report the result of two experiments. The first was the validation of the confusion colors using the color chart on CIELAB uniform color space. We made an experimental color chart (total of color cells is 622, the color difference between color cells is 2.5) for fhis experiment, and subjects have P-type or D-type color vision. From the data we were able to determine "the limits with high probability of confusion" and "the limits with possible confusion" around various basing points. The direction of the former matched with the theoretical confusion locus, but the range did not extend across the entire a* range. The latter formed a belt-like zone above and below the theoretical confusion locus. This way we re-analyzed a part of the theoretical confusion locus suggested by Pitt-Judd. The second was an experiment in color classification of the subjects with C-type, P-type, or D-type color vision. The color caps of fhe 100 Hue Test were classified into seven categories for each color vision type. The common and different points of color sensation were compared for each color vision type, and we were able to find a group of color caps fhat people with C-, P-, and D-types could all recognize as distinguishable color categories. The result could be used as the basis of a color scheme for future Color Universal Design.

  15. SeisCode: A seismological software repository for discovery and collaboration

    NASA Astrophysics Data System (ADS)

    Trabant, C.; Reyes, C. G.; Clark, A.; Karstens, R.

    2012-12-01

    SeisCode is a community repository for software used in seismological and related fields. The repository is intended to increase discoverability of such software and to provide a long-term home for software projects. Other places exist where seismological software may be found, but none meet the requirements necessary for an always current, easy to search, well documented, and citable resource for projects. Organizations such as IRIS, ORFEUS, and the USGS have websites with lists of available or contributed seismological software. Since the authors themselves do often not maintain these lists, the documentation often consists of a sentence or paragraph, and the available software may be outdated. Repositories such as GoogleCode and SourceForge, which are directly maintained by the authors, provide version control and issue tracking but do not provide a unified way of locating geophysical software scattered in and among countless unrelated projects. Additionally, projects are hosted at language-specific sites such as Mathworks and PyPI, in FTP directories, and in websites strewn across the Web. Search engines are only partially effective discovery tools, as the desired software is often hidden deep within the results. SeisCode provides software authors a place to present their software, codes, scripts, tutorials, and examples to the seismological community. Authors can choose their own level of involvement. At one end of the spectrum, the author might simply create a web page that points to an existing site. At the other extreme, an author may choose to leverage the many tools provided by SeisCode, such as a source code management tool with integrated issue tracking, forums, news feeds, downloads, wikis, and more. For software development projects with multiple authors, SeisCode can also be used as a central site for collaboration. SeisCode provides the community with an easy way to discover software, while providing authors a way to build a community around their software packages. IRIS invites the seismological community to browse and to submit projects to https://seiscode.iris.washington.edu/

  16. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.

    PubMed

    Han, M; Gao, X; Su, J Z; Nie, S

    2001-07-01

    Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.

  17. Gene-Auto: Automatic Software Code Generation for Real-Time Embedded Systems

    NASA Astrophysics Data System (ADS)

    Rugina, A.-E.; Thomas, D.; Olive, X.; Veran, G.

    2008-08-01

    This paper gives an overview of the Gene-Auto ITEA European project, which aims at building a qualified C code generator from mathematical models under Matlab-Simulink and Scilab-Scicos. The project is driven by major European industry partners, active in the real-time embedded systems domains. The Gene- Auto code generator will significantly improve the current development processes in such domains by shortening the time to market and by guaranteeing the quality of the generated code through the use of formal methods. The first version of the Gene-Auto code generator has already been released and has gone thought a validation phase on real-life case studies defined by each project partner. The validation results are taken into account in the implementation of the second version of the code generator. The partners aim at introducing the Gene-Auto results into industrial development by 2010.

  18. Scientific and Technical Publishing at Goddard Space Flight Center in Fiscal Year 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is a compilation of scientific and technical material that was researched, written, prepared, and disseminated by the Center's scientists and engineers during FY94. It is presented in numerical order of the GSFC author's sponsoring technical directorate; i.e., Code 300 is the Office of Flight Assurance, Code 400 is the Flight Projects Directorate, Code 500 is the Mission Operations and Data Systems Directorate, Code 600 is the Space Sciences Directorate, Code 700 is the Engineering Directorate, Code 800 is the Suborbital Projects and Operations Directorate, and Code 900 is the Earth Sciences Directorate. The publication database contains publication or presentation title, author(s), document type, sponsor, and organizational code. This is the second annual compilation for the Center.

  19. Efficiency enhancement of liquid crystal projection displays using light recycle technology

    NASA Technical Reports Server (NTRS)

    Wang, Y.

    2002-01-01

    A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.

  20. Colored Height and Shaded Relief, Central America

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panama, Costa Rica, Nicaragua, El Salvador, Honduras, Guatemala, Belize, southern Mexico and parts of Cuba and Jamaica are all seen in this image from NASA's Shuttle Radar Topography Mission. The dominant feature of the northern part of Central America is the Sierra Madre Range, spreading east from Mexico between the narrow Pacific coastal plain and the limestone lowland of the Yucatan Peninsula. Parallel hill ranges sweep across Honduras and extend south, past the Caribbean Mosquito Coast to lakes Managua and Nicaragua. The Cordillera Central rises to the south, gradually descending to Lake Gatun and the Isthmus of Panama. A highly active volcanic belt runs along the Pacific seaboard from Mexico to Costa Rica.

    High-quality satellite imagery of Central America has, until now, been difficult to obtain due to persistent cloud cover in this region of the world. The ability of SRTM to penetrate clouds and make three-dimensional measurements has allowed the generation of the first complete high-resolution topographic map of the entire region. This map was used to generate the image.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    For an annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 9 mB jpeg)

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (200-foot)-long mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 1720 by 1670 kilometers (1068 by 1036 miles) Location: 14.5 degrees North latitude, 85.0 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

Top